数学建模作业练习

合集下载

数学建模作业及答案

数学建模作业及答案

数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。

数学建模作业题+答案

数学建模作业题+答案

数学建模MATLAB 语言及应用上机作业11. 在matlab 中建立一个矩阵135792468101234501234A ⎡⎤⎢⎥⎢⎥=⎢⎥-----⎢⎥⎣⎦答案:A = [1,3,5,7,9;2,4,6,8,10;-1,-2,-3,-4,-5;0,1,2,3,4]2. 试着利用matlab 求解出下列方程的解(线性代数22页例14)123412423412342583692254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩ 答案:A=[2 ,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6]; B=[8;9;-5;0]; X=A\B 或A=[2,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6] b=[8,9,-5,0]' X=inv(A)*b3. 生成一个5阶服从标准正态分布的随机方阵,并计算出其行列式的值,逆矩阵以及转置矩阵。

答案:A=randn(5) det(A) inv(A) A'4. 利用matlab 求解出110430002A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的特征值和特征向量。

答案:A=[-1,1,0;-4,3,0;0,0,2] [V,D]=eig(A)5.画出衰减振荡曲线3sin3t y et -=在[0,4]π上的图像。

要求,画线颜色调整为黑色,画布底面为白色。

(在实际中,很多打印机时黑白的,因此大多数作图要考虑黑白打印机的效果。

) 给出恰当的x ,y 坐标轴标题,图像x 轴的最大值为4π。

6. 生成一个0-1分布的具有10个元素的随机向量,试着编写程序挑选出向量中大于0.5的元素。

数学建模和Matlab 上机作业2(2016-9-20)跟老师做(不用整合进作业中):上机演示讲解:函数,递归的两个例子的写法。

附:1. Fibonacci Sequence (斐波那契数列)在数学上,费波那西数列是以递归的方法来定义: F1= 1;F2= 1;F (n )=F (n-1)+F (n-2) 2. 阶乘举例:数学描述:n!=1×2×……×n ;计算机描述:n!=n*(n-1)!自己做(需要整合进作业中,提交到系统中):1. 写一个m 文件完成分值百分制到5分制的转换(即输入一个百分制,转换后输出一个5级对应的得分,联系条件控制语句)。

数学建模作业(1)

数学建模作业(1)

数学建模作业(1)
数模
数模
1.学校共学校共1000名学生,235人住在宿名学生,人住在A宿名学生人住在人住B宿舍人住在C宿舍舍,333人住宿舍,432人住在宿舍人住宿舍,人住在宿舍.学生们要组织一个10人的委员会人的委员会,学生们要组织一个人的委员会,试用下列办法分配各宿舍的委员数:列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名按比例分配取整数的名额后,按比例分配取整数的名额后额按惯例分给小数部分较大者。

额按惯例分给小数部分较大者。

(2)用Q值方法。

值方法。

用值方法
数模
如果委员会从10人增至人如果委员会从人增至15人,用以上人增至2种方法再分配名额。

将2种方法两次分配种方法再分配名额。

种方法再分配名额种方法两次分配的结果列表比较。

的结果列表比较。

(3)你能提出其它的方法吗?用你的方你能提出其它的方法吗?你能提出其它的方法吗法分配上面的名额。

法分配上面的名额。

数模
2.考察模拟水下爆炸的比例模型.爆炸物质量m,在距爆炸点距离r处设置仪器,接收到的冲击波压强为p,记大气初始压强p0,水的密度ρ,水的体积弹性模量k,用量纲分析法已经得到
p0ρrp=p0(,)km3
数模
设模拟实验与现场的p0,ρ,k相同,而爆炸物模型的质量为原模型的1/1000.为了使实验中接收到与现场相同的压强p,问实验时应如何设置接收冲击波的仪器,即求实验仪器与爆炸点之间的距离是现场的多少倍?
p0,ρ,k。

数学建模小作业例题

数学建模小作业例题

数学建模小作业例题1. 在冷却过程中,物体的温度在任何时刻变化的速率大致正比于它的温度与周围介质温度之差,这一结论称为牛顿冷却定律,该定律同样用于加热过程。

一个煮硬了的鸡蛋有98℃,将它放在18℃的水池里,5分钟后,鸡蛋的温度为38℃,假定没有感到水变热,问鸡蛋达到20℃,还需多长时间?解:题意没有感到水变热,即池水中水温不变。

设:鸡蛋的温度为T,温度变化率就是dT/dt 其中t为时间,水的温度为T1,则鸡蛋与水温差为T-T1由题意有:T- T1=kdT/dt (其中k为比例常数) (1)方程(1)化为:dt=kdT/(T- T1)(2)对(2)两边同时积分之后并整理一下就得到:t=k*ln(T- T1)+C则k*ln(98-18)+ C=05=k*ln(38-18)+ct1=k*ln(20-18)+c-[k*ln(38-18)+c]=8.3(min)所以,还需8.3(min)。

2. 报童每天清晨从报社购进报纸零售,晚上将没有卖完的报纸退回。

设每份报纸的购进价为,零售价为,退回价为,应该自然地假设。

这就是说,报童售出一份报纸赚,退回一份报纸赔。

报童如果每天购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱。

请你为报童筹划一下,他应该如何确定每天购进报纸的数量,以获得最大的收入。

解:设:报纸具有时效性每份报纸进价b元,卖出价a元,卖不完退回份报纸c元。

设每日的订购量为n,如果订购的多了,报纸剩下会造成浪费,甚至陪钱。

订的少了,报纸不够卖,又会少赚钱。

为了获得最大效益,现在要确定最优订购量n。

n的意义。

n是每天购进报纸的数量,确定n一方面可以使报童长期以内拥有一个稳定的收入,另一方面也可以让报社确定每日的印刷量,避免纸张浪费。

所以,笔者认为n的意义是双重的。

本题就是让我们根据a、b、c及r来确定每日进购数n。

基本假设1、假设报童现在要与报社签定一个长期的订购合同,所以要确定每日的订购量n。

数学建模作业答案

数学建模作业答案

习题1第4题(1)(i )拟合得r=0.021194,误差平方和等于17418;(ii )拟合得0x =14.994,r=0.014223,误差平方和等于2263.9;(iii )拟合得0t =1743.6,0x =7.7507,r=0.014223,误差平方和等于2263.9,但是MA TLAB 给出警告信息,指出存在病态条件,参数未必能拟合得好,综上所述,(ii )是本问题的最佳拟合方案。

(2)对指数增长模型0()0()r t t x t x e -=两边求对数得00ln ()()ln x t r t t x =-+固定0t =1790,引进变量替换ln ()Y x t =,0X t t =-,1r β=,00ln x β=,则转化为一次多项式10Y X ββ=+,然后用MALAB 函数polyfit 拟合0β,1β,进而得到0x =6.045,r=0.020219,误差平方和等于34892.(3)指数增长模型线性化拟合得误差平方和比非线性拟合大得多。

用MALAB 函数plot 绘制拟合误差比较图可以发现:非线性拟合的误差比较比较均匀,线性化拟合的误差却随着人口的增加越来越大,原因是因为对于x(t)数值越大的数据,ln ()Y x t =由于求对数带来的损失越大,以至于线性化拟合得误差越大。

(4)(i )拟合得r=0.027353,N=342.44,误差平方和等于1224.9;(ii)拟合得0x =7.6981,r=0.021547,N=446.57,误差平方和等于457.74;(iii )拟合得0t =1771.3,0x =5.1752,r=0.021547,N=446.57,误差平方和等于457.74,但MALAB 给出警告信息,指出存在病态条件,参数未必能拟合得好。

综上所述,(ii )是本问题的最佳拟合方案。

习题2第1题“两秒准则”表明前后车距D 与车速v 成正比例关系2D K v =,其中2K =2s 。

数学建模作业及答案

数学建模作业及答案

数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。

数学建模练习题作业

数学建模练习题作业

1、马青公式 π=16arctan1/5-4arctan1/239 这个公式由英国天文学教授约翰·马青于 1706 年发现。他利用这个公式计
算到了 100 位的圆周率。马青公式每计算一项可以得到 1.4 位的十进制精度。因 为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机 上编程实现。
练习题 6:兄弟三人戴帽子问题 解放前,在一个村子里住着聪明的三兄弟,他们除恶杀了财主的儿子,犯了人命案。县太爷有意想免他们
一死,决意出一个难题测测他们是否真的聪明,如果他们能在一个时辰内回答出来,就免他们一死,否则就被 处死。题目如下:
兄弟三人站成一路纵队(老三选择了站在最前面,他后面是老二,老大站在了最后面 ),并分别被蒙住了眼 睛,县太爷说我这里有两顶黑帽子和三顶红帽子,接着分别给他们头上各带了一顶帽子,然后又分别把被蒙住 的眼睛解开。
还有很多类似于马青公式的反正切公式。在所有这些公式中,马青公式似乎是 最快的了。虽然如此,如果要计算更多的位数,比如几千万位,马青公式就力不 从心了。
2、拉马努金公式 1914 年,印度天才数学家拉马努金在他的论文里发表了一系列共 14 条圆周
率的计算公式。这个公式每计算一项可以得到 8 位的十进制精度。1985 年 Gosper 用这个公式计算到了圆周率的 17,500,000 位。
此时,老大只可以看见老三和老二头上的帽子,老二只可以看见老三头上的帽子,老三看不见帽子。 只有一个时辰的时间,看谁能说出自己头上帽子的颜色,第一句声音有效。现在开始! (县太爷有多少种带帽子的方案,那一种最难?你能回答吗?)
解答:
县太爷一共有 7 种戴帽子方案:
1 黑黑红 2 黑红黑 3 黑红红 4 红红红 5 红红黑 6 红黑红 7 红黑黑

数学建模样题及答案

数学建模样题及答案

数学建模作业一学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。

学生们要组织一个10人的委员会,试用下列方法分配各宿舍的委员数:(1) 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大的。

(2) Q 值方法:m 方席位分配方案:设第i 方人数为i p ,已经占有i n 个席位,i=1,2,…,m .当总席位增加1席时,计算2(1)i i i i p Q n n =+,i=1,2,…,m 把这一席分给Q 值大的一方。

(3) d ’Hondt 方法:将A ,B ,C 各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。

(试解释其道理。

)(4) 试提出其他的方法。

数学建模作业二假定人口的增长服从这样的规律:时刻t 的人口为)(t x ,t 到t+ t 时间内人口的增长与m x -)(t x 成正比例(其中m x 为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较。

解:=r(x m -x),r 为比例系数,x(0)=x 0 解为:x(t)= x m -( x m - x 0),如下图粗线,当t →∞时,它与Logistic 模型相似。

数学建模作业三一容器内盛入盐水100L,含盐50g .然后将含有2g/L的盐水流如容器内,流量为3L/min.设流入盐水与原盐水搅拌而成均匀的混合物。

同时,此混合物又以2L/min的流量流出,试求在30min时,容器内所含的盐量。

若以同样流量放进的是淡水,则30min时,容器内还剩下多少盐?要求写出分析过程。

解:设x(t)为t时刻容器内剩余的盐的质量①x(t)=2(100+t)-1.5(100+t)-2X(t=30)=171.24② x(t)=(100+t)-2 X(t=30)=29.59数学建模作业四商业集团公司在123,,A A A 三地设有仓库,它们分别库存40,20,40个单位质量的货物,而其零售商店分布在地区,1,,5i B i ,它们需要的货物量分别是25,10,20,30,15个单位质量。

数学建模作业题1

数学建模作业题1

数学建模作业题目:某养鸡专业户,养鸡1000只,用大豆和谷物饲料混合喂养,每天每只鸡平均吃混合饲料0.5公斤,其中应至少含有0.1公斤蛋白质和0.002公斤的钙,已知每公斤大豆含有50%的蛋白质和0.5%的钙,价格是每公斤1元;每公斤谷物含有10%的蛋白质和0.4%的钙,价格是每公斤0.3元。

食粮部门每周只能供应谷物饲料2500公斤,而大豆供应量不限。

试确定搭配大豆和谷物的数量,使喂养鸡的成本最少。

解: 设每周需要供应大豆和谷物各为21,x x 公斤,而喂养成本是y 元.则213.0x x y +=由题设条件可得混合饲料约束、蛋白质约束、钙约束、谷物供应约束分别为:混合饲料约束:5.01000721⨯⨯≥+x x ,即350021≥+x x ; 蛋白质约束:1.010007%10%5021⨯⨯≥+x x ,即7000521≥+x x ; 钙约束:002.010007%4.0%5.021⨯⨯≥+x x ,即140004521≥+x x ; 谷物供应约束:25002≤x .又当0,21≥x x 时,由350021≥+x x 可推出140004521≥+x x . 于是得到喂养成本最少的线性规划模型为:min 213.0x x y +=⎪⎪⎩⎪⎪⎨⎧≥≤≥+≥+0,2500700053500..2122121x x x x x x x t s用图解法进行求解可行域为:由直线1l :350021=+x x , 2l :25002=x 及02=x 组成的第一象限的无界区域.直线l :c x x =+213.0在此 l 1l2l无界区域内平行移动.易知:当l 过1l 与2l的交点时,y 取最大值.由⎩⎨⎧==+25003500221x x x 解得 ⎩⎨⎧==2500100021x x min y =175025003.01000=⨯+.故每周需要供应大豆1000公斤和谷物2500公斤,喂养鸡的成本将最少,其最小成本是1750元.。

数学建模作业完整版

数学建模作业完整版

数学建模作业HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】《数学建模》作业学号姓名工作量 100 %专业所属学院指导教师二〇一七年六月数学建模作业第一部分:请在以下两题中任选一题完成(20 分)。

1、(马王堆一号墓入葬年代的测定建模问题)湖南省长沙市马王堆一号墓于 1972 年 8 月发掘出土,其时测得出土的木炭标本中碳-14 平均原子蜕变数为次/分钟,而新烧成的同种木材的木炭标本中碳-14(C-14)原子蜕变数为次/分钟. 又知碳-14 的半衰期为 5730 年,试推断该一号墓入葬的大致年代。

问题分析:放射性元素衰变的速度是不受环境影响的,它总是和该元素当前的量成正比,运用碳—14测定文物或化石年代的方法是基于下面的理由:(1)宇宙射线不断轰击大气层,使大气层中产生碳—14而同时碳—14又在不断衰变,从而大气层中碳—14含量处于动态平衡中,且其含量自古至今基本上是不变的;(2)碳—14被动植物体所吸收,所以活着的生物体由于不断的新陈代谢,体内的碳—14也处于动态平衡中,其含量在物体中所占的百分比自古至今都是一样的;(3)动植物的尸体由于停止了从环境中摄取碳—14,从而其体内碳—14含量将由于衰变的不断减少,碳定年代法就是根据碳—14的减少量来判断物体的大致死亡时间。

模型建立设t 时刻生物体中碳—14的含量为x (t ),放射性物质的半衰期(即放射性物质的原子数衰减一半所需的时间)为T ,生物体死亡时间为t0,则由放射性物质衰变规律得数学模型⎪⎩⎪⎨⎧=-=,)(,00x t x x dtdx λ ① 其中0>λ称为衰变系数,由放射性物质所决定,x 0为生物体在死亡时刻t 0时的碳—14含量。

模型求解对所得的一阶线性微分方程模型①采用同变量分离法求解,得 e x t t x t )(00)(--=λ??由于T t t =-0时,有 0021)()(x T t x t x =+=??代入上式,有 T e T 2ln ,212==-λ????? 所以得 ? T t t e x t x )(2ln 00)(--= ②这就是生物体中碳—14的含量随时间衰变的规律,由之易解得 )()(ln 2ln 00t x t x T t t =- ③ 将所得的数学模型的一般解应用于本例,此时以T=5730,37.380=x (新木炭标准中碳—14原子蜕变数),X(1972)=(出土的木炭标本中碳—14原子蜕变数) 代入到③式,得 ?209578.2937.38ln 2ln 57300≈=-t t 年 于是得??1232095197220950-=-=-≈t t 年结果表明,马王堆墓入葬年代大约在公元前123年左右的西汉中期,该结论与马王堆出土文物的考证结果相一致。

数学建模作业习题

数学建模作业习题

数学建模作业习题1.4 在1.3节“椅子能在不平地面上放稳吗”的假设条件中,将四角连线呈正方形改为呈长方形,其余不变,构造模型求解。

解:在地面建立坐标系设椅子对角线ac 开始与之夹角为0度,用f (x )表示ac 腿与地面的距离和,g (x )表示bd 与之距离和,则可知f (x ),g (x )是x 的连续函数,对任意的x 有f (x )·g (x )=0,起始时f (x )=0,g (x )﹥0.现将椅子旋转180度,a ,c 和b ,d 分别互掉位置,且f (x )先增加后减小为0. g (x )先减小为0后又变为g (x )﹥0。

令h (x )= f (x )-g (x ),有以上条件可知在0与180度之间必有一个位置使得h (x 1)=0,而且f (x 1)·g (x 1)=0,所以可得f (x 1)=g (x 1)=0,可知其为长方形是亦可以放稳。

1.5 模仿1.4节商人过河问题中的状态转移模型,做下面问题:人带着猫、鸡、米过河,船除需要人划之外,最多能载猫、鸡、米之一,而当人不在场时猫吃鱼、鸡吃米,试设计一个安全渡河方案,并使渡河次数尽量最少。

解:人、猫、鸡、米分别记做i=1,2,3,4,当i 在此岸时记x i =1,否则记x i =0,则此岸的状态可用s=(x 1,x 2,x 3,x 4,)表示。

记s 的反状态为s '=(1-x 1,1-x 2,1-x 3,1-x 4),允许状态集合S={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1,),(1,0,1,0)及它们的5个反状态}。

决策为乘船方案,记作d=(u 1,u 2,u 3,u 4),当i 在船上时记做u i =1,否则记做u i =0,允许决策集合为D={(1,1,0,0),(1,0,1,0),(1,0,0,1),(1,0,0,0)}。

记第k 次渡河前此案的状态为s k ,第k 次渡河的决策为d k ,则状态转移律为s k+1=s k +(-1)∧d ·d k ,设计安全过河方案归结为求决策序列d 1,d 2,···,d n ∈D ,是状态s k ∈S 按状态转移律有初始状态s 1=(1,1,1,1,),经n 步到达s n+1=1.7 说明1.5节中Logistic 模型(9)可以表示为x(t ))(01t t r me x --+=,其中0t 是人口增长出现拐点的时刻,并说明0t 与r ,m x 的关系。

数学建模第一章作业(章绍辉)

数学建模第一章作业(章绍辉)

y
0
0.1
0.2
0.3
0.4
0.5 x
0.6
0.7
0.8
0.9
1
3. 两个人玩双骰子游戏,一个人掷骰子,另一个人打赌 掷骰子者不能掷出所需点数,输赢的规则如下:如果第一次 掷出 3 或 11 点,打赌者赢;如果第一次掷出 2、7 或 12 点, 打赌者输;如果第一次掷出 4,5,6,8,9 或 10 点,记住这个点 数, 继续掷骰子, 如果不能在掷出 7 点之前再次掷出该点数, 则打赌者赢. 请模拟双骰子游戏,要求写出算法和程序,估 计打赌者赢的概率. 你能从理论上计算出打赌者赢的精确概 率吗?请问随着试验次数的增加,这些概率收敛吗? 解答 (一)算法 输入 模拟试验的次数 n; 输出 打赌者赢的概率 p. 第 1 步 初始化计数器 k=0; 第 2 步 对 i=1,2,…,n,循环进行第 3~7 步; 第 3 步 产生两个在 1~6 这 6 个整数中机会均等地取 值的随机数, 并把这两个随机数之和赋值给 x; 第 4 步 如果 x 是 3 或 11,那么 k 加 1,进入下一步循 环;否则,做第 5 步; 第 5 步 如果 x 不是 2、7 和 12,那么做第 6~8 步;否 则,直接进入下一步循环; 第 6 步 产生两个在 1~6 这 6 个整数中机会均等地取 值的随机数, 并把这两个随机数之和赋值给 y; 第 7 步 如果 y 不等于 x,也不等于 7,重复第 6 步所 做的; 第 8 步 如果 y 等于 7,那么 k 加 1,进入下一步循环; 否则,直接进入下一步循环; 第 9 步 计算概率 p=k./n .
第一章习题参考答案
1. 请编写绘制以下图形的 MATLAB 命令,并展示绘得 的图形.
x2 2 (1) x y 1、x y 4 分别是椭圆 y 1 的内切 4

数学建模数学模型作业题

数学建模数学模型作业题

一、对于6.4节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1k +时段的价格1k y +由第1k +和k 时段的数量1k x +和k x 决定,如果设1k x +仍只取决于k y ,给出稳定平衡的条件,并与6.4节的结果进行比较。

(2)若除了1k y +由1k x +和k x 决定之外,1k x +也由前两个时段的价格k y 和1k y -确定,试分析稳定平衡的条件是否还会放宽。

解:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一个时段的价格,所以第k+1时段的价格1+k y 由第k+1和第k 时段的数量1+k x 和k x 决定,设1k y +由1k x +和k x 的平均值决定,即二者平均值21kk x x ++,模型为: 1100100(),02(),0k k k k k x x y y x x x y y ααββ++++⎧-=-->⎪⎨⎪-=->⎩ 由此可以得到 22022(1)k k k x x x x αβαβαβ++++=+, 其特征方程为 022=++αβαβλλ,得出其特征根: 48--22,1αβαβαβλ)(±=当8>αβ时,有: 4-48---22αβαβαβαβλ<=)( 由以上可算出: 22,1αβλ=即:2<αβ所以与6.4节的结果相同,平衡点稳定的条件为2αβ<。

(2)设k x 也由k y 和1k y -的平均值决定,模型为:11001100(),02(),02k k k k k k x x y y x y y x x y ααββ++-++⎧-=-->⎪⎪⎨+⎪-=->⎪⎩得32142k k k k x x x x c αβαβαβ++++++=,c 由00,,x ,y αβ决定,其特征方程为042423=+++αβλαβλαβλ,该方程所有特征根1λ<的条件(即平衡点稳定的条件)仍为2αβ<。

数学建模作业

数学建模作业

习题一在节存储模型中的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量。

证明在不允许缺货模型和允许缺货模型中结果都与原来一样。

一、不允许缺货的存储模型问题分析若生产周期短、产量少,会使存储费用小,准备费用大,货物价格不变;而周期长、产量多,会使存储费大,准备费小,货物价格不变。

所以必然存在一个最佳周期,使总费用最小。

显然,应建立一个优化模型。

模型假设为了处理的方便,考虑连续模型,即设生产周期T和产量Q为连续量。

根据问题性质作如下假设:(1)产品每天的需求量为常数r。

(2)每次生产费用为c1,每天每件产品存储费为c2,购买每件货物所需费用为c3.(3)生产能力为无限大(相对于需求量),当存储量降为零时,Q件产品立即生产出来供给需求,即不允许缺货。

模型建立将存储量表示为时间t的函数q(t),t=0生产Q件,存储量q(0)=Q,q(t)以需求速率r递减,直到q(T)=0,如图,显然有:Q=rT图(1)不允许缺货模型的存储量q(t)一个周期内的存储费是c2∫q(t)dt,其中积分恰好等于图中三角形面积QT/2,因为一个周期的准备费是c1,购买每件货物的费用为c3,得到一个周期的总费用为:C=c1+c2QT/2+r Tc3=c1+c2 r T2/2+ r T c3则每天的平均费用是C(T)=c1/T+r c3+c2 r T/2上式为这个优化模型的目标函数。

模型求解求T使上式的C最小。

容易得到T=√2c1/(c2r)则Q=√2c1r/c2二、允许缺货的存储模型(1) 模型假设产品每天的需求量为常数r。

(2) 每次生产费用为c1,每天每件产品存储费为c2,购买每件货物所需费用为c3.(3) 生产能力为无限大(相对于需求量),允许缺货,每天每件损失费为c4,但缺货数量需在下次生产(或订货)时补足。

,模型建立因存储量不足造成缺货时,可以认为存储量函数q(t)为负值,如图所示,周期仍记为T,Q是每周期初的存储量,当t=T1时q(t)=0,于是有 Q=r T1图(2)允许缺货模型的存储量q(t)在T1到T这段时间内需求率r不变,q(t)按原斜率继续下降。

数学建模作业

数学建模作业

数学建模作业1.某银⾏经理计划⽤⼀笔资⾦进⾏有价证券的投资,可供购进的证券以及其信⽤等级、到期年限、收益如下表所⽰.按照规定,市政证券的收益可以免税,其它证券的收益需按50%的税率纳税.此外还有以下限制:(1)政府及代办机构的证券总共⾄少要购进400万元;(2)所购证券的平均信⽤等级不超过1.49信⽤等级数字越⼩,信⽤程度越⾼;(3)所购证券的平均到期年限不超过5年;(1)若该经理有1000万元资⾦,应如何投资?(2)如果能够以2.75%的利率借到不超过100万元资⾦,该经理应如何操作?(3)在1000万元资⾦情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变?问题(1)分析问题分析这个优化问题的⽬标是有价证券回收的利息为最⾼,要做的决策是投资计划.即应购买的各种证券的数量的分配.综合考虑:特定证券购买、资⾦限制、平均信⽤等级、平均年限这些条件,按照题⽬所求,将决策变量、决策⽬标和约束条件构成的优化模型求解问题便得以解决.模型建⽴决策变量⽤X1、X2、X3、X4、X5、分别表⽰购买A、B、C、D、E证券的数值, 单位:百万元⽬标函数以所给条件下银⾏经理获利最⼤为⽬标.则,由表可得:MAX Z=0.043X1+0.027X2+0.025X3+0.022X4+0.045X5 (1)约束条件为满⾜题给要求应有:X2+X3+X4> = 4 (2)X1+X2+X3+X4+X5K<=10 (3)6X1+6X2-4X3-4X4+36X5<=0 (4)4X1+10X2-X3-2X4-3X5<=0 (5)由LINGO 分析得:(1)由LINGO求解得:证券A投资2.182百万元,证券C投资7.364百万元,证券E投资0.454百万元,最⼤税后收益为0.298百万元问题(2):由(1)中的求解可知,若投资增加 100 万元,收益可增加 0.4881 万元。

数学建模大作业题目

数学建模大作业题目

(1) 用起泡法对10个数由小到大排序. 即将相邻两个数比较,将小的调到前头. (10个数字自己选择,方法要一般)(2)有一个45⨯矩阵,编程求出其绝对值最大值及其所处的位置.(用abs 函数求绝对值)(3)编程求201!n n =∑ ( 分别用for 和while 循环)(4)一球从100米高度自由落下,每次落地后反跳回原高度的一半,再落下. 求它在第10次落地时,共经过多少米?第10次反弹有多高?(5)有一函数2(,)sin 2f x y x xy y =++ ,写一程序,输入自变量的值,输出函数值,并画出其图像,加上图例和注释. (区间自理)(6) 建立一个脚本M 文件将向量a,b 的值互换。

(7) 某商场对顾客所购买的商品实行打折销售,标准如下(商品价格用price 来表示): price<200 没有折扣; 200≤price<500 3%折扣; 500≤price<1000 5%折扣; 1000≤price<2500 8%折扣; 2500≤price<5000 10%折扣;5000≤price 14%折扣;输入所售商品的价格,求其实际销售价格。

(用input 函数)(9) 画出分段函数222 1y 1 122 1 2x x x x x x x ⎧<⎪=-≤<⎨⎪-+≥⎩的图像,并求分段函数在任意几点的函数值。

(用hold on 函数)(10) 给定5阶方阵,求方阵的行列式、特征值、迹、上三角元素的和。

(11) 输入40个数字,按照从小到大的顺序排列输出。

(12) 把当前窗口分成四个区域,在每个区域中分别用不同的颜色和线形画sin ;tan y x y x ==,x y e =和31y x x =++的图像。

(区间自理)(13) 对于,AX B YA B ==,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,,求解X,Y;(14) 如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,242679836B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求1122,*,.*,,,,T A B A B A B AB A B A A ---。

数学建模作业(一)1

数学建模作业(一)1

第一题: 某班共45人,要去离校7.7千米的风景区旅游。

学校派了一辆可坐12人的校车接送。

为了尽快又同时到达目的地,校车分段分批接送学生。

已知校车速度为每小时70千米,学生步行的速度为每小时5千米。

如果上午七点出发,问最快什么时候全班同时到达目的地?(班长作为联系人要始终跟车)
第二题:某人为了锻炼身体,每天早晨坚持晨跑30分钟, 其中从A到B为800米上坡路,从B到C为1000米平路。

问在30分钟内跑完1800米,怎样安排跑步计划,才能使锻炼效果最佳?(即总疲劳程度伟为最低)
第三题:一辆小汽车与一辆大卡车在一段狭路上相遇,只有倒车才能继续通行。

如果小汽车的速度为大卡车的3倍,两车倒车的速度是各自正常速度的1/5,在这段狭路上,小汽车需倒车的路程是大卡车需倒车路程的4倍。

那么,为了使后通过狭路的那辆车尽早地通过这段狭路,问怎样倒车较为合理?
第四题:某人在一家公司工作,目前年薪为1万元。

老板说,现在有两种方案可供选择:第一种,每一年加1000元;第二种,每半年加300元。

试问:
(1)如果你在该公司工作5年,用哪一种方案收入高?
(2)如果你在该公司工作5年,将第二种方案中的每半年加300元改为a元时,那一种方案收入高?
(3)如果你在该公司工作n年,用哪一种方案收入高?
第五题:一个直角走廊宽为1.5米,有一辆转动灵活的平板水平推车,宽为1米,长为2.2米,问能否将其推过直角走廊?说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

优化作业(1)
1.(本题只写模型不求解)某工厂向用户提供发动机,按合同规定,其交货数量和日期是:第一季度末交40台,第二季度末交60台,第三季度末交80台。

工厂的最大生产能力为每季度100台,每季度的生产费用是2
2.050)(x x x f +=元,其中x 为该季度生产发动机的台数。

若工厂生产得多,多余的发动机可移到下季度向用户交货,这样,工厂就需要支付存储费用,每台发动机每季度的存储费用为4元。

问该厂每季度生产多少台发动机,才能既满足交货合同,又使工厂所花费的费用最少(假定第一季度开始时发动机无存货)?
2.(本题只写模型不求解)某市为方便小学生上学,拟在新建的8个居民小区821,,,A A A 增设若干所小学,经过论证知备选校址有621,,,B B B ,它们能够覆盖的居民小区如下表所列,试建立一个数学模型,确定出最小个数的建校地址,使其能覆盖所有的居民小区。

备选校址
B 1 B 2 B 3 B 4 B 5 B 6 覆盖小区 A 1,A 5,A 7 A 1,A 2,A 5,A 8 A 1,A 3,A 5 A 2,A 4,A 8 A 3,A 6 A 4,A 6,A 8
3.写出下面LINGO 程序所对应的完整数学模型。

SETS: HANG/1..3/:B; LIE/1..4/:X,C; XISHU(HANG,LIE):A;
ENDSETS
DATA:
A= 1 2 3 1
2 5 1 2
3 1 6 -2;
B=4 5 7;
C=1 3 4 5;
ENDDATA
min=@sum(LIE(I):C(I)*X(I));
@FOR(HANG(I):@SUM(LIE(J):A(I,J)*X(J))>B(I));
4.根据下面LINGO 程序的集合段和模型段写出其所对应的数学模型。

SETS: HANG/1..3/:A;
LIE/1..4/:B;
XISHU(HANG,LIE):C,X;
ENDSETS
min=@sum(XISHU(I,J):C(I,J)*X(I,J));
@FOR(HANG(I):@SUM(LIE(J):X(I,J))=A(I));
@FOR(LIE(J):@SUM(HANG(I):X(I,J))=B(J));
5.某校篮球队准备从十名预备队员中选择五名作为正式队员,队员的各种情况如下表:
队员号码身高(厘米)技术分位置
1 185 8.6 中锋
2 186 9 中锋
3 193 8.
4 中锋
4 190 9.
5 中锋
5 182 9.1 前锋
6 184 9 前锋
7 188 8.1 前锋
8 186 7.8 后卫
9 190 8.2 后卫
10 192 9.2 后卫
队员的挑选要满足下面条件:
(1)至少补充一名前锋。

(2)至多补充2名中锋。

(3)1号和3号队员最多只能入选1个。

(4)平均身高要达到187厘米。

(5)3号或10号入选了则4号就不能入选。

问:怎么选择使得技术平均分最高。

6.在出发去度假之前,你希望将你的一些最重要的文件备份到软盘上。

每个空白软盘的容量是 1.44MB。

你需要备份的十六个文件的大小分别为:46KB,55KB,62KB,87KB,108KB,114KB,137KB,164KB,253KB,364KB,372KB,388KB,406KB,432KB,461KB和851KB。

假定你无法使用压缩软件,但软盘数量足够,那么应如何将这些文件分配到每一张软盘上才能使所用的软盘数目最少?。

相关文档
最新文档