四年级奥数还原问题

合集下载

四年级奥数题:还原问题

四年级奥数题:还原问题

四年级奥数题:还原问题专题简析:已知某个数经过加、减、乘、除运算后所得的结果,要求原数,这类问题叫做还原问题,还原问题又叫逆运算问题。

解决这类问题通常使用倒推法。

遇到比较复杂的还原问题,能够借助画图和列表来解决这些问题。

例1:小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁。

小刚的奶奶今年多少岁?分析与解答:从最后一个条件恰好是100岁向前推算,扩大10倍后是100岁,没有扩大10倍之前应是100÷10=10岁;加上2之后是10岁,没有加 2之前应是10-2=8岁;没有缩小9倍之前应是8×9=72岁;减去7之后是72岁,没有减去7前应是72+7=79岁。

所以,小刚的奶奶今年是79 岁。

练习一1,在□里填上适当的数。

20×□÷8+16=262,一个数的3倍加上6,再减去9,最后乘上2,结果得60。

这个数是多少?3,小红问王老师今年多大年纪,王老师说:“把我的年纪加上9,除以4,减去2,再乘上3,恰好是30岁。

”王老师今年多少岁?例2:某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台。

这个商场原来有洗衣机多少台?分析与解答:从“下午售出剩下的一半还多20台”和“还剩95台”向前倒推,从图中能够看出,剩下的95台和下午多卖的20台合起来,即 95+20=115台正好是上午售后剩下的一半,那么115×2=230台就是上午售出后剩下的台数。

而230台和10台合起来,即230+10=240 台又正好是总数的一半。

那么,240×2=480台就是原有洗衣机的台数。

练习二1,粮库内有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨。

粮库原有大米多少吨?2,爸爸买了一些橘子,全家人第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多1个,第三天又吃掉了剩下的一半多1个,还剩下1个。

四年级奥数--之还原问题

四年级奥数--之还原问题

四年级奥数-------还原问题1.甲、乙、丙三人共有660元,如果甲给乙30元,乙给丙46元,丙给甲58元,那么三人钱数正好相等。

问:甲、乙、丙三人原来各有多少元?2.粮店库存面粉若干袋,第一天卖出库存的一半多4袋,第二天卖出剩下的一半少3袋,第三天运进30袋,这时粮店里共有面粉50袋,求粮店里原有面粉多少袋?3.抽屉里有若干个玻璃球,小军每次拿出其中的一半再放回1个,这样一共拿了5次,抽屉里还有3个玻璃球,那么,原来抽屉里有多少个玻璃球?4.甲乙丙三人共有360元,如果甲给乙70元,乙给丙20元,丙给甲90元则三人钱数恰好相等。

甲、乙、三人原来各有多少钱?5.一个篮子里放着一苹果,有一个小朋友从篮子里往外拿苹果,每次都拿出篮子苹果总数的一半,然后再放回1个。

就这样这个小朋友一共拿了597次之后,这时篮子里还有2个苹果。

那么刚开始时篮子里有几个苹果?6.王奶奶上街卖一篮鸡蛋,第一读了一半还多1个,第二天卖了剩下的一半还多1个,第三天卖了剩下的一半还多1个,篮子里剩下5个鸡蛋,奶奶的篮子里原来有够少个鸡蛋?7.司机开车按顺序到五个车站接学生到学校(如图)。

每个站都有学生上车。

第一站上了一批学生,以后每站上车的人数都是前一站上车人数的一半。

车到学校时,车上最少有多少学生?8.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米。

这捆电线原来长多少米?9.修一条路,第一天修了全长的一半多6米,第二天修了余下的一半少20米,第三天修了30米,最后还剩14米没修。

这条路长多少米?10.一袋大米,第一天吃去它的一半少2千克,第二天吃去剩下的一半多2千克,还剩下10千克,这袋大米原有多少千克?11.丁丁在计算除法时,把除数23写成了32 ,结果得到的商为21 ,余数是18 ,正确的商是多少?12.小明在计算(28+33)时,漏看了小括号,算出的结果是358,检查时发现了错误,又重新计算,他算出的正确结果是多少?13.小明爷爷今年的年龄数加上8后,再除以6,然后减去6,最后乘10,正好得100,小明爷爷今年是多少岁?14.一位同学使用计算器算题,最后一步应加上11,但他却除以11了,因此得到的错误结果是10,正确的答案应该是多少?15.计算一道两位数乘法时,小琴将一个因数个位上的7看成了1,结果是3726;小林将同一个因数十位上的8看成了5,结果是2622,正确的积应该是多少?16.一个数加上5,减去5,乘5,除以5,最后结果是10,这个数是多少?17.有A、B、C、D四个数,它们的和是60,A的5倍与B数减1、C数加4、D数的一半都相等。

四年级奥数题《还原问题》数学小升初常考例题讲解+练习

四年级奥数题《还原问题》数学小升初常考例题讲解+练习

例题1:把刘老师的年龄,乘4以后减去45再把所得的差除以3,然后加上5,最后得30。

刘老师今年几岁?1.还原时运算顺序和运算符号都会发生变化。

2.加变减,减变加;乘变除,除变乘。

30-5=2525×3=7575+45=120120÷4=30答:刘老师今年30岁。

练习1.一个数乘7除以3,然后加上5,最后再减3所得的结果是16。

那么这个数是多少?2.慢羊羊在黑板上写了一个数,喜洋洋将这个数乘7后,抹掉了末尾的数字0,美羊羊将喜洋洋所得的结果乘6以后,又抹掉了末尾的0,这时黑板上的数字是42。

原来的数是多少?例题2:(1)某商场卖菠萝,第一次卖掉总数的一半多2个,第二次卖掉剩余的一半多3个,此时还剩3个。

那么商场原来有菠萝多少个?(3+3)×2=12(个)(12+2)×2=28(个)答:商场共有菠萝28个。

例题2:(2)某水果店卖苹果,第一天卖出所有苹果的一半少50千克,第二天卖出第一天剩下的一半少20千克,最后还剩下100千克。

这个水果店原来有苹果多少千克?(100-20)×2=160(千克)(160-50)×2=220(千克)答:这个水果店原来有苹果220千克。

练习1.(1)某超市的西红柿做活动,上午卖出所有西红柿的一半多20千克,下午又卖出剩下的一半多30千克,此时还剩下40千克。

超市原来有西红柿多少千克?(2)龙龙有一些巧克力,上午吃了所有巧克力的一半少5块,下午又吃了剩下的一半少3块,此时还剩下10块。

龙龙原来有巧克力多少块?2.某商场做活动,第一天卖出所有商品的一半少15个,第二天卖出剩下的一半少20个,第三天又卖出第二天剩下的一半,此时还剩37个。

这个商场原来有商品多少个?例题3:某水果店上午卖出西瓜总数的一半多2个,下午又卖出剩余的一半少8个,此时还剩28个。

水果店原来有西瓜多少个?(28-8)×2=40(个)(40+2)×2=84(个)答:水果店原来有西瓜84个。

四年级奥数-还原问题

四年级奥数-还原问题

还原问题
粮库内有一批大米,第一次运出总数的1/2多3吨,第二次运出剩下的1/2多5吨,还剩下4吨,问粮库原有大米多少吨?
2、将“+、-、×、÷”4种运算符号分别填入下面各式的方框内,不许重复,使等式成立。

48□6□5=3
1□2□7=9
3、将某数的3倍减5,计算出答案,将答案再3倍后减5,计算出答案,这样反复经过4次,最后计算的结果为691,那么原数是()。

4、袋子里有一些球,小华每次拿出其中的一半再放回一个球,这样共操作了4次,袋中还有5个球。

袋中原来有()个球。

4、爸爸买了一些橘子,全家人第一天吃了这些橘子的1/2多1个,第二天吃了剩下的1/2多1个,第三天又吃掉了剩下的1/2多1个,还剩下1个,问爸爸买了多少个橘子。

5、李老师拿着一批书送给36位学生,每到一位学生家里,李老师就将所有的书的1/2给他,每位学生也都还他一本,最后李老师还剩下2本书,那么李老师原来拿了几本书?
6、王大伯买了若干本书赠送给城北小学,先拿1/2给高年级学生,又拿了120本给中年级学生,再拿剩下的1/2给低年级学生,后来王大伯又买了2本,这时王大伯有20本书。

王大伯原来买了多少本?
7、有4袋大米,如果从第一袋取8千克大米放入第二袋,从第二袋取出2千克大米放入第三袋,从第三袋取5千克大米放入第四袋,从第四袋取6千克大米放入第一袋,这时每袋大米50千克,4袋大米原来各多少千克?
8、书架分上中下三层,共放书192本,现在从上层取出与中层同样多的书放到中层,再从中层取出与下层同样多的书放到下层,最后从下层取出与上层剩下的同样多的书放到上层,这时三层书架所放的书本数相等,这个书架上中下三层原来各放多少本书?。

四年级奥数第十一讲解析还原问题

四年级奥数第十一讲解析还原问题

第十一讲解析还原知识要点1、一个因素在经过一些运算后得到一个新的因素,以新的因素为基础按照运算顺序倒退回去,计算原来的因素,这种方法就叫作倒退法或还原法。

这类问题就叫作还原问题。

还原问题又叫作逆推运算问题。

解决这类问题常常利用加减、乘除互为逆运算的道理,根据题意得叙述顺序由后向前逆推计算。

在计算过程中采用相反的运算顺序,逐步逆推。

2、解决还原问题的方法:(1)两个相反:运算顺序和原来相反、运算方法和原来相反。

(2)口诀:加减互逆,乘除互逆,要求原数,逆推新数。

芝麻开门学校学生会组织四年级学生到和平广场参加周末大舞台活动,他们的行走路线是:学校东七大厦汽车东站公交公司和平广场。

活动结束后他们要按原来的线路返回,应该怎么走呢?他们返回的路线应该是:和平广场公交公司汽车东站东七大厦学校。

返回的路线就是按照原来的路线发过来走的,这一现象就是生活中的还原,在数学的世界里也有许多这种类似的还原问题。

经典范例例1 一个数加上6、再乘6,在减6,再除6,结果还是6,这个是多少?思路解析:根据题意可以发现:原来的数 +6 ×6 -6 ÷6=6 。

我们可以从结果出发,反过来运算,先乘以6,再加上6,再除以6,再减去6,就可以得到原来的数了。

解:(6×6+6)÷6-6=(36+6)÷6-6=42÷6-6=7-6=1答:这个数是1.例2 小糊涂阿呆在计算一道加法算式时,把一个加数个位上的6看成了9,把十位上的1看成7,结果得到的和是133,求正确的答案?思路解析:阿呆把一个加数16看成了79,单另一个加数没有看错,可以利用错误的结果减去79,还原出另一个正确的加数133-79=54,然后把两个正确的加数相加就可以了。

解:133-79=5454+16=70答:原来正确的和是70。

例3 甲乙两筐苹果各若干千克,如果从甲筐中取出和乙筐一样多的苹果给乙筐,再从乙筐中取出和现在的甲筐一样多的苹果给甲筐,这是甲乙两筐苹果都刚好是16千克。

四年级奥数教程还原问题

四年级奥数教程还原问题

还原问题1. 一棵石榴树上结有若干石榴,石榴数目减去6,乘以6,加上6,除以6,结果等于6.请你算一算,石榴树上一共有多少个石榴?2.有一位老人说:“把我的年龄加上14后除以3,再减去26.最后用25乘,恰巧是100岁,”这位老人今年多少岁?3.某数加上3,乘以5,再减去8,等于12.求某数.4.耕一块地,第一天耕的比整块地的一半少5公顷,第二天耕的比余下的一半多2公顷,第三天耕了20公顷后还剩下5公顷.这块地有多少公顷?5.有一堆棋子.,拿走2枚后平均分成四份;拿出其中一份,从中拿走2枚后再平均分成四份;拿出其中一份,拿走2枚后又能平均分成四份,这堆棋子原来至少有多少枚?6.马小虎做一道整数减法题时,把减数个位上的l看成7,把减数十位上的7看成1,结果得出差是111.问:正确答案是几?7.小芳在做一道加法试题时,由于粗心,把个位上的5看作9,把十位上的8看作3,结果所得的和是123.正确的答案应是多少?8.一根电线,第一次用去的比全长的一半少3米,第二次用去的比余下的一半多5米,还剩下7米.这根电线原长多少米?9.工人们修一段路,第一天修的公路比全长的.半还多2千米,第二天修的比余下的一半还少1千米,还剩20千米没有修.公路的全长是多少千米?10.小芳在做一道加法试题时,由于粗心,把个位上的5看作9,把十位上的8看作3,结果所得的和是123.正确的答案应是多少?11.一根电线,第一次用去的比全长的一半少3米,第二次用去的比余下的一半多5米,还剩下7米.这根电线原长多少米?12.工人们修一段路,第一天修的公路比全长的.半还多2千米,第二天修的比余下的一半还少1千米,还剩20千米没有修.公路的全长是多少千米?13.一个数减去8,加上10,除以7,乘以4,结果是56.这个数是多少?14.两棵树上共有麻雀25只,有5只从第一棵树上飞到第二棵树上,又从第二棵树上飞走7只,这时第一棵树上的麻雀是第二棵树上的2倍,问:原来每棵树上的麻雀各有几只?15.小丽看一本故事书,第一天看了这本书的一半多5页,第二天看了余下的一半多10页,还有8页没看.问:这本故事书共有多少页?16.甲、乙、丙、T各有若干棋子,甲先拿出自己棋子的一部分给了乙、丙,使乙、丙每人的棋子数各增加一倍;然后乙也把自己棋子的一部分以同样的方式分给了丙、丁,丙也把自己棋子的一部分以这种方式给了甲、丁,最后丁也以这种方式将自己的棋子给了甲、乙,这时四人的棋子都是16枚.问:原来甲、乙、丙、丁四人各有棋子多少枚?17.袋子里有若干个球,每次拿出其中的一半又一个球,这样共操作了4次,袋中还有5个球,那么袋中原有多少个球?。

四年级奥数:还原问题

四年级奥数:还原问题

还原问题有些应用题的思考,是从应用题所叙述事情的最后结果出发,利用已知条件一步一步倒着推理,逐步靠拢所求,直到解决问题,这种思考问题的方法,通常我们把它叫做倒推法(还原法).下面看一组问题的解答:(1)某数加上1得10,求某数.某数+1﹦10,某数﹦10-1﹦9.(2)某数减去2得8,求某数.某数-2﹦8,某数﹦8+2﹦10.(3)某数乘以3得24,求某数.某数×3﹦24,某数﹦24÷3﹦8.(4)某数除以4得6,求某数.某数÷4﹦6某数﹦6×4﹦24例1 一棵石榴树上结有若干石榴,石榴数目减去6,乘以6,加上6,除以6,结果等于6.请你算一算,石榴树上一共有多少个石榴?例2 有一位老人说:“把我的年龄加上14后除以3,再减去26,最后用25乘,恰巧是100岁.”这位老人今年多少岁?随堂练习1(1)某数加上3,乘以5,再减去8,等于12.求某数.(2)耕一块地,第一天耕的比整块地的一半少5公顷,第二天耕的比余下的一半多2公顷,第三天耕了20公顷后还剩下5公顷,这块地有多少公顷?例3 联通公司出售手机,第一个月售出的比总数的一半多20部,第二个月售出的比第一个月剩下的一半多15部,还剩75部.原有手机多少部?例4 马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111.问:正确答案是几?随堂练习2(1)小芳在做一道加法试题时,由于粗心,把个位上的5看作9,把十位上的8看作3,结果所得的和是123.正确的答案应是多少?(2)一根电线,第一次用去的比全长的一半少3米,第二次用去的比余下的一半多5米,还剩下7米.这根电线原长多少米?例5 工人们修一段路,第一天修的公路比全长的一半还多2千米,第二天修的比余下的一半还少1千米,还剩20千米没有修.公路的全长是多少千米?例6 A、B、C三个油桶各盛油若干千克,第一次把A桶的一部分油倒入B、C两桶,使B、C两桶内的油分别增加到原来的2倍;第二次从B桶把油倒入C、A两桶,使C、A两桶油分别增加到第二次倒之前桶内油的2倍;第三次从C桶把油倒入A、B两桶,使A、B两桶内的油分别增加到第三次倒之前桶内油的2倍,这时各桶的油都为16千克.问:A、B、C三个油桶原来各有油多少千克?随堂练习3(1)仓库里有一批大米,第一天售出的重量比总数的一半少12吨,第二天售出的重量比剩下的一半多12吨,结果还剩下19吨.这个仓库原有大米多少吨?(2)树林中的三棵树上共停有48只鸟,如果有8只鸟从第一棵树上飞到第二棵树上,又有6只鸟从第二棵树上飞到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各停有多少只鸟?课后题一、填空题1、某数加2,乘5,再减3得27.这个数是________.2、一个数加上2,乘以2,减去2,除以2,结果还是2,这个数是________.3、做一道整数加法题时,小刚把个位上的7看作1,把十位上的9看作6,结果得出和为136.那么正确的答案应该是_________.4、一根铁管,第1次截去2米,第2次截去剩下的一半,还剩5米.这根铁管原来长_________米.5、有一篮鸡蛋,第一次取出一半多2个,第二次取出余下的一半多2个,第三次取出8个,篮里还剩2个鸡蛋.篮里原来有__________个鸡蛋.6、一个数经过自加、自减、自乘、自除得到的四个数之和是100,这个数是_______.二、选择题7、有一个数乘以4,除以5,减去26,加上62,等于76.这个数是( ).(A)165 (B)50 (C) 32 (D)258、有一筐苹果,小文拿走全筐苹果数的,小静拿走余下部分的,小镭拿走再余下的,筐子里还剩下苹果32个.原来有苹果( ).(A)108个 (B)864个 (C) 96个 (D)64个9、甲、乙、丙共藏书240册,先从甲处取出与乙处同样多册书给乙,再从乙处取出与丙处同样多册书给丙,最后在从丙处取出与此时甲处同样多册书给甲.经过这样变动后,丙的藏书是甲的3倍,乙是甲的2倍.原来甲、乙、丙各有书的册数为( ).(A)75,70,95 (B)70,95,75 (C) 95,75,70 (D)95,70,7510、妈妈买来一批橘子,小刚第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多1个,第三天吃了第二天剩下的一半多1个,这时还剩1个橘子.妈妈买的橘子共( ).(A)20个 (B)24个 (C)18个 (D)22个三、简答题11、一个数减去8,加上10,除以7,乘以4,结果是56.这个数是多少?12、两棵树上共有麻雀25只,有5只从第一棵树上飞到第二棵树上,又从第二棵树上飞走7只,这时第一棵树上的麻雀是第二棵树上的2倍.问:原来每棵树上的麻雀各有几只?13、小丽看一本故事书,第一天看了这本书的一半多5页,第二天看了余下的一半多10页,还有8页没看.问:这本故事书共有多少页?14、甲、乙、丙、丁各有若干棋子,甲先拿出自己棋子的一部分给了乙、丙,使乙、丙每人的棋子数各增加一倍;然后乙也把自己棋子的一部分以同样的方式分给了丙、丁,丙也把自己棋子的一部分以这种方式给了甲、丁,最后丁也以这种方式将自己的棋子给了甲、乙,这时四人的棋子都是16枚.问:原来甲、乙、丙、丁四人各有棋子多少枚?。

四年级奥数 还原问题

四年级奥数 还原问题

还原问题【基础再现】已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,其解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫逆推法或还原法,这种问题就是还原问题。

还原问题又叫做逆运算问题。

对于简单的每一次变化不太复杂的还原问题,可直接列式一步步倒着推算;对于变化较复杂的,可借助列表和画图来帮助解决问题。

【典型例题】一、填空题。

1、某数加上2,减去3,乘4,除以5,等于24,这个数是()。

2、有一个数,把它乘4以后减去46,再把所得的差除以3,然后减去10,最后得4。

这个数是()。

3、一个数的3倍加上6,再减去9,最后乘以2,结果得60。

这个数是()。

4、有一根绳子,每次剪下其中的一半多1米,这样共剪了5次,还剩下3米。

这根绳子原来长()米。

5、在下面的方框中填上适当的数,使等式成立。

(1)[(132-□)+16]÷7×4=80(2)(36×□÷6+98)÷10=14(3)95÷(□×11-3)=5(4)25×25÷(5×□+5)=256、在□里填上同一个数,使算式成立。

□÷□+(□+□-□)=6二、应用题。

1、某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台。

这个商场原来有洗衣机多少台?2、甲乙两桶油各有若干千克。

如果要从甲桶中倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两桶油恰好都是36千克,问两桶油原来各有多少千克?3、已知A、B、C、D4个数,它们的和是80,A的5倍、B减去1、C加上5、D的1/2都相等,求A、B、C、D这4个数各是多少。

4、有一筐橘子,每次拿出其中的一半,然后再放回1个,这样连续拿了5次,筐例的橘子还剩下4个。

原来筐里有多少个橘子?5、甲乙丙3个组共有图书90本,如果乙组向甲组借3本后,又送给丙组5本,结果3个组所有图书本数刚好相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级奥数还原问题 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-
四年级(上) 教师:胡老师学生:
还原问题
一个数量经过若干次变化成了另一种结果,我们从结果出发根据每一次变化情况,一步步地倒着想,把结果还原成开始状态,这类问题叫还原问题,又叫逆运算问题。

对于简单的,每一次变化不太复杂的还原问题,可直接列式一步步倒着推算;对于变化较复杂的,可借助列表和画图来帮助解决问题。

例1、一个数减24加上15,再乘以8得432,求这个数。

【思路分析】我们可以从最后结果432出发倒着推理。

最后是乘以8得432,如果不乘以8,那应该是432÷8=54;如果不加上15,那应该是54-15=39;如果不减去24,那应该是39+24=63。

【小试身手】
一个数加上3,乘以3,再减去3,最后除以3,结果还是3,这个数是几?
例2、甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三个人书的本数同样多,乙原来比丙多多少本?
【思路分析】因为乙给丙5本后,两人同样多,可知乙比丙多5×2=10(本),而这10本中又有3本是甲给的,所以原来乙比丙多10-3=7(本)。

【小试身手】
小松、小明、小航各有玻璃球若干个,如果小松给小明10个,小明给小航6个后,三人的个数同样多,小明原来比小航多几个?
例3、李奶奶卖鸡蛋,她上午卖出总数的一半多10个,下午又卖出剩下的一半多10个,最后还剩65个鸡蛋没有卖出。

李奶奶原来有多少个鸡蛋?
【思路分析】根据题意,画出线段图:
从图上可以看出,最后剩下的65个鸡蛋加上10个正好是余下的一半,余下的一半为65+10=75(个),那么上午卖出后共剩下鸡蛋75×2=150(个),150个鸡蛋再加上10个就是总数的一半,所以总数的一半为150+10=160(个),李妈妈原有160×2=320(个)鸡蛋。

【小试身手】
竹篮内有若干个李子,取它的一半又一枚给第一人,再取余直的一半又两枚给第二人。

竹篮内原有李子多少枚?
例4、小红、小青、小宁都喜欢画片。

如果小红给小青11张画片,小青给小宁20张画片,小宁给小红5张画片,那么他们三人的画片张数同样多。

已知他们三人共有画片150张,他们三人原来各有画片多少张?
【思路分析】三人画片进行交换,其总张数是不会改变的。

交换以后三人张数相等,那每人应有150÷3=50(张)。

再对照题中条件,把各人的画片还原,便可得到他们三人原来画片的张数。

【小试身手】
三筐苹果共90千克,如果从甲筐取出15千克放入乙筐,从乙筐取出20千克放入丙筐,从丙筐取出17
总数的一多10
多10
剩下65余下的一
千克放入甲筐,这时三筐苹果就同样重。

甲、乙、丙原来各有苹果多少千克?
例5、两人一起搬运图书60本,李明抢先拿了一些,王平看他拿得太多,就抢走了一半,李明不肯,王平就给了他10本,这时李明比王平多4本,问李明最初拿了多少本?【思路分析】由条件“两人一起搬运图书60本”和“这是李明比王平多4本”,可以求出李明最后拿了(60+4)÷2=32(本),王平最后拿了60-32=28(本);然后开始往前推,如果王平不给李明,这时李明有32-10=22(本),李明最初拿了22×2=44(本)。

【小试身手】
兄弟俩争着挑26块砖,弟弟抢着装了一些,哥哥看弟弟挑得太多,就抢去一半,弟弟不服,哥哥就还给弟弟5块,这时两人一样多。

问弟弟最初准备挑多少块?
例6、甲乙两桶油各有若干千克,如果要从甲桶中倒出和乙桶同样多油倒入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两桶油恰好都是36千克,问两桶油原来各有多少千克?
【思路分析】如果后来乙桶不倒出和甲桶同样的油放入甲桶,甲桶内就有油36÷2=18(千克),乙桶应有油36+18=54(千克);如果开始不从甲桶倒出和乙桶同样多的油倒入乙桶,乙桶原有油应为54÷2=27(千克)。

甲桶原有油18+27=45(千克)。

【小试身手】
王明和李强各有画片若干张,如果王明拿出和李强同样多的画片送给李强,李强再拿出和王明同样多的画片给王明,这时两个人都有
24张,问王明和李强原来各有画片多少张?
A级
1、一个数缩小2倍,再缩小2倍得80,求这个数。

2、一个数的4倍加上6减去10,乘以2得88,求这个数。

3、三年级三个班共有学生156人,若从一班调5人到二班,从二班调8人到三班,再从三班调4人到一班,这时每个班的人数正好相同。

三个班原来各有学生多少人?
4、小林、小方、军军和小敏四个好朋友都爱看书。

如果小林给小方10本,小方给军军12本,军军给小敏20本,小敏再给小林14本,四个人书的本数同样多。

已知他们共有112本书,他们四人原来各有多少本?
5、小红问王老师今年有多大年纪,王老师说:“把我的年纪加上9,除以4,减去2,再乘上3,恰好是30岁,”问王老师今年多少岁?
B级
6、王叔叔拿工资若干元,从工资中拿出一半多10元存入银行,又拿出余下的一半多5元买米、油,剩下80元买菜。

王叔叔拿工资多少元?
7、一筐苹果连筐122千克,卖出一半苹果后,再卖出剩下的苹果的一半,这时连筐35千克。

原来筐和苹果各多少千克?
C级(智力冲浪)
8、两棵树上共有麻雀28只,从第一棵树上飞到一半到第二棵树上,又从第二棵树上飞走3只到第一棵,这时第二棵比第一棵多6
只。

问最初第一棵树上有多少只麻雀?
9、书架上分上中下三层,共放192本书,现从上层取出与中层同样多的书放到中层,再从中层取出与下层同样多的书放到下层,最后,从下层取出上层剩下的同样多的书放到上层,这时三层书架所放的书本数相等,这个书架上中下各层原来各放多少本书?
自我总结
今天学得轻松快乐吗?学会了什么知识?哪些知识掌握得好?哪些知识较困难,是怎样解决的?
家校共育
学生在校表现
认真听讲□积
极思考□大胆发言□
有独特的见解□
还需要努力□有进步

家长留
言栏。

相关文档
最新文档