小学四年级奥数 还原问题
四年级奥数题:还原问题

四年级奥数题:还原问题专题简析:已知某个数经过加、减、乘、除运算后所得的结果,要求原数,这类问题叫做还原问题,还原问题又叫逆运算问题。
解决这类问题通常使用倒推法。
遇到比较复杂的还原问题,能够借助画图和列表来解决这些问题。
例1:小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁。
小刚的奶奶今年多少岁?分析与解答:从最后一个条件恰好是100岁向前推算,扩大10倍后是100岁,没有扩大10倍之前应是100÷10=10岁;加上2之后是10岁,没有加 2之前应是10-2=8岁;没有缩小9倍之前应是8×9=72岁;减去7之后是72岁,没有减去7前应是72+7=79岁。
所以,小刚的奶奶今年是79 岁。
练习一1,在□里填上适当的数。
20×□÷8+16=262,一个数的3倍加上6,再减去9,最后乘上2,结果得60。
这个数是多少?3,小红问王老师今年多大年纪,王老师说:“把我的年纪加上9,除以4,减去2,再乘上3,恰好是30岁。
”王老师今年多少岁?例2:某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台。
这个商场原来有洗衣机多少台?分析与解答:从“下午售出剩下的一半还多20台”和“还剩95台”向前倒推,从图中能够看出,剩下的95台和下午多卖的20台合起来,即 95+20=115台正好是上午售后剩下的一半,那么115×2=230台就是上午售出后剩下的台数。
而230台和10台合起来,即230+10=240 台又正好是总数的一半。
那么,240×2=480台就是原有洗衣机的台数。
练习二1,粮库内有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨。
粮库原有大米多少吨?2,爸爸买了一些橘子,全家人第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多1个,第三天又吃掉了剩下的一半多1个,还剩下1个。
四年级奥数题《还原问题》数学小升初常考例题讲解+练习

例题1:把刘老师的年龄,乘4以后减去45再把所得的差除以3,然后加上5,最后得30。
刘老师今年几岁?1.还原时运算顺序和运算符号都会发生变化。
2.加变减,减变加;乘变除,除变乘。
30-5=2525×3=7575+45=120120÷4=30答:刘老师今年30岁。
练习1.一个数乘7除以3,然后加上5,最后再减3所得的结果是16。
那么这个数是多少?2.慢羊羊在黑板上写了一个数,喜洋洋将这个数乘7后,抹掉了末尾的数字0,美羊羊将喜洋洋所得的结果乘6以后,又抹掉了末尾的0,这时黑板上的数字是42。
原来的数是多少?例题2:(1)某商场卖菠萝,第一次卖掉总数的一半多2个,第二次卖掉剩余的一半多3个,此时还剩3个。
那么商场原来有菠萝多少个?(3+3)×2=12(个)(12+2)×2=28(个)答:商场共有菠萝28个。
例题2:(2)某水果店卖苹果,第一天卖出所有苹果的一半少50千克,第二天卖出第一天剩下的一半少20千克,最后还剩下100千克。
这个水果店原来有苹果多少千克?(100-20)×2=160(千克)(160-50)×2=220(千克)答:这个水果店原来有苹果220千克。
练习1.(1)某超市的西红柿做活动,上午卖出所有西红柿的一半多20千克,下午又卖出剩下的一半多30千克,此时还剩下40千克。
超市原来有西红柿多少千克?(2)龙龙有一些巧克力,上午吃了所有巧克力的一半少5块,下午又吃了剩下的一半少3块,此时还剩下10块。
龙龙原来有巧克力多少块?2.某商场做活动,第一天卖出所有商品的一半少15个,第二天卖出剩下的一半少20个,第三天又卖出第二天剩下的一半,此时还剩37个。
这个商场原来有商品多少个?例题3:某水果店上午卖出西瓜总数的一半多2个,下午又卖出剩余的一半少8个,此时还剩28个。
水果店原来有西瓜多少个?(28-8)×2=40(个)(40+2)×2=84(个)答:水果店原来有西瓜84个。
四年级奥数:还原问题

四年级奥数:还原问题还原问题是指题目给出的是一个数经过某些变化后的结果,要求原来的数的问题.解答这一类的问题时,要根据题意,从所给的结果出发,抓住逆运算关系,由后向前一步步逆推(倒推法、还原法),做相反的运算,逐步靠拢已知条件,直到问题得到解决.在解答还原问题时,如果列综合算式,要注意括号的正确使用.典型例题例【1】三(1)班小图书箱第一天借出了存书的一半,第2天又借出43本,还剩32本.小图书箱原有图书多少本?分析经过两天借出图书,小图书最后还剩32本书.由此可以往前推算:第2天没借出43本前(也就是第1天借出图书后),应有(32+43)本书,再根据“第1天借出了存书的一半”,可推算出这75本书也就是第1天借出后的另一半,即相当于第1天借出的本数.这样,小图书箱原有的图书本数可求得.解第1天借书后还剩的本数:32+43=75(本)原有图书的本数:75×2=150(本)综合算式:(32+43)×2=150(本)答:小图书箱原有图书150本.例【2】某数加上5,乘以5,减去5,除以5,其结果等于5.求这个数.分析从后往前推,原来是加法,推回去是减法;原来是减法,推回去是加法;原来是乘法,推回去是除法;原来是除法,推回去是乘法.从最后一步推起,“除以5,其结果等于5”可以求出被除数:5×5=30;再看倒数第2步,“减去5”得25,可以求出被减数:25+5=30;然后看倒数第3步,“乘以5”得30,可以求出被乘数:30÷5=6;最后看第1步,“某数加上5”得6,某数为6-5=1.解 5×5=2525+5=3030÷5=66-5=1答:所求的数为1.例【3】小明在做一道加法算式题,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123.正确的结果应是多少?分析要求正确的和,就要知道两个正确的加数.看错的加数是39,因此得到错误的和是123.根据逆运算可得到一个没看错的加数是123-89=84,题中已知一个正确的加数是85,所以正确的和是85+84=169把个位上的5看作9,相当于把正确的和多算了4,求正确的和应把4减去;把视为上的8看作3,相当于把正确的和少算了50,求正确的和应把50加上去.这样,正确的答案123+50-4=169.解一 123-39+85=84+85=169解二 9-5=480-30=50123+50-4=169答:正确的答案是169.例【4】仓库里有一批大米.第一天售出的重量比总数的一半少12吨.第二天售出的重量比剩下的一半少12吨,结果还剩下19吨.这个仓库原有大米多少吨?分析如果第二天刚好售出剩下的一半,就应是(19+12)吨.第一天售出以后剩下的吨数是(19+12)×2吨.以下类推.解(19+12)×2=62(吨)(62-12)×2=100(吨)答:这个仓库原有大米100吨.小结还原问题是逆解应用题.一般根据加减法或乘除法的互逆运算关系,由题目所叙述的顺序倒过来思考,从最后一个已知条件出发,逆推而上,求得结果.。
四年级奥数还原问题

四年级奥数还原问题 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】第十二讲还原问题还原问题是指条件中只说明了中间的发展过程和最后结果,要求最初状态的一类问题。
解答这类问题逆向思维很重要,通常要运用倒推法(还原法),即从最后一步出发,一步一步倒着往前推算,逐步倒着往前推算,逐步靠拢已知条件,直到问题解决。
[例题与方法]例1某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台,这个商场原来有洗衣机多少台?试一试:粮库有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨,问粮库原有大米多少吨?例2小明、小强和小勇三个人共有故事书60本,如果小强向小明借3本后,又借给小勇5本,结果三个人有的故事书的本数正好相等。
这三个人原来各有故事书多少本?试一试:甲、乙、丙三个小朋友共有贺年片90张,如果甲给乙3张后,乙又给丙5张,那么三个人的贺年片张数刚好相同。
问甲乙丙三个小朋友原来各有贺年片多少张?例3甲乙两桶油各有若干千克,如果要从甲桶中倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两桶油恰好都是36千克,问两桶油原来各有多少千克?试一试:王亮和李强各有画片若干张。
如果王亮拿出和李强同样多的画片送给李强,李强再拿出和王亮同样多的画片给王亮。
这时两个人都有24张,问王亮和李强原来各有画片多少张?例4两只猴子拿26个桃,甲猴眼急手快,抢先得到。
乙猴看甲猴拿得太多,就去抢一半,甲猴不服,又从乙猴那儿抢走一半,乙猴不肯,甲猴就还给乙猴5个,这时乙猴比甲猴多2个,问甲猴最初准备拿几个?试一试:学校运来36棵树苗,小强和小萍两人争着去栽,小强先拿了树苗若干棵,小萍看到小强拿太多了就抢了10棵,小强不肯,又从小萍那里抢了6棵。
这时小强拿的棵数是小萍的2倍,问最初小强准备拿多少棵?例5袋里有若干个球,小明每次拿出其中的一半再放回一个球,这样共操作了5次,袋中还有3个球。
四年级奥数:还原问题

还原问题有些应用题的思考,是从应用题所叙述事情的最后结果出发,利用已知条件一步一步倒着推理,逐步靠拢所求,直到解决问题,这种思考问题的方法,通常我们把它叫做倒推法(还原法).下面看一组问题的解答:(1)某数加上1得10,求某数.某数+1﹦10,某数﹦10-1﹦9.(2)某数减去2得8,求某数.某数-2﹦8,某数﹦8+2﹦10.(3)某数乘以3得24,求某数.某数×3﹦24,某数﹦24÷3﹦8.(4)某数除以4得6,求某数.某数÷4﹦6某数﹦6×4﹦24例1 一棵石榴树上结有若干石榴,石榴数目减去6,乘以6,加上6,除以6,结果等于6.请你算一算,石榴树上一共有多少个石榴?例2 有一位老人说:“把我的年龄加上14后除以3,再减去26,最后用25乘,恰巧是100岁.”这位老人今年多少岁?随堂练习1(1)某数加上3,乘以5,再减去8,等于12.求某数.(2)耕一块地,第一天耕的比整块地的一半少5公顷,第二天耕的比余下的一半多2公顷,第三天耕了20公顷后还剩下5公顷,这块地有多少公顷?例3 联通公司出售手机,第一个月售出的比总数的一半多20部,第二个月售出的比第一个月剩下的一半多15部,还剩75部.原有手机多少部?例4 马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111.问:正确答案是几?随堂练习2(1)小芳在做一道加法试题时,由于粗心,把个位上的5看作9,把十位上的8看作3,结果所得的和是123.正确的答案应是多少?(2)一根电线,第一次用去的比全长的一半少3米,第二次用去的比余下的一半多5米,还剩下7米.这根电线原长多少米?例5 工人们修一段路,第一天修的公路比全长的一半还多2千米,第二天修的比余下的一半还少1千米,还剩20千米没有修.公路的全长是多少千米?例6 A、B、C三个油桶各盛油若干千克,第一次把A桶的一部分油倒入B、C两桶,使B、C两桶内的油分别增加到原来的2倍;第二次从B桶把油倒入C、A两桶,使C、A两桶油分别增加到第二次倒之前桶内油的2倍;第三次从C桶把油倒入A、B两桶,使A、B两桶内的油分别增加到第三次倒之前桶内油的2倍,这时各桶的油都为16千克.问:A、B、C三个油桶原来各有油多少千克?随堂练习3(1)仓库里有一批大米,第一天售出的重量比总数的一半少12吨,第二天售出的重量比剩下的一半多12吨,结果还剩下19吨.这个仓库原有大米多少吨?(2)树林中的三棵树上共停有48只鸟,如果有8只鸟从第一棵树上飞到第二棵树上,又有6只鸟从第二棵树上飞到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各停有多少只鸟?课后题一、填空题1、某数加2,乘5,再减3得27.这个数是________.2、一个数加上2,乘以2,减去2,除以2,结果还是2,这个数是________.3、做一道整数加法题时,小刚把个位上的7看作1,把十位上的9看作6,结果得出和为136.那么正确的答案应该是_________.4、一根铁管,第1次截去2米,第2次截去剩下的一半,还剩5米.这根铁管原来长_________米.5、有一篮鸡蛋,第一次取出一半多2个,第二次取出余下的一半多2个,第三次取出8个,篮里还剩2个鸡蛋.篮里原来有__________个鸡蛋.6、一个数经过自加、自减、自乘、自除得到的四个数之和是100,这个数是_______.二、选择题7、有一个数乘以4,除以5,减去26,加上62,等于76.这个数是( ).(A)165 (B)50 (C) 32 (D)258、有一筐苹果,小文拿走全筐苹果数的,小静拿走余下部分的,小镭拿走再余下的,筐子里还剩下苹果32个.原来有苹果( ).(A)108个 (B)864个 (C) 96个 (D)64个9、甲、乙、丙共藏书240册,先从甲处取出与乙处同样多册书给乙,再从乙处取出与丙处同样多册书给丙,最后在从丙处取出与此时甲处同样多册书给甲.经过这样变动后,丙的藏书是甲的3倍,乙是甲的2倍.原来甲、乙、丙各有书的册数为( ).(A)75,70,95 (B)70,95,75 (C) 95,75,70 (D)95,70,7510、妈妈买来一批橘子,小刚第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多1个,第三天吃了第二天剩下的一半多1个,这时还剩1个橘子.妈妈买的橘子共( ).(A)20个 (B)24个 (C)18个 (D)22个三、简答题11、一个数减去8,加上10,除以7,乘以4,结果是56.这个数是多少?12、两棵树上共有麻雀25只,有5只从第一棵树上飞到第二棵树上,又从第二棵树上飞走7只,这时第一棵树上的麻雀是第二棵树上的2倍.问:原来每棵树上的麻雀各有几只?13、小丽看一本故事书,第一天看了这本书的一半多5页,第二天看了余下的一半多10页,还有8页没看.问:这本故事书共有多少页?14、甲、乙、丙、丁各有若干棋子,甲先拿出自己棋子的一部分给了乙、丙,使乙、丙每人的棋子数各增加一倍;然后乙也把自己棋子的一部分以同样的方式分给了丙、丁,丙也把自己棋子的一部分以这种方式给了甲、丁,最后丁也以这种方式将自己的棋子给了甲、乙,这时四人的棋子都是16枚.问:原来甲、乙、丙、丁四人各有棋子多少枚?。
小学四年级奥数第31讲 还原问题后附答案

第31讲还原问题一、专题简析:已知某个数经过加、减、乘、除运算后所得的结果,要求原数,这类问题叫做还原问题,还原问题又叫逆运算问题。
解决这类问题通常运用倒推法。
遇到比较复杂的还原问题,可以借助画图和列表来解决这些问题。
二、精讲精练:例1:小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁。
小刚的奶奶今年多少岁?练习一1、在□里填上适当的数。
20×□÷8+16=262、一个数的3倍加上6,再减去9,最后乘上2,结果得60。
这个数是多少?例2:某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台。
这个商场原来有洗衣机多少台?练习二1、粮库内有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨。
粮库原有大米多少吨?2、爸爸买了一些橘子,全家人第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多1个,第三天又吃掉了剩下的一半多1个,还剩下1个。
爸爸买了多少个橘子?例3:小明、小强和小勇三个人共有故事书60本。
如果小强向小明借3本后,又借给小勇5本,结果三个人有的故事书的本数正好相等。
这三个人原来各有故事书多少本?练习三1、甲、乙、丙三个小朋友共有贺年卡90张。
如果甲给乙3张后,乙又送给丙5张,那么三个人的贺年卡张数刚好相同。
问三人原来各有贺年卡多少张?2、小红、小丽、小敏三个人各有年历片若干张。
如果小红给小丽13张,小丽给小敏23张,小敏给小红3张,那么他们每人各有40张。
原来三个人各有年历片多少张?例4:甲乙两桶油各有若干千克,如果要从甲桶中倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两桶油恰好都是36千克。
问两桶油原来各有多少千克?练习四1、王亮和李强各有画片若干张,如果王亮拿出和李强同样多的画片送给李强,李强再拿出和王亮同样多的画片给王亮,这时两个人都有24张。
问王亮和李强原来各有画片多少张?2、小红问王老师今年多大年纪,王老师说:“把我的年纪加上9,除以4,减去2,再乘上3,恰好是30岁。
四年级奥数 还原问题

还原问题【基础再现】已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,其解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫逆推法或还原法,这种问题就是还原问题。
还原问题又叫做逆运算问题。
对于简单的每一次变化不太复杂的还原问题,可直接列式一步步倒着推算;对于变化较复杂的,可借助列表和画图来帮助解决问题。
【典型例题】一、填空题。
1、某数加上2,减去3,乘4,除以5,等于24,这个数是()。
2、有一个数,把它乘4以后减去46,再把所得的差除以3,然后减去10,最后得4。
这个数是()。
3、一个数的3倍加上6,再减去9,最后乘以2,结果得60。
这个数是()。
4、有一根绳子,每次剪下其中的一半多1米,这样共剪了5次,还剩下3米。
这根绳子原来长()米。
5、在下面的方框中填上适当的数,使等式成立。
(1)[(132-□)+16]÷7×4=80(2)(36×□÷6+98)÷10=14(3)95÷(□×11-3)=5(4)25×25÷(5×□+5)=256、在□里填上同一个数,使算式成立。
□÷□+(□+□-□)=6二、应用题。
1、某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台。
这个商场原来有洗衣机多少台?2、甲乙两桶油各有若干千克。
如果要从甲桶中倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两桶油恰好都是36千克,问两桶油原来各有多少千克?3、已知A、B、C、D4个数,它们的和是80,A的5倍、B减去1、C加上5、D的1/2都相等,求A、B、C、D这4个数各是多少。
4、有一筐橘子,每次拿出其中的一半,然后再放回1个,这样连续拿了5次,筐例的橘子还剩下4个。
原来筐里有多少个橘子?5、甲乙丙3个组共有图书90本,如果乙组向甲组借3本后,又送给丙组5本,结果3个组所有图书本数刚好相等。
四年级奥数——还原问题

四年级(上) 教师:胡老师学生:还原问题方法点拨一个数量经过若干次变化成了另一种结果,我们从结果出发根据每一次变化情况,一步步地倒着想,把结果还原成开始状态,这类问题叫还原问题,又叫逆运算问题。
对于简单的,每一次变化不太复杂的还原问题,可直接列式一步步倒着推算;对于变化较复杂的,可借助列表和画图来帮助解决问题。
快乐学习例1、一个数减24加上15,再乘以8得432,求这个数。
【思路分析】我们可以从最后结果432出发倒着推理。
最后是乘以8得432,如果不乘以8,那应该是432÷8=54;如果不加上15,那应该是54-15=39;如果不减去24,那应该是39+24=63。
【小试身手】一个数加上3,乘以3,再减去3,最后除以3,结果还是3,这个数是几?例2、甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三个人书的本数同样多,乙原来比丙多多少本?【思路分析】因为乙给丙5本后,两人同样多,可知乙比丙多5×2=10(本),而这10本中又有3本是甲给的,所以原来乙比丙多10-3=7(本)。
【小试身手】小松、小明、小航各有玻璃球若干个,如果小松给小明10个,小明给小航6个后,三人的个数同样多,小明原来比小航多几个?例3、李奶奶卖鸡蛋,她上午卖出总数的一半多10个,下午又卖出剩下的一半多10个,最后还剩65个鸡蛋没有卖出。
李奶奶原来有多少个鸡蛋?【思路分析】根据题意,画出线段图:从图上可以看出,最后剩下的65个鸡蛋加上10个正好是余下的一半,余下的一半为65+10=75(个),那么上午卖出后共剩下鸡蛋75×2=150(个),150个鸡蛋再加上10个就是总数的一半,所以总数的一半为150+10=160(个),李妈妈原有160×2=320(个)鸡蛋。
【小试身手】竹篮内有若干个李子,取它的一半又一枚给第一人,再取余直的一半又两枚给第二人。
竹篮内原有李子多少枚?例4、小红、小青、小宁都喜欢画片。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
还原问题(一)
还原问题是指条件中只说明了中间的发展过程和最后结果,要求最初状态的一类问题。
解答这类问题逆向思维很重要,通常要运用倒推法(还原法),即从最后一步出发,一步一步倒着往前推算,逐步倒着往前推算,逐步靠拢已知条件,直到问题解决。
例1.某数加上6,乘以6,减去6,除以6,其结果等于6,求某数。
例2.有一位老人说:“把我的年龄加上14后除以3,再减去26,最后用25乘,恰巧是100岁。
”这位老人今年多少岁?
例3.在做一道加法式题时,某学生把个位上的5看作9,把十位上的8看作3,结果所得的和是123。
正确的答案是多少?
例4.工人们修一段路,第一天修了公路全长的一半还多2千米,第二天修了余下了一半还少1千米,还剩20千米没有修完。
公路的全长是多少千米?
练习与思考
1.某数加上10,乘以10,减去10,除以10,结果等于10。
这个数是多少?
2.《小学生数学报》少年数学爱好者俱乐部成立的年份数加上2后,缩小100倍,再扩大4倍,最后减去25,正好是55。
这个俱乐部成立于哪一年?
3.有一个说:“把我的年龄加上28后除以15,再用8乘,就是32岁。
”这个人多少岁?
4.小明在做一道加法计算题时,把个位上的4看作7,十位上的8看作2,结果和是306。
正确的答案应该是多少?
5.王大爷去粮站买米,粮站的陈叔叔因粗心,错把一袋米少算了20千克,把另一袋米多算了3千克,合计卖给王大爷60千克米。
王大爷实际购买了多少千克米?
6.一捆电线,第一次用去全长了一半多3米,第二次用去余下的一半多5米,还剩下7米。
这捆电线原来长多少米?
7.有一篮鸡蛋,第一次取出一半多2个,第二次取出余下的一半多2个,第三次拿出8个,篮里还剩2个鸡蛋。
篮里原来有多少个鸡蛋?
8.小刚买毛巾用去所带钱的一半,买手帕用去2元钱,买香皂用去剩余钱的一半,这时还剩4元钱。
小刚买毛巾用去多少钱?一共带了多少钱?
9.某仓库运出三次原料,第一次运出总数的一半,第二次运出余下的一半,第三次运出前两次运完后余下的一半,最后把剩下的原料分给甲、乙两个工厂,甲厂得6吨,是乙厂的2倍。
仓库原有原料多少吨?
10.把若干个面包分给甲、乙、丙三个人吃,甲吃了全部的一半多1个,乙吃了剩余的一半多1个,丙吃了最后剩余的一半多1个,这样面包刚好全部吃完。
原来有几个面包?
还原问题(二)
例1.甲、乙、丙三个组共有图书90本,如果乙组向甲组借3本后,又送给丙组5本,结果三个组所有图书的本数刚好相等。
甲、乙、丙三个组原来各有图书多少本?
例2.甲、乙两个车站共停了195辆汽车,如果从甲站开到乙站36辆,又从乙站开出45辆汽车,这时乙站停了汽车辆数是甲站的2倍。
原来甲、乙两站各停放多少辆汽车?
例3.一筐鱼连筐重122千克,卖出一半鱼后,再卖出剩下的鱼的地半,这时连筐还重35千克。
原来筐和鱼各重多少千克?
练习与思考
1.小亮在计算一道除法题的时候,把除数36写成62,结果重到的商是30余12。
正确的商应该是多少?
2.小明在做一道减法题的时候,把被减数个位上的4错写成7,把十位的1错写成5,把百位上的3错写成2,这样,他算得的差是143。
正确的差应该是多少?
3.小兰问一位老师今年多大年纪,老师说:“把我的年龄除以6后加上14,再乘以3,最后减去27,是33岁。
”这位老师多少岁?
4.操场上放了一些花盆,第一次搬走了全部的一半多8盆,第二次搬走了余下的一半少4盆,将剩下了摆成6排,每排恰好放2盆。
原来有多少个花盆?
5.甲、乙、丙三个小朋友共有年历片120张,如果甲给乙13张,乙给丙23张后,他们每人的张数相等。
原来三人各有年历片几张?
6.甲、乙、丙共有72元钱,甲拿出与乙同样多的钱给乙,乙再拿出与丙同样多的钱给丙,这时三人的钱数同样多。
甲、乙、丙三人原来各有多少钱?
7.甲、乙两个车站共停了90辆汽车,如果从乙站开到甲站12辆汽车,又从甲站开出30辆汽车,这时甲站停的汽车辆数是乙站的3倍。
原来甲、乙两站各停了多少辆汽车?
8.甲、乙两个车站共停了90辆汽车,如果从甲站开到乙站38辆汽车后,乙站开到甲站14辆,这时两站停的汽车辆数相等。
两站原来各停了多少辆汽车?
9.某车间分成甲、乙两个组,因生产需要,把甲组工人的一半调到乙组去了,后来改变工作程序,又把乙组工人中的25人调到了甲组,这时甲组有45人,乙组有22人。
甲、乙两个组原来各有多少人?
10.一个水桶里面装有水,连桶称是5千克,把水加到原来的4倍,连桶称是11千克。
桶里原来有多少千克水?桶有多重?
能力测试(二)
(满分100分,90分钟完成)
一、填空题(每题2分,共20分)。
1.白兔的只数是黑兔的4倍,()的只数是1份,()的只数是4份,白兔和黑兔一共有()份,白兔比黑兔多()份。
2.红花和黄花共有120朵,红花的朵数是黄花的5倍,黄花有()朵,红花有()朵。
3.公鸡和母鸡共有52只,公鸡比母鸡少8只,公鸡有()只,母鸡有()只。
4.故事书和科技书一共有84本,故事书比科技书多6本,故事书有()本,科技书有()本。
5.山羊的只数比绵羊多45只,山羊的只数是绵羊的4倍,绵羊有()只,山羊有()只。
6.排球的个数比足球少30个,足球的个数是排球的6倍,排球有()个,足球有()个。
7.甲数除以乙数商是7,()是1份,()是7份,()比()多6份。
8.甲、乙两数的和是180,甲数除以乙数商是9,甲、乙两数的差是()
9.今年父亲比儿子大25岁,三年后,父亲比儿子大()岁。
10.小东是小学四年级的学生,他和爸爸今年年龄的和是48岁,三年前,两人年龄的和是()岁。
二、应用题(每题8分,共80分)。
1.南京长江大桥分为上下两层,上层是公路桥,下层是铁路桥。
铁路桥和公路桥共长11270米。
铁路桥比公路桥长2270米。
南京长江大桥的铁路桥和公路桥各长多少米?
2.大房间面积比小房间大36平方米,大房间的面积是小房间的3倍。
大小房间各有多少平方米?
3.甲、乙两船共载乘客623人,若甲船增加34人,乙船减少57人,那么,两船乘恰好相等。
两船原来各有乘客多少人?
4.父亲经儿子大30岁,明年父亲的年龄是儿子的3倍。
儿子今年多少岁?
5.小玲做一道减法题的时候,把减数个位上的9错写成6,十位上的6错写成9,得到的差是578。
请你算一算,正确的差是多少?
6.甲、乙、丙三个组共有图书90本,如果乙组向甲组借3本后,又送给丙组5本,那么,三个组的图书数刚好相等。
甲、乙、丙三个组原来各有图书多少本?
7.两个数的和是616,其中一个数个位数是0,如果把0去掉,就与另一个数相同。
这两个数各是多少?
8.甲桶油重24千克,乙桶油重16千克,要使甲桶油的重量是乙桶油的3倍,需要从乙桶倒入甲桶多少千克?
9.甲、乙两筐苹果的重量相同,甲筐卖出7千克,乙筐卖出19千克以后,甲筐余下的重量是乙筐的3倍。
甲、乙两筐苹果原来各有多少千克?
10.小亮和他爸爸、妈妈今年的年龄分别是6岁、35岁和31岁。
多少年后爸爸、妈妈的年龄和是小亮年龄的5倍?。