专题复习--图形的平移

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题复习---图形的平移

例一:如图1所示,一张三角形纸片ABC,∠ACB=90°,∠A=30°BC=6,沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示),将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移,在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P。

(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;

(2)设平移距离D2D1=x,PE=y,请写出y与x的函数关系式,以及自变量x的取值范围;

例二:如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF 与边AC重合,且EF=FP。

(1)在图1中,请你通过观察测量,猜想并写出AB与AP所满足的数量关系和位置关系;

(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连结AP,BQ。猜想并写出BQ与AP 所满足的数量关系和位置关系,请证明你的猜想;

(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连结AP,BQ,你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由。

例三:如图所示,在Rt△ABC中,∠C=90°,∠B=30°,BC=4.左右做平行移动的等边三角形DEF 的两个顶点E,F始终在边BC上,DE,DF分别与AB相交于点G,H.当点F与点C重合时,点D恰好在

斜边AB上.

(1)求△DEF的边长;

(2)在△DEF做平行移动的过程中,图中是否存在与线段CF始终相等的线段?如果存在,请指出这条线段,并加以证明;如果不存在,请说明理由;

(3)假设点C与点F的距离为x,△DEF与△ABC重叠部分的面积为y,求y与x的函数解析式,并写出它的定义域.

例四:如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD 的右侧作正方形ADEF.

解答下列问题:

(1)如果AB=AC,∠BAC=90º.

①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为(),数量关系为().

②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?

(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.

试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)

(3)若AC=,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.

例五:如图,已知在直角坐标平面内,点A的坐标为(3,0),第一象限内的点P在直线y=2x上,∠PAO=45度.

(1)求点P的坐标;

(2)如果二次函数的图象经过P、O、A三点,求这个二次函数的解析式,并写出它的图象的顶点坐标M;

(3)如果将第(2)小题中的二次函数的图象向上或向下平移,使它的顶点落在直线y=2x上的点Q处,求△APM与△APQ的面积之比.

例六如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成60°的角,且交y轴于C点,以点O2(13,5)为圆心的圆与x 轴相切于点D.

(1)求直线l的解析式;

(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,

当⊙O2第一次与⊙O1外切时,求⊙O2平移的时间.

旁触类通:

1.如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F

(1)求证:CE=CF.

(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.

2.如图,

△ABC中

AB=AC,BC=6,点D位BC中点,连接AD,AD=4,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E.

(1)试判断四边形ADCE的形状并说明理由.

(2)将四边形ADCE沿CB以每秒1个单位长度的速度向左平移,设移动时间为t(0≤t≤6)秒,平移后的四边形A’D’C’E’与△ABC重叠部分的面积为S,求S关于t的函数表达式,并写出相应的t的取值范围.

3.如图,矩形纸片ABCD中,AB=4,BC=4,将矩形沿对角线AC剪开,解答以下问题:

(1)在△ACD绕点C顺时针旋转60°,△A1CD1是旋转后的新位置(图A),求此AA1的距离;

(2)将△ACD沿对角线AC向下翻折(点A、点C位置不动,△ACD和△ABC落在同一平面内),△ACD2是翻折后的新位置(图B),求此时BD2的距离;

(3)将△ACD沿CB向左平移,设平移的距离为x(0≤x≤4),△A2C1D3

是平移后的新位置(图C),若△ABC与△A2C1D3重叠部分的面积为y,求y关于x的函数关系式.

4.两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作:

1.如图1,△DEF沿线段AB向右平移(即D点在线段AB内移动),连结DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,四边形CDBF面积为 ()▲ ;

2.如图2,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.

3.如图3,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连结AE,请你求出sin∠AED的值.

5.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连接OA.

(1)求△OAB的面积;

(2)若抛物线y=-x2-2x+c经过点A.

①求c的值;

②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围(直接写出答案即可).

相关文档
最新文档