2019年辽宁省锦州市中考数学试题
辽宁省锦州市2019-2020学年中考第五次质量检测数学试题含解析
辽宁省锦州市2019-2020学年中考第五次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.估计26的值在( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,1,85,1.关于这组数据说法错误的是( ) A .极差是20B .中位数是91C .众数是1D .平均数是913.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( )A .15B .310C .13D .124.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( ) A .12B .25C .35D .7185.若22)30x y -+-=(,则x-y 的正确结果是( ) A .-1B .1C .-5D .56.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( ) A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)7.如图,在四边形ABCD 中,对角线 AC ⊥BD ,垂足为O ,点E 、F 、G 、H 分别为边AD 、AB 、BC 、CD 的中点.若AC=10,BD=6,则四边形EFGH 的面积为( )A .20B .15C .30D .608.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表: 文化程度 高中 大专 本科 硕士 博士 人数9172095关于这组文化程度的人数数据,以下说法正确的是:()A.众数是20 B.中位数是17 C.平均数是12 D.方差是26 9.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.AD AB AB BC=10.如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,AD=7,BF=6,则四边形ABEF的面积为()A.48 B.35 C.30 D.2411.某班 30名学生的身高情况如下表:身高()m 1.55 1.58 1.60 1.62 1.66 1.70人数 1 3 4 7 8 7则这 30 名学生身高的众数和中位数分别是()A.1.66m,1.64m B.1.66m,1.66mC.1.62m,1.64m D.1.66m,1.62m12.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣34二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都是格点,AB与CD相交于M,则AM:BM=__.14.如图,在△ABC 中,AB=2,BC=3.5,∠B=60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为_____.15.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.16.如图,在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当扇形AOB 的半径为22时,阴影部分的面积为__________.17.如果x +y =5,那么代数式221y xx y x y ⎛⎫+÷ ⎪--⎝⎭的值是______.18.如图,在平面直角坐标系中,点A 是抛物线y=a (x+32)2+k 与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的正方形ABCD 的周长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平行四边形ABCD 中,BD 为对角线,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F ,连接AF、CE,求证:AF=CE.20.(6分)如图,圆内接四边形ABCD的两组对边延长线分别交于E、F,∠AEB、∠AFD的平分线交于P点.求证:PE⊥PF.21.(6分)已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C1的图象经过点A(﹣3,1).①求a的值;②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.22.(8分)如图1,□OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx(x>0)的图象经过点B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,①求直线BD的解析式;②求线段ED的长度.23.(8分)尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:如图,线段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.24.(10分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.25.(10分)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣4,0),B (1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)连接AC、BC,判断△ABC的形状,并证明;(3)若点P为二次函数对称轴上点,求出使△PBC周长最小时,点P的坐标.26.(12分)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数27.(12分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=83m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】寻找小于26的最大平方数和大于26的最小平方数即可.【详解】<<解:小于26的最大平方数为25,大于26的最小平方数为36252636<<,故选择D.5266【点睛】本题考查了二次根式的相关定义.2.D【解析】【分析】【详解】试题分析:因为极差为:1﹣78=20,所以A选项正确;从小到大排列为:78,85,91,1,1,中位数为91,所以B选项正确;因为1出现了两次,最多,所以众数是1,所以C选项正确;因为9178988598905x++++==,所以D选项错误.故选D.考点:①众数②中位数③平均数④极差.3.D【解析】【分析】两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可.【详解】因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)=48=12.故答案选:D.【点睛】本题考查了几何概率,解题的关键是熟练的掌握几何概率的相关知识点.4.A【解析】分析:根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个;②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率.详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,概率为451= 902.故选A.点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.5.A【解析】由题意,得x-2=0,1-y=0,解得x=2,y=1.x-y=2-1=-1,故选:A.6.C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.7.B【解析】【分析】有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH是矩形,根据矩形的面积公式解答即可.【详解】∵点E、F分别为四边形ABCD的边AD、AB的中点,∴EF∥BD,且EF=12BD=1.同理求得EH∥AC∥GF,且EH=GF=12AC=5,又∵AC⊥BD,∴EF∥GH,FG∥HE且EF⊥FG.四边形EFGH是矩形.∴四边形EFGH的面积=EF•EH=1×5=2,即四边形EFGH的面积是2.故选B.【点睛】本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(1)对角线互相平分且相等的四边形是矩形.8.C【解析】【分析】根据众数、中位数、平均数以及方差的概念求解.【详解】A、这组数据中9出现的次数最多,众数为9,故本选项错误;B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C、平均数=91720955++++=12,故本选项正确;D、方差=15[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=1565,故本选项错误.故选C.【点睛】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.9.D【解析】【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴AC ABAB AD=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB=ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.10.D 【解析】分析:首先证明四边形ABEF 为菱形,根据勾股定理求出对角线AE 的长度,从而得出四边形的面积. 详解:∵AB ∥EF ,AF ∥BE , ∴四边形ABEF 为平行四边形, ∵BF 平分∠ABC , ∴四边形ABEF 为菱形, 连接AE 交BF 于点O , ∵BF=6,BE=5,∴BO=3,EO=4, ∴AE=8,则四边形ABEF 的面积=6×8÷2=24,故选D .点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型.解决本题的关键就是根据题意得出四边形为菱形. 11.A 【解析】 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据. 【详解】解:这组数据中,1.66出现的次数最多,故众数为1.66,Q 共有30人,∴第15和16人身高的平均数为中位数,即中位数为:()11.62 1.66 1.642+=, 故选:A . 【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 12.B 【解析】 【分析】 【详解】解:去分母得:x+m ﹣3m=3x ﹣9, 整理得:2x=﹣2m+9,解得:x=292m -+, 已知关于x 的方程333x m mx x++--=3的解为正数, 所以﹣2m+9>0,解得m <92,当x=3时,x=29 2m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5:1【解析】【分析】根据题意作出合适的辅助线,然后根据三角形相似即可解答本题.【详解】解:作AE∥BC交DC于点E,交DF于点F,设每个小正方形的边长为a,则△DEF∽△DCN,∴EFCN=DFDN=13,∴EF=13a,∵AF=2a,∴AE=53a,∵△AME∽△BMC,∴AMBM=AEBC=534aa=512,故答案为:5:1.【点睛】本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.1.1.【解析】分析:由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.详解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.1,∴CD=BC-BD=3.1-2=1.1.故答案为:1.1.点睛:此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.15.1【解析】【分析】【详解】∵骑车的学生所占的百分比是126360×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),故答案为1.16.π﹣1【解析】【分析】根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.【详解】连接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=,∴CD=OD=1,∴阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积=245360gπ(﹣12×11=π﹣1.【点睛】本题考查正方形的性质和扇形面积的计算,解题关键是得到扇形半径的长度.17.1【解析】【分析】先将分式化简,然后将x+y=1代入即可求出答案【详解】当x +y =1时, 原式()()x y y x x y x y x y x y ⎛⎫-=+÷ ⎪--+-⎝⎭ ()()x y x y x x y x+-=⋅- =x +y =1,故答案为:1.【点睛】本题考查分式的化简求值,解题的关键是利用运用分式的运算法则求解代数式.18.1【解析】【分析】根据题意和二次函数的性质可以求得线段AB 的长度,从而可以求得正方形ABCD 的周长.【详解】∵在平面直角坐标系中,点A 是抛物线y=a (x+32)2+k 与y 轴的交点, ∴点A 的横坐标是0,该抛物线的对称轴为直线x=﹣32, ∵点B 是这条抛物线上的另一点,且AB ∥x 轴,∴点B 的横坐标是﹣3,∴AB=|0﹣(﹣3)|=3,∴正方形ABCD 的周长为:3×4=1,【点睛】本题考查了二次函数图象上点的坐标特征、正方形的性质,解题的关键是找出所求问题需要的条件.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.见解析【解析】【分析】易证△ABE ≌△CDF ,得AE=CF ,即可证得△AEF ≌△CFE ,即可得证.【详解】在平行四边形ABCD 中,AB ∥CD ,AB=CD∴∠ABE=∠CDF,又AE ⊥BD ,CF ⊥BD∴△ABE ≌△CDF(AAS),∴AE=CF又∠AEF=∠CFE ,EF=FE,∴△AEF ≌△CFE (SAS )∴AF=CE.【点睛】此题主要考查平行四边形的性质与全等三角形的判定与性质,解题的关键是熟知平行四边形的性质定理. 20.证明见解析.【解析】【分析】由圆内接四边形ABCD 的两组对边延长线分别交于E 、F ,∠AEB 、∠AFD 的平分线交于P 点,继而可得EM=EN ,即可证得:PE ⊥PF .【详解】∵四边形ABCD 内接于圆,∴BCF A ∠∠=,∵FM 平分BFC ∠,∴BFN CFN ∠∠=,∵EMP A BFN ∠∠∠=+,PNE BCF CFN ∠∠∠=+,∴EMP PNE ∠∠=,∴EM EN =,∵PE 平分MEN ∠,∴PE PF ⊥.【点睛】此题考查了圆的内接多边形的性质以及圆周角定理.此题难度不大,注意掌握数形结合思想的应用. 21. (1)y 1=a(x+1)2﹣1,顶点为(﹣1,﹣1);(2)①12;②k 的取值范围是16≤k≤12或k =﹣1. 【解析】【分析】(1)化成顶点式即可求得;(2)①把点A(﹣3,1)代入二次函数C 1:y 1=ax 2+2ax+a ﹣1即可求得a 的值;②根据对称的性质得出B 的坐标,然后分两种情况讨论即可求得;【详解】(1)y 1=ax 2+2ax+a ﹣1=a(x+1)2﹣1,∴顶点为(﹣1,﹣1);(2)①∵二次函数C 1的图象经过点A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a =12; ②∵A(﹣3,1),对称轴为直线x =﹣1,∴B(1,1),当k >0时,二次函数C 2:y 2=kx 2+kx(k≠0)的图象经过A(﹣3,1)时,1=9k ﹣3k ,解得k =16, 二次函数C 2:y 2=kx 2+kx(k≠0)的图象经过B(1,1)时,1=k+k ,解得k =12, ∴16≤k≤12, 当k <0时,∵二次函数C 2:y 2=kx 2+kx =k(x+12)2﹣14k , ∴﹣14k =1, ∴k =﹣1, 综上,二次函数C 2:y 2=kx 2+kx(k≠0)的图象,与线段AB 只有一个交点,k 的取值范围是16≤k≤12或k =﹣1.【点睛】本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键.22.(1)B(2,4),反比例函数的关系式为y =8x;(2)①直线BD 的解析式为y =-x +6;②ED = 【解析】试题分析:(1)过点A 作AP ⊥x 轴于点P ,由平行四边形的性质可得BP=4, 可得B(2,4),把点B 坐标代入反比例函数解析式中即可;(2)①先求出直线OA 的解析式,和反比例函数解析式联立,解方程组得到点D 的坐标,再由待定系数法求得直线BD 的解析式; ②先求得点E 的坐标,过点D 分别作x 轴的垂线,垂足为G (4,0),由沟谷定理即可求得ED 长度.试题解析:(1)过点A 作AP ⊥x 轴于点P ,则AP =1,OP =2,又∵AB =OC =3,∴B(2,4).,∵反比例函数y =k x (x >0)的图象经过的B , ∴4=2k , ∴k =8. ∴反比例函数的关系式为y =8x ; (2)①由点A (2,1)可得直线OA 的解析式为y =12x . 解方程组128y x y x⎧=⎪⎪⎨⎪=⎪⎩,得1142x y =⎧⎨=⎩,2224x y =-⎧⎨=-⎩. ∵点D 在第一象限,∴D(4,2).由B(2,4),点D(4,2)可得直线BD 的解析式为y =-x +6;②把y =0代入y =-x +6,解得x =6,∴E(6,0),过点D 分别作x 轴的垂线,垂足分别为G ,则G (4,0),由勾股定理可得:ED 22(64)(02)22-+-=点睛:本题考查一次函数、反比例函数、平行四边形等几何知识,综合性较强,要求学生有较强的分析问题和解决问题的能力.23.见解析【解析】【分析】作∠CAB=∠α,再作∠CAB的平分线,在角平分线上截取AD=h,可得点D,过点D作AD的垂线,从而得出△ABC.【详解】解:如图所示,△ABC即为所求.【点睛】考查作图-复杂作图,掌握做一个角等于已知角、作角平分线及过直线上一点作已知直线的垂线的基本作图和等腰三角形的性质是解题的关键.24.(1)32;(2)1.【解析】【分析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH=KD=x,得出AK=12﹣x,EF=32(12﹣x),再根据S=32x(12﹣x)=﹣32(x﹣6)2+1,可得当x=6时,S有最大值为1.【详解】解:(1)∵△AEF∽△ABC,∴EF AK BC AD=,∵边BC长为18,高AD长为12,∴EF BCAK AD==32;(2)∵EH=KD=x,∴AK=12﹣x,EF=32(12﹣x),∴S=32x(12﹣x)=﹣32(x﹣6)2+1.当x=6时,S有最大值为1.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.25.(1)抛物线解析式为y=﹣12x2﹣32x+2;(2)△ABC为直角三角形,理由见解析;(3)当P点坐标为(﹣32,54)时,△PBC周长最小【解析】【分析】(1)设交点式y=a(x+4)(x-1),展开得到-4a=2,然后求出a即可得到抛物线解析式;(2)先利用两点间的距离公式计算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判断△ABC为直角三角形;(3)抛物线的对称轴为直线x=-32,连接AC交直线x=-32于P点,如图,利用两点之间线段最短得到PB+PC的值最小,则△PBC周长最小,接着利用待定系数法求出直线AC的解析式为y=12x+2,然后进行自变量为-32所对应的函数值即可得到P点坐标.【详解】(1)抛物线的解析式为y=a(x+4)(x﹣1),即y=ax2+3ax﹣4a,∴﹣4a=2,解得a=﹣,∴抛物线解析式为y=﹣12x2﹣32x+2;(2)△ABC为直角三角形.理由如下:当x=0时,y=﹣x2﹣x+2=2,则C(0,2),∵A(﹣4,0),B (1,0),∴AC2=42+22,BC2=12+22,AB2=52=25,∴AC2+BC2=AB2,∴△ABC为直角三角形,∠ACB=90°;(3)抛物线的对称轴为直线x=﹣,连接AC交直线x=﹣于P点,如图,∵PA=PB,∴PB+PC=PA+PC=AC,∴此时PB+PC的值最小,△PBC周长最小,设直线AC的解析式为y=kx+m,把A(﹣4,0),C(0,2)代入得,解得,∴直线AC的解析式为y=x+2,当x=﹣时,y=x+2=,则P(﹣,)∴当P点坐标为(﹣32,54)时,△PBC周长最小.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解.关于x的一元二次方程即可求得交点横坐标.也考查了待定系数法求二次函数解析式和最短路径问题.26.25°【解析】【分析】先利用正方形的性质得OA=OC,∠AOC=90°,再根据旋转的性质得OC=OF,∠COF=40°,则OA=OF,根据等腰三角形的性质得∠OAF=∠OFA,然后根据三角形的内角和定理计算∠OFA的度数.【详解】解:∵四边形OABC为正方形,∴OA=OC,∠AOC=90°,∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,∴OC=OF,∠COF=40°,∴OA=OF,∴∠OAF=∠OFA,∵∠AOF=∠AOC+∠COF=90°+40°=130°,∴∠OFA=12(180°-130°)=25°.故答案为25°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.27..【解析】【分析】利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,由AB=AE+BE可得答案.【详解】在Rt△EBC中,有BE=EC×tan45°,在Rt△AEC中,有AE=EC×tan30°=8m,∴(m).【点睛】本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.。
2019年辽宁省锦州市中考数学试卷以及解析版
2019年辽宁省锦州市中考数学试卷一、选择题(本大题共8道小题,每小题2分,共16分) 1.(2分)2019-的相反数是( ) A .12019B .12019-C .2019D .2019-2.(2分)下列既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.(2分)甲、乙、丙、丁四名同学进行跳高测试,每人10次跳高成绩的平均数都是1.28m ,方差分别是20.60s =甲,20.62s =乙,20.58s =丙,20.45s =丁,则这四名同学跳高成绩最稳定的是( ) A .甲B .乙C .丙D .丁4.(2分)下列运算正确的是( ) A .632x x x ÷=B .326()x x -=C .336437x x x +=D .222()x y x y +=+5.(2分)如图,AC 与BD 交于点O ,//AB CD ,105AOB ∠=︒,30B ∠=︒,则C ∠的度数为( )A .45︒B .55︒C .60︒D .75︒6.(2分)如图,一次函数21y x =+的图象与坐标轴分别交于A ,B 两点,O 为坐标原点,则AOB ∆的面积为( )A .14B .12C .2D .47.(2分)在矩形ABCD 中,3AB =,4BC =,M 是对角线BD 上的动点,过点M 作ME BC ⊥于点E,连接AM,当ADM∆是等腰三角形时,ME的长为()A.32B.65C.32或35D.32或658.(2分)如图,在菱形ABCD中,60B∠=︒,2AB=,动点P从点B出发,以每秒1个单位长度的速度沿折线BA AC→运动到点C,同时动点Q从点A出发,以相同速度沿折线AC CD→运动到点D,当一个点停止运动时,另一个点也随之停止.设APQ∆的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是()A.B.C.D.二、填空题(本大题共8道小题,每小题3分,共24分)9.(3分)在函数1y x=-中,自变量x的取值范围是.10.(3分)为了落实“优化税收营商环境,助力经济发展和民生改善”的政策,国家税务总局统计数据显示,2018年5至10月合计减税2980亿元,将2980亿元用科学记数法表示为元.11.(3分)在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有个.12.(3分)如图,正六边形ABCDEF内接于O,边长2AB=,则扇形AOB的面积为.13.(3分)甲、乙两地相距1000km ,如果乘高铁列车从甲地到乙地比乘特快列车少用3h ,已知高铁列车的平均速度是特快列车的1.6倍,设特快列车的平均速度为/xkm h ,根据题意可列方程为 .14.(3分)如图,将一个含30︒角的三角尺ABC 放在直角坐标系中,使直角顶点C 与原点O 重合,顶点A ,B 分别在反比例函数4y x =-和ky x=的图象上,则k 的值为 .15.(3分)如图,在矩形ABCD 中,3AB =,2BC =,M 是AD 边的中点,N 是AB 边上的动点,将AMN ∆沿MN 所在直线折叠,得到△A MN ',连接A C ',则A C '的最小值是 .16.(3分)如图,边长为4的等边ABC ∆,AC 边在x 轴上,点B 在y 轴的正半轴上,以OB 为边作等边1OBA ∆,边1OA 与AB 交于点1O ,以1O B 为边作等边△12O BA ,边12O A 与1A B 交于点2O ,以2O B 为边作等边△23O BA ,边23O A 与2A B 交于点3O ,⋯,依此规律继续作等边△1n n O BA -,记△1OO A 的面积为1S ,△121O O A 的面积为2S ,△232O O A 的面积为3S ,⋯,△11n n n O O A --的面积为n S ,则n S = .(2n ,且n 为整数)三、解答题(本大题共2道题,第17题6分,第18题8分,共14分) 17.(6分)先化简,再求值:21(1)11a a a -÷+-,其中011(3)()2a π-=-+. 18.(8分)为了响应“学习强国,阅读兴辽”的号召,某校鼓励学生利用课余时间广泛阅读,学校打算购进一批图书.为了解学生对图书类别的喜欢情况,校学生会随机抽取部分学生进行问卷调查,规定被调查学生从“文学、历史、科学、生活”中只选择自己最喜欢的一类,根据调查结果绘制了下面不完整的统计图.请根据图表信息,解答下列问题. (1)此次共调查了学生 人; (2)请通过计算补全条形统计图;(3)若该校共有学生2200人,请估计这所学校喜欢“科学”类书的学生人数. 四、解答题(本大题共2道题,每题8分,共16分)19.(8分)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A ,B ,C ,D 四个小区进行检查,并且每个小区不重复检查. (1)甲组抽到A 小区的概率是 ;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.20.(8分)某市政部门为了保护生态环境,计划购买A,B两种型号的环保设备.已知购买一套A型设备和三套B型设备共需230万元,购买三套A型设备和两套B型设备共需340万元.(1)求A型设备和B型设备的单价各是多少万元;(2)根据需要市政部门采购A型和B型设备共50套,预算资金不超过3000万元,问最多可购买A型设备多少套?五、解答题(本大题共2道题,每题8分,共16分)21.(8分)如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡CM的坡比1:3i=,在点C处测得旗杆顶点A的仰角为30︒,在点M处测得旗杆顶点A的仰角为60︒,且B,M,D三点在同一水平线上,求旗杆AB的高度.(结果精确到0.1m,参考数据:2 1.41=≈,3 1.73)22.(8分)如图,M,N是以AB为直径的O上的点,且AN BN=,弦MN交AB于点C,⊥于点F.BM平分ABD∠,MF BD(1)求证:MF是O的切线;(2)若3CN=,4BN=,求CM的长.六、解答题(本大题共10分)23.(10分)2019年在法国举办的女足世界杯,为人们奉献了一场足球盛宴.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100件.根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每个月会少售出2件,设每件商品的售价为x 元,每个月的销量为y 件. (1)求y 与x 之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少? 七、解答题(本大题共2道题,每题12分,共24分)24.(12分)已知,在Rt ABC ∆中,90ACB ∠=︒,D 是BC 边上一点,连接AD ,分别以CD 和AD 为直角边作Rt CDE ∆和Rt ADF ∆,使90DCE ADF ∠=∠=︒,点E ,F 在BC 下方,连接EF .(1)如图1,当BC AC =,CE CD =,DF AD =时, 求证:①CAD CDF ∠=∠,②BD EF =;(2)如图2,当2BC AC =,2CE CD =,2DF AD =时,猜想BD 和EF 之间的数量关系?并说明理由.25.(12分)如图1,在平面直角坐标系中,一次函数334y x =-+的图象与x 轴交于点A ,与y 轴交于B 点,抛物线2y x bx c =-++经过A ,B 两点,在第一象限的抛物线上取一点D ,过点D 作DC x ⊥轴于点C ,交直线AB 于点E . (1)求抛物线的函数表达式(2)是否存在点D ,使得BDE ∆和ACE ∆相似?若存在,请求出点D 的坐标,若不存在,请说明理由;(3)如图2,F 是第一象限内抛物线上的动点(不与点D 重合),点G 是线段AB 上的动点.连接DF ,FG ,当四边形DEGF 是平行四边形且周长最大时,请直接写出点G 的坐标.2019年辽宁省锦州市中考数学试卷答案与解析一、选择题(本大题共8道小题,每小题2分,共16分) 1.(2分)【分析】直接利用相反数的定义得出答案. 【解答】解:2009-的相反数是2009. 故选:C .【点评】此题主要考查了相反数,正确把握定义是解题关键. 2.(2分)【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解. 【解答】解:A 、不是中心对称图形,是轴对称图形,故本选项错误;B 、既是中心对称图形又是轴对称图形,故本选项正确;C 、是中心对称图形,不是轴对称图形,故本选项错误;D 、不是中心对称图形,是轴对称图形,故本选项错误.故选:B .【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 3.(2分)【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.【解答】解:20.60s =甲,20.62s =乙,20.58s =丙,20.45s =丁, 2222s s s s ∴<<<乙丁丙甲,∴成绩最稳定的是丁.故选:D .【点评】此题主要考查了方差,正确理解方差的意义是解题关键. 4.(2分)【分析】根据同底数幂的除法的运算方法,幂的乘方与积的乘方的运算方法,合并同类项的方法,以及完全平方公式的应用,逐项判断即可.【解答】解:633x x x ÷=,∴选项A 不符合题意;326()x x -=,∴选项B 符合题意;333437x x x +=,∴选项C 不符合题意;222()2x y x xy y +=++,∴选项D 不符合题意.故选:B .【点评】此题主要考查了同底数幂的除法的运算方法,幂的乘方与积的乘方的运算方法,合并同类项的方法,以及完全平方公式的应用,要熟练掌握. 5.(2分)【分析】利用三角形内角和定理求出A ∠,再利用平行线的性质即可解决问题. 【解答】解:180A AOB B ∠+∠+∠=︒, 1801053045A ∴∠=︒-︒-︒=︒, //AB CD , 45C A ∴∠=∠=︒,故选:A .【点评】本题考查平行线的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 6.(2分)【分析】由一次函数解析式分别求出点A 和点B 的坐标,即可作答. 【解答】解:一次函数21y x =+中, 当0x =时,1y =;当0y =时,0.5x =-; (0.5,0)A ∴-,(0,1)B 0.5OA ∴=,1OB =AOB ∴∆的面积10.5124=⨯÷=故选:A .【点评】本题主要考查了一次函数与坐标轴交点坐标特征以及三角形的面积公式,属于基础题型. 7.(2分)【分析】分两种情形:①DA DM =.②M A M D '='分别求解即可. 【解答】解:①当AD DM =时. 四边形ABCD 是矩形,90C ∴∠=︒,3CD AB ==,4AD BC ==,225BD CD BC ∴=+=, 541BM BD DM ∴===-=, ME BC ⊥,DC BC ⊥, //ME CD ∴,∴BM MEBD CD =, ∴153ME=, 35ME ∴=.②当M A M D '='时,易证M E ''是BDC ∆的中位线, 1322M E CD ∴''==,故选:C .【点评】本题考查矩形的性质,等腰三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型. 8.(2分)【分析】当P 、Q 分别在AB 、AC 上运动时,11(2)sin 6022y AP QH t t =⨯=-⨯︒;当P 、Q分别在AC 、DC 上运动时,同理可得:23(2)4y t =-,即可求解. 【解答】解:(1)当P 、Q 分别在AB 、AC 上运动时,ABCD 是菱形,60B ∠=︒,则ABC ∆、ACD ∆为边长为2的等边三角形,过点Q 作QH AB ⊥于点H ,21133(2)sin 6022y AP QH t t =⨯=-⨯︒=, 3,符合条件的有A 、B 、D ; (2)当P 、Q 分别在AC 、DC 上运动时, 同理可得:232)y t -, 符合条件的有B ; 故选:B .【点评】本题考查的是动点图象问题,涉及到二次函数、图象面积计算、解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解. 二、填空题(本大题共8道小题,每小题3分,共24分)9.(3分)在函数1y x =-中,自变量x 的取值范围是 1x .【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以10x -,解不等式可求x 的范围.【解答】解:根据题意得:10x -, 解得:1x . 故答案为:1x .【点评】此题主要考查函数自变量的取值范围,解决本题的关键是当函数表达式是二次根式时,被开方数为非负数.10.(3分)为了落实“优化税收营商环境,助力经济发展和民生改善”的政策,国家税务总局统计数据显示,2018年5至10月合计减税2980亿元,将2980亿元用科学记数法表示为 112.9810⨯ 元.【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 【解答】解:将2980亿元用科学记数法表示为112.9810⨯元. 故答案为:112.9810⨯.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.(3分)在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有 7 个.【分析】根据口袋中有3个白球和若干个红球,利用红球在总数中所占比例得出与实验比例应该相等求出即可.【解答】解:设袋中红球有x 个, 根据题意,得:0.73xx=+, 解得:7x =,经检验:7x =是分式方程的解, 所以袋中红球有7个, 故答案为:7.【点评】此题主要考查了利用频率估计随机事件的概率,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.12.(3分)如图,正六边形ABCDEF 内接于O ,边长2AB =,则扇形AOB 的面积为23π.【分析】根据已知条件得到60AOB ∠=︒,推出AOB ∆是等边三角形,得到2OA OB AB ===,根据扇形的面积公式即可得到结论.【解答】解:正六边形ABCDEF 内接于O , 60AOB ∴∠=︒,OA OB =,AOB ∴∆是等边三角形, 2OA OB AB ∴===,∴扇形AOB 的面积260223603ππ⨯==, 故答案为:23π.【点评】本题考查了正多边形与圆及扇形的面积的计算,解题的关键是熟练掌握扇形的面积公式.13.(3分)甲、乙两地相距1000km ,如果乘高铁列车从甲地到乙地比乘特快列车少用3h ,已知高铁列车的平均速度是特快列车的1.6倍,设特快列车的平均速度为/xkm h ,根据题意可列方程为100010003 1.6x x-=. 【分析】根据题意可以列出相应的分式方程,本题得以解决. 【解答】解:由题意可得, 100010003 1.6x x-=, 故答案为:100010003 1.6x x-=. 【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.14.(3分)如图,将一个含30︒角的三角尺ABC 放在直角坐标系中,使直角顶点C 与原点O 重合,顶点A ,B 分别在反比例函数4y x =-和ky x=的图象上,则k 的值为 12 .【分析】过A 作AE y ⊥轴于E 过B 作BF y ⊥轴于F ,通过AOE BOF ∆∆∽,得到3AE OE OA OF BF OB ===,设4(,)A m m-,于是得到AE m =-,4OE m =-,从而得到(3B m ,43),于是求得结果.【解答】解:过A 作AE y ⊥轴于E 过B 作BF y ⊥轴于F , 90AOB ∠=︒,30ABC ∠=︒,3tan 303OA OB ∴︒==, 90OAE AOE AOE BOF ∠+∠=∠+∠=︒, OAE BOF ∴∠=∠, AOE BOF ∴∆∆∽,∴33AE OE OA OF BF OB ===, 设4(,)A m m-,AE m ∴=-,4OE m=-, 33OF AE m ∴==-,433BF OE m==-, (3B m ∴,43)m, 43312k mm∴==. 故答案为:12.【点评】本题考查了相似三角形的判定和性质,反比例函数图象上点的坐标特征,三角函数,作出辅助线构造相似三角形是解题的关键.15.(3分)如图,在矩形ABCD 中,3AB =,2BC =,M 是AD 边的中点,N 是AB 边上的动点,将AMN ∆沿MN 所在直线折叠,得到△A MN ',连接A C ',则A C '的最小值是 101- .【分析】由折叠的性质可得1AM A M '==,可得点A '在以点M 为圆心,AM 为半径的圆上,当点A '在线段MC 上时,A C '有最小值,由勾股定理可求MC 的长,即可求A C '的最小值. 【解答】解:四边形ABCD 是矩形3AB CD ∴==,2BC AD ==,M 是AD 边的中点, 1AM MD ∴==将AMN ∆沿MN 所在直线折叠,1AM A M '∴==∴点A '在以点M 为圆心,AM 为半径的圆上, ∴如图,当点A '在线段MC 上时,A C '有最小值,2210MC MD CD =+= A C ∴'的最小值101MC MA '=-=-故答案为:101-【点评】本题主要考查了翻折变换,矩形的性质、勾股定理,解题的关键是分析出A '点运动的轨迹.16.(3分)如图,边长为4的等边ABC ∆,AC 边在x 轴上,点B 在y 轴的正半轴上,以OB 为边作等边1OBA ∆,边1OA 与AB 交于点1O ,以1O B 为边作等边△12O BA ,边12O A 与1A B 交于点2O ,以2O B 为边作等边△23O BA ,边23O A 与2A B 交于点3O ,⋯,依此规律继续作等边△1n n O BA -,记△1OO A 的面积为1S ,△121O O A 的面积为2S ,△232O O A 的面积为3S ,⋯,△11n n n O O A --的面积为n S ,则n S = 133()42n - .(2n ,且n 为整数)【分析】由题意:△1OO A ∽△121O O A ∽△232O O A ,⋯,∽△11n n n O O A --,相似比:111sin 60O A OO OA OA ==︒=,探究规律,利用规律即可解决问题. 【解答】解:由题意:△1OO A ∽△121O O A ∽△232O O A ,⋯,∽△11n n n O O A --,相似比:111sin 60O A OO OA OA ==︒=,11112AOO S S==⨯,2134S S =, 2134S S ∴=,2313()4S S =,⋯,111333()()442n n n S S --==, 故答案为:133()42n -.【点评】本题考查等边三角形的性质,规律型问题,解题的关键是学会探究规律的方法,属于中考填空题中的压轴题.三、解答题(本大题共2道题,第17题6分,第18题8分,共14分) 17.(6分)先化简,再求值:21(1)11a a a -÷+-,其中011(()2a π-=+. 【分析】根据分式的减法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题. 【解答】解:21(1)11a a a -÷+- 11(1)(1)1a a a a a --+-=+(1)(1)1a a a a a-+-=+(1)a =-- 1a =-+,当011(()1232a π-=+=+=时,原式312=-+=-.【点评】本题考查分式的化简求值、零指数幂、负整数指数幂,解答本题的关键是明确分式化简求值的方法.18.(8分)为了响应“学习强国,阅读兴辽”的号召,某校鼓励学生利用课余时间广泛阅读,学校打算购进一批图书.为了解学生对图书类别的喜欢情况,校学生会随机抽取部分学生进行问卷调查,规定被调查学生从“文学、历史、科学、生活”中只选择自己最喜欢的一类,根据调查结果绘制了下面不完整的统计图.请根据图表信息,解答下列问题.(1)此次共调查了学生200人;(2)请通过计算补全条形统计图;(3)若该校共有学生2200人,请估计这所学校喜欢“科学”类书的学生人数.【分析】(1)从两个统计图中可得文学的人数为78人占调查人数的39%,可求调查人数,(2)求出“历史”的人数,再求出“科学”的人数,即可补全条形统计图,(3)样本估计总体,求出样本中“科学”占的百分比即为总体中“科学”所占比,从而可求出人数,【解答】解:(1)7839%200÷=人故答案为:200.(2)20033%66⨯=人,20078662432---=人,补全条形统计图如图所示:(3)322200352200⨯=人,答:该校2200名学生中喜欢“科学”类书的大约有352人.【点评】考查条形统计图、扇形统计图的制作方法,从两个统计图中获取有用的数据是解决问题的关键,理清统计图中的各个数据之间的关系是前提.四、解答题(本大题共2道题,每题8分,共16分)19.(8分)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是14;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)甲组抽到A小区的概率是14,故答案为:14.(2)画树状图为:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,甲组抽到A小区,同时乙组抽到C小区的概率为112.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)某市政部门为了保护生态环境,计划购买A,B两种型号的环保设备.已知购买一套A型设备和三套B型设备共需230万元,购买三套A型设备和两套B型设备共需340万元.(1)求A型设备和B型设备的单价各是多少万元;(2)根据需要市政部门采购A型和B型设备共50套,预算资金不超过3000万元,问最多可购买A型设备多少套?【分析】(1)设A型设备的单价是x万元,B型设备的单价是y万元,根据“购买一套A型设备和三套B型设备共需230万元,购买三套A型设备和两套B型设备共需340万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进A型设备m套,则购进B型设备(50)m-套,根据总价=单价⨯数量结合预算资金不超过3000万元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.【解答】解:(1)设A型设备的单价是x万元,B型设备的单价是y万元,依题意,得:3230 32340x yx y+=⎧⎨+=⎩,解得:8050xy=⎧⎨=⎩.答:A型设备的单价是80万元,B型设备的单价是50万元.(2)设购进A型设备m套,则购进B型设备(50)m-套,依题意,得:8050(50)3000m m+-,解得:503 m.m为整数,m∴的最大值为16.答:最多可购买A型设备16套.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.五、解答题(本大题共2道题,每题8分,共16分)21.(8分)如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡CM的坡比1:3i=,在点C处测得旗杆顶点A的仰角为30︒,在点M处测得旗杆顶点A的仰角为60︒,且B,M,D三点在同一水平线上,求旗杆AB的高度.(结果精确到0.1m,参考数据:2 1.41≈,3 1.73)=【分析】过点C作CE AB⊥于点E,设BM x=,根据矩形的性质以及锐角三角函数的定义即可求出答案.【解答】解:过点C作CE AB⊥于点E,2 CD=,1 tan3CMD∠=,6MD∴=,设BM x=,6BD x∴=+,60AMB∠=︒,30BAM∴∠=︒,3AB x∴=,已知四边形CDBE是矩形,2BE CD∴==,6CE BD x==+,32AE x∴=-,在Rt ACE∆中,tan30AE CE︒=,∴32 3x-=解得:33x=+,33338.2AB x m∴==+≈【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义以及矩形的性质,本题属于中等题型.22.(8分)如图,M,N是以AB为直径的O上的点,且AN BN=,弦MN交AB于点C,BM平分ABD∠,MF BD⊥于点F.(1)求证:MF是O的切线;(2)若3CN=,4BN=,求CM的长.【分析】(1)根据等腰三角形的性质和角平分线的定义证得OMB MBF∠=∠,得出//OM BF,即可证得OM MF⊥,即可证得结论;(2)由勾股定理可求AB的长,可得AO,BO,ON的长,由勾股定理可求CO的长,通过证明ACN MCB∆∆∽,可得AC CNCM BC=,即可求CM的长.【解答】证明:(1)连接OM,OM OB=,∴∠=∠,OMB OBMBM平分ABD∠,OBM MBF∴∠=∠,∴∠=∠,OMB MBF∴,//OM BF⊥,MF BD∠=︒,OMF∴⊥,即90 OM MF∴是O的切线;MF(2)如图,连接AN,ONAN BN=,∴==AN BN4AB是直径,AN BN=,⊥∴∠=︒,ON AB90ANB2242AB AN BN∴=+∴===22AO BO ON22981∴=-=-OC CN ON1AC ∴=,1BC =A NMB ∠=∠,ANC MBC ∠=∠ACN MCB ∴∆∆∽ ∴AC CN CM BC= AC BC CM CN ∴=73CM ∴=73CM ∴= 【点评】本题考查了切线的性质,圆的有关知识,相似三角形的判定和性质,勾股定理等知识,求OC 的长是本题的关键.六、解答题(本大题共10分)23.(10分)2019年在法国举办的女足世界杯,为人们奉献了一场足球盛宴.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100件.根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每个月会少售出2件,设每件商品的售价为x 元,每个月的销量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?【分析】(1)根据月销量等于涨价前的月销量,减去涨价(60)x -与涨价1元每月少售出的件数2的乘积,化简可得;(2)月销售量乘以每件的利润等于利润2250,解方程即可;(3)根据题意列出二次函数解析式,由顶点式,可知何时取得最大值及最大值是多少.【解答】解:(1)由题意得,月销售量1002(60)2202y x x =--=- (60110x ,且x 为正整数)答:y 与x 之间的函数关系式为2202y x =-.(2)由题意得:(2202)(40)2250x x --=化简得:215055250x x -+=解得165x =,285x =答:当每件商品的售价定为65元或85元时,每个月的利润恰好为2250元.(3)设每个月获得利润w 元,由(2)知2(2202)(40)23008800w x x x x =--=-+- 22(75)2450w x ∴=--+∴当75x =,即售价为75元时,月利润最大,且最大月利润为2450元.【点评】本题考查了二次函数在实际问题中的应用,需要明确销量,售价和利润之间的关系以及会由二次函数求得最大值.七、解答题(本大题共2道题,每题12分,共24分)24.(12分)已知,在Rt ABC ∆中,90ACB ∠=︒,D 是BC 边上一点,连接AD ,分别以CD 和AD 为直角边作Rt CDE ∆和Rt ADF ∆,使90DCE ADF ∠=∠=︒,点E ,F 在BC 下方,连接EF .(1)如图1,当BC AC =,CE CD =,DF AD =时,求证:①CAD CDF ∠=∠,②BD EF =;(2)如图2,当2BC AC =,2CE CD =,2DF AD =时,猜想BD 和EF 之间的数量关系?并说明理由.【分析】(1)①根据同角的余角相等证明;②作FH BC ⊥交BC 的延长线于H ,证明ACD DHF ∆≅∆,根据全等三角形的性质得到DH AC =,结合图形证明即可;(2)作FG BC ⊥交BC 的延长线于G ,证明ACD DGF ∆∆∽,根据相似三角形的性质得到2DG AC =,证明结论.【解答】(1)证明:①90ACB ∠=︒,90CAD ADC ∴∠+∠=︒,90CDF ADC ∠+∠=︒,CAD CDF ∴∠=∠;②作FH BC ⊥交BC 的延长线于H ,则四边形FECH 为矩形,CH EF ∴=,在ACD ∆和DHF ∆中,90CAD HDF ACD DHF AD DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()ACD DHF AAS ∴∆≅∆DH AC ∴=,AC CB =,DH CB ∴=,DH CD CB CD ∴-=-,即HG BD =,BD EF ∴=;(2)BD EF =,理由如下:作FG BC ⊥交BC 的延长线于G ,则四边形FECG 为矩形,CG EF ∴=,CAD GDF ∠=∠,90ACD DGF ∠=∠=︒,ACD DGF ∴∆∆∽, ∴2DG DF AC AD==,即2DG AC =, 2BC AC =,BC DG ∴=,BD CG ∴=,BD EF ∴=.【点评】本题考查的是全等三角形的判定和性质、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、全等三角形的判定定理和性质定理是解题的关键.25.(12分)如图1,在平面直角坐标系中,一次函数334y x =-+的图象与x 轴交于点A ,与y 轴交于B 点,抛物线2y x bx c =-++经过A ,B 两点,在第一象限的抛物线上取一点D ,过点D 作DC x ⊥轴于点C ,交直线AB 于点E .(1)求抛物线的函数表达式 (2)是否存在点D ,使得BDE ∆和ACE ∆相似?若存在,请求出点D 的坐标,若不存在,请说明理由;(3)如图2,F 是第一象限内抛物线上的动点(不与点D 重合),点G 是线段AB 上的动点.连接DF ,FG ,当四边形DEGF 是平行四边形且周长最大时,请直接写出点G 的坐标.【分析】(1)根据334y x =-+,求出A ,B 的坐标,再代入抛物线解析式中即可求得抛物线解析式;(2)BDE ∆和ACE ∆相似,要分两种情况进行讨论:①BDE ACE ∆∆∽,求得13(4D ,3);②DBE ACE ∆∆∽,求得23(12D ,50)9; (3)由DEGF 是平行四边形,可得//DE FG ,DE FG =,设213(,3)4D m m m -++,3(,3)4E m m -+,213(,3)4F n n n -++,3(,3)4G n n -+,根据平行四边形周长公式可得:DEGF 周长23892()48m =--+,由此可求得点G 的坐标. 【解答】解:(1)在334y x =-+中,令0x =,得3y =,令0y =,得4x =, (4,0)A ∴,(0,3)B ,将(4,0)A ,(0,3)B 分别代入抛物线2y x bx c =-++中,得:24403b c c ⎧-++=⎨=⎩,解得:1343b c ⎧=⎪⎨⎪=⎩, ∴抛物线的函数表达式为:21334y x x =-++. (2)存在.如图1,过点B 作BH CD ⊥于H ,设(,0)C t ,则213(,3)4D t t t -++,3(,3)4E t t -+,(,3)H t ;334EC t ∴=-+,4AC t =-,BH t =,2134DH t t =-+,24DE t t =-+ BDE ∆和ACE ∆相似,BED AEC ∠=∠BDE ACE ∴∆∆∽或DBE ACE ∆∆∽①当BDE ACE ∆∆∽时,90BDE ACE ∠=∠=︒, ∴BD AC DE CE=,即:BD CE AC DE = 23(3)(4)(4)4t t t t t ∴-+=-⨯-+,解得:10t =(舍去),24t =(舍去),3134t =, 13(4D ∴,3) ②当DBE ACE ∆∆∽时,BDE CAE ∠=∠BH CD ⊥90BHD ∴∠=︒, ∴tan tan BH CE BDE CAE DH AC=∠=∠=,即:BH AC CE DH = 2313(4)(3)()44t t t t t ∴-=-+-+,解得:10t =(舍),24t =(舍),32312t =, 23(12D ∴,50)9; 综上所述,点D 的坐标为13(4,3)或23(12,50)9; (3)如图3,四边形DEGF 是平行四边形//DE FG ∴,DE FG =设213(,3)4D m m m -++,3(,3)4E m m -+,213(,3)4F n n n -++,3(,3)4G n n -+, 则:24DE m m =-+,24FG n n =-+,2244m m n n ∴-+=-+,即:()(4)0m n m n -+-=,0m n -≠40m n ∴+-=,即:4m n +=过点G 作GK CD ⊥于K ,则//GK ACEGK BAO ∴∠=∠∴cos cos GK AO EGK BAO EG AB=∠=∠=,即:GK AB AO EG = 5()4n m EG ∴-=,即:5()4EG n m =- DEGF ∴周长2253892()2[(4)()]2()448DE EG m m n m m =+=-++-=--+ 20-<,∴当34m =时,DEGF ∴周长最大值898=, 13(4G ∴,9)16.【点评】本题是常见的中考数学压轴题型,综合性比较强,涉及到知识点较多;主要考查了待定系数法求二次函数解析式,相似三角形性质,平行四边形性质,二次函数最值问题等;解题时要能够灵活运用所学的数学知识,要会分类讨论。
辽宁省锦州市2019年中考数学试卷
辽宁省锦州市2019年中考数学试卷一、选择题(本大题共8道小题,每小题2分,共16分) 1.(2分)2019-的相反数是( ) A .12019B .12019-C .2019D .2019-2.(2分)下列既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.(2分)甲、乙、丙、丁四名同学进行跳高测试,每人10次跳高成绩的平均数都是1.28m ,方差分别是20.60s =甲,20.62s =乙,20.58s =丙,20.45s =丁,则这四名同学跳高成绩最稳定的是( ) A .甲B .乙C .丙D .丁4.(2分)下列运算正确的是( ) A .632x x x ÷=B .326()x x -=C .336437x x x +=D .222()x y x y +=+5.(2分)如图,AC 与BD 交于点O ,//AB CD ,105AOB ∠=︒,30B ∠=︒,则C ∠的度数为( )A .45︒B .55︒C .60︒D .75︒6.(2分)如图,一次函数21y x =+的图象与坐标轴分别交于A ,B 两点,O 为坐标原点,则AOB ∆的面积为( )A .14B .12C .2D .47.(2分)在矩形ABCD 中,3AB =,4BC =,M 是对角线BD 上的动点,过点M 作ME BC ⊥于点E,连接AM,当ADM∆是等腰三角形时,ME的长为()A.32B.65C.32或35D.32或658.(2分)如图,在菱形ABCD中,60B∠=︒,2AB=,动点P从点B出发,以每秒1个单位长度的速度沿折线BA AC→运动到点C,同时动点Q从点A出发,以相同速度沿折线AC CD→运动到点D,当一个点停止运动时,另一个点也随之停止.设APQ∆的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是()A.B.C.D.二、填空题(本大题共8道小题,每小题3分,共24分)9.(3分)在函数y=中,自变量x的取值范围是.10.(3分)为了落实“优化税收营商环境,助力经济发展和民生改善”的政策,国家税务总局统计数据显示,2018年5至10月合计减税2980亿元,将2980亿元用科学记数法表示为元.11.(3分)在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有个.12.(3分)如图,正六边形ABCDEF内接于O,边长2AB=,则扇形AOB的面积为.13.(3分)甲、乙两地相距1000km ,如果乘高铁列车从甲地到乙地比乘特快列车少用3h ,已知高铁列车的平均速度是特快列车的1.6倍,设特快列车的平均速度为/xkm h ,根据题意可列方程为 .14.(3分)如图,将一个含30︒角的三角尺ABC 放在直角坐标系中,使直角顶点C 与原点O 重合,顶点A ,B 分别在反比例函数4y x =-和ky x=的图象上,则k 的值为 .15.(3分)如图,在矩形ABCD 中,3AB =,2BC =,M 是AD 边的中点,N 是AB 边上的动点,将AMN ∆沿MN 所在直线折叠,得到△A MN ',连接A C ',则A C '的最小值是 .16.(3分)如图,边长为4的等边ABC ∆,AC 边在x 轴上,点B 在y 轴的正半轴上,以OB 为边作等边1OBA ∆,边1OA 与AB 交于点1O ,以1O B 为边作等边△12O BA ,边12O A 与1A B 交于点2O ,以2O B 为边作等边△23O BA ,边23O A 与2A B 交于点3O ,⋯,依此规律继续作等边△1n n O BA -,记△1OO A 的面积为1S ,△121O O A 的面积为2S ,△232O O A 的面积为3S ,⋯,△11n n n O O A --的面积为n S ,则n S = .(2n …,且n 为整数)三、解答题(本大题共2道题,第17题6分,第18题8分,共14分)17.(6分)先化简,再求值:21(1)11a a a -÷+-,其中011(()2a π-=+. 18.(8分)为了响应“学习强国,阅读兴辽”的号召,某校鼓励学生利用课余时间广泛阅读,学校打算购进一批图书.为了解学生对图书类别的喜欢情况,校学生会随机抽取部分学生进行问卷调查,规定被调查学生从“文学、历史、科学、生活”中只选择自己最喜欢的一类,根据调查结果绘制了下面不完整的统计图.请根据图表信息,解答下列问题. (1)此次共调查了学生 人; (2)请通过计算补全条形统计图;(3)若该校共有学生2200人,请估计这所学校喜欢“科学”类书的学生人数. 四、解答题(本大题共2道题,每题8分,共16分)19.(8分)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A ,B ,C ,D 四个小区进行检查,并且每个小区不重复检查. (1)甲组抽到A 小区的概率是 ;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.20.(8分)某市政部门为了保护生态环境,计划购买A,B两种型号的环保设备.已知购买一套A型设备和三套B型设备共需230万元,购买三套A型设备和两套B型设备共需340万元.(1)求A型设备和B型设备的单价各是多少万元;(2)根据需要市政部门采购A型和B型设备共50套,预算资金不超过3000万元,问最多可购买A型设备多少套?五、解答题(本大题共2道题,每题8分,共16分)21.(8分)如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡i=,在点C处测得旗杆顶点A的仰角为30︒,在点M处测得旗杆顶点A的CM的坡比1:3仰角为60︒,且B,M,D三点在同一水平线上,求旗杆AB的高度.(结果精确到0.1m,=1.41≈ 1.73)22.(8分)如图,M,N是以AB为直径的O上的点,且AN BN=,弦MN交AB于点C,⊥于点F.BM平分ABD∠,MF BD(1)求证:MF是O的切线;(2)若3BN=,求CM的长.CN=,4六、解答题(本大题共10分)23.(10分)2019年在法国举办的女足世界杯,为人们奉献了一场足球盛宴.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100件.根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每个月会少售出2件,设每件商品的售价为x 元,每个月的销量为y 件. (1)求y 与x 之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少? 七、解答题(本大题共2道题,每题12分,共24分)24.(12分)已知,在Rt ABC ∆中,90ACB ∠=︒,D 是BC 边上一点,连接AD ,分别以CD 和AD 为直角边作Rt CDE ∆和Rt ADF ∆,使90DCE ADF ∠=∠=︒,点E ,F 在BC 下方,连接EF .(1)如图1,当BC AC =,CE CD =,DF AD =时, 求证:①CAD CDF ∠=∠,②BD EF =;(2)如图2,当2BC AC =,2CE CD =,2DF AD =时,猜想BD 和EF 之间的数量关系?并说明理由.25.(12分)如图1,在平面直角坐标系中,一次函数334y x =-+的图象与x 轴交于点A ,与y 轴交于B 点,抛物线2y x bx c =-++经过A ,B 两点,在第一象限的抛物线上取一点D ,过点D 作DC x ⊥轴于点C ,交直线AB 于点E . (1)求抛物线的函数表达式(2)是否存在点D ,使得BDE ∆和ACE ∆相似?若存在,请求出点D 的坐标,若不存在,请说明理由;(3)如图2,F 是第一象限内抛物线上的动点(不与点D 重合),点G 是线段AB 上的动点.连接DF ,FG ,当四边形DEGF 是平行四边形且周长最大时,请直接写出点G 的坐标.。
辽宁锦州市中考数学试题及答案
辽宁锦州市中考数学试题及答案
2019年锦州市义务教诲新课程初中学业考试数学试题
※考试时间120分钟,试卷满分120分。
提示:
1.允许使用科学谋略器;
2.选择题、填空题可直接写出终于,解答题应写出文字说明、证明历程或演算步骤。
一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入题后的括号内,本题共7个小题,每小题3分,共21分)
1.下列一组几多体的俯看图是()
2.下列运算正确的是()
A.x2+x3=x5
B.(2x2)3=2x6
C.x6÷x2=x3
D.3x2·2x3=6x5
3.将下列各纸片沿虚线剪开后,能拼成右图的是()
4.不等式组的解集为()
A.-1<x<2
B.-1<x≤2
C.x<-1
D.x≥2
5.“五·一”黄金周事后,八年(一)班班主任对全班52名学生外出旅游的天数举行了观察统计,终于如下表所示:
旅游天数(天)
1
2
3
4
5
6
7
人数(人)
5
6
12
11
10
5
3。
辽宁省锦州市2019-2020学年中考第二次质量检测数学试题含解析
辽宁省锦州市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.当函数y=(x-1)2-2的函数值y 随着x 的增大而减小时,x 的取值范围是( )A .x 0>B .x 1<C .x 1>D .x 为任意实数2.如图,过点A (4,5)分别作x 轴、y 轴的平行线,交直线y=﹣x+6于B 、C 两点,若函数y=k x(x >0)的图象△ABC 的边有公共点,则k 的取值范围是( )A .5≤k≤20B .8≤k≤20C .5≤k≤8D .9≤k≤203.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .4.已知a-2b=-2,则4-2a+4b 的值是( )A .0B .2C .4D .85.在3-,1-,0,1这四个数中,最小的数是( )A .3-B .1-C .0D .16.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .337.二元一次方程组43624x y x y +=⎧⎨+=⎩的解为( ) A .32x y =-⎧⎨=⎩B .21x y =-⎧⎨=⎩C .32x y =⎧⎨=-⎩D .21x y =⎧⎨=-⎩ 8.不等式组的解集在数轴上表示正确的是( )A .B .C .D .9.据浙江省统计局发布的数据显示,2017年末,全省常住人口为5657万人.数据“5657万”用科学记数法表示为()A .4565710⨯B .656.5710⨯C .75.65710⨯D .85.65710⨯10.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AB=c ,∠A=α,则CD 长为( )A .c•sin 2αB .c•cos 2αC .c•sinα•tanαD .c•sinα•cosα11.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是( )A .B .C .D .12.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,平行四边形ABCD 中,AB=AC=4,AB ⊥AC ,O 是对角线的交点,若⊙O 过A 、C 两点,则图中阴影部分的面积之和为_____.14.如图,∠1,∠2是四边形ABCD 的两个外角,且∠1+∠2=210°,则∠A+∠D =____度.15.分解因式:32816a a a -+=__________.16.如图,在△ABC 中,AD 、BE 分别是边BC 、AC 上的中线,AB=AC=5,cos ∠C=45,那么GE=_______.17.化简11x -÷211x -=_____. 18.不等式组372291x x +≥⎧⎨-<⎩的非负整数解的个数是_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知点A ,C 在EF 上,AD ∥BC ,DE ∥BF ,AE =CF.(1)求证:四边形ABCD 是平行四边形;(2)直接写出图中所有相等的线段(AE =CF 除外).20.(6分)先化简,再求值:2121111a a a a -⎛⎫-÷ ⎪+-+⎝⎭,其中31a = 21.(6分)平面直角坐标系xOy 中,横坐标为a 的点A 在反比例函数y 1═k x(x >0)的图象上,点A′与点A 关于点O 对称,一次函数y 2=mx+n 的图象经过点A′.(1)设a=2,点B (4,2)在函数y 1、y 2的图象上.①分别求函数y 1、y 2的表达式;②直接写出使y 1>y 2>0成立的x 的范围; (2)如图①,设函数y 1、y 2的图象相交于点B ,点B 的横坐标为3a ,△AA'B 的面积为16,求k 的值; (3)设m=12,如图②,过点A 作AD ⊥x 轴,与函数y 2的图象相交于点D ,以AD 为一边向右侧作正方形ADEF ,试说明函数y 2的图象与线段EF 的交点P 一定在函数y 1的图象上.22.(8分)如图,已知A(﹣4,12),B(﹣1,m)是一次函数y=kx+b与反比例函数y=nx图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)求m的值及一次函数解析式;(2)P是线段AB上的一点,连接PC、PD,若△PCA和△PDB面积相等,求点P坐标.23.(8分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,2取1.41424.(10分)已知,抛物线L:y=x2+bx+c与x轴交于点A和点B(-3,0),与y轴交于点C(0,3).(1)求抛物线L的顶点坐标和A点坐标.(2)如何平移抛物线L得到抛物线L1,使得平移后的抛物线L1的顶点与抛物线L的顶点关于原点对称?(3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m>0)是抛物线L2上的一点,是否存在点P,使得△PAC为等腰直角三角形,若存在,请直接写出抛物线L2的表达式,若不存在,请说明理由.25.(10分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:求这天的温度y与时间x(0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?26.(12分)(2013年四川绵阳12分)如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.(1)判断CD与⊙O的位置关系,并证明你的结论;(2)若E是»AC的中点,⊙O的半径为1,求图中阴影部分的面积.27.(12分)(2016山东省烟台市)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:利用二次函数的增减性求解即可,画出图形,可直接看出答案.详解:对称轴是:x=1,且开口向上,如图所示,∴当x <1时,函数值y 随着x 的增大而减小;故选B .点睛:本题主要考查了二次函数的性质,解题的关键是熟记二次函数的性质.2.A【解析】若反比例函数与三角形交于A(4,5),则k=20;若反比例函数与三角形交于C(4,2),则k=8;若反比例函数与三角形交于B(1,5),则k=5.故520k ≤≤. 故选A.3.A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A 、是中心对称图形,故本选项正确;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、不是中心对称图形,故本选项错误;故选:A .点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.4.D【解析】∵a-2b=-2,∴-a+2b=2,∴-2a+4b=4,∴4-2a+4b=4+4=8,故选D.5.A【解析】【分析】根据正数大于零,零大于负数,正数大于一切负数,即可得答案.【详解】由正数大于零,零大于负数,得-<-<<,3101-,最小的数是3故选A.【点睛】本题考查了有理数比较大小,利用好“正数大于零,零大于负数,两个负数绝对值大的反而小”是解题关键.6.D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴故选D.【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.7.C【解析】【分析】利用加减消元法解这个二元一次方程组.【详解】解:43624x y x y +=⋯⋯⎧⎨+=⋯⋯⎩①② ①-②⨯2,得:y=-2,将y=-2代入②,得:2x-2=4,解得,x=3,所以原方程组的解是32x y =⎧⎨=-⎩. 故选C.【点睛】本题考查了解二元一次方程组和解一元一次方程等知识点,解此题的关键是把二元一次方程组转化成一元一次方程,题目比较典型,难度适中.8.D【解析】 试题分析:,由①得:x≥1,由②得:x <2,在数轴上表示不等式的解集是:,故选D . 考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.9.C【解析】【分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:5657万用科学记数法表示为75.65710⨯,故选:C .此题考查科学记数法的表示方法.科学记数法的表示形式为na10⨯的形式,其中1a10≤<,n为整数,表示时关键要正确确定a的值以及n的值.10.D【解析】【分析】根据锐角三角函数的定义可得结论.【详解】在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根据锐角三角函数的定义可得sinα=BC AB,∴BC=c•sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt△DCB中,∠CDB=90°,∴cos∠DCB= CD BC,∴CD=BC•cosα=c•sinα•cosα,故选D.11.B【解析】【分析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.【详解】从上面看,是正方形右边有一条斜线,如图:故选B.【点睛】考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.12.B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)【解析】【详解】∵∠AOB=∠COD ,∴S 阴影=S △AOB .∵四边形ABCD 是平行四边形,∴OA=12AC=12×1=2. ∵AB ⊥AC , ∴S 阴影=S △AOB =12OA•AB=12×2×1=1. 【点睛】本题考查了扇形面积的计算.14.210.【解析】【分析】利用邻补角的定义求出∠ABC+∠BCD ,再利用四边形内角和定理求得∠A+∠D.【详解】∵∠1+∠2=210°,∴∠ABC+∠BCD =180°×2﹣210°=150°,∴∠A+∠D =360°﹣150°=210°. 故答案为:210.【点睛】本题考查了四边形的内角和定理以及邻补角的定义,利用邻补角的定义求出∠ABC+∠BCD 是关键. 15.a(a -4)2【解析】【分析】首先提取公因式a ,进而利用完全平方公式分解因式得出即可.【详解】32816a a a -+22816()4.)(a a a a a =-+=-故答案为:2()4.a a -【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.16.17 2【解析】【分析】过点E作EF⊥BC交BC于点F,分别求得AD=3,BD=CD=4,EF=32,DF=2,BF=6,再结合△BGD∽△BEF即可.【详解】过点E作EF⊥BC交BC于点F.∵AB=AC,AD为BC的中线∴AD⊥BC ∴EF为△ADC的中位线.又∵cos∠C=45,AB=AC=5,∴AD=3,BD=CD=4,EF=32,DF=2∴BF=6∴在Rt△BEF中22BF EF+317又∵△BGD∽△BEF∴BG BD=BE BF,即1717故答案为17 2.【点睛】本题考查的知识点是三角形的相似,解题的关键是熟练的掌握三角形的相似. 17.x+1【解析】分析:根据根式的除法,先因式分解后,把除法化为乘法,再约分即可.详解:解:原式=11x-÷1(1)(1)x x+-=11x-•(x+1)(x﹣1)=x+1,故答案为x+1.点睛:此题主要考查了分式的运算,关键是要把除法问题转化为乘法运算即可,注意分子分母的因式分解. 18.1【解析】【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.【详解】解:372 291xx+≥⎧⎨-<⎩①②解①得:x≥﹣53,解②得:x<1,∴不等式组的解集为﹣53≤x<1,∴其非负整数解为0、1、2、3、4共1个,故答案为1.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)AD=BC,EC=AF,ED=BF,AB=DC.【解析】整体分析:(1)用ASA证明△ADE≌△CBF,得到AD=BC,根据一组对边平行且相等的四边形是平行四边形证明;(2)根据△ADE≌△CBF,和平行四边形ABCD的性质及线段的和差关系找相等的线段.解:(1)证明:∵AD∥BC,DE∥BF,∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF.在△ADE和△CBF中,E FAE CFDAE BCF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE≌△CBF,∴AD=BC,∴四边形ABCD是平行四边形.(2)AD=BC,EC=AF,ED=BF,AB=DC. 理由如下:∵△ADE≌△CBF,∴AD=BC,ED=BF. ∵AE=CF,∴EC=AF.∵四边形ABCD 是平行四边形,∴AB =DC.20.11a - 【解析】【分析】先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后代入求值.【详解】解:原式=1(2)(1)(1)(1)a a a a a ---⨯++-=11a -把1a =代入得:原式=3. 【点睛】本题考查分式的化简求值,计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.21.(1)y 1=8x ,y 2=x ﹣2;②2<x <4;(2)k=6;(3)证明见解析. 【解析】分析:(1)由已知代入点坐标即可;(2)面积问题可以转化为△AOB 面积,用a 、k 表示面积问题可解;(3)设出点A 、A′坐标,依次表示AD 、AF 及点P 坐标.详解:(1)①由已知,点B (4,2)在y 1═k x (x >0)的图象上 ∴k=8∴y 1=8x∵a=2∴点A 坐标为(2,4),A′坐标为(﹣2,﹣4)把B (4,2),A (﹣2,﹣4)代入y 2=mx+n 得,2=42m n m n +⎧⎨-=-+⎩, 解得12m n =⎧⎨=-⎩, ∴y 2=x ﹣2; ②当y 1>y 2>0时,y 1=8x 图象在y 2=x ﹣2图象上方,且两函数图象在x 轴上方, ∴由图象得:2<x <4;(2)分别过点A 、B 作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连BO ,∵O为AA′中点,S△AOB=12S△AOA′=8∵点A、B在双曲线上∴S△AOC=S△BOD∴S△AOB=S四边形ACDB=8由已知点A、B坐标都表示为(a,ka)(3a,3ka)∴1()28 23k kaa a⨯+⨯=,解得k=6;(3)由已知A(a,ka),则A′为(﹣a,﹣ka).把A′代入到y=12x n+,得:﹣1=2ka na-+,∴n=12kaa-,∴A′B解析式为y=﹣1122k x aa+-.当x=a时,点D纵坐标为kaa -,∴AD=2ka a-∵AD=AF,∴点F和点P横坐标为22+=k ka aa a-,∴点P纵坐标为1211 222k ka aa a⨯+-=.∴点P在y1═kx(x>0)的图象上.点睛:本题综合考查反比例函数、一次函数图象及其性质,解答过程中,涉及到了面积转化方法、待定系数法和数形结合思想.22.(1)m=2;y=12x+52;(2)P点坐标是(﹣52,54).【解析】【分析】(1)利用待定系数法求一次函数和反比例函数的解析式;(2)设点P 的坐标为15,22P x x ⎛⎫+ ⎪⎝⎭,根据面积公式和已知条件列式可求得x 的值,并根据条件取舍,得出点P 的坐标.【详解】解:(1)∵反比例函数n y x =的图象过点14,,2⎛⎫- ⎪⎝⎭ ∴1422n =-⨯=-, ∵点B (﹣1,m )也在该反比例函数的图象上,∴﹣1•m=﹣2,∴m=2;设一次函数的解析式为y=kx+b ,由y=kx+b 的图象过点A 14,,2⎛⎫- ⎪⎝⎭,B (﹣1,2),则 1422,k b k b ⎧-+=⎪⎨⎪-+=⎩ 解得:125,2k b ⎧=⎪⎪⎨⎪=⎪⎩∴一次函数的解析式为1522y x =+; (2)连接PC 、PD ,如图,设15,22P x x ⎛⎫+ ⎪⎝⎭, ∵△PCA 和△PDB 面积相等, ∴()1111541222222x x ⎛⎫⨯⨯+=⨯-⨯-- ⎪⎝⎭, 解得: 5155,,2224x y x =-=+= ∴P 点坐标是55,.24⎛⎫- ⎪⎝⎭【点睛】本题考查待定系数法求反比例函数以及一次函数解析式,反比例函数与一次函数的交点问题,熟练掌握待定系数法是解题的关键.23.新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.【解析】【分析】根据题意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的长,再表示出AD的长,进而求出AB的长.【详解】解:如图,作CD⊥AB于点D,由题意可得:∠A=36°,∠CBD=15°,BC=1.在Rt△BCD中,sin∠CBD=CDBC,∴CD=BCsin∠CBD=22.∵∠CBD=15°,∴BD=CD=22.在Rt△ACD中,sinA=CDAC,tanA=CDAD,∴AC=CDsinA≈220.59≈1.8,AD=CDtanA=2236tan︒,∴AB=AD﹣BD=22﹣22=2 1.4140.73⨯﹣2×1.111≈3.87﹣2.83=1.21≈1.2.答:新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.【点睛】本题考查了坡度坡角问题,正确构建直角三角形再求出BD的长是解题的关键.24.(1)顶点(-2,-1)A (-1,0); (2)y=(x-2)2+1; (3) y=x2-103x+3, 2239y x x=++,y=x2-4x+3,283 3y x x=++. 【解析】【分析】(1)将点B 和点C 代入求出抛物线L 即可求解.(2)将抛物线L 化顶点式求出顶点再根据关于原点对称求出即可求解.(3)将使得△PAC 为等腰直角三角形,作出所有点P 的可能性,求出代入23y x dx =++即可求解.【详解】(1)将点B (-3,0),C (0,3)代入抛物线得: {0=9-3b+cc=3,解得{b=4c=3,则抛物线243y x x =++. Q 抛物线与x 轴交于点A,∴ 2043x x =++,12x =-3x =-1,,A (-1,0),抛物线L 化顶点式可得()2y=x+2-1,由此可得顶点坐标顶点(-2,-1).(2)抛物线L 化顶点式可得()2y=x+2-1,由此可得顶点坐标顶点(-2,-1) Q 抛物线L 1的顶点与抛物线L 的顶点关于原点对称,1L ∴对称顶点坐标为(2,1),即将抛物线向右移4个单位,向上移2个单位.(3) 使得△PAC 为等腰直角三角形,作出所有点P 的可能性.1P AC ∆Q 是等腰直角三角形1P A CA ∴=,190,90CAO ACO CAO P AE ∠+∠=︒∠+∠=︒Q ,1CAO P AE ∴∠=,190PEA COA =∠=︒Q , ()1CAO APE AAS ∴∆≅∆,∴求得()14,1P -.,同理得()22,1P -,()33,4P -,()43,2P ,由题意知抛物线23y x dx =++并将点代入得:222228103,43,3,3933y x x y x x y x x y x x =++=-+=++=-+. 【点睛】本题主要考查抛物线综合题,讨论出P 点的所有可能性是解题关键.25.(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【解析】分析:(1)应用待定系数法分段求函数解析式;(2)观察图象可得;(3)代入临界值y=10即可.详解:(1)设线段AB 解析式为y=k 1x+b (k≠0)∵线段AB 过点(0,10),(2,14)代入得110214b k b ⎧⎨+⎩== 解得1210k b ⎧⎨⎩== ∴AB 解析式为:y=2x+10(0≤x <5)∵B 在线段AB 上当x=5时,y=20∴B 坐标为(5,20)∴线段BC 的解析式为:y=20(5≤x <10)设双曲线CD 解析式为:y=2k x(k 2≠0) ∵C (10,20)∴k 2=200∴双曲线CD解析式为:y=200 x(10≤x≤24)∴y关于x的函数解析式为:()210(05)20(510)2001024x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩(2)由(1)恒温系统设定恒温为20°C(3)把y=10代入y=200x中,解得,x=20∴20-10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.26.解:(1)CD与⊙O相切.理由如下:∵AC为∠DAB的平分线,∴∠DAC=∠BAC.∵OA=OC,∴∠OAC=∠OCA.,∴∠DAC=∠OCA.∴OC∥AD.∵AD⊥CD,∴OC⊥CD.∵OC是⊙O的半径,∴CD与⊙O相切.(2)如图,连接EB,由AB为直径,得到∠AEB=90°,∴EB∥CD,F为EB的中点.∴OF为△ABE的中位线.∴OF=12AE=12,即CF=DE=12.在Rt△OBF中,根据勾股定理得:3∵E是»AC的中点,∴»AE=»EC,∴AE=EC.∴S弓形AE=S弓形EC.∴S阴影=S△DEC=12×12×33【解析】(1)CD与圆O相切,理由为:由AC为角平分线得到一对角相等,再由OA=OC,利用等边对等角得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OC与AD平行,根据AD 垂直于CD,得到OC垂直于CD,即可得证.(2)根据E为弧AC的中点,得到弧AE=弧EC,利用等弧对等弦得到AE=EC,可得出弓形AE与弓形EC面积相等,阴影部分面积拼接为直角三角形DEC的面积,求出即可.考点:角平分线定义,等腰三角形的性质,平行的判定和性质,切线的判定,圆周角定理,三角形中位线定理,勾股定理,扇形面积的计算,转换思想的应用.27.(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.【解析】【分析】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元可列方程18x+12(20﹣x)=300,解方程即可;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.【详解】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据题意得:18x+12(20﹣x)=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据题意得:13y+8.8(20﹣y)≤239,解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,当y=15时,W最大,最大值为91万元.所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.。
2019年辽宁省锦州市中考数学试卷及答案(Word解析版)
辽宁省锦州市2019年中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下面的表格中.每小题3分,共24分)B(﹣的倒数是﹣B4.(3分)(2019•锦州)为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数平均数为:=8.45.(3分)(2019•锦州)不等式组的解集在数轴上表示正确的是().B...,6.(3分)(2019•锦州)如图,直线y=mx与双曲线y=交于A,B两点,过点A作AM⊥x 轴,垂足为点M,连接BM,若S△ABM=2,则k的值为()(y=|k|=1y=(y=(7.(3分)(2019•锦州)有如下四个命题:(1)三角形有且只有一个内切圆;(2)四边形的内角和与外角和相等;(3)顺次连接四边形各边中点所得的四边形一定是菱形;(4)一组对边平行且一组对角相等的四边形是平行四边形.8.(3分)(2019•锦州)为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x人,那么x满足的方B==二、填空题(本大题共8个小题,每小题3分,共24分)9.(3分)(2019•锦州)分解因式x3﹣xy2的结果是x(x+y)(x﹣y).10.(3分)(2019•锦州)函数中,自变量x的取值范围是x≥2.11.(3分)(2019•锦州)据统计,2019锦州世界园林博览会6月1日共接待游客约154000人次,154000可用科学记数法表示为 1.54×105.12.(3分)(2019•锦州)为从甲、乙、丙三名射击运动员中选一人参加全运会,教练把他们的10次比赛成绩作了统计:平均成绩为9.3环:方差分别为S2甲=1.22,S2乙=1.68,S2丙=0.44,则应该选丙参加全运会.13.(3分)(2019•锦州)计算:|1﹣|+﹣(3.14﹣π)0﹣(﹣)﹣1=3.14.(3分)(2019•锦州)在四张背面完全相同的卡片正面分别画有正三角形,正六边形、平行四边形和圆,将这四张卡片背面朝上放在桌面上.现从中随机抽取一张,抽出的图形是中心对称图形的概率是..故答案为:..15.(3分)(2019•锦州)在△ABC中,AB=AC,AB的垂直平分线DE与AC所在的直线相交于点E,垂足为D,连接BE.已知AE=5,tan∠AED=,则BE+CE=6或16.AB,AED=16.(3分)(2019•锦州)二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3…A n在y轴的正半轴上,点B1,B2,B3…B n在二次函数位于第一象限的图象上,点C1,C2,C3…C n在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形A n﹣1B n A n C n都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠A n﹣1B n A n=60°,菱形A n﹣1B n A n C n的周长为4n.)代入抛物线的解析式中得:(,三、解答题(本大题共2个小题,每小题8分,共16分)17.(8分)(2019•锦州)先将(1﹣)÷化简,然后请自选一个你喜欢的x值代入求值.•18.(8分)(2019•锦州)如图,方格纸中的每个小正方形边长都是1个长度单位,Rt△ABC 的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(1,1),点B的坐标为(4,1).(1)先将Rt△ABC向左平移5个单位长度,再向下平移1个单位长度得到Rt△A1B1C1,试在图中画出Rt△A1B1C1,并写出点A1的坐标;(2)再将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出Rt△A2B2C2,并计算Rt△A1B1C1在上述旋转过程中点C1所经过的路径长.=四、解答题(本大题共2小题,每小题10分,共20分)19.(10分)(2019•锦州)以下是根据全国人力资源和社会保障部公布的相关数据绘制的统计图的一部分,请你根据图中信息解答下列问题:(1)求2019年全国普通高校毕业生数年增长率约是多少?(精确到0.1%)(2)求2019年全国普通高校毕业生数约是多少万人?(精确到万位)(3)补全折线统计图和条形统计图.)≈20.(10分)(2019•锦州)如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.,,五、解答题(本大题共2个小题,每小题10分,共20分)21.(10分)(2019•锦州)一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.==∴小颖参加比赛的概率为:=..22.(10分)(2019•锦州)如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)h=BE=ABsin12=六、解答题(本大题共2个小题,每小题10分,共20分)23.(10分)(2019•锦州)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2,求由劣弧BC、线段CE和BE所围成的图形面积S.BC=×=(,××﹣×π×=4﹣24.(10分)(2019•锦州)甲、乙两车分别从A,B两地同时出发相向而行.并以各自的速度匀速行驶,甲车途径C地时休息一小时,然后按原速度继续前进到达B地;乙车从B地直接到达A地,如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.(1)直接写出a,m,n的值;(2)求出甲车与B地的距离y(千米)与甲车出发时间x(小时)的函数关系式(写出自变量x的取值范围);(3)当两车相距120千米时,乙车行驶了多长时间?=,=60=,,,,,y=七、解答题(本题12分)25.(12分)(2019•锦州)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC 于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.×AB=DAC=××DAC=FAE=EAQ=××八、解答题(本题14分)26.(14分)(2019•锦州)如图,抛物线y=﹣x2+mx+n经过△ABC的三个顶点,点A坐标为(0,3),点B坐标为(2,3),点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式及点C的坐标;(2)点E为线段OC上一动点,以OE为边在第一象限内作正方形OEFG,当正方形的顶点F恰好落在线段AC上时,求线段OE的长;(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动.设平移的距离为t,正方形DEFG的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,请说明理由;(4)在上述平移过程中,当正方形DEFG与△ABC的重叠部分为五边形时,请直接写出重叠部分的面积S与平移距离t的函数关系式及自变量t的取值范围;并求出当t为何值时,S 有最大值,最大值是多少?x,﹣+,即﹣x x+3=0,即,即t﹣,即tMN=t=﹣(t t﹣﹣,x+.t+3=x,得,﹣.(FK[t﹣(t).HJ=<S=﹣)t=(﹣<<t=时,。
2019年辽宁省各市中考数学试卷真题汇编(11套真题试卷)
2019年辽宁省各市中考数学试卷真题汇编(11套真题试卷)
2019年辽宁省各市中考数学试卷真题汇编
(11套真题试卷)
2019年辽宁省⼤连市中考数学试卷 (1)
2019年辽宁省鞍⼭市中考数学试卷 (10)
2019年辽宁省朝阳市中考数学试卷 (18)
2019年辽宁省丹东市中考数学试卷 (25)
2019年辽宁省抚顺市中考数学试卷 (32)
2019年辽宁省葫芦岛市中考数学试卷 (40)
2019年辽宁省锦州市中考数学试卷 (47)
2019年辽宁省辽阳市中考数学试卷 (54)
2019年辽宁省盘锦市中考数学试卷 (63)
2019年辽宁省铁岭市中考数学试卷 (70)
2019年辽宁省营⼝市中考数学试卷 (77)
- 1 -
上⼀页下⼀页。
辽宁省锦州市2013-2019年中考数学试题汇编(含参考答案与解析)
【中考数学真题精编】辽宁省锦州市2013—2019年中考数学试题汇编(含参考答案与解析)1、辽宁省锦州市2013年中考数学试题及参考答案与解析 (2)2、辽宁省锦州市2014年中考数学试题及参考答案与解析 (27)3、辽宁省锦州市2015年中考数学试题及参考答案与解析 (56)4、辽宁省锦州市2016年中考数学试题及参考答案与解析 (78)5、辽宁省锦州市2017年中考数学试题及参考答案与解析 (104)6、2辽宁省锦州市018年中考数学试题及参考答案与解析 (127)7、辽宁省锦州市2019年中考数学试题及参考答案与解析 (152)辽宁省锦州市2013年中考数学试题及参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣3的倒数是()A.13-B.﹣3 C.3 D.132.下列运算正确的是()A.(a+b)2=a2+b2B.x3+x3=x6C.(a3)2=a5D.(2x2)(﹣3x3)=﹣6x53.下列几何体中,主视图和左视图不同的是()A.B.C.D.圆柱正方体正三棱柱球4.为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是()A.8,8 B.8.4,8 C.8.4,8.4 D.8,8.45.不等式组312114x xx-⎧⎪⎨≤⎪⎩<的解集在数轴上表示正确的是()A.B.C.D.6.如图,直线y=mx与双曲线kyx=交于A,B两点,过点A作AM⊥x轴,垂足为点M,连接BM,若S△ABM=2,则k的值为()A.﹣2 B.2 C.4 D.﹣4 7.有如下四个命题:(1)三角形有且只有一个内切圆;(2)四边形的内角和与外角和相等;(3)顺次连接四边形各边中点所得的四边形一定是菱形;(4)一组对边平行且一组对角相等的四边形是平行四边形.其中真命题的个数有( )A .1个B .2个C .3个D .4个8.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x 人,那么x 满足的方程是( )A .4800500020x x =-B .4800500020x x =+C .4800500020x x=- D .4800500020x x =+ 二、填空题(本大题共8个小题,每小题3分,共24分)9.分解因式x 3﹣xy 2的结果是 .10.函数y =中,自变量x 的取值范围是 .11.据统计,2013锦州世界园林博览会6月1日共接待游客约154000人次,154000可用科学记数法表示为 .12.为从甲、乙、丙三名射击运动员中选一人参加全运会,教练把他们的10次比赛成绩作了统计:平均成绩为9.3环:方差分别为S 2甲=1.22,S 2乙=1.68,S 2丙=0.44,则应该选 参加全运会.13.计算:()101|1 3.142π-⎛⎫----= ⎪⎝⎭ . 14.在四张背面完全相同的卡片正面分别画有正三角形,正六边形、平行四边形和圆,将这四张卡片背面朝上放在桌面上.现从中随机抽取一张,抽出的图形是中心对称图形的概率是 .15.在△ABC 中,AB=AC ,AB 的垂直平分线DE 与AC 所在的直线相交于点E ,垂足为D ,连接BE .已知AE=5,tan ∠AED=34,则BE+CE= . 16.二次函数223y x =的图象如图,点A 0位于坐标原点,点A 1,A 2,A 3…A n 在y 轴的正半轴上,点B 1,B 2,B 3…B n 在二次函数位于第一象限的图象上,点C 1,C 2,C 3…C n 在二次函数位于第二象限的图象上,四边形A 0B 1A 1C 1,四边形A 1B 2A 2C 2,四边形A 2B 3A 3C 3…四边形A n ﹣1B n A n C n 都是菱形,∠A 0B 1A 1=∠A 1B 2A 1=∠A 2B 3A 3…=∠A n ﹣1B n A n =60°,菱形A n ﹣1B n A n C n 的周长为 .三、解答题(本大题共2个小题,每小题8分,共16分)17.(8分)先将21112x x x x -⎛⎫-÷ ⎪⎝⎭+化简,然后请自选一个你喜欢的x 值代入求值.18.(8分)如图,方格纸中的每个小正方形边长都是1个长度单位,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(1,1),点B的坐标为(4,1).(1)先将Rt△ABC向左平移5个单位长度,再向下平移1个单位长度得到Rt△A1B1C1,试在图中画出Rt△A1B1C1,并写出点A1的坐标;(2)再将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出Rt△A2B2C2,并计算Rt△A1B1C1在上述旋转过程中点C1所经过的路径长.四、解答题(本大题共2小题,每小题10分,共20分)19.(10分)以下是根据全国人力资源和社会保障部公布的相关数据绘制的统计图的一部分,请你根据图中信息解答下列问题:(1)求2013年全国普通高校毕业生数年增长率约是多少?(精确到0.1%)(2)求2011年全国普通高校毕业生数约是多少万人?(精确到万位)(3)补全折线统计图和条形统计图.20.(10分)如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.五、解答题(本大题共2个小题,每小题10分,共20分)21.(10分)一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.22.(10分)如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)六、解答题(本大题共2个小题,每小题10分,共20分)23.(10分)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=求由劣弧BC、线段CE和BE所围成的图形面积S.24.(10分)甲、乙两车分别从A,B两地同时出发相向而行.并以各自的速度匀速行驶,甲车途径C地时休息一小时,然后按原速度继续前进到达B地;乙车从B地直接到达A地,如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.(1)直接写出a,m,n的值;(2)求出甲车与B 地的距离y (千米)与甲车出发时间x (小时)的函数关系式(写出自变量x 的取值范围);(3)当两车相距120千米时,乙车行驶了多长时间?七、解答题(本题12分)25.(12分)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD 的顶点A 重合,将此三角板绕点A 旋转,使三角板中该锐角的两条边分别交正方形的两边BC ,DC 于点E ,F ,连接EF .(1)猜想BE 、EF 、DF 三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A 作AM ⊥EF 于点M ,请直接写出AM 和AB 的数量关系;(3)如图2,将Rt △ABC 沿斜边AC 翻折得到Rt △ADC ,E ,F 分别是BC ,CD 边上的点,∠EAF=12∠BAD ,连接EF ,过点A 作AM ⊥EF 于点M ,试猜想AM 与AB 之间的数量关系.并证明你的猜想.八、解答题(本题14分)26.(14分)如图,抛物线218y x mx n =-++经过△ABC 的三个顶点,点A 坐标为(0,3),点B 坐标为(2,3),点C 在x 轴的正半轴上.(1)求该抛物线的函数关系表达式及点C 的坐标;(2)点E 为线段OC 上一动点,以OE 为边在第一象限内作正方形OEFG ,当正方形的顶点F 恰好落在线段AC 上时,求线段OE 的长;(3)将(2)中的正方形OEFG 沿OC 向右平移,记平移中的正方形OEFG 为正方形DEFG ,当点E 和点C 重合时停止运动.设平移的距离为t ,正方形DEFG 的边EF 与AC 交于点M ,DG 所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,请说明理由;(4)在上述平移过程中,当正方形DEFG与△ABC的重叠部分为五边形时,请直接写出重叠部分的面积S与平移距离t的函数关系式及自变量t的取值范围;并求出当t为何值时,S有最大值,最大值是多少?参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣3的倒数是()A.13-B.﹣3 C.3 D.13【知识考点】倒数.【思路分析】根据乘积是1的两个数互为倒数解答.【解答过程】解:∵﹣3×(13-)=1,∴﹣3的倒数是13 -.故选A.【总结归纳】本题考查了互为倒数的定义,是基础题,熟记概念是解题的关键.2.下列运算正确的是()A.(a+b)2=a2+b2B.x3+x3=x6C.(a3)2=a5D.(2x2)(﹣3x3)=﹣6x5【知识考点】完全平方公式;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【思路分析】A、利用完全平方公式展开得到结果,即可做出判断;B、合并同类项得到结果,即可做出判断;C、利用幂的乘方运算法则计算得到结果,即可做出判断;D、利用单项式乘单项式法则计算得到结果,即可做出判断.【解答过程】解:A、(a+b)2=a2+2ab+b2,本选项错误;B、x3+x3=2x3,本选项错误;。
2019年辽宁中考数学试卷及答案
【导语】⽆忧考中考频道⼩编提醒参加2019中考的所有考⽣,辽宁2019年中考将于6⽉中旬陆续开始举⾏,辽宁中考时间具体安排考⽣可点击进⼊“”栏⽬查询,请⼴⼤考⽣提前准备好准考证及考试需要的⽤品,然后顺顺利利参加本届初中学业⽔平考试,具体如下:为⽅便考⽣及时估分,⽆忧考中考频道将在本次中考结束后陆续公布2019年辽宁中考数学试卷及答案信息。
考⽣可点击进⼊辽宁中考频道《、》栏⽬查看辽宁中考数学试卷及答案信息。
中考科⽬语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以当地教育考试院公布为准。
)考试必读可以在中考前⼀天下午去考场看看,熟悉⼀下考场环境。
确定去考场的⽅式,是坐公共汽车、出租车还是骑⾃⾏车等;确定去考场的⾏车路线。
在校内去考场的路上,⼀旦发⽣意外,要及时求助于监考⽼师或警察。
中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。
涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。
不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。
有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。
中考数学⽆忧考为了能让⼴⼤考⽣及时⽅便获取辽宁中考数学试卷答案信息,特别整理了《2019辽宁中考数学试卷及答案》发布⼊⼝供⼴⼤考⽣查阅。
数学真题/答案[解析]专题推荐参加2019中考的考⽣可直接查阅各科2019年辽宁中考试题及答案信息!考试须知⼀、考⽣凭《准考证》(社会⼈员须持准考证及⾝份证)提前15分钟进⼊指定试室(英语科提前20分钟)对号⼊座,并将《准考证》放在桌⼦左上⾓,以便查对。
考⽣除带必要的⽂具,如2B铅笔、⿊⾊字迹的钢笔或签字笔、直尺、圆规、三⾓板、橡⽪外,禁⽌携带任何书籍、笔记、资料、报刊、草稿纸以及各种⽆线通讯⼯具(如寻呼机、移动电话)、电⼦笔记本等与考试⽆关的物品(数学科考试可带指定型号的计算器)。
辽宁锦州2019年中考重点试题(二)-数学(扫描版)
辽宁锦州2019年中考重点试题(二)-数学(扫描版)参考答案及评分标准〔注:本参考答案的主观性试题只提供一种方法的参考答案, 假设有其它方法的答案请参照此标准赋分〕【一】选择题〔此题共8个小题,每题3分,共24分〕 【二】填空题〔此题共8个小题,每题3分,共24分〕9.美术11.2512.013.-414.3.211(1)(1)37x y x y +=⎧⎪⎨-=-⎪⎩,15.(10n +5)2=n (n +1)×100+25或(10n +5)2=n (n +1)×100+5216.2 3 【三】解答题〔此题共2个题,每题8分,共16分〕 17、解:原式=223(1)1(1)(1)(3)1x x x x x x +-++-++·=111131x x x x -++++· =11(1)13x x x -+++ =12(1)13x x x +++·=23x +………………6分 代入求值时,x 不能取1±,-3, 答案不唯一、 如:当x =2时,原式=22=235+、…………8分18、解:〔1〕正确建立坐标系.………2分C 〔-2,-6〕.………3分 〔2〕正确画出位似图形.………5分C '〔1,3〕.…………6分题号 1 2 3 4 5 6 7 8 答案 C B A D B D CB〔3〕)2,2(b a D --'.……………8分 【四】〔此题共2个题,每题10分,共20分〕 19、解:〔1〕依照题意列表如下:…………………6分(2)由〔1〕知,S =x +y 可能的结果是12种情况,且每种结果出现的可能性相同,其中s <6的结果共有3,4,5,5四种情况, ∵P (甲获胜)=124=31P (乙获胜)=128=32………………………9分∴P (甲获胜)≠P (乙获胜)∴那个游戏不公平.………………………10分 20、解:〔1〕110x =甲〔1×5+2×3+7×1〕=1.8(千元),110x =乙〔1×4.8+1×3.6+8×1.2〕=1.8(千元), 甲公司职工月工资的中位数和众数基本上1千元,乙公司职工月工资的中位数和众数基本上1.2千元.………………4分 〔说明:不写单位不扣分〕因此依照计算结果可推断,中位数或众数能更好地代表甲公司大多数职工的月工资水平.理由如下:甲公司10人的数据中,经理、副经理的工资较高,与其他数据有较大差异,导致平均数较大,平均数不能客观地代表大多数职工的月工资水平,而中位数或众数等于大部分职工的月工资,因此用中位数或众数更能客观地表示职工的月工资水平.………………6分说明:学生的说理只要言之有据就能够.〔2〕甲、乙两公司职工月工资的方差分别为:22221[(5 1.8)2(3 1.8)7(1 1.8)]10S=-+⨯-+⨯-甲=1.76, 22221[(4.8 1.8)1(3.6 1.8)8(1.2 1.8)]10S =-+⨯-+⨯-乙=1.512.∵1.76>1.512,即2S 甲>2S 乙,∴甲公司的职工月工资的离散程度大于乙公司的职工的离散程度,因此乙公司职工月工资差异情况小于甲公司.………………10分 【五】〔此题共2个题,每题10分,共20分〕 21、〔1〕证明:连接OA 、OB ,∵PA 、PB 是⊙O 的两条切线,A 、B 是切点, ∴∠OAP =∠OBP =90°.又∵OA =OB , 在Rt △PAO 和Rt △PBO 中, ∵PO =PO ,OA =OB ,∴Rt △PAO ≌Rt △PBO 〔HL 〕.∴PA =PB .……………………………………4分 〔2〕解:由〔1〕知△PAO ≌△PBO ,∴∠APO =∠BPO ,∠AOP =∠BOP .在Rt △PAO 中,OA=2,PAtan ∠APO =AO PA =3=,∴∠APO =30°,∠AOP =60°.∴∠AOB =120°.…………………………………………7分S 阴影=S 四边形APBO -S 扇形=2S △PAO -S 扇形=2×12×2×36021202⨯⨯π43π.〔说明:结果等于43π也可〕…………………………………………10分22、解:过点B 作BG ⊥DE 于点G ,作BH ⊥AE 于点H 那么GE =BH ,BG =HE .………………………1分 ∵AB 的坡度为1:3,∴BH :AH :AB =1:3:2.∵AB =10,∴BH =GE =5,AH =5 3.……………………4分 ∵∠BGC =90°,∠CBG =45°, ∴∠BCG =∠CBG .∴BG =CG =AH +AE =53+15.……………………………7分在Rt △DAE 中,∠DAE =60°,tan ∠DAE =3=AEED,AE=15,∴ED =153.……………………………8分∴DG =DE -GE =153-5.∴CD =CG -DG =〔53+15〕-〔153-5〕=(20-103)米. 〔说明:结果等于10(2-3)也可〕答:这块宣传牌CD 的高度为〔20-103〕米.……………………10分六、〔此题共2个题,每题10分,共20分〕 23、解:〔1〕设直线AC 的解析式为b kx y +=,∵两条直角边AB 、BC 分别平行于x 轴、y 轴,顶点B 的坐标为〔2,4〕,AB =1,BC =2、 ∴点A 、,C 的坐标分别为〔1,4〕、〔2,2〕,…………………………………3分 依照题意,得⎩⎨⎧+=+=.22,4b k b k 解得⎩⎨⎧=-=.6,2b k∴所求的一次函数的解析式为62+-=x y 、………………………5分〔2〕∵xm y =〔x >0〕通过点〔2,2〕,∴4=m 、 ∴所求反比例函数解析式为xy 4=.………………7分 ∵点A 〔1,4〕,当1=x 时,y =4x =4,∴点A 在函数x y 4=的图象上、……………………………8分〔3〕4≤ m ≤8、 …………………………10分注:假设 m ≥4得1分,写出m ≤8得1分、 24、解:〔1〕由题意可知,从甲商家购买路灯所需金额:1550080%y x =⨯,即14400y x =、………………………1分从乙商家购买路灯所需金额:当x ≤150时,购买一个需5500元,故25500y x =;………………………2分当x >150时,由题意,可得不等式550010(150)4000x --≥,解得x ≤300, 即当150<x ≤300时,购买一个路灯需[5500-10(x -150)]元,故y 2=x [5500-10(x -150)],即y 2=7000x -10x 2;………………………5分 当x >300时,购买一个需4000元,故24000y x =;……………………6分GF EDCB A 因此2255007000104000xy x x x ⎧⎪=-⎨⎪⎩(0150)(150300)(300).x x x ≤≤<≤>,,〔不写不扣分〕 (2)到甲商家购买:当y 1=1540000,即44001540000x =,解得x =350、……………………7分乙商家:当0<x ≤150时,y 2=5500x ≤825000<1540000;当150<x ≤300时,y 2=7000x -10x 2=-10(x -350)2+1225000 因为当150<x ≤300,抛物线y 2随x 的增大而增大, 因此当x =300时,y 2最大值=1200000<1540000; 故用154万元到乙商家购买路灯的数量x >300 当x >300时,y 2=154000,即40001540000x =, 解得385x =.…………………………9分因为385>350,应选择乙商家购买.答:选择乙商家购买,最多能购买385个路灯、………………………10分 注:假如直截了当代入y 2=4000x ,即40001540000x =,扣1分、 七、解答题〔此题共12分〕25、〔1〕证明:①∵四边形ABCD 是平行四边形,∠ABC =90°∴四边形ABCD 是矩形.∴∠ABC =90°,AB ∥DC ,AD ∥BC . ∴∠F =∠FDC ,∠BEF =∠ADF . ∵DF 是∠ADC 的平分线, ∴∠ADC =∠FDC . ∴∠F =∠BEF . ∴BF =BE .……………………………4分②△AGC 是等腰直角三角形.……………………5分 理由如下:连接BG .……………………6分 由①知,BF =BE ,∠FBC =90°, ∴∠F =∠CEF =45°. ∵G 是EF 的中点,∴BG =FG ,∠F =∠CBG =45°. ∵∠FAD =90°,∴AF =AD . 又∵AD =BC ,∴AF =BC . ∴△AFG ≌△CBG .∴AG =CG .…………………………………9分 ∴∠FAG =∠BCG .又∵∠FAG +∠GAC +∠ACB =90°,∴∠BCG +∠GAC +∠ACB =90°,即∠GAC +∠ACG =90°. ∴∠AGC =90°.∴△AGC 是等腰直角三角形.……………………11分 〔3〕△AGC 是等边三角形.……………………12分 八、解答题〔此题共14分〕26、解:〔1〕在Rt △OBC 中,B 〔8,0〕,tan ∠OCB =OB OC=2,∴OC =4,即点C 坐标为〔0,-4〕.∵S △ABC =12AB ·OC =8,∴AB =4.∴点A 的坐标为〔4,0〕.设所求抛物线的表达式为2=y ax bx c ++,∵点C 〔0,-4〕,那么4c =- 又∵抛物线过点A 〔4,0〕,B 〔8,0〕,那么依照题意, 得16440,64840.a b a b +-=⎧⎨+-=⎩解得1,83.2a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线的表达式为y =-213482x x +-.……………………4分 〔2〕∵PB =2t ,CE =t ,∴OE =4-t ,△AFP 的高等于OE . ①当02t ≤≤时,AP =4-2t ,∴S =12AP ·OE =12〔4-2t 〕〔4-t 〕=268t t -+②24t <≤时,AP =2t -4,S =12AP ·OE =12〔2t -4〕〔4-t 〕=-2+68t t -∴2268(02),68(24).t t t S t t t ⎧-+≤≤⎪=⎨-+-<≤⎪⎩〔不写此结论不扣分〕…………………8分〔说明:自变量t 写成02t <≤,24t <<都能够〕 〔3〕在Rt △OBC 中,∵OB =8,OA =4,∴由勾股定理得BC在Rt △EFC 中,∵tan ∠OCB =2,EC =t ∴EF =2t ,CF.∵BP =2t ,∴BF =BC -CF4-t 〕.………………10分 在△ABC 与△BFP 中,有公共角∠B . ①当ABPB BC FB =时,△ABC ∽△PBF .如今=,解得t =43.②当ABFBBC BP =时,△ABC ∽△FBP .如今)2t t -=,解得t =207. 综上所述,当t =43或t =207时,△ABC 与△PBF 相似.………………14分。
辽宁省锦州市2019年中考数学考试试卷(word版,含解析)
辽宁省锦州市2019年中考数学试卷一、选择题(本大题共8道小题,每小题2分,共16分) 1.(2分)2019-的相反数是( ) A .12019B .12019-C .2019D .2019-2.(2分)下列既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.(2分)甲、乙、丙、丁四名同学进行跳高测试,每人10次跳高成绩的平均数都是1.28m ,方差分别是20.60s =甲,20.62s =乙,20.58s =丙,20.45s =丁,则这四名同学跳高成绩最稳定的是( ) A .甲B .乙C .丙D .丁4.(2分)下列运算正确的是( ) A .632x x x ÷=B .326()x x -=C .336437x x x +=D .222()x y x y +=+5.(2分)如图,AC 与BD 交于点O ,//AB CD ,105AOB ∠=︒,30B ∠=︒,则C ∠的度数为( )A .45︒B .55︒C .60︒D .75︒6.(2分)如图,一次函数21y x =+的图象与坐标轴分别交于A ,B 两点,O 为坐标原点,则AOB ∆的面积为( )A .14B .12C .2D .47.(2分)在矩形ABCD 中,3AB =,4BC =,M 是对角线BD 上的动点,过点M 作ME BC ⊥于点E ,连接AM ,当ADM ∆是等腰三角形时,ME 的长为( ) A .32B .65C .32或35 D .32或658.(2分)如图,在菱形ABCD 中,60B ∠=︒,2AB =,动点P 从点B 出发,以每秒1个单位长度的速度沿折线BA AC →运动到点C ,同时动点Q 从点A 出发,以相同速度沿折线AC CD →运动到点D ,当一个点停止运动时,另一个点也随之停止.设APQ ∆的面积为y ,运动时间为x 秒,则下列图象能大致反映y 与x 之间函数关系的是( )A .B .C .D .二、填空题(本大题共8道小题,每小题3分,共24分)9.(3分)在函数1y x =-x 的取值范围是 .10.(3分)为了落实“优化税收营商环境,助力经济发展和民生改善”的政策,国家税务总局统计数据显示,2018年5至10月合计减税2980亿元,将2980亿元用科学记数法表示为 元.11.(3分)在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有 个.12.(3分)如图,正六边形ABCDEF 内接于O e ,边长2AB =,则扇形AOB 的面积为 .13.(3分)甲、乙两地相距1000km ,如果乘高铁列车从甲地到乙地比乘特快列车少用3h ,已知高铁列车的平均速度是特快列车的1.6倍,设特快列车的平均速度为/xkm h ,根据题意可列方程为 .14.(3分)如图,将一个含30︒角的三角尺ABC 放在直角坐标系中,使直角顶点C 与原点O 重合,顶点A ,B 分别在反比例函数4y x =-和ky x=的图象上,则k 的值为 .15.(3分)如图,在矩形ABCD 中,3AB =,2BC =,M 是AD 边的中点,N 是AB 边上的动点,将AMN ∆沿MN 所在直线折叠,得到△A MN ',连接A C ',则A C '的最小值是 .16.(3分)如图,边长为4的等边ABC ∆,AC 边在x 轴上,点B 在y 轴的正半轴上,以OB 为边作等边1OBA ∆,边1OA 与AB 交于点1O ,以1O B 为边作等边△12O BA ,边12O A 与1A B 交于点2O ,以2O B 为边作等边△23O BA ,边23O A 与2A B 交于点3O ,⋯,依此规律继续作等边△1n n O BA -,记△1OO A 的面积为1S ,△121O O A 的面积为2S ,△232O O A 的面积为3S ,⋯,△11n n n O O A --的面积为n S ,则n S = .(2n …,且n 为整数)三、解答题(本大题共2道题,第17题6分,第18题8分,共14分) 17.(6分)先化简,再求值:21(1)11a a a -÷+-,其中011(3)()2a π-=-+. 18.(8分)为了响应“学习强国,阅读兴辽”的号召,某校鼓励学生利用课余时间广泛阅读,学校打算购进一批图书.为了解学生对图书类别的喜欢情况,校学生会随机抽取部分学生进行问卷调查,规定被调查学生从“文学、历史、科学、生活”中只选择自己最喜欢的一类,根据调查结果绘制了下面不完整的统计图.请根据图表信息,解答下列问题. (1)此次共调查了学生 人; (2)请通过计算补全条形统计图;(3)若该校共有学生2200人,请估计这所学校喜欢“科学”类书的学生人数. 四、解答题(本大题共2道题,每题8分,共16分)19.(8分)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A ,B ,C ,D 四个小区进行检查,并且每个小区不重复检查. (1)甲组抽到A 小区的概率是 ;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.20.(8分)某市政部门为了保护生态环境,计划购买A,B两种型号的环保设备.已知购买一套A型设备和三套B型设备共需230万元,购买三套A型设备和两套B型设备共需340万元.(1)求A型设备和B型设备的单价各是多少万元;(2)根据需要市政部门采购A型和B型设备共50套,预算资金不超过3000万元,问最多可购买A型设备多少套?五、解答题(本大题共2道题,每题8分,共16分)21.(8分)如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡i=,在点C处测得旗杆顶点A的仰角为30︒,在点M处测得旗杆顶点A的CM的坡比1:3仰角为60︒,且B,M,D三点在同一水平线上,求旗杆AB的高度.(结果精确到0.1m,=参考数据:2 1.41≈,3 1.73)22.(8分)如图,M,N是以AB为直径的Oe上的点,且¶¶=,弦MN交AB于点C,AN BN⊥于点F.BM平分ABD∠,MF BD(1)求证:MF是Oe的切线;(2)若3BN=,求CM的长.CN=,4六、解答题(本大题共10分)23.(10分)2019年在法国举办的女足世界杯,为人们奉献了一场足球盛宴.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100件.根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每个月会少售出2件,设每件商品的售价为x 元,每个月的销量为y 件. (1)求y 与x 之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少? 七、解答题(本大题共2道题,每题12分,共24分)24.(12分)已知,在Rt ABC ∆中,90ACB ∠=︒,D 是BC 边上一点,连接AD ,分别以CD 和AD 为直角边作Rt CDE ∆和Rt ADF ∆,使90DCE ADF ∠=∠=︒,点E ,F 在BC 下方,连接EF .(1)如图1,当BC AC =,CE CD =,DF AD =时, 求证:①CAD CDF ∠=∠,②BD EF =;(2)如图2,当2BC AC =,2CE CD =,2DF AD =时,猜想BD 和EF 之间的数量关系?并说明理由.25.(12分)如图1,在平面直角坐标系中,一次函数334y x =-+的图象与x 轴交于点A ,与y 轴交于B 点,抛物线2y x bx c =-++经过A ,B 两点,在第一象限的抛物线上取一点D ,过点D 作DC x ⊥轴于点C ,交直线AB 于点E . (1)求抛物线的函数表达式(2)是否存在点D ,使得BDE ∆和ACE ∆相似?若存在,请求出点D 的坐标,若不存在,请说明理由;(3)如图2,F 是第一象限内抛物线上的动点(不与点D 重合),点G 是线段AB 上的动点.连接DF ,FG ,当四边形DEGF 是平行四边形且周长最大时,请直接写出点G 的坐标.2019年辽宁省锦州市中考数学试卷参考答案与试题解析一、选择题(本大题共8道小题,每小题2分,共16分) 【解答】解:2009-的相反数是2009. 故选:C .【解答】解:A 、不是中心对称图形,是轴对称图形,故本选项错误;B 、既是中心对称图形又是轴对称图形,故本选项正确;C 、是中心对称图形,不是轴对称图形,故本选项错误;D 、不是中心对称图形,是轴对称图形,故本选项错误.故选:B .【解答】解:20.60s =Q 甲,20.62s =乙,20.58s =丙,20.45s =丁, 2222s s s s ∴<<<乙丁丙甲,∴成绩最稳定的是丁.故选:D .【解答】解:633x x x ÷=Q ,∴选项A 不符合题意;326()x x -=Q ,∴选项B 符合题意;333437x x x +=Q ,∴选项C 不符合题意;222()2x y x xy y +=++Q ,∴选项D 不符合题意.故选:B .【解答】解:180A AOB B ∠+∠+∠=︒Q ,1801053045A ∴∠=︒-︒-︒=︒,//AB CD Q , 45C A ∴∠=∠=︒,故选:A .【解答】解:一次函数21y x =+中, 当0x =时,1y =;当0y =时,0.5x =-; (0.5,0)A ∴-,(0,1)B0.5OA ∴=,1OB =AOB ∴∆的面积10.5124=⨯÷=故选:A .【解答】解:①当AD DM =时. Q 四边形ABCD 是矩形,90C ∴∠=︒,3CD AB ==,4AD BC ==,225BD CD BC ∴=+=,541BM BD DM ∴===-=, ME BC ⊥Q ,DC BC ⊥, //ME CD ∴,∴BM MEBD CD =, ∴153ME=, 35ME ∴=.②当M A M D '='时,易证M E ''是BDC ∆的中位线, 1322M E CD ∴''==,故选:C .【解答】解:(1)当P 、Q 分别在AB 、AC 上运动时,ABCD Q 是菱形,60B ∠=︒,则ABC ∆、ACD ∆为边长为2的等边三角形,过点Q 作QH AB ⊥于点H ,21133(2)sin 6022y AP QH t t =⨯=-⨯︒=, 3,符合条件的有A 、B 、D ; (2)当P 、Q 分别在AC 、DC 上运动时, 同理可得:232)y t -, 符合条件的有B ; 故选:B .二、填空题(本大题共8道小题,每小题3分,共24分) 【解答】解:根据题意得:10x -…, 解得:1x …. 故答案为:1x ….【解答】解:将2980亿元用科学记数法表示为112.9810⨯元. 故答案为:112.9810⨯.【解答】解:设袋中红球有x 个, 根据题意,得:0.73xx=+, 解得:7x =,经检验:7x =是分式方程的解, 所以袋中红球有7个, 故答案为:7.【解答】解:Q 正六边形ABCDEF 内接于O e ,60AOB ∴∠=︒, OA OB =Q ,AOB ∴∆是等边三角形, 2OA OB AB ∴===,∴扇形AOB 的面积260223603ππ⨯==g , 故答案为:23π.【解答】解:由题意可得, 100010003 1.6x x-=, 故答案为:100010003 1.6x x-=. 【解答】解:过A 作AE y ⊥轴于E 过B 作BF y ⊥轴于F ,90AOB ∠=︒Q ,30ABC ∠=︒,3tan 30OA OB ∴︒==, 90OAE AOE AOE BOF ∠+∠=∠+∠=︒Q , OAE BOF ∴∠=∠, AOE BOF ∴∆∆∽,∴3AE OE OA OF BF OB ===, 设4(,)A m m-,AE m ∴=-,4OE m=-, 33OF AE m ∴==-,433BF OE ==-, (3B m ∴,43), 43312k m ∴==g .故答案为:12.【解答】解:Q 四边形ABCD 是矩形3AB CD ∴==,2BC AD ==,M Q 是AD 边的中点,1AM MD∴==Q将AMN∆沿MN所在直线折叠,1AM A M'∴==∴点A'在以点M为圆心,AM为半径的圆上,∴如图,当点A'在线段MC上时,A C'有最小值,2210MC MD CD=+=QA C∴'的最小值101MC MA'=-=101【解答】解:由题意:△1OO A∽△121O O A∽△232O O A,⋯,∽△11n n nO O A--,相似比:1113sin60O A OOOA OA==︒,1113132AOOS S==⨯=VQ,2134SS=,2134S S∴=,2313()4S S=g,⋯,111333()()44n nnS S--==g g,故答案为:133()4n-g.三、解答题(本大题共2道题,第17题6分,第18题8分,共14分)【解答】解:21(1)11aa a-÷+-11(1)(1)1a a aa a--+-=+g(1)(1)1a a aa a-+-=+g(1)a=--1a=-+,当011(3)()1232aπ-=+=+=时,原式312=-+=-.【解答】解:(1)7839%200÷=人故答案为:200.(2)20033%66⨯=人,20078662432---=人,补全条形统计图如图所示:(3)322200352200⨯=人,答:该校2200名学生中喜欢“科学”类书的大约有352人.四、解答题(本大题共2道题,每题8分,共16分)【解答】解:(1)甲组抽到A小区的概率是14,故答案为:14.(2)画树状图为:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为112.【解答】解:(1)设A型设备的单价是x万元,B型设备的单价是y万元,依题意,得:3230 32340x yx y+=⎧⎨+=⎩,解得:8050xy=⎧⎨=⎩.答:A型设备的单价是80万元,B型设备的单价是50万元.(2)设购进A型设备m套,则购进B型设备(50)m-套,依题意,得:8050(50)3000m m+-…,解得:503 m….mQ为整数,m∴的最大值为16.答:最多可购买A型设备16套.五、解答题(本大题共2道题,每题8分,共16分)【解答】解:过点C作CE AB⊥于点E,2 CD= Q,1 tan3CMD∠=,6MD∴=,设BM x=,6BD x∴=+,60AMB∠=︒Q,30BAM∴∠=︒,AB∴,已知四边形CDBE是矩形,2BE CD∴==,6CE BD x==+,2AE∴=-,在Rt ACE∆中,tan30AE CE︒=Q,∴=解得:3x=38.2AB m ∴==+≈【解答】证明:(1)连接OM,Q,=OM OB∴∠=∠,OMB OBMQ平分ABDBM∠,∴∠=∠,OBM MBFOMB MBF∴∠=∠,OM BF∴,//⊥Q,MF BD∠=︒,OMF∴⊥,即90 OM MF∴是OMFe的切线;(2)如图,连接AN,ONQ¶¶AN BN=,∴==4AN BNAB Q 是直径,¶¶AN BN =, 90ANB ∴∠=︒,ON AB ⊥AB ∴=AO BO ON ∴===1OC ∴1AC ∴=,1BC =A NMB ∠=∠Q ,ANC MBC ∠=∠ ACN MCB ∴∆∆∽∴AC CNCM BC=AC BC CM CN ∴=g g 73CM ∴=g73CM ∴=六、解答题(本大题共10分)【解答】解:(1)由题意得,月销售量1002(60)2202y x x =--=- (60110x 剟,且x 为正整数)答:y 与x 之间的函数关系式为2202y x =-. (2)由题意得:(2202)(40)2250x x --= 化简得:215055250x x -+= 解得165x =,285x =答:当每件商品的售价定为65元或85元时,每个月的利润恰好为2250元. (3)设每个月获得利润w 元,由(2)知2(2202)(40)23008800w x x x x =--=-+- 22(75)2450w x ∴=--+∴当75x =,即售价为75元时,月利润最大,且最大月利润为2450元.七、解答题(本大题共2道题,每题12分,共24分) 【解答】(1)证明:①90ACB ∠=︒Q ,90CAD ADC ∴∠+∠=︒,90CDF ADC ∠+∠=︒Q , CAD CDF ∴∠=∠;②作FH BC ⊥交BC 的延长线于H , 则四边形FECH 为矩形,CH EF ∴=,在ACD ∆和DHF ∆中, 90CAD HDF ACD DHF AD DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ()ACD DHF AAS ∴∆≅∆DH AC ∴=, AC CB =Q , DH CB ∴=,DH CD CB CD ∴-=-,即HG BD =,BD EF ∴=;(2)BD EF =,理由如下:作FG BC ⊥交BC 的延长线于G , 则四边形FECG 为矩形,CG EF ∴=,CAD GDF ∠=∠Q ,90ACD DGF ∠=∠=︒, ACD DGF ∴∆∆∽,∴2DG DFAC AD==,即2DG AC =, 2BC AC =Q , BC DG ∴=, BD CG ∴=,BD EF ∴=.【解答】解:(1)在334y x =-+中,令0x =,得3y =,令0y =,得4x =,(4,0)A ∴,(0,3)B ,将(4,0)A ,(0,3)B 分别代入抛物线2y x bx c =-++中,得:24403b c c ⎧-++=⎨=⎩,解得:1343b c ⎧=⎪⎨⎪=⎩, ∴抛物线的函数表达式为:21334y x x =-++. (2)存在.如图1,过点B 作BH CD ⊥于H ,设(,0)C t ,则213(,3)4D t t t -++,3(,3)4E t t -+,(,3)H t ;334EC t ∴=-+,4AC t =-,BH t =,2134DH t t =-+,24DE t t =-+BDE ∆Q 和ACE ∆相似,BED AEC ∠=∠ BDE ACE ∴∆∆∽或DBE ACE ∆∆∽①当BDE ACE ∆∆∽时,90BDE ACE ∠=∠=︒,∴BD ACDE CE=,即:BD CE AC DE =g g 23(3)(4)(4)4t t t t t ∴-+=-⨯-+,解得:10t =(舍去),24t =(舍去),3134t =, 13(4D ∴,3)②当DBE ACE ∆∆∽时,BDE CAE ∠=∠BH CD ⊥Q90BHD ∴∠=︒,∴tan tan BH CEBDE CAE DH AC=∠=∠=,即:BH AC CE DH =g g 2313(4)(3)()44t t t t t ∴-=-+-+,解得:10t =(舍),24t =(舍),32312t =, 23(12D ∴,50)9; 综上所述,点D 的坐标为13(4,3)或23(12,50)9;(3)如图3,Q 四边形DEGF 是平行四边形//DE FG ∴,DE FG =设213(,3)4D m m m -++,3(,3)4E m m -+,213(,3)4F n n n -++,3(,3)4G n n -+,则:24DE m m =-+,24FG n n =-+,2244m m n n ∴-+=-+,即:()(4)0m n m n -+-=,0m n -≠Q40m n ∴+-=,即:4m n +=过点G 作GK CD ⊥于K ,则//GK ACEGK BAO ∴∠=∠∴cos cos GK AOEGK BAO EG AB=∠=∠=,即:GK AB AO EG =g g 5()4n m EG ∴-=,即:5()4EG n m =-DEGF ∴周长2253892()2[(4)()]2()448DE EG m m n m m =+=-++-=--+20-<Q ,∴当34m =时,DEGF ∴Y 周长最大值898=,13(4G ∴,9)16.。
辽宁省锦州市2019-2020学年中考数学质量检测试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.运用图形变化的方法研究下列问题:如图,AB 是⊙O 的直径,CD ,EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )A .252πB .10πC .24+4πD .24+5π2.如图,已知l 1∥l 2,∠A=40°,∠1=60°,则∠2的度数为( )A .40°B .60°C .80°D .100°3.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是( )A .(3,-2 )B .(-2,-3 )C .(2,3 )D .(3,2)4.下列大学的校徽图案是轴对称图形的是( )A .B .C .D .5.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .806.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P.若点P 的横坐标为1-,则一次函数()y a b x b =-+的图象大致是( )A.B.C.D.7.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2C.x>﹣2 D.x≠﹣28.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°9.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过910.下列四个几何体中,主视图是三角形的是()A.B.C.D.二、填空题(本题包括8个小题)11.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于__________.12.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)12 10 8 合计/kg小菲购买的数量/kg 2 2 2 6小琳购买的数量/kg 1 2 3 6从平均价格看,谁买得比较划算?()A.一样划算B.小菲划算C.小琳划算D.无法比较13.图①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n个图形中有_____个三角形(用含字母n的代数式表示).14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.15.如图,点A(m,2),B(5,n)在函数kyx(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为.16.如图,已知AB∥CD,α∠=____________17.如图,在△ABC中,∠A=70°,∠B=50°,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC 边上点F处,若△EFC为直角三角形,则∠BDF的度数为______.18.如图,数轴上点A所表示的实数是________________.三、解答题(本题包括8个小题)19.(6分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)若△CEF与△ABC相似.①当AC=BC=2时,AD的长为;②当AC=3,BC=4时,AD的长为;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.20.(6分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:125,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).21.(6分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.求∠CDE的度数;求证:DF是⊙O的切线;若AC=25,求tan∠ABD的值.22.(8分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=kx交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.求双曲线的解析式;求点C的坐标,并直接写出y1<y2时x的取值范围.23.(8分)列方程解应用题:为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?24.(10分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为12.求口袋中黄球的个数;甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;25.(10分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.26.(12分)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级(2)班参加球类活动人数情况统计表项目篮球足球乒乓球排球羽毛球人数 a 6 5 7 6八年级(2)班学生参加球类活动人数情况扇形统计图根据图中提供的信息,解答下列问题:a=,b=.该校八年级学生共有600人,则该年级参加足球活动的人数约人;该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形扇形OEFODG=S半圆,即可求解.【详解】作直径CG,连接OD、OE、OF、DG.∵CG是圆的直径,∴∠CDG=90°,则2222CG CD-=-=8,106又∵EF=8,∴DG=EF,∴DG EF=,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=12π×52=252,故选A.【点睛】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.2.D【解析】【分析】根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.3.A【解析】因为点M(-2,3)在双曲线上,所以xy=(-2)×3=-6,四个答案中只有A符合条件.故选A 4.B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是轴对称图形,故本选项错误; B 、是轴对称图形,故本选项正确; C 、不是轴对称图形,故本选项错误; D 、不是轴对称图形,故本选项错误. 故选:B . 【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 5.C 【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10=∴S 阴影部分=S 正方形ABCD -S Rt △ABE =102-1682⨯⨯ =100-24 =76. 故选C.考点:勾股定理. 6.D 【解析】【分析】根据二次函数的图象可以判断a 、b 、a b -的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案. 【详解】由二次函数的图象可知,a 0<,b 0<,当x 1=-时,y a b 0=-<,()y a b x b ∴=-+的图象经过二、三、四象限,观察可得D 选项的图象符合, 故选D .【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.7.D 【解析】试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x的取值应满足:x≠﹣1.故选D.考点:分式有意义的条件.8.A【解析】分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选:A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.9.D【解析】【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为35,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为12,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为14,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为13,符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.10.D【解析】【分析】主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.【详解】解:主视图是三角形的一定是一个锥体,只有D是锥体.故选D.【点睛】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.二、填空题(本题包括8个小题)11.1 2【解析】【分析】根据同弧或等弧所对的圆周角相等来求解.【详解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD=ACAB =12.故选D.【点睛】本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.12.C【解析】试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.考点:平均数的计算.13.4n﹣1【解析】【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的=⨯-按照这个规律即可求出第n各图形中有多少三角形.乘积减去3.如图③中三角形的个数为943 3.【详解】分别数出图①、图②、图③中的三角形的个数,=⨯-;图①中三角形的个数为1413=⨯-;图②中三角形的个数为5423=⨯-;图③中三角形的个数为9433可以发现,第几个图形中三角形的个数就是4与几的乘积减去1.-.按照这个规律,如果设图形的个数为n,那么其中三角形的个数为4n3-.故答案为4n3【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.14.30【解析】【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P的度数.【详解】∵BP是∠ABC的平分线,CP是∠ACM的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为:30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.15.2.【解析】试题分析:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=2,∴A(2,2),∴k=2×2=2.故答案为2.考点:2.反比例函数系数k的几何意义;2.平移的性质;3.综合题.16.85°.【解析】如图,过F作EF∥AB,而AB∥CD,∴AB∥CD∥EF,∴∠ABF+∠BFE=180°,∠EFC=∠C,∴∠α=180°−∠ABF+∠C=180°−120°+25°=85°故答案为85°.17.110°或50°.【解析】【分析】由内角和定理得出∠C=60°,根据翻折变换的性质知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°两种情况,先求出∠DFC度数,继而由∠BDF=∠DFC﹣∠B可得答案.【详解】∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性质知∠DFE=∠A=70°,分两种情况讨论:①当∠EFC=90°时,∠DFC=∠DFE+∠EFC=160°,则∠BDF=∠DFC﹣∠B=110°;②当∠FEC=90°时,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;综上:∠BDF的度数为110°或50°.故答案为110°或50°.【点睛】本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键.1851【解析】【分析】A点到-1的距离等于直角三角形斜边的长度,应用勾股定理求解出直角三角形斜边长度即可.【详解】解:直角三角形斜边长度为22125+=,则A点到-1的距离等于5,则A点所表示的数为:﹣1+5【点睛】本题考查了利用勾股定理求解数轴上点所表示的数.三、解答题(本题包括8个小题)19.解:(1)①2.②95或52.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.【解析】【分析】(1)①当AC=BC=2时,△ABC为等腰直角三角形;②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;(2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.【详解】(1)若△CEF与△ABC相似.①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,此时D为AB边中点,AD=22AC=2.②当AC=3,BC=4时,有两种情况:(I)若CE:CF=3:4,如答图2所示,∵CE:CF=AC:BC,∴EF∥BC.由折叠性质可知,CD⊥EF,∴CD⊥AB,即此时CD为AB边上的高.在Rt△ABC中,AC=3,BC=4,∴BC=1.∴cosA=35.∴AD=AC•cosA=3×35=95.(II)若CF:CE=3:4,如答图3所示.∵△CEF∽△CAB,∴∠CEF=∠B.由折叠性质可知,∠CEF+∠ECD=90°.又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得:∠B=∠FCD,CD=BD.∴AD=BD.∴此时AD=AB=12×1=52.综上所述,当AC=3,BC=4时,AD的长为95或52.(2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:如图所示,连接CD,与EF交于点Q.∵CD是Rt△ABC的中线∴CD=DB=12AB,∴∠DCB=∠B.由折叠性质可知,∠CQF=∠DQF=90°,∴∠DCB+∠CFE=90°,∵∠B+∠A=90°,∴∠CFE=∠A,又∵∠ACB=∠ACB,∴△CEF∽△CBA.20.(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米.【解析】试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:125,高为DE,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度.试题解析:(1)∵在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:125,∴1512125DEEC==,设DE=5x米,则EC=12x米,∴(5x)2+(12x)2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)过点D作AB的垂线,垂足为H,设DH的长为x,由题意可知∠BDH=45°,∴BH=DH=x,DE=5,在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=AB,AC∴2=AB,AC解得,x=29,AB=x+5=34,即大楼AB的高度是34米.21.(1)90°;(1)证明见解析;(3)1.【解析】【分析】(1)根据圆周角定理即可得∠CDE的度数;(1)连接DO,根据直角三角形的性质和等腰三角形的性质易证∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切线;(3)根据已知条件易证△CDE∽△ADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值即可.【详解】解:(1)解:∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(1)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)解:如图所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴DC DEAD DC=,∴DC1=AD•DE∵AC=15DE,∴设DE=x,则AC=15x,则AC1﹣AD1=AD•DE,期(15x)1﹣AD1=AD•x,整理得:AD1+AD•x﹣10x1=0,解得:AD=4x或﹣4.5x(负数舍去),则DC=22(25)(4)2x x x-=,故tan∠ABD=tan∠ACD=422AD xDC x==.22.(1)24yx=;(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.【详解】(1)∵点A在直线y1=1x﹣1上,∴设A(x,1x﹣1),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=12OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴24yx =;(1)∵224y xyx=-⎧⎪⎨=⎪⎩,解得:1122xy=⎧⎨=⎩,2214xy=-⎧⎨=-⎩,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.23.甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.【解析】【分析】设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可.【详解】解:设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏.根据题意得:解得:x=1.经检验:x=1是原方程的解且符合实际问题的意义.∴1.2x=1.2×1=2.答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.【点睛】此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键.24.(1)1;(2)1 6【解析】【分析】(1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为12和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:(1)设口袋中黄球的个数为x个,根据题意得:21 212x= ++解得:x=1经检验:x=1是原分式方程的解∴口袋中黄球的个数为1个(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况∴两次摸出都是红球的概率为:21126=.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.25.(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标.【解析】试题分析:(1)设这两年该市推行绿色建筑面积的年平均增长率x,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案.试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,根据题意得:700(1+x)2=1183,解得:x1=0.3=30%,x2=﹣2.3(舍去),答:这两年该市推行绿色建筑面积的年平均增长率为30%;(2)根据题意得:1183×(1+30%)=1537.9(万平方米),∵1537.9>1500,∴2017年该市能完成计划目标.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解.26.(1)a=16,b=17.5(2)90(3)3 5【解析】试题分析:(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解.试题解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案为90;(3)如图,∵共有20种等可能的结果,两名主持人恰为一男一女的有12种情况,∴则P(恰好选到一男一女)=1220=35.考点:列表法与树状图法;用样本估计总体;扇形统计图.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55 135 149 191 乙55 135 151 110 某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③2.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.AD AB AB BC3.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.8 B.4 C.12 D.164.如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为()A.13 B.17 C.18 D.255.如图,能判定EB ∥AC 的条件是( )A .∠C=∠ABEB .∠A=∠EBDC .∠A=∠ABED .∠C=∠ABC6.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ) A .0.7×10﹣8B .7×10﹣8C .7×10﹣9D .7×10﹣107.一次函数y 1=kx+1﹣2k (k≠0)的图象记作G 1,一次函数y 2=2x+3(﹣1<x <2)的图象记作G 2,对于这两个图象,有以下几种说法:①当G 1与G 2有公共点时,y 1随x 增大而减小; ②当G 1与G 2没有公共点时,y 1随x 增大而增大; ③当k =2时,G 1与G 2平行,且平行线之间的距离为.下列选项中,描述准确的是( ) A .①②正确,③错误 B .①③正确,②错误 C .②③正确,①错误D .①②③都正确8.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的( ) A .中位数 B .众数 C .平均数 D .方差 99153 ) A .2到3之间 B .3到4之间 C .4到5之间D .5到6之间10.用配方法解方程2230x x +-=时,可将方程变形为( ) A .2(1)2x += B .2(1)2x -= C .2(1)4x -= D .2(1)4x +=二、填空题(本题包括8个小题)11.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________. 12.计算:﹣1﹣2=_____.13.不等式组2x+1x{4x 3x+2>≤的解集是 ▲ . 14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .15.某一时刻,测得一根高1.5m 的竹竿在阳光下的影长为2.5m .同时测得旗杆在阳光下的影长为30m ,则旗杆的高为__________m .16.如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则∠BOM =_______.17.如图,在△ABC 中,AB=AC ,BE 、AD 分别是边AC 、BC 上的高,CD=2,AC=6,那么CE=________.18.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.三、解答题(本题包括8个小题) 19.(6分)如图,点是线段的中点,,.求证:.20.(6分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y (件)与销售价x (元/件)之间的函数关系如图所示.求y 与x 之间的函数关系式,并写出自变量x 的取值范围;求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?21.(6分)如图,建筑物BC 上有一旗杆AB ,从与BC 相距40m 的D 处观测旗杆顶部A 的仰角为50°,观测旗杆底部B 的仰角为45°,求旗杆AB 的高度.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)22.(8分)计算:101()2sin601tan60(2019)2π--+-+-; 解方程:24(3)9x x x +=-23.(8分)如图,在平行四边形ABCD 中,E 、F 分别在AD 、BC 边上,且AE=CF .求证:(1)△ABE ≌△CDF ;四边形BFDE 是平行四边形.24.(10分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC 的长为0.60m ,底座BC 与支架AC 所成的角∠ACB=75°,点A 、H 、F 在同一条直线上,支架AH 段的长为1m ,HF 段的长为1.50m ,篮板底部支架HE 的长为0.75m .求篮板底部支架HE 与支架AF 所成的角∠FHE 的度数.求篮板顶端F 到地面的距离.(结果精确到0.1 m ;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.7323,2≈1.414)25.(10分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?26.(12分)我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.A、B两种奖品每件各多少元?现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】分析:根据平均数、中位数、方差的定义即可判断;详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故①②③正确,故选D.点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.D【解析】【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴AC ABAB AD,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB=ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.3.A【解析】【详解】∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DA=DB,EA=EC,则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A.4.C【解析】在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在Rt△ABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=12AB,所以△ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.5.C【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由。
2019年辽宁省各市中考数学试卷真题汇编(11套真题试卷)
2019年辽宁省各市中考数学试卷真题汇编(11套真题试卷)2019年辽宁省大连市中考数学试卷 (1)2019年辽宁省鞍山市中考数学试卷 (10)2019年辽宁省朝阳市中考数学试卷 (18)2019年辽宁省丹东市中考数学试卷 (25)2019年辽宁省抚顺市中考数学试卷 (32)2019年辽宁省葫芦岛市中考数学试卷 (40)2019年辽宁省锦州市中考数学试卷 (47)2019年辽宁省辽阳市中考数学试卷 (54)2019年辽宁省盘锦市中考数学试卷 (63)2019年辽宁省铁岭市中考数学试卷 (70)2019年辽宁省营口市中考数学试卷 (77)2019年辽宁省大连市中考数学试卷一、选择题(本题共10小題,每小題3分,共30分) 1.(3分)(2019•大连)2-的绝对值是( ) A .2B .12C .12-D .2-2.(3分)(2019•大连)如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .3.(3分)(2019•大连)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg ,将数58000用科学记数法表示为( ) A .35810⨯B .35.810⨯C .50.5810⨯D .45.810x4.(3分)(2019•大连)在平面直角坐标系中,将点(3,1)P 向下平移2个单位长度,得到的点P '的坐标为( ) A .(3,1)-B .(3,3)C .(1,1)D .(5,1)5.(3分)(2019•大连)不等式5131x x +-的解集在数轴上表示正确的是( )A .B .C .D .6.(3分)(2019•大连)下列所述图形中,既是轴对称图形又是中心对称图形的是( ) A .等腰三角形B .等边三角形C .菱形D .平行四边形7.(3分)(2019•大连)计算3(2)a -的结果是( ) A .38a -B .36a -C .36aD .38a8.(3分)(2019•大连)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( ) A .23B .12 C .13D .149.(3分)(2019•大连)如图,将矩形纸片ABCD 折叠,使点C 与点A 重合,折痕为EF ,若4AB =,8BC =.则D F '的长为( )A .B .4C .3D .210.(3分)(2019•大连)如图,抛物线211242y x x =-++与x 轴相交于A 、B 两点,与y轴相交于点C ,点D 在抛物线上,且//CD AB .AD 与y 轴相交于点E ,过点E 的直线PQ 平行于x 轴,与拋物线相交于P ,Q 两点,则线段PQ 的长为( )AB .CD .二、填空题(本题共6小题,每小題分,共18分)11.(3分)(2019•大连)如图//AB CD ,//CB DE ,50B ∠=︒,则D ∠= ︒.12.(3分)(2019•大连)某男子足球队队员的年龄分布如图所示,这些队员年齡的众数是.13.(3分)(2019•大连)如图,ABC=,∆是等边三角形,延长BC到点D,使CD AC连接AD.若2AB=,则AD的长为.14.(3分)(2019•大连)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.15.(3分)(2019•大连)如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53︒,观测旗杆底部B的仰角为45︒,则旗杆AB的高度约为m(结果取整数,参考数据:sin530.80︒≈.︒≈,cos530.60︒≈,tan53 1.33)16.(3分)(2019•大连)甲、乙两人沿同一条直路走步,如果两人分别从这条多路上的A ,B 两处同时出发,都以不变的速度相向而行,图1是甲离开A 处后行走的路程y (单位:)m 与行走时x (单位:)min 的函数图象,图2是甲、乙两人之间的距离(单位:)m 与甲行走时间x (单位;)min 的函数图象,则a b -= .三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分)17.(9分)(2019•大连)计算:22)-+18.(9分)(2019•大连)计算:22241112a a a a-÷+---.19.(9分)(2019•大连)如图,点E ,F 在BC 上,BE CF =,AB DC =,B C ∠=∠,求证:AF DE.20.(12分)(2019•大连)某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.根据以上信息,解答下列问题(1)被测试男生中,成绩等级为“优秀”的男生人数为人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为%;(2)被测试男生的总人数为人,成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为%;(3)若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.四、解答题(本共3小,其中21、22题各分,23题10分,共28分)21.(9分)(2019•大连)某村2016年的人均收入为20000元,2018年的人均收入为24200元(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?22.(9分)(2019•大连)如图,在平面直角坐标系xOy 中,点(3,2)A 在反比例函数(0)k y x x=>的图象上,点B 在OA 的廷长线上,BC x ⊥轴,垂足为C ,BC 与反比例函数的图象相交于点D ,连接AC ,AD . (1)求该反比例函数的解析式; (2)若32ACD S ∆=,设点C 的坐标为(,0)a ,求线段BD 的长.23.(10分)(2019•大连)如图1,四边形ABCD内接于O,AC是O的直径,过点A 的切线与CD的延长线相交于点P.且APC BCP∠=∠(1)求证:2BAC ACD∠=∠;(2)过图1中的点D作DE AC⊥,垂足为E(如图2),当6BC=,2AE=时,求O的半径.五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分)24.(11分)(2019•大连)如图,在平面直角坐标系xOy中,直线334y x=-+与x轴,y轴分别相交于点A ,B ,点C 在射线BO 上,点D 在射线BA 上,且53BD OC =,以CO ,CD为邻边作COED .设点C 的坐标为(0,)m ,COED 在x 轴下方部分的面积为S .求: (1)线段AB 的长;(2)S 关于m 的函数解析式,并直接写出自变量m 的取值范围.25.(12分)(2019•大连)阅读下面材料,完成(1)-(3)题数学课上,老师出示了这样一道题:如图1,ABC ∆中,90BAC ∠=︒,点D 、E 在BC 上,AD AB =,AB kBD =1)k ABC ACB BAE <<∠=∠+∠,EAC ∠的平分线与BC 相交于点F ,BG AF ⊥,垂足为G ,探究线段BG 与AC 的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现BAE ∠与DAC ∠相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG 与AC 的数量关系.”⋯⋯老师:“保留原题条件,延长图1中的BG ,与AC 相交于点H (如图2),可以求出AHHC的值.”(1)求证:BAE DAC ∠=∠;(2)探究线段BG 与AC 的数量关系(用含k 的代数式表示),并证明; (3)直接写出AHHC的值(用含k 的代数式表示).26.(12分)(2019•大连)把函数21:23(0)C y ax ax a a =--≠的图象绕点(,0)P m 旋转180︒,得到新函数2C 的图象,我们称2C 是1C 关于点P 的相关函数.2C 的图象的对称轴与x 轴交点坐标为(,0)t .(1)填空:t 的值为 (用含m 的代数式表示) (2)若1a =-,当12x t 时,函数1C 的最大值为1y ,最小值为2y ,且121y y -=,求2C 的解析式;(3)当0m =时,2C 的图象与x 轴相交于A ,B 两点(点A 在点B 的右侧).与y 轴相交于点D .把线段AD 原点O 逆时针旋转90︒,得到它的对应线段A D '',若线A D ''与2C 的图象有公共点,结合函数图象,求a 的取值范围.2019年辽宁省鞍山市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.(3分)(2019•鞍山)在有理数2,0,1-,12-中,最小的是( )A .2B .0C .1-D .12-2.(3分)(2019•鞍山)2019年6月9日中央电视台新闻报道,端午节期间天猫网共计销售粽子123000000个,将数据123000000用科学记数法表示为( ) A .712.310⨯B .81.2310⨯C .91.2310⨯D .90.12310⨯3.(3分)(2019•鞍山)如图,这是由7个相同的小正方体搭成的几何体,则这个几何体的左视图是( )A .B .C .D .4.(3分)(2019•鞍山)下列运算正确的是( ) A .236()a a -=- B .236326a a a =C .2(1)a a a a --+=-+D .235a a a +=5.(3分)(2019•鞍山)如图,某人从点A 出发,前进8m 后向右转60︒,再前进8m 后又向右转60︒,按照这样的方式一直走下去,当他第一次回到出发点A 时,共走了( )A .30mB .36mC .40mD .48m6.(3分)(2019•鞍山)如图,//AB CD ,EF 与AB ,CD 分别交于点G ,H ,CHG ∠的平分线HM 交AB 于点M ,若50EGB ∠=︒,则GMH ∠的度数为( )A .50︒B .55︒C .60︒D .65︒7.(3分)(2019•鞍山)如图,若一次函数2y x b =-+的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式20x b -+>的解集为( )A .32x >B .32x <C .3x >D .3x <8.(3分)如图,正方形ABCD 和正方形CGFE 的顶点C ,D ,E 在同一条直线上,顶点B ,C ,G 在同一条直线上.O 是EG 的中点,EGC ∠的平分线GH 过点D ,交BE 于点H ,连接FH 交EG 于点M ,连接OH .以下四个结论:①GH BE ⊥;②EHM GHF ∆∆∽;③1BCCG=;④2HOM HOG S S ∆∆=( )A .①②③B .①②④C .①③④D .②③④二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)(2019•鞍山)函数y =x 的取值范围是 .10.(3分)(2019•鞍山)一个不透明的口袋中有红球和黑球共25个,这些球除颜色外都相同.进行大量的摸球试验(每次摸出1个球)后,发现摸到黑球的频率在0.6附近摆动,据此可以估计黑球为 个.11.(3分)(2019•鞍山)关于x 的方程2310x x k ++-=有两个相等的实数根,则k 的值为 .12.(3分)(2019•鞍山)如图,在菱形ABCD 中,E ,F 分别是AD ,DC 的中点,若4BD =,3EF =,则菱形ABCD 的周长为 .13.(3分)(2019•鞍山)如图,AC 是O 的直径,B ,D 是O 上的点,若O 的半径为3,30ADB ∠=︒,则BC 的长为 .14.(3分)(2019•鞍山)为了美化校园环境,某中学今年春季购买了A ,B 两种树苗在校园四周栽种,已知A 种树苗的单价比B 种树苗的单价多10元,用600元购买A 种树苗的棵数恰好与用450元购买B 种树苗的棵数相同.若设A 种树苗的单价为x 元,则可列出关于x 的方程为 .15.(3分)(2019•鞍山)如图,正方形0001A B C A 的边长为1,正方形1112A B C A 的边长为2,正方形2223A B C A 的边长为4,正方形3334A B C A 的边长为8⋯⋯依此规律继续作正方形1n n n n A B C A +,且点0A ,1A ,2A ,3A ,⋯,1n A +在同一条直线上,连接01A C 交11A B 于点1D ,连接12A C 交22A B 于点2D ,连接23A C 交33A B 于点3D ⋯⋯记四边形0001A B C D 的面积为1S ,四边形1112A B C D 的面积为2S ,四边形2223A B C D 的面积为3S ⋯⋯四边形111n n n n A B C D ---的面积为n S ,则2019S = .16.(3分)(2019•鞍山)如图,在矩形ABCD 中,5AB =,6BC =,点M ,N 分别在AD ,BC 上,且13AM AD =,13BN BC =,E 为直线BC 上一动点,连接DE ,将DCE ∆沿DE 所在直线翻折得到△DC E ',当点C '恰好落在直线MN 上时,CE 的长为 .三、解答题(本大题共2小题,共16分.解答应写出必要的文字说明、证明过程或演算步骤)17.(8分)(2019•鞍山)先化简,再求值:22319()369x x x x x x x x+---÷--+,其中3x =+.18.(8分)(2019•鞍山)如图,ABC ∆的三个顶点的坐标分别是(2,4)A ,(1,1)B ,(3,2)C . (1)作出ABC ∆向左平移4个单位长度后得到的△111A B C ,并写出点1C 的坐标. (2)已知△222A B C 与ABC ∆关于直线l 对称,若点2C 的坐标为(2,3)--,请直接写出直线l 的函数解析式.注:点1A ,1B ,1C 及点2A ,2B ,2C 分别是点A ,B ,C 按题中要求变换后对应得到的点.四、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过19.(10分)(2019•鞍山)随着人民生活水平的不断提高,外出旅游已成为家庭生活的一种方式.某社区为了解每户家庭旅游的消费情况,随机抽取部分家庭,对每户庭的年旅游消费金额进行问卷调查,并根据调查结果绘制成如图两幅不完整的统计图表.05000x 500010000x < 1000015000x < 1500020000x <20000x >请你根据统计图表提供的信息,解答下列问题:(1)本次被调查的家庭有 户,表中m = . (2)本次调查数据的中位数落在哪一组?请说明理由. (3)在扇形统计图中,D 组所对应扇形的圆心角是多少度? (4)若该社区有3000户家庭,请你估计年旅游消费在10000元以上的家庭户数.20.(10分)(2019•鞍山)妈妈给小红和弟弟买了一本刘慈欣的小说《流浪地球》,姐弟俩都想先睹为快.是小红对弟弟说:我们利用下面中心涂黑的九宫格图案(如图所示)玩一个游戏,规则如下:我从第一行,你从第三行,同时各自任意选取一个方格,涂黑,如果得到的新图案是轴对称图形.我就先读,否则你先读.小红设计的游戏对弟弟是否公平?请用画树状图或列表的方法说明理由.(第一行的小方格从左至右分别用A ,B ,C 表示,第三行的小方格从左至右分别用D ,E ,F 表示)五、解答题(本大题共2小題,共20分.解答应写出必要的文字说明、证明过程或演算步骤 21.(10分)(2019•鞍山)如图,在平面直角坐标系中,一次函数(0)y mx n m =+≠的图象与y 轴交于点C ,与反比例函数(0)ky k x=≠的图象交于A ,B 两点,点A 在第一象限,纵坐标为4,点B 在第三象限,BM x ⊥轴,垂足为点M ,2BM OM ==. (1)求反比例函数和一次函数的解析式. (2)连接OB ,MC ,求四边形MBOC 的面积.22.(10分)(2019•鞍山)如图为某海域示意图,其中灯塔D的正东方向有一岛屿C.一艘快艇以每小时20nmile的速度向正东方向航行,到达A处时得灯塔D在东北方向上,继续航行0.3h,到达B处时测得灯塔D在北偏东30︒方向上,同时测得岛屿C恰好在B处的东北方向上,此时快艇与岛屿C的距离是多少?(结果精确到1nmile 1.41≈,≈ 2.45)1.73六、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)23.(10分)(2019•鞍山)如图,在Rt ABC∆中,90∠=︒,D是AC上一点,过B,ACBC,D三点的O交AB于点E,连接ED,EC,点F是线段AE上的一点,连接FD,其中FDE DCE∠=∠.(1)求证:DF是O的切线.(2)若D是AC的中点,30BC=,求DF的长.A∠=︒,424.(10分)(2019•鞍山)某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y (件)与销售单价x (元)之间的关系如图所示. (1)根据图象直接写出y 与x 之间的函数关系式.(2)设这种商品月利润为W (元),求W 与x 之间的函数关系式.(3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少?七、解答题(本大题共1小题,共12分.解答应写出必要的文字说明、证明过程或演算步骤 25.(12分)(2019•鞍山)在Rt ABC ∆中,90ACB ∠=︒,D 是ABC ∆内一点,连接AD ,BD .在BD 左侧作Rt BDE ∆,使90BDE ∠=︒,以AD 和DE 为邻边作ADEF ,连接CD ,DF .(1)若AC BC =,BD DE =.①如图1,当B ,D ,F 三点共线时,CD 与DF 之间的数量关系为 . ②如图2,当B ,D ,F 三点不共线时,①中的结论是否仍然成立?请说明理由. 若2BC AC =,2BD DE =,45CD AC =,且E ,C ,F 三点共线,求AFCE的值.八、解答题(本大题共1小题,共14分,解答应写出必要的文字说明、证明过程或演算步骤)26.(14分)(2019•鞍山)在平面直角坐标系中,过点(3,4)A 的抛物线24y ax bx =++与x 轴交于点(1,0)B -,与y 轴交于点C ,过点A 作AD x ⊥轴于点D .(1)求抛物线的解析式.(2)如图1,点P 是直线AB 上方抛物线上的一个动点,连接PD 交AB 于点Q ,连接AP ,当2AQD APQ S S ∆∆=时,求点P 的坐标.(3)如图2,G 是线段OC 上一个动点,连接DG ,过点G 作GM DG ⊥交AC 于点M ,过点M 作射线MN ,使60NMG ∠=︒,交射线GD 于点N ;过点G 作GH MN ⊥,垂足为点H ,连接BH .请直接写出线段BH 的最小值.2019年辽宁省朝阳市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2019•朝阳)3的相反数是( ) A .3B .3-C .13D .13-2.(3分)(2019•朝阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的左视图是( )A .B .C .D .3.(3分)(2019•朝阳)一元二次方程210x x --=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法判断4.(3分)(2019•朝阳)下列调查中,调查方式最适合普查(全面调查)的是( ) A .对全国初中学生视力情况的调查 B .对2019年央视春节联欢晚会收视率的调查 C .对一批飞机零部件的合格情况的调查 D .对我市居民节水意识的调查5.(3分)(2019•朝阳)若点1(1,)A y -,2(2,)B y -,3(3,)C y 在反比例函数8y x=-的图象上,则1y ,2y ,3y 的大小关系是( ) A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y <<6.(3分)(2019•朝阳)关于x ,y 的二元一次方程组2mx y n x ny m +=⎧⎨-=⎩的解是02x y =⎧⎨=⎩,则m n+的值为( ) A .4B .2C .1D .07.(3分)(2019•朝阳)把Rt ABC ∆与Rt CDE ∆放在同一水平桌面上,摆放成如图所示形状,使两个直角顶点重合,两条斜边平行,若25B ∠=︒,58D ∠=︒,则BCE ∠的度数是()A .83︒B .57︒C .54︒D .33︒8.(3分)(2019•朝阳)李老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损.已知这组数据的平均数为4,那么这组数据的众数与中位数分别为( ) A .5,4B .3,5C .4,4D .4,59.(3分)(2019•朝阳)如图,在矩形ABCD 中对角线AC 与BD 相交于点O ,CE BD ⊥,垂足为点E ,5CE =,且2EO DE =,则AD 的长为( )A .B .C .10D .10.(3分)(2019•朝阳)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,现给出下列结论:①0abc >;②930a b c ++=;③248b ac a -<;④50a b c ++>. 其中正确结论的个数是( )A .1B .2C .3D .4二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2019•朝阳)2019年5月20日,第15届中国国际文化产业博览交易会落下帷幕.短短5天时间,有7800000人次参观数据7800000用科学记数法表示为 . 12.(3分)(2019•朝阳)因式分解:2122x -+= .13.(3分)(2019•朝阳)从点(1,6)M -,1(2N ,12),(2,3)E -,(3,2)F --中任取一点,所取的点恰好在反比例函数6y x=的图象上的概率为 . 14.(3分)(2019•朝阳)不等式组620240x x -⎧⎨+>⎩的解集是 .15.(3分)(2019•朝阳)如图,把三角形纸片折叠,使点A 、点C 都与点B 重合,折痕分别为EF ,DG ,得到60BDE ∠=︒,90BED ∠=︒,若2DE =,则FG 的长为 .16.(3分)(2019•朝阳)如图,直线113y x =+与x 轴交于点M ,与y 轴交于点A ,过点A 作AB AM ⊥,交x 轴于点B ,以AB 为边在AB 的右侧作正方形1ABCA ,延长1AC 交x 轴于点1B ,以11A B 为边在11A B 的右侧作正方形1112A B C A ⋯按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形1ABCA ,1112A B C A ,⋯,111n n n n A B C A ---中的阴影部分的面积分别为1S ,2S ,⋯,n S ,则n S 可表示为 .三、解答题(本大题共9小题,共72分,解答应写出必要的文字说明、证明过程或演算步骤) 17.(5分)(2019•朝阳)先化简,再求值:2232624288a a a a a a a ++-÷+--+,其中11|6|()2a -=--.18.(6分)(2019•朝阳)佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%.已知店主购进A种笔袋用了810元,购进B种笔袋用了600元,且所购进的A种笔袋的数量比B种笔袋多20个.请问:文具店购进A,B两种款式的笔袋各多少个?19.(7分)(2019•朝阳)某校组织学生开展为贫困山区孩子捐书活动,要求捐赠的书籍类别为科普类、文学类、漫画类、哲学故事类、环保类,学校图书管理员对所捐赠的书籍随机抽查了部分进行统计,并对获取的数据进行了整理,根据整理结果,绘制了如图所示的两幅不完整的统计图.已知所统计的数据中,捐赠的哲学故事类书籍和文学类书籍的数量相同.请根据以上信息,解答下列问题:(1)本次被抽查的书籍有册.(2)补全条形统计图.(3)若此次捐赠的书籍共1200册,请你估计所捐赠的科普类书籍有多少册.20.(7分)(2019•朝阳)有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为.(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.21.(7分)(2019•朝阳)小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60︒,沿山坡向上走25m到达D处,测得古塔顶端M的仰角为30︒.已知山坡坡度3:4i=,即3tan4θ=,请你帮助小明计算古塔的高度ME.(结果精确到0.1m 1.732)≈22.(8分)(2019•朝阳)如图,四边形ABCD为菱形,以AD为直径作O交AB于点F,连接DB交O于点H,E是BC上的一点,且BE BF=,连接DE.(1)求证:DE 是O 的切线.(2)若2BF =,DH =O 的半径.23.(10分)(2019•朝阳)网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克10元.公司在试销售期间,调查发现,每天销售量()y kg 与销售单价x (元)满足如图所示的函数关系(其中1030)x <.(1)直接写出y 与x 之间的函数关系式及自变量的取值范围.(2)若农贸公司每天销售该特产的利润要达到3100元,则销售单价x 应定为多少元? (3)设每天销售该特产的利润为W 元,若1430x <,求:销售单价x 为多少元时,每天的销售利润最大?最大利润是多少元?24.(10分)(2019•朝阳)如图,四边形ABCD 是正方形,连接AC ,将ABC ∆绕点A 逆时针旋转α得AEF ∆,连接CF ,O 为CF 的中点,连接OE ,OD .(1)如图1,当45α=︒时,请直接写出OE 与OD 的关系(不用证明). (2)如图2,当4590α︒<<︒时,(1)中的结论是否成立?请说明理由.(3)当360α=︒时,若AB =O 经过的路径长.25.(12分)(2019•朝阳)如图,在平面直角坐标系中,直线26y x =+与x 轴交于点A ,与y 轴交点C ,抛物线22y x bx c =-++过A ,C 两点,与x 轴交于另一点B . (1)求抛物线的解析式.(2)在直线AC 上方的抛物线上有一动点E ,连接BE ,与直线AC 相交于点F ,当12EF BF =时,求sin EBA ∠的值. (3)点N 是抛物线对称轴上一点,在(2)的条件下,若点E 位于对称轴左侧,在抛物线上是否存在一点M ,使以M ,N ,E ,B 为顶点的四边形是平行四边形?若存在,直接写出点M 的坐标;若不存在,请说明理由.2019年辽宁省丹东市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2019•丹东)2019的相反数是( ) A .2019-B .2019C .12019-D .120192.(3分)(2019•丹东)十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为( ) A .22.74810⨯B .4274.810⨯C .62.74810⨯D .70.274810⨯3.(3分)(2019•丹东)如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为( )A .B .C .D .4.(3分)(2019•丹东)下面计算正确的是( ) A .321a a -=B .224246a a a +=C .325()x x =D .826x x x ÷=5.(3分)(2019•丹东)如图,点C 在AOB ∠的边OA 上,用尺规作出了//CP OB ,作图痕迹中,FG 是( )A .以点C 为圆心、OD 的长为半径的弧B .以点C 为圆心、DM 的长为半径的弧 C .以点E 为圆心、DM 的长为半径的弧D .以点E 为圆心、OD 的长为半径的弧6.(3分)(2019•丹东)在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是( ) A .11B .12C .13D .147.(3分)(2019•丹东)等腰三角形一边长为2,它的另外两条边的长度是关于x 的一元二次方程260x x k -+=的两个实数根,则k 的值是( ) A .8B .9C .8或9D .128.(3分)(2019•丹东)如图,二次函数2(0)y ax bx c a =++≠的图象过点(2,0)-,对称轴为直线1x =.有以下结论: ①0abc >; ②80a c +>;③若1(A x ,)m ,2(B x ,)m 是抛物线上的两点,当12x x x =+时,y c =;④点M ,N 是抛物线与x 轴的两个交点,若在x 轴下方的抛物线上存在一点P ,使得PM PN ⊥,则a 的取值范围为1a ;⑤若方程(2)(4)2a x x +-=-的两根为1x ,2x ,且12x x <,则1224x x -<<. 其中结论正确的有( )A .2个B .3个C .4个D .5个二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)(2019•丹东)因式分解:32288x x x -+= .10.(3分)(2019•丹东)在函数y =中,自变量x 的取值范围是 .11.(3分)(2019•丹东)有5张无差别的卡片,上面分别标有1-,0,13,π,从中随机抽取1张,则抽出的数是无理数的概率是 .12.(3分)(2019•丹东)关于x 的不等式组2401x a x ->⎧⎨->-⎩的解集是24x <<,则a 的值为 .13.(3分)(2019•丹东)如图,在ABC ∆中,90C ∠=︒,DE 是AB 的垂直平分线,AD 恰好平分BAC ∠.若1DE =,则BC 的长是 .14.(3分)(2019•丹东)如图,点A 在双曲线6(0)y x x =>上,过点A 作AB x ⊥轴于点B ,点C 在线段AB 上且:1:2BC CA =,双曲线(0)ky x x=>经过点C ,则k = .15.(3分)(2019•丹东)如图,在平面直角坐标系中,点A ,C 分别在x 轴、y 轴上,四边形ABCO 是边长为4的正方形,点D 为AB 的中点,点P 为OB 上的一个动点,连接DP ,AP ,当点P 满足DP AP +的值最小时,直线AP 的解析式为 .16.(3分)(2019•丹东)如图,在平面直角坐标系中,1OA =,以OA 为一边,在第一象限作菱形1OAA B ,并使60AOB ∠=︒,再以对角线1OA 为一边,在如图所示的一侧作相同形状的菱形121OA A B ,再依次作菱形232OA A B ,343OA A B ,⋯⋯,则过点2018B ,2019B ,2019A 的圆的圆心坐标为 .三、解答题(本大题共2小题,共16分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(8分)(2019•丹东)先化简,再求代数式的值:2222421121x x x x x x x ---÷+--+,其中3cos60x =︒.18.(8分)(2019•丹东)在下面的网格中,每个小正方形的边长均为1,ABC ∆的三个顶点都是网格线的交点,已知B ,C 两点的坐标分别为(3,0)-,(1,1)--. (1)请在图中画出平面直角坐标系,并直接写出点A 的坐标. (2)将ABC ∆绕着坐标原点顺时针旋转90︒,画出旋转后的△A B C '''.(3)接写出在上述旋转过程中,点A 所经过的路径长.四、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤) 19.(10分)(2019•丹东)为纪念“五四运动”100周年,某校举行了征文比赛,该校学生全部参加了比赛.比赛设置一等、二等、三等三个奖项,赛后该校对学生获奖情况做了抽样调查,并将所得数据绘制成如图所示的两幅不完整的统计图.根据图中信息解答下列问题: (1)本次抽样调查学生的人数为 .(2)补全两个统计图,并求出扇形统计图中A 所对应扇形圆心角的度数. (3)若该校共有840名学生,请根据抽样调查结果估计获得三等奖的人数.20.(10分)(2019•丹东)如图所示,甲、乙两人在玩转盘游戏时,分别把转盘A,B分成3等份和1等份,并在每一份内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所在区域的数字之积为奇数时,甲获胜;当数字之积为偶数时,乙获胜.如果指针恰好在分割线上时,则需重新转动转盘.(1)利用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,请你在转盘A 上只修改一个数字使游戏公平(不需要说明理由).五、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)21.(10分)(2019•丹东)甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.22.(10分)(2019•丹东)如图,在Rt ABC∠=︒,点D在AB上,以AD为ACB∆中,90直径的O与边BC相切于点E,与边AC相交于点G,且AG EG=,连接GO并延长交O 于点F,连接BF.(1)求证:①AO AG=.②BF是O的切线.(2)若6BD=,求图形中阴影部分的面积.六、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤) 23.(10分)(2019•丹东)如图,在某街道路边有相距10m 、高度相同的两盏路灯(灯杆垂直地面),小明为了测量路灯的高度,在地面A 处测得路灯PQ 的顶端仰角为14︒,向前行走25m 到达B 处,在地面测得路灯MN 的顶端仰角为24.3︒,已知点A ,B ,Q ,N 在同一条直线上,请你利用所学知识帮助小明求出路灯的高度.(结果精确到0.1m .参考数据:sin140.24︒≈,cos140.97︒≈,tan140.25︒≈,sin24.30.41︒≈,cos24.30.91︒≈,tan 24.30.45)︒≈24.(10分)(2019•丹东)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x 元,平均月销售量为y 件.(1)求出y 与x 的函数关系式,并写出自变量x 的取值范围. (2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?七、解答题(本大题共1小题,共12分.解答应写出必要的文字说明、证明过程或演算步骤) 25.(12分)(2019•丹东)已知:在ABC ∆外分别以AB ,AC 为边作AEB ∆与AFC ∆. (1)如图1,AEB ∆与AFC ∆分别是以AB ,AC 为斜边的等腰直角三角形,连接EF .以EF 为直角边构造Rt EFG ∆,且EF FG =,连接BG ,CG ,EC . 求证:①AEF CGF ∆≅∆. ②四边形BGCE 是平行四边形.(2)小明受到图1的启发做了进一步探究:。
2019年辽宁省锦州市中考数学试卷和答案
2019年辽宁省锦州市中考数学试卷一、选择题(本大题共8道小题,每小题2分,共16分)1.(2分)﹣2019的相反数是()A.B.﹣C.2019D.﹣2019 2.(2分)下列既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2分)甲、乙、丙、丁四名同学进行跳高测试,每人10次跳高成绩的平均数都是1.28m,方差分别是s甲2=0.60,s乙2=0.62,s丙2=0.58,s丁2=0.45,则这四名同学跳高成绩最稳定的是()A.甲B.乙C.丙D.丁4.(2分)下列运算正确的是()A.x6÷x3=x2B.(﹣x3)2=x6C.4x3+3x3=7x6D.(x+y)2=x2+y25.(2分)如图,AC与BD交于点O,AB∥CD,∠AOB=105°,∠B=30°,则∠C的度数为()A.45°B.55°C.60°D.75°6.(2分)如图,一次函数y=2x+1的图象与坐标轴分别交于A,B 两点,O为坐标原点,则△AOB的面积为()A.B.C.2D.47.(2分)在矩形ABCD中,AB=3,BC=4,M是对角线BD上的动点,过点M作ME⊥BC于点E,连接AM,当△ADM是等腰三角形时,ME的长为()A.B.C.或D.或8.(2分)如图,在菱形ABCD中,∠B=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一个点也随之停止.设△APQ的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是()A.B.C.D.二、填空题(本大题共8道小题,每小题3分,共24分)9.(3分)在函数y=中,自变量x的取值范围是.10.(3分)为了落实“优化税收营商环境,助力经济发展和民生改善”的政策,国家税务总局统计数据显示,2018年5至10月合计减税2980亿元,将2980亿元用科学记数法表示为元.11.(3分)在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有个.12.(3分)如图,正六边形ABCDEF内接于⊙O,边长AB=2,则扇形AOB的面积为.13.(3分)甲、乙两地相距1000km,如果乘高铁列车从甲地到乙地比乘特快列车少用3h,已知高铁列车的平均速度是特快列车的1.6倍,设特快列车的平均速度为xkm/h,根据题意可列方程为.14.(3分)如图,将一个含30°角的三角尺ABC放在直角坐标系中,使直角顶点C与原点O重合,顶点A,B分别在反比例函数y=﹣和y=的图象上,则k的值为.15.(3分)如图,在矩形ABCD中,AB=3,BC=2,M是AD边的中点,N是AB边上的动点,将△AMN沿MN所在直线折叠,得到△A′MN,连接A′C,则A′C的最小值是.16.(3分)如图,边长为4的等边△ABC,AC边在x轴上,点B 在y轴的正半轴上,以OB为边作等边△OBA1,边OA1与AB交于点O1,以O1B为边作等边△O1BA2,边O1A2与A1B交于点O2,以O2B为边作等边△O2BA3,边O2A3与A2B交于点O3,…,依此规律继续作等边△O nBA n,记△OO1A的面积为S1,△O1O2A1﹣1的面积为S2,△O2O3A2的面积为S3,…,△O n﹣1O n A n﹣1的面积为S n,则S n=.(n≥2,且n为整数)三、解答题(本大题共2道题,第17题6分,第18题8分,共14分)17.(6分)先化简,再求值:(﹣1),其中a=(π﹣)0+()﹣1.18.(8分)为了响应“学习强国,阅读兴辽”的号召,某校鼓励学生利用课余时间广泛阅读,学校打算购进一批图书.为了解学生对图书类别的喜欢情况,校学生会随机抽取部分学生进行问卷调查,规定被调查学生从“文学、历史、科学、生活”中只选择自己最喜欢的一类,根据调查结果绘制了下面不完整的统计图.请根据图表信息,解答下列问题.(1)此次共调查了学生人;(2)请通过计算补全条形统计图;(3)若该校共有学生2200人,请估计这所学校喜欢“科学”类书的学生人数.四、解答题(本大题共2道题,每题8分,共16分)19.(8分)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.20.(8分)某市政部门为了保护生态环境,计划购买A,B两种型号的环保设备.已知购买一套A型设备和三套B型设备共需230万元,购买三套A型设备和两套B型设备共需340万元.(1)求A型设备和B型设备的单价各是多少万元;(2)根据需要市政部门采购A型和B型设备共50套,预算资金不超过3000万元,问最多可购买A型设备多少套?五、解答题(本大题共2道题,每题8分,共16分)21.(8分)如图,某学校体育场看台的顶端C到地面的垂直距离CD 为2m,看台所在斜坡CM的坡比i=1:3,在点C处测得旗杆顶点A的仰角为30°,在点M处测得旗杆顶点A的仰角为60°,且B,M,D三点在同一水平线上,求旗杆AB的高度.(结果精确到0.1m,参考数据:≈1.41,=1.73)22.(8分)如图,M,N是以AB为直径的⊙O上的点,且=,弦MN交AB于点C,BM平分∠ABD,MF⊥BD于点F.(1)求证:MF是⊙O的切线;(2)若CN=3,BN=4,求CM的长.六、解答题(本大题共10分)23.(10分)2019年在法国举办的女足世界杯,为人们奉献了一场足球盛宴.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100件.根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每个月会少售出2件,设每件商品的售价为x元,每个月的销量为y件.(1)求y与x之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?七、解答题(本大题共2道题,每题12分,共24分)24.(12分)已知,在Rt△ABC中,∠ACB=90°,D是BC边上一点,连接AD,分别以CD和AD为直角边作Rt△CDE和Rt△ADF,使∠DCE=∠ADF=90°,点E,F在BC下方,连接EF.(1)如图1,当BC=AC,CE=CD,DF=AD时,求证:①∠CAD=∠CDF,②BD=EF;(2)如图2,当BC=2AC,CE=2CD,DF=2AD时,猜想BD 和EF之间的数量关系?并说明理由.25.(12分)如图1,在平面直角坐标系中,一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于B点,抛物线y=﹣x2+bx+c经过A,B两点,在第一象限的抛物线上取一点D,过点D作DC ⊥x轴于点C,交直线AB于点E.(1)求抛物线的函数表达式(2)是否存在点D,使得△BDE和△ACE相似?若存在,请求出点D的坐标,若不存在,请说明理由;(3)如图2,F是第一象限内抛物线上的动点(不与点D重合),点G是线段AB上的动点.连接DF,FG,当四边形DEGF是平行四边形且周长最大时,请直接写出点G的坐标.2019年辽宁省锦州市中考数学试卷答案一、选择题(本大题共8道小题,每小题2分,共16分)1.【分析】直接利用相反数的定义得出答案.【解答】解:﹣2019的相反数是2019.故选:C.2.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既是中心对称图形又是轴对称图形,故本选项正确;C、是中心对称图形,不是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:B.3.【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.【解答】解:∵s甲2=0.60,s乙2=0.62,s丙2=0.58,s丁2=0.45,∴s丁2<s丙2<s甲2<s乙2,∴成绩最稳定的是丁.故选:D.4.【分析】根据同底数幂的除法的运算方法,幂的乘方与积的乘方的运算方法,合并同类项的方法,以及完全平方公式的应用,逐项判断即可.【解答】解:∵x6÷x3=x3,∴选项A不符合题意;∵(﹣x3)2=x6,∴选项B符合题意;∵4x3+3x3=7x3,∴选项C不符合题意;∵(x+y)2=x2+2xy+y2,∴选项D不符合题意.故选:B.5.【分析】利用三角形内角和定理求出∠A,再利用平行线的性质即可解决问题.【解答】解:∵∠A+∠AOB+∠B=180°,∴∠A=180°﹣105°﹣30°=45°,∵AB∥CD,∴∠C=∠A=45°,故选:A.6.【分析】由一次函数解析式分别求出点A和点B的坐标,即可作答.【解答】解:一次函数y=2x+1中,当x=0时,y=1;当y=0时,x=﹣0.5;∴A(﹣0.5,0),B(0,1)∴OA=0.5,OB=1∴△AOB的面积=0.5×1÷2=故选:A.7.【分析】分两种情形:①DA=DM.②M′A=M′D分别求解即可.【解答】解:①当AD=DM时.∵四边形ABCD是矩形,∴∠C=90°,CD=AB=3,AD=BC=4,∴BD==5,∴BM=BD=DM=5﹣4=1,∵ME⊥BC,DC⊥BC,∴ME∥CD,∴=,∴=,∴ME=.②当M′A=M′D时,易证M′E′是△BDC的中位线,∴M′E′=CD=,故选:C.8.【分析】当P、Q分别在AB、AC上运动时,y=AP×QH=(2﹣x)×tsin60°;当P、Q分别在AC、DC上运动时,同理可得:y=(x﹣2)2,即可求解.【解答】解:(1)当P、Q分别在AB、AC上运动时,∵ABCD是菱形,∠B=60°,则△ABC、△ACD为边长为2的等边三角形,过点Q作QH⊥AB于点H,y=AP×QH=(2﹣x)×xsin60°=﹣x2+x,函数最大值为,符合条件的有A、B、D;(2)当P、Q分别在AC、DC上运动时,同理可得:y=(x﹣2)2,符合条件的有B;故选:B.二、填空题(本大题共8道小题,每小题3分,共24分)9.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.10.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将2980亿元用科学记数法表示为2.98×1011元.故答案为:2.98×1011.11.【分析】根据口袋中有3个白球和若干个红球,利用红球在总数中所占比例得出与实验比例应该相等求出即可.【解答】解:设袋中红球有x个,根据题意,得:=0.7,解得:x=7,经检验:x=7是分式方程的解,所以袋中红球有7个,故答案为:7.12.【分析】根据已知条件得到∠AOB=60°,推出△AOB是等边三角形,得到OA=OB=AB=2,根据扇形的面积公式即可得到结论.【解答】解:∵正六边形ABCDEF内接于⊙O,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=2,∴扇形AOB的面积==,故答案为:.13.【分析】根据题意可以列出相应的分式方程,本题得以解决.【解答】解:由题意可得,,故答案为:.14.【分析】过A作AE⊥y轴于E过B作BF⊥y轴于F,通过△AOE ∽△BOF,得到===,设A(m,﹣),于是得到AE=﹣m,OE=﹣,从而得到B(m,),于是求得结果.【解答】解:过A作AE⊥y轴于E过B作BF⊥y轴于F,∵∠AOB=90°,∠ABC=30°,∴tan30°==,∵∠OAE+∠AOE=∠AOE+∠BOF=90°,∴∠OAE=∠BOF,∴△AOE∽△BOF,∴===,设A(m,﹣),∴AE=﹣m,OE=﹣,∴OF=AE=﹣m,BF=OE=﹣,∴B(,),∴k=m•=12.故答案为:12.15.【分析】由折叠的性质可得AM=A'M=1,可得点A'在以点M 为圆心,AM为半径的圆上,当点A'在线段MC上时,A'C有最小值,由勾股定理可求MC的长,即可求A′C的最小值.【解答】解:∵四边形ABCD是矩形∴AB=CD=3,BC=AD=2,∵M是AD边的中点,∴AM=MD=1∵将△AMN沿MN所在直线折叠,∴AM=A'M=1∴点A'在以点M为圆心,AM为半径的圆上,∴如图,当点A'在线段MC上时,A'C有最小值,∵MC==∴A′C的最小值=MC﹣MA'=﹣1故答案为:﹣116.【分析】由题意:△OO1A∽△O1O2A1∽△O2O3A2,…,∽△O nO n A n﹣1,相似比:==sin60°=,探究规律,利用﹣1规律即可解决问题.【解答】解:由题意:△OO1A∽△O1O2A1∽△O2O3A2,…,∽△O n﹣1O n A n﹣1,相似比:==sin60°=,∵S 1==×1×=,=,∴S2=S1,S3=()2•S1,…,S n=()n﹣1•S1=()n﹣1•,故答案为:()n﹣1•.三、解答题(本大题共2道题,第17题6分,第18题8分,共14分)17.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(﹣1)===﹣(a﹣1)=﹣a+1,当a=(π﹣)0+()﹣1=1+2=3时,原式=﹣3+1=﹣2.18.【分析】(1)从两个统计图中可得文学的人数为78人占调查人数的39%,可求调查人数,(2)求出“历史”的人数,再求出“科学”的人数,即可补全条形统计图,(3)样本估计总体,求出样本中“科学”占的百分比即为总体中“科学”所占比,从而可求出人数,【解答】解:(1)78÷39%=200人故答案为:200.(2)200×33%=66人,200﹣78﹣66﹣24=32人,补全条形统计图如图所示:(3)2200×=352人,答:该校2200名学生中喜欢“科学”类书的大约有352人.四、解答题(本大题共2道题,每题8分,共16分)19.【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)甲组抽到A小区的概率是,故答案为:.(2)画树状图为:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为.20.【分析】(1)设A型设备的单价是x万元,B型设备的单价是y 万元,根据“购买一套A型设备和三套B型设备共需230万元,购买三套A型设备和两套B型设备共需340万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进A型设备m套,则购进B型设备(50﹣m)套,根据总价=单价×数量结合预算资金不超过3000万元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.【解答】解:(1)设A型设备的单价是x万元,B型设备的单价是y万元,依题意,得:,解得:.答:A型设备的单价是80万元,B型设备的单价是50万元.(2)设购进A型设备m套,则购进B型设备(50﹣m)套,依题意,得:80m+50(50﹣m)≤3000,解得:m≤.∵m为整数,∴m的最大值为16.答:最多可购买A型设备16套.五、解答题(本大题共2道题,每题8分,共16分)21.【分析】过点C作CE⊥AB于点E,设BM=x,根据矩形的性质以及锐角三角函数的定义即可求出答案.【解答】解:过点C作CE⊥AB于点E,∵CD=2,tan∠CMD=,∴MD=6,设BM=x,∴BD=x+6,∵∠AMB=60°,∴∠BAM=30°,∴AB=x,已知四边形CDBE是矩形,∴BE=CD=2,CE=BD=x+6,∴AE=x﹣2,在Rt△ACE中,∵tan30°=,∴=,解得:x=3+,∴AB=x=3+3≈8.2m22.【分析】(1)根据等腰三角形的性质和角平分线的定义证得∠OMB =∠MBF,得出OM∥BF,即可证得OM⊥MF,即可证得结论;(2)由勾股定理可求AB的长,可得AO,BO,ON的长,由勾股定理可求CO的长,通过证明△ACN∽△MCB,可得,即可求CM的长.【解答】证明:(1)连接OM,∵OM=OB,∴∠OMB=∠OBM,∵BM平分∠ABD,∴∠OBM=∠MBF,∴∠OMB=∠MBF,∴OM∥BF,∵MF⊥BD,∴OM⊥MF,即∠OMF=90°,∴MF是⊙O的切线;(2)如图,连接AN,ON∵=,∴AN=BN=4∵AB是直径,=,∴∠ANB=90°,ON⊥AB∴AB==4∴AO=BO=ON=2∴OC===1∴AC=2+1,BC=2﹣1∵∠A=∠NMB,∠ANC=∠MBC∴△ACN∽△MCB∴∴AC•BC=CM•CN∴7=3•CM∴CM=六、解答题(本大题共10分)23.【分析】(1)根据月销量等于涨价前的月销量,减去涨价(x﹣60)与涨价1元每月少售出的件数2的乘积,化简可得;(2)月销售量乘以每件的利润等于利润2250,解方程即可;(3)根据题意列出二次函数解析式,由顶点式,可知何时取得最大值及最大值是多少.【解答】解:(1)由题意得,月销售量y=100﹣2(x﹣60)=220﹣2x (60≤x≤110,且x为正整数)答:y与x之间的函数关系式为y=220﹣2x.(2)由题意得:(220﹣2x)(x﹣40)=2250化简得:x2﹣150x+5525=0解得x1=65,x2=85答:当每件商品的售价定为65元或85元时,每个月的利润恰好为2250元.(3)设每个月获得利润w元,由(2)知w=(220﹣2x)(x﹣40)=﹣2x2+300x﹣8800∴w=﹣2(x﹣75)2+2450∴当x=75,即售价为75元时,月利润最大,且最大月利润为2450元.七、解答题(本大题共2道题,每题12分,共24分)24.【分析】(1)①根据同角的余角相等证明;②作FH⊥BC交BC的延长线于H,证明△ACD≌△DHF,根据全等三角形的性质得到DH=AC,结合图形证明即可;(2)作FG⊥BC交BC的延长线于G,证明△ACD∽△DGF,根据相似三角形的性质得到DG=2AC,证明结论.【解答】(1)证明:①∵∠ACB=90°,∴∠CAD+∠ADC=90°,∵∠CDF+∠ADC=90°,∴∠CAD=∠CDF;②作FH⊥BC交BC的延长线于H,则四边形FECH为矩形,∴CH=EF,在△ACD和△DHF中,,∴△ACD≌△DHF(AAS)∴DH=AC,∵AC=CB,∴DH=CB,∴DH﹣CD=CB﹣CD,即HG=BD,∴BD=EF;(2)BD=EF,理由如下:作FG⊥BC交BC的延长线于G,∵∠CAD=∠GDF,∠ACD=∠DGF=90°,∴△ACD∽△DGF,∴===2,即DG=2AC,GF=2CD,∵BC=2AC,CE=2CD,∴BC=DG,GF=CE,∴BD=CG,∵GF∥CE,GF=CE,∠G=90°,∴四边形FECG为矩形,∴CG=EF,∴BD=EF.25.【分析】(1)根据y=﹣x+3,求出A,B的坐标,再代入抛物线解析式中即可求得抛物线解析式;(2)△BDE和△ACE相似,要分两种情况进行讨论:①△BDE ∽△ACE,求得D(,3);②△DBE∽△ACE,求得D(,);(3)由DEGF是平行四边形,可得DE∥FG,DE=FG,设D(m,),E(m,),F(n,),G(n,),根据平行四边形周长公式可得:DEGF周长=﹣2+,由此可求得点G的坐标.【解答】解:(1)在y=﹣x+3中,令x=0,得y=3,令y=0,得x=4,∴A(4,0),B(0,3),将A(4,0),B(0,3)分别代入抛物线y=﹣x2+bx+c中,得:,解得:,∴抛物线的函数表达式为:y=﹣x2+x+3.(2)存在.如图1,过点B作BH⊥CD于H,设C(t,0),则D (t,),E(t,),H(t,3);∴EC=,AC=4﹣t,BH=t,DH=﹣t2+t,DE=﹣t2+4t ∵△BDE和△ACE相似,∠BED=∠AEC∴△BDE∽△ACE或△DBE∽△ACE①当△BDE∽△ACE时,∠BDE=∠ACE=90°,此时BD∥AC,可得D(,3).②当△DBE∽△ACE时,∠BDE=∠CAE∵BH⊥CD∴∠BHD=90°,∴=tan∠BDE=tan∠CAE=,即:BH•AC=CE•DH∴t(4﹣t)=()(﹣t2+t),解得:t1=0(舍),t2=4(舍),t3=,∴D(,);综上所述,点D的坐标为(,3)或(,);(3)如图2,∵四边形DEGF是平行四边形∴DE∥FG,DE=FG设D(m,),E(m,),F(n,),G (n,),则:DE=﹣m2+4m,FG=﹣n2+4n,∴﹣m2+4m=﹣n2+4n,即:(m﹣n)(m+n﹣4)=0,∵m﹣n≠0∴m+n﹣4=0,即:m+n=4过点G作GK⊥CD于K,则GK∥AC∴∠EGK=∠BAO∴=cos∠EGK=cos∠BAO=,即:GK•AB=AO•EG∴5(n﹣m)=4EG,即:EG=(n﹣m)∴DEGF周长=2(DE+EG)=2[(﹣m2+4m)+(n﹣m)]=﹣2+∵﹣2<0,∴当m=时,∴▱DEGF周长最大值=,∴G(,),当E,G互换时,结论也成立,此时G(,).。
辽宁省2019年、2020年中考数学试题分类汇编(13)——统计与概率
2019年、2020年辽宁省数学中考试题分类(13)——统计与概率一.全面调查与抽样调查(共2小题)1.(2019•朝阳)下列调查中,调查方式最适合普查(全面调查)的是()A.对全国初中学生视力情况的调查B.对2019年央视春节联欢晚会收视率的调查C.对一批飞机零部件的合格情况的调查D.对我市居民节水意识的调查2.(2019•抚顺)下列调查中,最适合采用全面调查的是()A.对全国中学生视力和用眼卫生情况的调查B.对某班学生的身高情况的调查C.对某鞋厂生产的鞋底能承受的弯折次数的调查D.对某池塘中现有鱼的数量的调查二.频数(率)分布直方图(共1小题)3.(2020•鞍山)为了解某校学生的睡眠情况,该校数学小组随机调查了部分学生一周的平均每天睡眠时间,设每名学生的平均每天睡眠时间为x时,共分为四组:A.6≤x<7,B.7≤x<8,C.8≤x<9,D.9≤x≤10,将调查结果绘制成如图两幅不完整的统计图:注:学生的平均每天睡眠时间不低于6时且不高于10时.请回答下列问题:(1)本次共调查了名学生;(2)请补全频数分布直方图;(3)求扇形统计图中C组所对应的圆心角度数;(4)若该校有1500名学生,根据抽样调查结果,请估计该校有多少名学生平均每天睡眠时间低于7时.三.扇形统计图(共2小题)4.(2020•阜新)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<904B90≤x<11015C110≤x<13018D130≤x<15012E150≤x<170mF170≤x<1905(1)本次测试随机抽取的人数是人,m=;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.5.(2020•盘锦)某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间的长短,将他们分为A,B,C,D四个组别,并绘制了如图不完整的频数分布表和扇形统计图.频数分布表组别时间/(小时)频数/人数A0≤t<0.52nB0.5≤t<120C1≤t<1.5n+10D t≥1.55请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.四.条形统计图(共4小题)6.(2020•朝阳)由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,m的值是,D对应的扇形圆心角的度数是;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.7.(2020•锦州)某中学八年级在新学学期开设了四门校本选修课程:A.轮滑;B.书法;C.舞蹈;D.围棋,要求每名学生必须选择且只能选择其中一门课程,学校随机抽查了部分八年级学生,对他们的课程选择情况进行了统计,并绘制了如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)此次共抽查了名学生;(2)请通过计算补全条形统计图;(3)若该校八年级共有900名学生,请估计选择C课程的有多少名学生.8.(2020•沈阳)某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题: (1)m = ,n = ; (2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为 度; (4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物. 9.(2020•丹东)某校为了解疫情期间学生居家学习情况,以问卷调查的形式随机调查了部分学生居家学习的主要方式(每名学生只选最主要的一种),并将调查结果绘制成如图不完整的统计图.种类 ABCDE 学习方式老师直播教学课程国家教育云平台教学课程电视台播放教学课程第三方网上课程其他根据以上信息回答下列问题:(1)参与本次问卷调查的学生共有 人,其中选择B 类型的有 人. (2)在扇形统计图中,求D 所对应的圆心角度数,并补全条形统计图.(3)该校学生人数为1250人,选择A 、B 、C 三种学习方式大约共有多少人? 五.折线统计图(共1小题)10.(2020•阜新)如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是( )A .众数是9B .中位数是8.5C .平均数是9D .方差是7六.加权平均数(共2小题)11.(2019•铁岭)某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分),规定笔试成绩占40%,面试成绩占60%.应聘者蕾蕾的笔试成绩和面试成绩分别为95分和90分,她的最终得分是( ) A .92.5分B .90分C .92分D .95分12.(2020•大连)某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A 1 10B 2 8 C75这个公司平均每人所创年利润是 万元. 七.中位数(共2小题)13.(2020•辽阳)一组数据1,8,8,4,6,4的中位数是( ) A .4B .5C .6D .814.(2019•抚顺)一组数据1,3,﹣2,3,4的中位数是( ) A .1B .﹣2C .12D .3八.众数(共9小题)15.(2020•锦州)某校足球队有16名队员,队员的年龄情况统计如下:年龄/岁13141516人数3562则这16名队员年龄的中位数和众数分别是()A.14,15B.15,15C.14.5,14D.14.5,15 16.(2020•朝阳)某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本):300,200,200,300,300,500这组数据的众数、中位数、平均数分别是()A.300,150,300B.300,200,200C.600,300,200D.300,300,30017.(2020•葫芦岛)一组数据1,4,3,1,7,5的众数是()A.1B.2C.2.5D.3.5 18.(2020•鞍山)我市某一周内每天的最高气温如下表所示:最高气温(℃)25262728天数1123则这组数据的中位数和众数分别是()A.26.5和28B.27和28C.1.5和3D.2和3 19.(2019•盘锦)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数239853这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05B.2.10,2.10C.2.05,2.10D.2.05,2.05 20.(2019•铁岭)为了建设“书香校园”,某班开展捐书活动,班长将本班44名学生捐书情况统计如下:捐书本数2345810捐书人数25122131该组数据捐书本数的众数和中位数分别为()A.5,5B.21,8C.10,4.5D.5,4.5 21.(2019•丹东)在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是()A.11B.12C.13D.14 22.(2019•朝阳)李老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损.已知这组数据的平均数为4,那么这组数据的众数与中位数分别为()A.5,4B.3,5C.4,4D.4,5 23.(2019•葫芦岛)某校女子排球队12名队员的年龄分布如下表所示:年龄(岁)13141516人数(人)1254则该校女子排球队12名队员年龄的众数、中位数分别是()A.13,14B.14,15C.15,15D.15,14九.方差(共7小题)24.(2020•盘锦)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁25.(2020•辽阳)某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s 甲2=3.6,s 乙2=4.6,s 丙2=6.3,s 丁2=7.3,则这4名同学3次数学成绩最稳定的是( ) A .甲B .乙C .丙D .丁26.(2020•朝阳)临近中考,报考体育专项的同学利用课余时间紧张地训练,甲、乙两名同学最近20次立定跳远成绩的平均值都是2.58m ,方差分别是:S 甲2=0.075,S 乙2=0.04,这两名同学成绩比较稳定的是 (填“甲”或“乙”).27.(2020•葫芦岛)甲、乙两人参加“环保知识”竞赛,经过6轮比赛,他们的平均成绩都是97分.如果甲、乙两人比赛成绩的方差分别为s 甲2=6.67,s 乙2=2.50,则这6次比赛成绩比较稳定的是 .(填“甲”或“乙”)28.(2020•沈阳)甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S 甲2=2.9,S 乙2=1.2,则两人成绩比较稳定的是 (填“甲”或“乙”).29.(2020•丹东)甲、乙两人进行飞镖比赛,每人投5次,所得平均环数相等,其中甲所得环数的方差为5,乙所得环数如下:2,3,5,7,8,那么成绩较稳定的是 (填“甲”或“乙”).30.(2020•营口)从甲、乙、丙三人中选拔一人参加职业技能大赛,经过几轮初赛选拔,他们的平均成绩都是87.9分,方差分别是S 甲2=3.83,S 乙2=2.71,S 丙2=1.52.若选取成绩稳定的一人参加比赛,你认为适合参加比赛的选手是 . 一十.统计量的选择(共1小题)31.(2019•阜新)商场经理调查了本商场某品牌女鞋一个月内不同尺码的销售量,如表:尺码/码 36 37 38 39 40 数量/双15281395商场经理最关注这组数据的( ) A .众数B .平均数C .中位数D .方差一十一.随机事件(共2小题)32.(2020•沈阳)下列事件中,是必然事件的是( ) A .从一个只有白球的盒子里摸出一个球是白球B .任意买一张电影票,座位号是3的倍数C .掷一枚质地均匀的硬币,正面向上D .汽车走过一个红绿灯路口时,前方正好是绿灯 33.(2019•盘锦)下列说法正确的是( ) A .方差越大,数据波动越小B .了解辽宁省初中生身高情况适合采用全面调查C .抛掷一枚硬币,正面向上是必然事件D .用长为3cm ,5cm ,9cm 的三条线段围成一个三角形是不可能事件 一十二.概率公式(共5小题)34.(2020•阜新)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是( ) A .1B .25C .35D .1235.(2020•大连)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( ) A .14B .13C .37D .4736.(2020•葫芦岛)一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是( ) A .16B .13C .12D .2337.(2020•丹东)四张背面完全相同的卡片,正面分别印有等腰三角形、圆、平行四边形、正六边形,现在把它们的正面向下,随机的摆放在桌面上,从中任意抽出一张,则抽到的卡片正面是中心对称图形的概率是( ) A .14B .12C .34D .138.(2020•锦州)在一个不透明的袋子中装有4个白球,a 个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为23,则a = .一十三.列表法与树状图法(共9小题)39.(2020•锦州)A ,B 两个不透明的盒子里分别装有三张卡片,其中A 盒里三张卡片上分别标有数字1,2,3,B 盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A 盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是 ;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.40.(2020•朝阳)某校准备组建“校园安全宣传队”,每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选.具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选.(1)用画树状图或列表法,写出“王老师从袋中随机摸出两个小球”可能出现的所有结果.(2)求甲同学被选中的概率.41.(2020•盘锦)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.42.(2020•葫芦岛)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.43.(2020•鞍山)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.44.(2020•沈阳)沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A 表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).45.(2020•丹东)在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是.(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是偶数的概率.46.(2020•营口)随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)李老师被分配到“洗手监督岗”的概率为;(2)用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率.47.(2020•辽阳)为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x小时,将它分为4个等级:A(0≤x<2),B(2≤x<4),C(4≤x<6),D(x≥6),并根据调查结果绘制了如图两幅不完整的统计图:请你根据统计图的信息,解决下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,等级D所对应的扇形的圆心角为°;(3)请补全条形统计图;(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.一十四.利用频率估计概率(共3小题)48.(2020•盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:身高x/cm x<160160≤x<170170≤x<180x≥180人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32B.0.55C.0.68D.0.87 49.(2020•营口)某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的186882168327823次数0.900.850.820.840.820.82“射中九环以上”的频率(结果保留两位小数)根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90B.0.82C.0.85D.0.84 50.(2019•阜新)一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为()A.12B.10C.8D.62019年、2020年辽宁省数学中考试题分类(13)——统计与概率参考答案与试题解析一.全面调查与抽样调查(共2小题)1.【解答】解:A、对全国初中学生视力情况的调查,适合用抽样调查,A不合题意;B、对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,B不合题意;C、对一批飞机零部件的合格情况的调查,适合全面调查,C符合题意;D、对我市居民节水意识的调查,适合用抽样调查,D不合题意;故选:C.2.【解答】解:A、对全国中学生视力和用眼卫生情况的调查,适合抽样调查,故此选项错误;B、对某班学生的身高情况的调查,适合全面调查,故此选项正确;C、对某鞋厂生产的鞋底能承受的弯折次数的调查,适合抽样调查,故此选项错误;D、对某池塘中现有鱼的数量的调查,适合抽样调查,故此选项错误;故选:B.二.频数(率)分布直方图(共1小题)3.【解答】解:(1)本次共调查了17÷34%=50名学生,故答案为:50;(2)C组学生有50﹣5﹣18﹣17=10(名),补全的频数分布直方图如右图所示;(3)扇形统计图中C组所对应的圆心角度数是:360°×1050=72°,即扇形统计图中C组所对应的圆心角度数是72°;(4)1500×550=150(名),答:该校有150名学生平均每天睡眠时间低于7时.三.扇形统计图(共2小题)4.【解答】解:(1)15÷25%=60(人),m=60﹣4﹣15﹣18﹣12﹣5=6;答:本次测试随机抽取的人数是60人,故答案为60,6;(2)C等级所在扇形的圆心角的度数=360°×1860=108°,(3)该校七年级学生能够达到优秀的人数为300×12+6+560=115(人).故答案为:60,6.5.【解答】解:(1)m=20÷40%=50,2n+(n+10)=50﹣20﹣5,解得,n=5,A组所占的百分比为:2×5÷50×100%=20%,C组所占的百分比为:(5+10)÷50×100%=30%,补全的扇形统计图如右图所示;(2)∵A组有2×5=10(人),B组有20人,抽查的学生一共有50人,∴所抽取的m名学生平均每天课外阅读时间的中位数落在B组;(3)1500×5+10+550=600(名),答:该校有600名学生平均每天课外阅读时间不少于1小时.四.条形统计图(共4小题)6.【解答】解:(1)20÷40%=50(名); 故答案为:50;(2)15÷50×100%=30%,即m =30;1050×360°=72°;故答案为:30,72°;(3)50﹣20﹣15﹣10=5(名);(4)2000×1050=400(名).答:该校最喜欢方式D 的学生约有400名. 7.【解答】解:(1)这次学校抽查的学生人数是40÷80360=180(名), 故答案为:180名;(2)C 项目的人数为180﹣46﹣34﹣40=60(名) 条形统计图补充为:(3)估计全校选择C课程的学生有900×60180=300(名).8.【解答】解:(1)m=8÷8%=100,n%=100−30−2−8100×100%=60%,故答案为:100,60;(2)可回收物有:100﹣30﹣2﹣8=60(吨),补全完整的条形统计图如右图所示;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为:360°×30100=108°,故答案为:108;(4)2000×60100=1200(吨),即该市2000吨垃圾中约有1200吨可回收物.9.【解答】解:(1)参与本次问卷调查的学生共有:240÷60%=400(人),其中选择B类型的有:400×10%=40(人);故答案为:400,40;(2)在扇形统计图中,D 所对应的圆心角度数为: 360°×(1﹣60%﹣10%﹣20%﹣6%)=14.4°, ∵400×20%=80(人), ∴选择C 种学习方式的有80人. ∴补全的条形统计图如下:(3)该校学生人数为1250人,选择A 、B 、C 三种学习方式大约共有: 1250×(60%+10%+20%)=1125(人).答:选择A 、B 、C 三种学习方式大约共有1125人. 五.折线统计图(共1小题)10.【解答】解:A .数据10出现的次数最多,即众数是10,故本选项错误; B .排序后的数据中,最中间的数据为9,即中位数为9,故本选项错误; C .平均数为:17(7+8+9+9+10+10+10)=9,故本选项正确;D .方差为17[(7﹣9)2+(8﹣9)2+(9﹣9)2+(9﹣9)2+(10﹣9)2+(10﹣9)2+(10﹣9)2]=87,故本选项错误; 故选:C .六.加权平均数(共2小题) 11.【解答】解:根据题意得: 95×40%+90×60%=92(分). 答:她的最终得分是92分. 故选:C .12.【解答】解:这个公司平均每人所创年利润是:110(10+2×8+7×5)=6.1(万).故答案为:6.1. 七.中位数(共2小题)13.【解答】解:一组数据1,4,4,6,8,8的中位数是4+62=5,故选:B .14.【解答】解:将这组数据从小到大排列为﹣2、1、3、3、4, 则这组数据的中位数为3, 故选:D . 八.众数(共9小题)15.【解答】解:共有16个数,最中间两个数的平均数是(14+15)÷2=14.5,则中位数是14.5;15出现了6次,出现的次数最多,则众数是15; 故选:D .16.【解答】解:众数:一组数据中出现次数最多的数据为这组数据的众数,这组数据中300出现了3次,次数最多,所以众数是300;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,6个数据按顺序排列之后,处于中间的数据是300,300,所以中位数是300+3002=300;平均数是x =16(200+200+300+300+300+500)=300, 故选:D .17.【解答】解:本题中数据1出现了2次,出现的次数最多,所以本组数据的众数是1. 故选:A .18.【解答】解:共7天,中位数应该是排序后的第4天, 则中位数为:27, 28℃的有3天,最多, 所以众数为:28. 故选:B .19.【解答】解:由表可知,2.05出现次数最多,所以众数为2.05; 由于一共调查了30人,所以中位数为排序后的第15人和第16人的平均数,即:2.10. 故选:C .20.【解答】解:由表可知,5出现次数最多,所以众数为5; 由于一共调查了44人,所以中位数为排序后的第22和第23个数的平均数,即:5. 故选:A .21.【解答】解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是4. 所以这5个数据分别是x ,y ,2,4,4,且x <y <2,当这5个数的和最大时,整数x ,y 取最大值,此时x =0,y =1, 所以这组数据可能的最大的和是0+1+2+4+4=11. 故选:A .22.【解答】解:设被污损的数据为x , 则4+x +2+5+5+4+3=4×7, 解得x =5,∴这组数据中出现次数最多的是5,即众数为5篇/周, 将这7个数据从小到大排列为2、3、4、4、5、5、5, ∴这组数据的中位数为4篇/周, 故选:A .23.【解答】解:∵这组数据中15出现5次,次数最多, ∴众数为15岁,中位数是第6、7个数据的平均数, ∴中位数为15+152=15岁,故选:C .九.方差(共7小题)24.【解答】解:∵四人的平均成绩相同,而观察图形可知,乙和丙的波动较大, ∴应在丁和甲中做出选择. ∵丁有两次成绩恰好为平均成绩,∴丁比甲稳定.故选:D .25.【解答】解:∵s 甲2=3.6,s 乙2=4.6,s 丙2=6.3,s 丁2=7.3,且平均数相等, ∴s 甲2<s 乙2<s 丙2<s 丁2,∴这4名同学3次数学成绩最稳定的是甲, 故选:A .26.【解答】解:∵S 甲2=0.075,S 乙2=0.04 ∴S 甲2>S 乙2∴乙的波动比较小,乙比较稳定 故答案为:乙.27.【解答】解:∵s 甲2=6.67,s 乙2=2.50, ∴s 甲2>s 乙2,∴这6次比赛成绩比较稳定的是乙, 故答案为:乙.28.【解答】解:∵x 甲=7=x 乙,S 甲2=2.9,S 乙2=1.2, ∴S 甲2>S 乙2, ∴乙的成绩比较稳定, 故答案为:乙. 29.【解答】解:∵x 乙=2+3+5+7+85=5,∴S 乙2=15×[(2﹣5)2+(3﹣5)2+(5﹣5)2+(7﹣5)2+(8﹣5)2]=265, ∵S 甲2=5<S 乙2,∴成绩较稳定的是甲, 故答案为:甲.30.【解答】解:∵平均成绩都是87.9分,S 甲2=3.83,S 乙2=2.71,S 丙2=1.52, ∴S 丙2<S 乙2<S 甲2, ∴丙选手的成绩更加稳定, ∴适合参加比赛的选手是丙, 故答案为:丙.一十.统计量的选择(共1小题)31.【解答】解:对这个商场的经理来说,最关注的是哪一型号的卖得最多,即是这组数据故选:A .一十一.随机事件(共2小题)32.【解答】解:A 、从一个只有白球的盒子里摸出一个球是白球,是必然事件; B 、任意买一张电影票,座位号是3的倍数,是随机事件; C 、掷一枚质地均匀的硬币,正面向上,是随机事件;D 、汽车走过一个红绿灯路口时,前方正好是绿灯,是随机事件; 故选:A .33.【解答】解:A 、方差越大,数据波动越大,故本选项错误; B 、了解辽宁省初中生身高情况适合采用抽样调查,故本选项错误; C 、抛掷一枚硬币,正面向上是不确定事件,故本选项错误;D 、用长为3cm ,5cm ,9cm 的三条线段围成一个三角形是不可能事件,故本选项正确; 故选:D .一十二.概率公式(共5小题)34.【解答】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同, ∴再次掷出这枚硬币,正面朝下的概率是12.故选:D .35.【解答】解:根据题意可得:袋子中有3个白球,4个红球,共7个, 从袋子中随机摸出一个球,它是红球的概率47.故选:D .36.【解答】解:根据题意可得:袋中有4个红球、2个白球,共6个, 从袋子中随机摸出1个球,则摸到红球的概率是46=23.故选:D .37.【解答】解:∵从这4张卡片中任意抽取一张共有4种等可能结果,其中抽到的卡片正面是中心对称图形的是圆、平行四边形、正六边形这3种结果, ∴抽到的卡片正面是中心对称图形的概率是34,故选:C .38.【解答】解:根据题意,得:aa+4=23,。
2019年辽宁省锦州市中考数学模拟试卷及答案
2019年辽宁省锦州市中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共8小题,共16分)1.下列各数是无理数的是()C. 0.010010001D. πA. −2B. 2272.如图是由4个大小相同的正方体组合而成的几何体,其左视图是()A. B. C. D.3.若一元二次方程x2+2x+m=0没有实数根,则m的取值范围是()B. m>1C. m≤1D. m<1A. m≤124.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的鞋销售量如下表:尺码/厘米2222.52323.52424.525销售量/双12511731鞋店老板比较关注哪种尺码的鞋最畅销,也就是关注卖出鞋的尺码组成一组数据的()A. 平均数B. 中位数C. 众数D. 方差5.如图,AB//CD,BD=CD,若∠C=40∘,则∠ABD的度数为()A. 40∘B. 60∘C. 80∘D. 120∘6.下列运算正确的是A. a4+a5=a9B. 2a4×3a5=6a9C. a3·a3·a3=3a3D. (−a3)4=a77.如图,已知AB、AD是⊙O的弦,∠B=30∘,点C在弦AB上,连接CO并延长CO交于⊙O于点D,∠D=20∘,则∠BAD的度数是()A. 30∘B. 40∘C. 50∘D. 60∘8.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A. B.C. D.二、填空题(本大题共8小题,共24分)9.因式分解:8a3−2ab2=______.10.实数16800000用科学记数法表示为______.11.掷一枚质地不均匀的骰子,做了大量的重复试验,发现“朝上一面为6点”出现的频率越来越稳定于0.4.那么,掷一次该骰子,“朝上一面为6点”的概率为__________12.在平面直角坐标系中,△ABC顶点B的坐标为(−2,1),若以原点O为位似中心,画△ABC的位似图形△A′B′C′,使△ABC与△A′B′C′的相似比等于1,则点B′的坐标为______ .213.如图,一次函数y1=−2x+m与y2=ax+6的图象相交于点P(−2,3),则关于x的不等式m−2x<ax+6的解集是______14.如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140∘,则∠OED=______.15.如图,矩形OABC的顶点A,C分别在x轴,y轴上,顶点B在第一象限,AB=1,将线段OA绕点O按逆时针方向旋转60∘得到线段OP,连接AP,反比例函数y=k(k≠0)的图象经过P,B两点,则k的值为______.x16.如图,点C是线段AB上的一点,分别以AC、BC为边在AB的同侧作正方形ACDE和正方形CBFG,连接EG、BG、BE,当BC=1时,△BEG的面积记为S1,当BC=2时,△BEG的面积记为S2,……,以此类推,当BC=n时,△BEG的面积记为S n,则S2018−S2017的值为______.三、计算题(本大题共2小题,共15分)17.先化简,再求值:(2x+1−2x−3x2−1)÷1x+1,其中x=2.18.我县“果菜大王”王大炮收货番茄20吨,青椒12吨.现计划租用甲、乙两种货车共8辆将这批果菜全部运往外地销售,已知一辆甲种货车可装番茄4吨和青椒1吨,一辆乙种货车可装番茄和青椒各2吨.(1)王灿有几种方案安排甲、乙两种货车可一次性地将果菜运到销售地?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王大炮应选择哪种方案,使运输费最少?最少运费是多少?四、解答题(本大题共7小题,共65分)19.在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时)频数(人)频率1≤x<2180.122≤x<3a m3≤x<4450.34≤x<536n5≤x<6210.14合计b1(1)填空:a=______ ,b=______ ,m=______ ,n=______ ;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.20.将分别标有数字1,1,2,3的四张卡片洗匀后,背面朝上放在桌面上(1)任意抽取一张卡片,求抽到卡片上的数字是奇数的概率;(2)任意抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,请你列表或画树状图分析并求出组成的两位数中恰好是13的概率.21.如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者,在消防车上点A处测得点B和点C的仰角分别为45∘和65∘,点A距地面2.5米,点B距地面10.5米,为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数,参考数据:tan65∘≈2.1,sin65∘≈0.9,cos65∘≈0.4,√2≈1.4)22.如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ//AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC⋅BQ;(3)若AC、BQ的长是关于x的方程x+4x =m的两实根,且tan∠PCD=13,求⊙O的半径.23.某商场购进一批单价为16元的日用品,销售一段时间后,经调查发现,每月销售数量y(件)与售出价格x(元/件)满足关系y=−30x+960.(1)若某月卖出该日用品210件,求商品售出价格为每件多少元?(2)为了获得最大的利润,商品售出价格应定为每件多少元?此时的最大利润是多少元?24.已知正方形ABCD,点E在直线AD上(不与点A、D重合),连接BE,做EF⊥BE,且EF=BE,过点F作FG⊥BC,交直线BC于点G.(1)当点E在边AD上,点G在边BC的延长线上时,如图1,求证:AB+AE=BG;(2)当点E在边DA的延长线上,点G在边BC上时,如图2,试猜想AB、AE与BG的关系,并加以证明;(3)当点E在边AD的延长线上,点G在边BC上时,如图3,请直接写出线段AB,AE,BG之间的数量关系,不需要证明.25.如图,抛物线y=−12x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=−12x+2经过点A,C(1)求抛物线的解析式;(2)点P为直线AC上方抛物线上一动点.①连接PO,交AC于点E,求PEEO的最大值;②过点P作PF⊥AC,垂足为点F连接PC,是否存在点P,使△PFC中的一个角等于∠CAB的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.2019年辽宁省锦州市中考数学模拟试卷参考答案1. D2. A3. B4. C5. C6. B7. C8. C9. 2a(2a +b)(2a −b)10. 1.68×10711. 0.412. (−4,2)或(4,−2)13. x >−214. 20∘15. 4√33 16. 2017.517. 解:原式=[2x−2(x+1)(x−1)−2x−3(x+1)(x−1)]⋅(x +1)=1(x +1)(x −1)⋅(x +1) =1x−1,当x =2时,原式=12−1=1. 18. 解:(1)设安排甲种货车x 辆,则安排乙种货车(8−x)辆,依题意得:{4x +2(8−x)≥20x +2(8−x)≥12, 解得:2≤x ≤4,∵x 是正整数,∴x 可取的值为2,3,4.2 040元; 方案二所需运费为300×3+240×5=2 100元; 方案三所需运费为300×4+240×4=2 160元.答:王大炮应选择方案一运费最少,最少运费是2040元. 19. 30;150;0.2;0.2420. 解:(1)P(抽到奇数)=34. 3 131323所以组成的两位数恰好是13的概率为P=212=16.解法二:树状图所以组成的两位数是13的概率为P=212=16.21. 解:如图作AH⊥CN于H.在Rt△ABH中,∵∠BAH=45∘,BH=10.5−2.5=8(m),∴AH=BH=8(m),在Rt△AHC中,tan65∘=CHAH,∴CH=8×2.1≈17(m),∴BC=CH−BH=17−8=9(m),22. (1)证明:∵PQ//AB,∴∠ABD=∠BDQ=∠ACD,∵∠ACD=∠BCD,∴∠BDQ=∠ACD,如图1,连接OB,OD,交AB于E,则∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,在△OBD中,∠OBD+∠ODB+∠O=180∘,∴2∠ODB+2∠O=180∘,∴∠ODB+∠O=90∘,∴PQ是⊙O的切线;(2)证明:如图2,连接AD,由(1)知PQ是⊙O的切线,∴∠BDQ=∠DCB=∠ACD=∠BCD=∠BAD,∴AD=BD,∵∠DBQ=∠ACD,∴△BDQ∽△ACD,∴ADBQ =ACBD,∴BD2=AC⋅BQ;(3)解:方程x+4x=m可化为x2−mx+4=0,∵AC、BQ的长是关于x的方程x+4x=m的两实根,∴AC⋅BQ=4,由(2)得BD2=AC⋅BQ,∴BD2=4,∴BD=2,由(1)知PQ是⊙O的切线,∴OD⊥PQ,∵PQ//AB,∴OD⊥AB,由(1)得∠PCD=∠ABD,∵tan∠PCD=13,∴tan∠ABD=13,∴BE=3DE,∴DE2+(3DE)2=BD2=4,∴DE=2√105,∴BE=6√105,设OB=OD=R,∴OE=R−2√105,∵OB 2=OE 2+BE 2,∴R 2=(R −2√105)2+(6√105)2,解得:R =2√10,∴⊙O 的半径为2√10.23. 解:(1)∵某月卖出该日用品210件∴210=−30x +960,∴x =25,∴商品售出价格为每件25元.(2)设利润为W 元W =(x −16)(−30x +960),=30(−x +32)(x −16)=30(−x 2+48x −512)=−30(x −24)2+1920,∵a =−30<0,∴当x =24时,P 有最大值,最大值为1920.∴为了获得最大的利润,商品售出价格应定为每件24元. 24. (1)证明:延长AD 交GF 的延长线于M ,∵四边形ABCD 是正方形,∴∠A =90∘,∠ABC =90∘,又FG ⊥BC ,∴四边形ABGM 是矩形,∴AM =BG ,∵∠A =90∘,EF ⊥BE ,∠M =90∘,∴∠AEB =∠MFE ,在△ABE 和△MEF 中,{∠A =∠M ∠AEB =∠MFE EB =EF,∴△ABE≌△MEF(AAS),∴AB =EM ,∵AM =AE +EM =AE +AB ,∴AB +AE =BG ;(2)AB −AE =BG .证明:∵∠FEH +∠BEA =90∘,∠BEA +∠ABE =90∘, ∴∠FEH =∠ABE ,在△ABE 和△HEF 中,{∠BAE =∠EHF ∠ABE =∠HEF EB =EF,∴△ABE≌△HEF(AAS),∴EH =AB ,EH −AE═AB −AE =AH ,∵四边形ABGH是矩形,∴AH=BG,∴AB−AE=BG;(3)AE=AB+BG.证明:由(2)得,△ABE≌△NEF,∴NE=AB,∵AN+NE=AN+AB=AE,BG=AN,∴AE=AB+BG.25. 解:(1)当x=0时,y=2,即C(0,2),当y=0时,x=4,即A(4,0),将A,C点坐标代入函数解析式,得{−12×42+4b+c=0c=2,解得{b=32c=2,抛物线的解析是为y=−12x2+32x+2;(2)过点P向x轴做垂线,交直线AC于点M,交x轴于点N,∵直线PN//y轴,∴△PEM~△OEC,∴PEOE=PMOC把x=0代入y=−12x+2,得y=2,即OC=2,设点P(x,−12x2+32x+2),则点M(x,−12x+2),∴PM=(−12x2+32x+2)−(−12x+2)=−12x2+2x=−12(x−2)2+2,∴PEOE =PMOC=−12(x−2)2+22,∵0<x<4,∴当x=2时,PEOE =PMOC=−12(x−2)2+22有最大值1.②∵A(4,0),B(−1,0),C(0,2),∴AC=2√5,BC=√5,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB为直角的直角三角形,取AB的中点D,∴D(32,0),∴DA=DC=DB=52,∴∠CDO=2∠BAC,∴tan∠CDO=tan(2∠BAC)=43,过P作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图,∴∠PCF=2∠BAC=∠PGC+∠CPG,∴∠CPG=∠BAC,∴tan∠CPG=tan∠BAC=12,即RCRP =12,令P(a,−12a2+32a+2),∴PR=a,RC=−12a2+32a,∴−12a2+32aa=12,∴a1=0(舍去),a2=2,∴x P=2,−12a2+32a+2=3,P(2,3)情况二,∴∠FPC=2∠BAC,∴tan∠FPC=43,设FC=4k,∴PF=3k,PC=5k,∵tan∠PGC=3kFG =12,∴FG=6k,∴CG=2k,PG=3√5k,∴RC=2√55k,RG=4√55k,PR=3√5k−4√55k=11√55k,∴PRRC =11√55k2√55k=a−12a2+32a,∴a1=0(舍去),a2=2911,x P=2911,−12a2+32a+2=300121,即P(2911,300121),综上所述:P点坐标是(2,3)或(2911,300 121).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B C D 2019年辽宁省锦州市中考数学试题
一、选择题(每小题3分,共24分)
4.不等式组⎩⎨⎧8-3x ≥-1
x -1>0
的解集是( )
A .x ≤3
B .1<x ≤3
C .x ≥3
D .x >1 5.下列图形中,既是轴对称图形,又是中心对称图形的是( )
6.如图,∠BDC =98°,∠C =38°,∠B =23°,则∠A =( )
A .61°
B .60°
C .37°
D .39°
7.如图是由四个全等的直角三角形围成的,若两条直角边分别为3和4,则向图中随机抛掷一枚飞镖,飞镖落在阴影区域的概率(不考虑落在线上的情形)是( A .
3 5 B .
4
5 C .
16 25 D . 25
49
8.如图,在△ABC 中,AB =AC ,M 、N 分别是AB 、AC 的中点,D 、E 为BC 上的点,连接DN 、EM ,若AB =5cm ,BC =8cm ,DE =4cm ,则图中阴影部分的面积为( ) A .1cm 2 B .1.5cm 2 22
17.(8分)先化简2142
x x ÷--+,再任选一个你喜欢的数代入求值.
18.(8分)△ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单
位长度.
(1)将△ABC 向右移平2个单位长度,作出平移后的△A 1B 1C 1,并写出△A 1B 1C 1各顶点的坐标;
(2)若将△ABC 绕点(-1,0)顺时针旋转180°后得到△A 2B 2C 2,并写出△A 2B 2C 2各顶点的坐标;
(3)观察△A 1B 1C 1和△A 2B 2C 2,它们是否关于某点成中心对称?若是,请写出对称中心的坐标;若不是,说明理由.
19.(10分)某校开展以“庆国庆60周年”为主题的艺术活动,举办了四个项目的比赛.它
们分别是:A 演讲、B
唱歌、C 书法、D 绘画.要求每位同学必须参加且限报一项.以九年(一)班为样本进行统计,并将统计结果绘制如下两幅统计图,请你结合图9中所给出的信息解答下列问题:
(1)求出参加绘画比赛的学生人数占全班总人数的百分比;
(2)求出扇形统计图中参加书法比赛的学生所在的扇形圆心角的度数;
(3)若该校九年级学生共有500人,请你估计这次活动中参加演讲和唱歌的学生共有多少人?
5
20.(10分)为了加快城市经济发展,某市准备修建一座横跨南北的大桥.如图10所示,测
量队在点A 处观测河对岸水边有一点C ,测得C 在北偏东60°的方向上,沿河岸向东前行30米到达B 处,测得C 在北偏东45°的方向上,请你根据以上数据帮助该测量队计算出这条河的宽度(结果保留根号).
21.(10分)小刚和小明玩“石头”、“剪子”、“布”的游戏,游戏的规则为:“石头”
胜“剪子”,“剪子”胜“布”,“布”胜“石头”,若两人所出手势相同,则为平局. (1)玩一次小刚出“石头”的概率是多少?
(2)玩一次小刚胜小明的概率是多少?请加以说明.
东
B 22.(10分)根据规划设计,某市工程队准备在开发区修建一条长300米的盲道.铺设了60
米后,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加10米,结果共用了8天完成任务,该工程队改进技术后每天铺设盲道多少米?
23.(10分)如图,AB 为⊙O 的直径,AD 平分∠BAC 交⊙O 于点D ,DE ⊥AC 交AC 的延长
线于点E ,FB 是⊙O 的切线交AD 的延长线于点F .
(1)求证:DE 是⊙O 的切线;
(2)若DE =3,⊙O 的半径为5,求BF 的长.
24.(10分)某商场购进一批单价为50元的商品,规定销售时单价不低于进价,每件的利润
不超过40%.其中销售量y (件)与所售单价x (元)的关系可以近似的看作如图所表示的一次函数.
(1)求y 与x 之间的函数关系式,并求出x 的取值范围;
(2)设该公司获得的总利润(总利润=总销售额-总成本)为w 元,求w 与x 之间的函数关系式.当销售单价为何值时,所获利润最大?最大利润是多少?
25.(12分)如图,直角梯形ABCD 和正方形EFGC 的边BC 、CG 在同一条直线上,AD ∥BC ,
AB ⊥BC 于点B ,AD =4,AB =6,BC =8,直角梯形ABCD 的面积与正方形EFGC 的面积相等,将直角梯形ABCD 沿BG 向右平行移动,当点C 与点G 重合时停止移动.设梯形与正方形重叠部分的面积为S . (1)求正方形的边长;
(2)设直角梯形ABCD 的顶点C 向右移动的距离为x ,求S 与x 的函数关系式; (3)当直角梯形ABCD 向右移动时,它与正方形EFGC 的
重叠部分面积S ,能否等于直角梯形ABCD 面积的一半?若能,请求出此时运动的距离x 的值;若不能,请说明理由.
26.(14分)如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点
C (0,4),其中x 1、x 2是方程x 2-2x -8=0的两个根. (1)求这条抛物线的解析式;
(2)点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标;
(3)探究:若点Q 是抛物线对称轴上的点,是否存在这样的点Q ,使△QBC 成为等腰三
A B C G F
E D
角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.。