structural alert警示结构

合集下载

elastalert2 告警规则

elastalert2 告警规则

《深度剖析:Elastalert2 告警规则》一、引言在当今信息爆炸的时代,数据的价值被越来越多地重视和利用。

然而,面对海量的数据,如何在其中准确地捕捉到有价值的信息成为了一个亟待解决的问题。

Elastalert2 作为一款强大的告警工具,其告警规则的设置对于有效监控和管理数据至关重要。

二、Elastalert2 告警规则的意义及价值1. 深度解读告警规则告警规则是 Ealstalert2 的核心组成部分。

其通过对数据进行实时、多维度的分析,可以发现数据的异常与规律性,从而为用户提供及时的告警通知。

告警规则的设置直接决定了监控的灵敏度和准确度,因此其重要性不言而喻。

2. 告警规则的广度和深度在设置告警规则时,首先需全面评估监控的数据类型、来源、特点等多个维度,确保监控的广度;其次需要深入分析数据的异常情况、常见规律,以及预期的监控效果,以保证监控的深度。

只有兼顾广度与深度,才能最大程度地挖掘数据的潜力。

三、如何设置高质量的告警规则1. 从简到繁,由浅入深地探讨告警规则的设置在设置告警规则时,首先需要从简单的规则入手,逐步增加复杂性,以便深入理解监控对象的特点和异常情况。

针对特定的数据字段设置基本的阈值告警规则,然后逐步增加条件、操作符等,逐步提高规则的精度和灵敏度。

2. 全面评估和总结告警规则在实际设置告警规则时,需要全面评估监控对象的特点,尽可能地考虑到各种异常情况和可能的规律,以及数据的时效性、变化性等因素。

需要定期对已有的规则进行总结和回顾性的评估,及时调整和优化规则,以适应数据的变化和需求的不断完善。

四、共享个人观点及理解作为一名资深的文章写手,我深知高质量的告警规则对于数据监控的重要性。

在实际写作中,我始终坚持从简到繁、由浅入深地探讨文章的主题,以便读者能更全面、深刻地理解所阐述的内容。

对于Elastalert2 告警规则的设置,我个人认为需要平衡监控的广度和深度,充分考虑监控对象的特点和数据的变化性,以及及时总结和回顾规则的效果,才能真正发挥其潜力。

基因毒性杂质(genotoxic

基因毒性杂质(genotoxic

引入一个 新观点: 确定一个 可接受其 风险的摄 入量
TTC
可接受其风险的摄入量一般被定义为Threshold of Toxicological Concern (TTC)。
具体含义为:1.5μg/天的TTC值。 相当于人每天摄入1.5μg的基因毒性杂质,被认为对于大
多数药品来说是可以接受的风险(使人一生的致癌风险小 于100000分之一,现实生活中人一生得癌症的概率四分 之一)。按照这个阈值,可以根据预期的每日摄入量计算 出活性药物中可接受的杂质水平。
判断是否为基因毒性杂质
可通过文献、计算机毒理学进行评价; 常通过MDL-QSAR, MC4PC, Derek for
Windows软件来评价是否具有structural alert,FDA、EMEA等官方机构也采取此 类软件用来判断。
Derek for Windows数据库:可以预算某个化 学药物对人类(或其他哺乳动物)是否具有毒性, 在世界范围内已被许多制药公司,化学公司和学 术研究机构所采用。可提供以下4种信息。
氨基糖甙类抗生素:大剂量、长期使用会引起耳毒性;特 别敏感患者,仅使用一次或短期使用,就出现了听力受损。 研究表明,这些患者的一个基因上有一点(mtl555G) 与别人不同,这使他们对氨基糖甙类药物耳毒性的易感性 大大增加。
目录
基因毒性杂质定义及风险 可接受风险的摄入量(TTC阈值) EMA对基因毒性杂质的指导要求 判断是否为基因毒性杂质 决策树 Q&A
基因毒性杂质卤代烃的风险评估
有数据表明氯乙烷、氯甲烷为基因毒性杂质,因 此有理由怀疑其他低分子卤代烃类也有类似的作 用。在生产中应该对其进行相应的控制。
在氨基物盐酸盐使用醇类溶剂精制的时候,基本 都会产生卤代烃。

Structural Health Monitoring

Structural Health Monitoring

Structural Health Monitoring Structural health monitoring (SHM) is a crucial aspect of ensuring the safety and longevity of infrastructure such as bridges, buildings, and other critical structures. The primary goal of SHM is to detect and assess damage ordeterioration in real-time, allowing for timely intervention and maintenance. This proactive approach to structural maintenance can significantly reduce the risk of catastrophic failures, saving lives and resources. In this article, we willexplore the various aspects of structural health monitoring, including its importance, key technologies, challenges, and future prospects. Importance of Structural Health Monitoring The importance of structural health monitoringcannot be overstated, especially in the context of aging infrastructure and the increasing frequency of extreme weather events. By continuously monitoring the condition of structures, SHM provides valuable insights into their performance and integrity. This enables engineers and maintenance personnel to make informed decisions regarding repairs, retrofits, and replacements, ultimately contributing to the safety and resilience of the built environment. Furthermore, SHM can help optimize maintenance schedules, minimize downtime, and extend the service life of structures, resulting in significant cost savings over the long term. Key Technologies in Structural Health Monitoring A wide range of technologies are employed in structural health monitoring, each offering unique capabilities and advantages. One of the most commonly used techniques is the use of sensors to measure various parameters such as strain, deformation, vibration, and temperature. These sensors can be embedded within the structure or attached to its surface, providing continuous data on its condition. Additionally, advanced imaging technologies such as LiDAR and photogrammetry are utilized to create detailed 3D models of structures, allowing for the detection of subtle changes and deformations. Furthermore, the integration of wireless communication and data analysis software enables real-time monitoring and automated alert systems, ensuring rapid response to any anomalies. Challenges in Implementing Structural Health Monitoring While the benefits of structural health monitoring are clear, there are several challenges associated with its implementation. One of theprimary obstacles is the high initial cost of deploying monitoring systems, whichmay deter some organizations from investing in SHM. Additionally, the integration of monitoring technologies into existing structures can be complex and disruptive, requiring careful planning and coordination. Furthermore, the sheer volume of data generated by monitoring systems can be overwhelming, necessitating advanced analytics and interpretation to extract meaningful insights. Moreover, ensuring the cybersecurity of SHM systems is crucial, as they may be vulnerable to cyber-attacks that could compromise the integrity of the data and the safety of the structure. Future Prospects of Structural Health Monitoring Despite the challenges, the future of structural health monitoring looks promising, thanks to ongoing advancements in sensor technology, data analytics, and materials science. Miniaturization and cost reduction of sensors are making SHM more accessible, while the integration of artificial intelligence and machine learning is enhancing the predictive capabilities of monitoring systems. Furthermore, the development of self-powered and wireless sensors is simplifying the installation and maintenance of monitoring networks. Additionally, the emergence of smart materials with built-in sensing capabilities is poised to revolutionize SHM by enabling structures to monitor their own health and self-repair when necessary. These developments are expected to drive the widespread adoption of structural health monitoring across various industries, leading to safer and more resilient infrastructure. Conclusion In conclusion, structural health monitoring plays a vital role in ensuring the safety, reliability, and longevity of infrastructure. By leveraging advanced technologies and proactive maintenance strategies, SHM offers a proactive approach to managing the health of structures, ultimately reducing the risk of failures and minimizing the associated societal and economic impacts. While there are challenges to overcome, ongoing innovations and research efforts are paving the way for a future where structural health monitoring is an integral part of infrastructure management. As we continue to embrace the potential of SHM, we can look forward to a built environment that is not only safer and more durable but also more sustainable in the long run.。

告警基础

告警基础
BSS 告警
告警分类介绍
告警类别:
Quality of service:服务质量告警 Communications:通信故障告警 Equipment:设备模块告警 Processing error:处理错误 Environmental:环境告警
告警级别 Critical Major Minor Warning Indeterminate Clear
OMC-R界面介绍
OMC-R界面介绍
OMC-R界面介绍
Thank You !
OMC-R界面介绍
锡盟
TC1
锡盟网络结构介绍
7549
TC2
路由 HUB
TC3
7549
路由1 路由2
G2BSC1
G2BSC4
MXBSC3
MXBSC5
MFS MXMFS
OMC-R OMC-R SWICH
集宁
OMC-R界面介绍
OMC-R界面介绍
OMC-R界面介绍
OMC-R界面介绍
OMC-R界面介绍
检查相关BSC的TCU是否正常 检查此CELL的无线参数是否正确(频点、信道等)
LOSS-OF-BCCH
BCCH:广播控制信道(Broadcast Control CHannel)用于广播基于每个小区的通用信息的信道。
告警单元:CELL 告警内容:LOSS-OF-BCCH 告警描述:BCCH信道不可用 网络影响:相关告警小区的BCCH信道不可用,有可能导致小区退服 原因分析:此CELL下承载有BCCH信道的TRE/RSL异常 处理方法:检查此CELL下是否有异常的TRE/RSL
检查相关BSC的TCU是否正常
LOSS-OF-ALL-CHAN
告警单元:CELL 告警内容:LOSS-OF-ALL-CHAN 告警描述:CELL的力力完全丧失 网络影响:相关告警小区退服 原因分析:此CELL下所有TRE/RSL/RA异常

飞机系统与附件课程教学课件:12.5 警告系统

飞机系统与附件课程教学课件:12.5 警告系统

失速警告计算机
在不同的飞行状况ห้องสมุดไป่ตู้下,失速警告计算 机作动抖杆器,向 驾驶员发出警告。
警告系统
失速警告测试组件 用于起始系统测试。
在装有中央维护计算机(CMC) 的飞机上,可以从控制显示组 件起始测试,另外也可以在计 算机的前面板上使用测试电门 测试。
警告系统
飞机特定最大迎角 飞机实际迎角
失速警告系统
警告系统
自动驾驶时
出现小干扰量使飞行俯仰姿态改变时,飞机系统靠自身的纵向 稳定性就可以修正到正确的姿态,但会产生一定的高度偏差。
警告系统
高度稳定系统必须 有测量飞行高度的 传感器、高度给定 装置和高度偏差计 算装置。
气压高度表
无线电高度表
警告系统
偏离高度四种情况:
偏离300ft~900ft,发出警戒(ALERT)信号,警示偏离预选高度 接近900ft~300ft,发出提醒(ADVISE)信号,提醒接近预选高度 偏离900ft以上,不发警告,向选定的新飞行高度飞行 爬升或下降前,请求新飞行高度,调节高度选择旋钮,警告被禁止 另外,在飞机进近着陆时,高度警告也被禁止,这样可以防止打扰驾 驶员的工作。
警告系统
飞行 方式 显示
姿 态 速 度 航 向
PDF(主飞行显示)
飞机超速时空速值 高 变红色,在波音 度 EICAS显示器的警

直 告区显示红色超速

度 “OVER SPEED” 警告信息。
警告系统
中 央 大 气 数 据 计 算 机 ( )
CADC
超速警告系统
警告系统
所有喷气式飞机都有独立的音响超速警告。 因为飞机超速飞行是非常危险的,它会造成飞机结 构的损坏。 另外,高速飞行时产生的激波也会对飞机造成伤害, 并使飞行的安全性下降。

grafnaalert templates 模板

grafnaalert templates 模板

Grafana是一款流行的开源数据可视化工具,而Grafana Alert Templates则是Grafana中用来定义告警规则和通知方式的重要组件。

本文将介绍Grafana Alert Templates的基本概念、使用方法和实际案例,帮助读者全面了解和应用这一功能。

一、Grafana Alert Templates的基本概念1. Grafana Alert Templates是什么?Grafana Alert Templates是Grafana中用来定义告警规则和通知方式的模板。

用户可以通过创建和配置Alert Templates,实现对监控指标的实时监控、异常检测和预警通知功能。

Alert Templates的定义可以基于任意的数据源(如Prometheus、InfluxDB等),并支持多种告警通知方式(如邮件、Slack、Webhook等)。

2. Grafana Alert Templates的组成部分Grafana Alert Templates主要由以下几个组成部分构成:(1)Alert Rule:定义告警规则,包括监控指标、阈值条件、触发动作等。

(2)Notification Channel:定义告警通知方式,包括邮件、Slack、Webhook等。

(3)Dashboard Variable:定义告警规则中的动态变量,用于个性化告警内容。

二、使用Grafana Alert Templates的方法1. 创建Alert Rule(1)打开Grafana的Web界面,选择相应的监控Dashboard。

(2)点击“Create Alert”按钮,选择“New Alert Rule”。

(3)在弹出的编辑界面中,填写告警规则的名称、监控指标、阈值条件等相关信息。

(4)设置告警规则的触发动作,如发送邮件、触发Webhook等。

(5)保存并应用告警规则的设置。

2. 配置Notification Channel(1)打开Grafana的Web界面,点击“Alerting”标签页。

OPEN3000工程化手册—告警定义

OPEN3000工程化手册—告警定义

OPEN3000工程化手册—告警定义前言OPEN3000是一款现代化的云原生应用开发框架,其提供了一整套的工具和流程,帮助开发人员实现敏捷开发和DevOps,提高开发效率和代码质量。

在开发和运维过程中,告警是非常重要的一环。

告警的定义和处理规则不仅决定了错误处理的速度和效率,还关系到系统的稳定性和可靠性。

本文将从告警的定义、级别、处理流程等方面阐述OPEN3000框架中告警的相关规定。

告警定义告警是指在系统中发生的一些异常行为、状态或数据时,系统会发出警告、提示或通知等消息,提醒用户或相关人员进行相应的操作或处理,以确保系统的稳定性和可靠性。

告警通常包含告警级别、告警类型、告警描述、告警原因、告警时间等信息。

OPEN3000框架的告警定义如下:# 告警内容## 告警级别告警级别是根据告警的严重性和影响程度分为五个等级,依次为:紧急、严重、一般、警告、提示。

* 紧急:严重影响业务的问题,需要立即处理。

* 严重:需要立即进行处理,否则会影响业务的正常运行,并可能引发一些链式反应。

* 一般:需要对其进行关注和处理,但不会对业务造成影响。

* 警告:需要注意,但不需要立即处理。

* 提示:需要提醒,但可以忽略。

## 告警类型告警类型是根据告警内容的特点,分为四种类型,依次为:故障告警、异常告警、基础告警、其他告警。

* 故障告警:指硬件故障、网络故障或操作系统等层面的问题。

* 异常告警:指异常操作、程序异常、设备异常等问题。

* 基础告警:指常规的硬件故障及状态告警,如CPU、内存等资源利用率告警。

* 其他告警:指针对不同场景自定义的告警类型。

## 告警描述告警描述是对告警出现原因的简短描述,如“服务器内存利用率过高”,“网络连接中断”等。

## 告警原因告警原因是对告警触发的原因进行详细说明,如“磁盘空间不足导致内存溢出”,“网络丢包率较高,导致连接中断”等。

## 告警时间告警时间是指告警信息产生的时间。

告警级别OPEN3000框架中的告警级别共分为五个级别,分别从紧急到提示,每个级别对应的处理流程和处理时间也不同。

基因毒性杂质(genotoxic

基因毒性杂质(genotoxic
但是这些方法都需要有足够的长期致癌性研究数 据。
TTC用于计算未做研究的化学物质的接触量,这些 化学物质不会有明显的致癌性或者其他毒性。
ConcentrationLimit ( ppm) TTC (ug / day) dose(g / day)
TTC理论不可以应用于那些毒性数据(长期研究) 充分的致癌物质,也不可以做高风险毒性物质的风 险评价。
TTC是一个风险管理工具,它使用的是概率方法。所以 TTC不能被理解为绝对无风险的保障。
TTC
意思是:假如有一个基因毒性杂质,并且我们对 它的毒性大小不了解,如果它的每日摄入量低于 TTC值,那么,该基因毒性杂质的致癌风险将不 会高于100000分之一的概率。
某些特定情况,TTC值高于1.5μg/day也是可以 接受的。比如药物的短期接触,即治疗某些声明 预期在5年以下的某些严重疾病,或者这种杂质是 一种已知物质,人类在其他方式上对它的摄入量 会更高(比如在食品上)。这个需要根据实际情 况再进行推算。
应该有合理的分析方法去检测和量化这些杂质的 残留量。
毒理学研究
为一个不存在阀值的基因毒性致癌物定义一个安 全的摄入量水平(零风险观点)是不可能的,并 且从活性药物成分中完全的除去基因毒性杂质经 常是很难做到。这样就要求我们建立一个可接受 的风险水平,例如对一个低于可忽略风险的每日 摄入量进行评价。
判断是否为基因毒性杂质
通过Carcinogenic potency database (CPDB) 数据库查询,数据库中现有1574种致癌物质的列 表。链接 /chemnamein dex.html ,还可查询到关于基因毒性方面研究 的出版物。
基因毒性杂质卤代烃的风险评估
有数据表明氯乙烷、氯甲烷为基因毒性杂质,因 此有理由怀疑其他低分子卤代烃类也有类似的作 用。在生产中应该对其进行相应的控制。

Niagara警报介绍

Niagara警报介绍
• 警报记录细节对话框 • 过滤对话框 • 注意事项对话框
17.2 警报接收者的子类
– Colsole recipient – Station recipient – On Call recipient – Email recipient – Lineprinter recipient – Printer recipient
2.3 警报指示
• 每个警报都有相应的指示。 • 在警报创建时,警报指示和警报通知一起 显示出来。 • 警报指示的内容对用户很重要或很有用。 • 可以在Instructions视图中创建、指派、编 辑。
2.4 注意事项(notes)
• 简单的文本条目。 • 警报记录收到一个注意事项时会用一个注 意事项图标 提醒。
16.2 警报类的属报类指定一套相同的警报处理参数。 工具:alarm class mapper对话框。
十七、警报接收者的类型
• 所有的警报接收者都连接到警报类
– alarm topic (alarm class) -- routeAlarm action (alarm recipient)
警报处理(二)
• 一个警报会提供一些看得见和听得见的指 示。 • 警报通知可以通过各种方式被转发和显示。
警报处理(三)
• 使用警报的三个主要操作
– 创建警报
使用警报Extension。
– 转发警报
警报由警报服务处理,除了允许用户指定转发目的地 之外,还可以设置提示和确认参数。
– 管理警报
警报被存档为记录,可以使用警报数据库管理接口进 行管理。
• 接收者用途 – 在一天中确定的时间接收警报 – 在一周中特定的天接收警报 – 只接收指定变化的警报
17.1 警报控制台

EMA关于 API 中基因毒性、金属杂质和残留溶剂的标准(中英文对照)

EMA关于 API 中基因毒性、金属杂质和残留溶剂的标准(中英文对照)

EMA关于API中基因毒性,金属杂质和残留溶剂的标准1.What is a reasonable policy forsetting specifications for potentially genotoxic impurities which aretheoreti cal or actual impurities in a drug substance manufacturing process?HJune20121.什么是设定潜在基因毒性杂质(原料药生产工艺中理论或实际的杂质)标准的基本原则?人用药品,2012年6月Different possible scenarios can beidentified and the applicable policies to be applied for each of them arede scribed below:不同的可能情况可被划分,并且不同的适用原则对应于下面描述的各个情况:Example1–A potential genotoxicimpurity举例1—潜在基因毒性杂质The definition for a potentialgenotoxic impurity is derived from the definition for'potential impurity':animp urity that theoretically can arise during manufacture or storage.It may ormay not actually appear in the(new) drug substance(ICH Q3A,glossary).潜在基因毒性杂质的定义起源于“潜在杂质”的定义:理论上可能在生产中或贮藏中出现的杂质,它可能会或不会实际存在于(新)原料药中(ICH Q3A,术语)。

药物设计中需要注意的警示结构

药物设计中需要注意的警示结构
recurrent target
Structural alerts
“avoidance” strategies • partial replacement or full replacement of the structural alert; • reduction of electronic density; • introduction of a structural element of metabolic interest (metabolic switching); • strategic placement of functional groups to block bioactivation
Review—— Carboxylic acid group
Metabolic Bioactivation of the GPR40 agonist TAK875(28), Which Was Withdrawn from Phase 3 Clinical Trials for iDILI
Shortcomings of the structural alert concept
Total Daily Dose
肝衰竭与日给药剂量
9%, 9% 14.20%, 14%
76.80%, 77%
≤10 mg/day 11~49 mg/day ≥50 mg/day
Thanks
Thanks forview
Idiosyncratic adverse drug reactions (IADRs)
Unpredictable
Phase III/IV Rare and severe
reactions
Reactive metabolites

一般安全防范术语中英文对照

一般安全防范术语中英文对照
细化分警戒线
为了设计上的便利,将基本警戒线再分解出来的警戒线
5
first guard line
第1警戒线
在工程基地部分,施设的基本警戒线、分解后构成的警戒线有:G1-1(基地外用),G1-2(基地出入口部分)及G1-3(基地内部)
6
second guard line
第2警戒线
在建筑物周部分,施设的基本警戒线、分解后构成的警戒线有:G2-1(外周部),G2-2(开口部分)及G2-3(出入口部分)
二类真报警
由于人为操作紧急按钮引发的报警
29
status signal failure
丢失报告
未被传递的状态信号
30
falsealarmtype1
一类误报警
由于机器故障引发的报警
31
falsealarmtype2
二类误报警
由于设计、施工及保养检查不良引发的报警
32
false alarm type3
三类误报警
12
online alarm system
在线报警系统
借助通信线路实时传输报警信号等并由保安公司等的集中监视设备进行监视的系统
13
sensitivity margin
灵敏度冗余
在探测器安装场所环境恶化时,为了探测器仍保持正常控测状态而预留的灵敏度余量
14
intruder alarm system
入侵报警系统
解除状态
系统进入了解除状态探测器探测到异常,但不触发报警的状态
54
alert condition(armed condition)
警戒状态
系统进入警戒的状态,探测器探测到异常,并能触发报警的状态
安全防范探测器术语

SKYNET-X自动化系统短期冲突告警详述

SKYNET-X自动化系统短期冲突告警详述

SKYNET-X自动化系统短期冲突告警详述摘要为避免空中交通事故的产生,在空管自动化系统中提供正确的告警尤为必要。

其中短期冲突告警(STCA)是自动化系统必不可少的告警之一。

短期冲突告警对维持空中交通的安全有序运行起到了非常重要的作用。

本文就SKYNET-X自动化系统对短期冲突告警的原理进行详细介绍。

关键词SKYNET-X自动化告警STCA0、引言告警是空管自动化系统提供的一项重要功能。

在民航空管系统中,告警对保证航班正常飞行,空中交通有效管理,防止事故产生起着不可替代的作用。

故而告警机制的设置也就成为了空管系统体系中的一个重要环节。

其中短期冲突告警(STCA)是最基本且必不可少的告警。

以下以SKYNET-X空管自动化系统为例,简述短期冲突告警的基本原理。

一、SKYNET-X自动化系统告警介绍SKYNET-X自动化告警分为飞行计划告警与雷达告警,其中STCA属于雷达告警。

在SKYNET-X系统中,雷达告警由其单独的告警模块处理。

雷达告警各参数由技术维护人员后台配置,这一系列的参数设置构成了雷达告警的判定。

二、STCA原理介绍STCA,即短期冲突告警(Short Term Conflict Alert),指经过了一定的前探时间后,航空器之间的水平和垂直距离同时小于预设值(即最小安全距离)产生的告警。

其具有前探性,能预测未来可能发生的冲突。

STCA大致有三方面的参数需要设置:水平告警距离、垂直告警距离和前探时间(也叫向前看时间或提前告警时间)。

以上这些参数每个冲突告警区都可分别设置不同的值。

短期冲突告警区域为柱形立体空域,其水平剖面可以为圆形或多边形,定义时还需要指明区域的高度下限和上限。

在系统中,人为把空域划分成STCA告警区和STCA抑制区。

STCA告警计算只在告警区内生效。

在抑制区内,不进行STCA告警计算。

而在系统中的短期冲突告警区分为两种:通用冲突告警区和RVSM冲突告警区。

在定义一个通用冲突告警区时,除了需要指定区域的范围,同时还需要定义在此告警区内的水平方向告警间隔和垂直方向告警间隔(这两个组合称为一组告警参数),另外还需定义向前看时间和区域优先级。

alert的用法和短语

alert的用法和短语

alert的用法和短语一、介绍Alert是一个常见的英语动词,可以用于多种情境中。

它的主要意思是警告,通知或提醒某人注意某种情况或事件。

Alert在日常生活中非常常见,特别是在新闻报道、应急通知和安全警示中经常出现。

本文将介绍Alert的基本用法和一些与之相关的固定搭配短语。

二、Basic usage(基本用法)1. Alert someone to something(使某人意识到某事)这是Alert最基本也是最常见的用法。

我们可以使用“Alert + 某人 + to + 某事”这样的结构来表达。

例如:- The school sent out an email alerting all parents to the upcoming parent-teacher meeting.(学校发邮件通知所有家长即将举行的家长会议。

)- The police issued a public alert to warn people about a dangerous criminal on the loose.(警方发布了一项公众预警以警告人们有一个危险的罪犯失踪。

)2. Sound/raise an alert(发出/提醒警报)当我们需要发出或提醒别人注意有紧急情况时,可以使用sound或raise来修饰alert,表示发出警报或提醒。

例如:- The smoke alarm sounded an alert, warning us of a possible fire in the building.(烟雾警报器发出了警报,提醒我们建筑物内可能有火灾。

)- The security guard raised the alert and called for backup when he noticed an intruder on the surveillance camera.(保安注意到监控摄像头上的入侵者时,他提高了警惕并呼叫了增援。

alertmanager的template

alertmanager的template

Alertmanager是一款灵活而强大的告警管理工具,它可以帮助用户对监控系统中产生的告警进行分类、分组和处理。

在Alertmanager中,模板(template)是一个非常重要的概念。

模板可以帮助用户在发送告警通知时,自定义告警的内容和格式,使得告警信息更加直观和易于理解。

在本文中,我们将深入探讨Alertmanager中模板的使用方法和技巧。

一、模板的概念和作用模板是Alertmanager中用来定义告警通知内容和格式的一种机制。

通过模板,用户可以自定义告警通知的标题、正文、以及其他相关信息,使得告警通知更加符合用户的需求和习惯。

利用模板,用户可以灵活地设置告警通知的样式、语言、包含的监控指标等内容,从而更好地适应不同的监控场景和使用需求。

二、模板的语法和语言在Alertmanager中,模板采用Go语言的模板引擎进行编写。

Go语言是一种简洁而强大的编程语言,它的模板引擎具有良好的性能和灵活的语法,非常适合用来编写告警通知模板。

用户可以在模板中使用Go语言模板引擎提供的各种功能和语法,灵活地定制告警通知的内容和格式。

三、模板的基本结构和示例下面是一个简单的Alertmanager模板的例子:```{{ define "em本人l.default.html" }}<html><head><title>{{ .CommonLabels.alertname }} -{{ .CommonLabels.instance }}</title></head><body><h1>{{ .CommonLabels.alertname }}</h1><p>Labels:</p><ul>{{- range .CommonLabels.SortedP本人rs -}}<li><strong>{{ .Name }}</strong>: {{ .Value }}</li> {{- end }}</ul><p>Annotations:</p><ul>{{- range .CommonAnnotations.SortedP本人rs -}} <li><strong>{{ .Name }}</strong>: {{ .Value }}</li>{{- end }}</ul><p>开始时间: {{ .StartsAt }}</p><p>结束时间: {{ .EndsAt }}</p><p>告警级别: {{ .CommonLabels.severity }}</p><p>实例: {{ .CommonLabels.instance }}</p></body></html>{{ end }}```以上代码定义了一个名为"em本人l.default.html"的模板,用于生成HTML格式的告警通知。

NOKIA告警大全

NOKIA告警大全

交换网告警梳理——诺基亚分册目录一.诺基亚设备告警概述 (10)1.1原始告警格式 (10)1.2告警列表格式 (11)二.告警列表 (12)2.13ACCESS SERVICE IS OVERLOADED (12)2.24ACCESS SERVICE REJECT RATE LIMIT EXCEEDED (13)2.333FILE UPDATES TO DISK PREVENTED (13)2.4557STATISTICAL REPORTS LOST (14)2.5690WORKING STATE CHANGE (15)2.61001UNIT RESTARTED (15)2.71007RESTARTED PROGRAM BLOCK (16)2.81016MB INTERFACE FAILURE (17)2.91021PROGRAM BLOCK REWARMING STARTED (18)2.101022PROGRAM BLOCK WARMUP FAILURE (19)2.111024HAND PROCESS ERROR IN PROGRAM BLOCK (19)2.121044ERROR IN SWITCH COMPARE TEST (20)2.131072SIGNALLING LINK OUT OF SERVICE (21)2.141078PROCESS EXCEPTION (23)2.151088CONNECTION ERROR BETWEEN MSC AND SMSC (24)2.161103SIGNALLING MEASUREMENT REPORT LOST (25)2.171183HMS LINE CONNECTION LOST (27)2.181186NO RESPONSE TO HMN SUPERVISION (27)2.191195USSD SERVICE INFORMATION NOT FOUND (28)2.201425OVERFLOW IN ALARM BUFFERING (28)2.211559A-INTERFACE CIRCUIT ALLOCATION FAILURE (29)2.221569CRITICAL LIMIT IN SECURITY REPORTING REACHED (30)2.231574DATA ERROR FOUND BY PROTOCOL (30)2.241575COMPONENT NOT ACCEPTED BY REMOTE END (31)2.251645PROTOCOL MESSAGE QUEUE FULL (32)2.261647OPERATION TIMER EXPIRY (32)2.271667UNHANDLED MESSAGES OVERFLOW (33)2.281860DISK DISTURBANCE (34)2.292005CHECKSUM ERROR IN LOAD MODULE (34)2.302007FILE UPDATING ON AUXILIARY STORAGE IS NOT PROCEEDI (35)2.312012ERROR IN FILE OPENING (36)2.322015MB COMMUNICATION ERROR (37)2.332017FILE DISTRIBUTION ERROR (37)2.342018OVERFLOW IN HANDLING ALARM EVENTS (38)2.352023MAIN CLOCK FAILURE (39)2.362024MAIN CLOCK NEEDS ADJUSTMENT (39)2.372031MB CLOCK FAILURE (40)2.382032SSU CLOCK FAILURE (40)2.392033GSW CLOCK FAILURE (41)2.402034SWI CLOCK FAILURE (42)2.412035SUB CLOCK FAILURE (42)2.422036AONU CLOCK FAILURE (43)2.432037CLG-S FAILURE (44)2.442038MFR CLOCK FAILURE (44)2.452050PLUG-IN UNIT MISSING IN SWITCHING NETWORK (45)2.462051POWER FAILURE IN SWITCHING NETWORK (46)2.472052SWITCH CLOCK FAILURE (46)2.482064ROUTE SET UNAVAILABLE (47)2.492069SIGNALLING LINK TEST FAILED (47)2.502070LINK SET UNAVAILABLE (48)2.512071SIGNALLING LINK TERMINAL FAULTY (49)2.522072FAILURE IN SIGNALLING LINK ACTIVATION OR RESTORATION (50)2.532075COMMUNICATION FAILURE BETWEEN SIGNALLING TERMINAL (51)2.542079LOOP TEST FAILED IN SIGNALLING LINK TERMINAL (52)2.552087LOW TRAFFIC CAPACITY ON CIRCUIT GROUP (53)2.562092AVERAGE SEIZURE TIME BELOW THRESHOLD (53)2.572098CALL OVERLOAD IN EXCHANGE (54)2.582099LIMIT FOR UNSUCCESFUL CALLS EXCEEDED (55)2.592114FR VIRTUAL CONNECTION FAILED (55)2.602115FR USER LINK INTEGRITY VERIFICATION FAILED (56)2.612133SEND BUFFER OVERFLOW IN SIGNALLING TERMINAL (57)2.622137PLUG-IN UNIT LOCATION ERROR (58)2.632138PLUG-IN UNIT SOFTWARE PACKAGE CHECK SUM ERROR (58)2.642139PLUG-IN UNIT SOFTWARE PACKAGE LOAD FAILURE (59)2.652142PLUG-IN UNIT SUPERVISION FAILURE (60)2.662160PREPROCESSOR UNIT RESTART FAILURE (60)2.672171NO USER FOR OSI CLNS (61)2.682175OSI CLNS LINKAGE NOT AVAILABLE (61)2.692185ROUTING OF OSI OUTGOING CALL FAILED (62)2.702186CALL CONTROL ANALYSIS MISSING (63)2.712194ANNOUNCEMENT ID ANALYSIS ERROR (64)2.722202ET FAILURE (64)2.732205ET2FAILURE (65)2.742224ERROR IN MSU HANDLING (65)2.752241SCCP SUBSYSTEM PROHIBITED (67)2.762246SCCP ROUTING FAILURE (67)2.772247SS7ERRONEOUS SIGNALLING MESSAGE (69)2.782250FAILURE IN D-CHANNEL ACTIVATION OR RESTORATION (71)2.792252LOOP TEST FAILED IN PRIMARY RATE ACCESS TERMINAL (72)2.802254SCCP NOT DEFINED FOR NETWORK (72)2.812262OSI SUBNETWORK INTERFACE OUT OF ORDER (74)2.822269ERRONEOUS DISK CACHE SIZE (74)2.832272BOOT LOADING ERROR (75)2.842274SOMAFI ERROR (76)2.852285SIGNALLING TERMINAL FAULTY (77)2.862304TONE GENERATOR FAILURE (78)2.872339SP-CIC->PCM-TSL CONVERSION TABLE UPDATE ERROR (78)2.882347POWER SUPPLY FAILURE IN CPU (79)2.892386OVERWRITING UNTRANSFERRED VDS-DEVICE DATA FILE (79)2.902393FALLBACK COPYING TERMINATED IN ERROR (80)2.912394ERROR IN FINISHING FALLBACK COPYING (81)2.922397DATABASE FILE IS IN DANGER TO GET FULL (82)2.932399DATABASE DISK UPDATES ARE PREVENTED (82)2.942402AFS CONNECTION FAILURE (83)2.952403SERIAL CHANNEL FAILURE (83)2.962410CONNECTION OF A CIRCUIT HAS FAILED IN THE SWITCHING (84)2.972411RELEASING OF A CIRCUIT HAS FAILED IN THE SWITCHING (85)2.982414MISSING ACC REJECTION PERCENTAGES (86)2.992424DISCREPANCY BETWEEN RECORD DATA AND BITMAP (87)2.1002426CHECKSUM ERROR IN FILE BLOCK (88)2.1012439NO LINK BETWEEN MSC AND SMSC (88)2.1022445UNIT TYPE HAS NO REDUNDANCY (89)2.1032477GLOBAL RESET MESSAGE RECEIVED (89)2.1042478MOBILE ACCESS CLASSES ABNORMAL (90)2.1052494MSRN RESERVATION RATIO (91)2.1062503DETAILED CHARGING LOST (91)2.1072504CHARGING FILE FILLING UP (92)2.1082518NO VALID FALLBACK COPY FOR DEFAULT PACKAGE (93)2.1092525FAILURE IN STORING OF DETAILED CHARGING DATA (93)2.1102532ANALYSIS FOR NETWORK GENERATED NBR OR FOR CHA (94)2.1112536SUBSCRIBER DATABASE FILE IN VLR IS FULL (95)2.1122549FIRST ALARM LIMIT FOR UNAVAILABLE VDS-DEVICE (95)2.1132558ECHO CANCELLER CONNECTION FAILURE (96)2.1142562NUMBER NOT FOUND FROM HRNFIL OR INVALID DATA (97)2.1152568ERROR IN GSAPRB ANALYSIS FILE (98)2.1162590ERROR IN OPENING OUTPUT FILE (99)2.1172621FAULTY TIME SLOT IN TESTING OF TIME SLOT BASED UNIT (99)2.1182623TOTAL FAILURE OF TIME SLOT BASED UNIT (100)2.1192624FAULTY TIME SLOT IN TESTING OF MFST (101)2.1202632OSCILLATOR FAILURE (102)2.1212634POWER FAILURE IN SYNCHRONIZATION UNIT (102)2.1222636FAILURE IN OUTGOING CLOCK SIGNAL (103)2.1232638FAILURE IN BUS BETWEEN SYNCHRONIZATION UNITS (104)2.1242639FAILURE IN SYNCHRONIZATION UNIT SWITCHOVER (104)2.1252641FAILURE IN SYNCHRONIZATION SIGNAL (105)2.1262646PROTOCOL ROUTING FAILURE (106)2.1272650STORING OF THE DATA FAILED ON ONE DISK (107)2.1282651STORING OF THE DATA FAILED ON BOTH DISKS (107)2.1292652PHYSICAL DISK IS FULL (108)2.1302653FAILURE IN THE HANDLING OF CONTROL FILES (109)2.1312654NO SERVICE PACKAGE FOR CORE INAP TRIGGER KEY (109)2.1322656CIRCUIT POOL INFORMATION CONFLICT BETWEEN MSC (110)2.1332658CHARGED NUMBER FOR THE SECOND LEG OF REROUTING (111)2.1342661NO CONSISTENT COPY OF DATABASE ON DISK (111)2.1352662NO CONSISTENT DATABASE ANYWHERE (112)2.1362664DATABASE COPY STAYS INCONSISTENT ON SAME DISK (113)2.1372666DBSMAN STOPPED IN ACTIVE UNIT (114)2.1382668CALL ESTABLISHMENT FAILURE (114)2.1392671DATA SERVICE UNIT IS NOT AVAILABLE (116)2.1402675SS7GROUP RESET MESSAGE RECEIVED TO UNUSED CIRCUIT (117)2.1412683ERROR IN MML COMMAND LOG ACCESS (118)2.1422687SYSTEM RESTART IN PROGRESS (120)2.1432692INCORRECT WORKING STATE (121)2.1442693WO-EX UNIT FAULTY (121)2.1452703MAP PROCEDURE FAILURE–HIGH (122)2.1462720TELECOM LINK OVERLOAD (123)2.1472725ADJACENT CELL IDENTIFIER CONFIGURATION ERROR (124)2.1482733OUT OF AVAILABLE VDS-DEVICE DATA FILES (125)2.149273480%OF THE EVENT BUFFER USED (126)2.1502737ECHO CANCELLER CHANNEL FAILURE (126)2.1512740EXCESSIVE DISTURBANCES IN CALL INDEX RESERVATI (127)2.1522741NO SUCCESSFUL CALLS (127)2.1532742BSC/MGW(REL99)OUT OF SERVICE IN MSC (128)2.1542744BSC/MGW(REL99)OR BTS/SAC IN WRONG STATE IN MSC (129)2.1552745CELLULAR NETWORK CONFIGURATION ERROR (130)2.1562748NO ANALYSIS FOR SMSC ADDRESS (131)2.1572751PLUG-IN UNIT MISSING (132)2.1582754FUSE FAILURE (132)2.1592755CARTRIDGE CLOCK FAILURE (133)2.1602756CARTRIDGE POWER SUPPLY FAILURE (134)2.1612757CARTRIDGE NON-REDUNDANT POWER SUPPLY FAILURE (134)2.1622758POWER SUPPLY ADAPTER FAILURE (135)2.1632759POWER SUPPLY FUSE FAILURE (135)2.1642760HWAT FAILURE (136)2.1652761CLAB FAILURE (137)2.1662762SUPERVISION BUS FAILURE (138)2.1672763FAILURE IN BUS BETWEEN CLAB UNITS (138)2.1682764CLS FAILURE (139)2.1692767FEATURE NOT SUPPORTED (139)2.1702770PREPROCESSOR UNIT FAILURE (140)2.1712772BSC/MGW(REL99)CONTINUOUSLY OUT OF SERVICE IN MSC (140)2.1722773RESET CIRCUIT ACKNOWLEDGEMENT MISSING FROM BSC (141)2.1732777CDSU CHANNEL SUPERVISION FAILED (142)2.1742779CDSU PIU SOFTWARE LOADING FAILED (142)2.1752799FRAUD REPORTING NOT SUCCESSFUL (143)2.1762802CTU DISK BUFFERING INTERRUPTED (144)2.1772806SOMAFI UPDATE ERROR (145)2.1782809MASS MEMORY DEVICE POWER SUPPLY FAILURE (145)2.1792812PRINTER SPOOLER ALMOST FULL (146)2.1802818INCORRECT OPERATING STATE (147)2.1812827EMT PROTOCOL FAILURE (147)2.1822843ALARM DIFFERENCE BETWEEN BSC AND OMC (148)2.1832860DISK FAILURE (148)2.1842861NO ACCESS TO DISK (149)2.1852862DISK CHECKSUM ERROR (150)2.1862870MASS MEMORY POWER SUPPLY FAILURE (150)2.1872883TAPE MEDIA FULL (151)2.1882900INCOMING SIGNAL MISSING (151)2.1892902PCM LINE REMOTE END ALARM (152)2.1902908CODE ERROR RATE OVER LIMIT (153)2.1912909AIS RECEIVED (153)2.1922910FRAMING ERROR (154)2.1932911EXCESSIVE CODE ERROR RATE (155)2.1942912BIT ERROR RATE OVER LIMIT (155)2.1952915FAULT RATE MONITORING (156)2.1962923CRC BIT ERROR RATIO OVER LIMIT (157)2.1972925SLIP FREQUENCY LIMIT EXCEEDED (157)2.1982950TRCO FAILURE (158)2.1992952TRANSCODER PLUG-IN UNIT FAILURE (158)2.2002954NO TRAU FRAME SYNCHRONIZATION (159)2.2012955TRANSCODER CHANNEL FAILURE (160)2.2022992BTS AND TC UNSYNCHRONIZATION CLEAR CALLS ON A (161)2.2032993BTS AND TC UNSYNCHRONIZATION CLEAR CALLS ON AB (162)2.2043019NETWORK SERVICE ENTITY UNAVAILABLE (163)2.2053020NETWORK SERVICE VIRTUAL CONNECTION UNAVAILABL (164)2.2063022NETWORK SERVICE VIRTUAL CONNECTION BLOCK PROCEDURE165 2.2073023NETWORK SERVICE VIRTUAL CONNECTION RESET PROCEDURE 165 2.2083024NETWORK SERVICE ENTITY CONFIGURATION MISMATCH (166)2.2093025NETWORK SERVICE VIRTUAL CONNECTION TEST PROCEDURE (167)2.2103026NETWORK SERVICE VIRTUAL CONNECTION PROTOCOL ERROR.. 168 2.2113027.UPLINK CONGESTION ON THE NETWORK SERVICE VIRT (168)2.2123032BSSGP VIRTUAL CONNECTION PROTOCOL ERROR (169)2.2133050NO RESPONSE FROM PLUG-IN UNIT (169)2.2143053ETHERNET INTERFACE FAILURE (170)2.2153084ECHO CANCELLER CHANNELS FAILURE (171)2.2163118UNDERVOLTAGE IN POWER SUPPLY BRANCH UB1OF THE SYS (171)2.2173126DATABASE FILE FOR NORMAL SUBSCRIBERS IS IN DANG (172)2.2183146FAN UNIT FAILURE (173)2.2193156ASSOCIATION ROUTING FAILURE (173)2.2203159SCTP ASSOCIATION LOST (174)2.2213216CONNNECTION BETWEEN MSC AND SMSC FAILED (174)2.2223263CALL ESTABLISHMENT FAILURE IN USER PLANE CONTROL (175)2.2233273(E)GPRS TERRITORY FAILURE (178)2.2243293SCTP PRIMARY PATH NOT AVAILABLE (179)2.2253295LICENCE CAPACITY EXCEEDED (180)2.2263296IWF IP CONNECTION LOST (181)2.2273799MESSAGE BUS FAILURE (181)2.2283937H.248.IP CONNECTION LOST (182)2.2293947VIRTUAL MEDIA GATEWAY IS OUT OF SERVICE (183)2.2304000POWER FAILURE ALARM(外部告警) (184)2.2315001VMS(外部告警) (184)2.2325002VMS(外部告警) (185)2.2335003VMS(外部告警) (185)2.2347208LOCAL BLOCK (185)2.2357220RADIO LOOP OR RX ANTENNA TEST EXECUTION (186)2.2367524TX FREQUENCY TUNER OUT OF ORDER (186)2.2377526RX FREQUENCY TUNER OUT OF ORDER (187)2.2387528TEST LOOP TUNING OUT OF ORDER (188)2.2397530TX OUTPUT POWER LEVEL DECREASED (188)2.2407533TX ANTENNA OR COMBINER CONNECTION FAULTY (189)2.2417549INTERNAL DATA TRANSFER FAILURE (190)2.2427600BCF FAULTY (190)2.2437601BCF OPERATION DEGRADED (191)2.2447602BCF NOTIFICATION (192)2.2457604BTS OPERATION DEGRADED (193)2.2467606RX FAULTY (193)2.2477607TRX OPERATION DEGRADED (194)2.2487608TRX NOTIFICATION (194)2.2497609TRE FAULTY (195)2.2507616OSCILLATOR ADJUSTING TEMPORARILY INTERRUPTED (196)2.2517622CABINET OPEN (196)2.2527700BTS OMU INITIALIZATION (197)2.2537701BCF INITIALIZATION (197)2.2547704PCM FAILURE (198)2.2557705LAPD FAILURE (198)2.2567706BTS O&M LINK FAILURE (199)2.2577711WORKING FULL RATE TCH RATIO BELOW THRESHOLD (199)2.2587715CONTINUOUS RESTARTS OF BCF/TRX (200)2.2597716ACTIVE BCF HW DATABASE DIFFERENCE (200)2.2607717WORKING HALF RATE TCH RATIO BELOW THRESHOLD (201)2.2617723FAILURE IN SENDING SYSTEM INFORMATION TO BTS SIT (201)2.2627724CONFLICT BETWEEN BSS RADIO NETWORK DATABASE A (202)2.2637725TRAFFIC CHANNEL ACTIVATION FAILURE (204)2.2647730CONFIGURATION OF BCF FAILED (204)2.2657735TRX TEST FAILED (206)2.2667736ABIS LOOP TEST FAILED (207)2.2677738BTS WITH NO TRANSACTIONS (208)2.2687740BEATING BTS ALARM (208)2.2697741MEAN HOLDING TIME ABOVE DEFINED THRESHOLD (209)2.2707743MEAN HOLDING TIME BELOW DEFINED THRESHOLD (210)2.2717744EXCESSIVE TCH INTERFERENCE (211)2.2727745CHANNEL FAILURE RATE ABOVE DEFINED THRESHOLD (212)2.2737746CH CONGESTION IN CELL ABOVE DEFINED THRESHOLD (213)2.2747753TRX LOOP TEST FAILED (214)2.2757767BCCH MISSING (215)2.2767801MMI CONNECTED TO BASE STATION (216)2.2777805UNIT TEMPERATURE HIGH (216)2.2787808FAULT IN Q1-INTERFACE OF BCF (217)2.2797840SW DOWNLOAD TO UNIT FAILED (217)2.2807861SERVICE TERMINAL CONNECTED TO ABIS TRANSMISSIO (218)2.2817870CABINET DOOR OPEN (219)2.2827890FAULT IN COOLING FAN (219)2.2837900NO CONNECTION TO TRX (220)2.2847939FORWARD POWER TOO LOW AT TX ANTENNA (220)2.2857941TX ANTENNA PERFORMANCE DEGRADED (221)2.2867944MAIN BRANCH LNA OUT OF ORDER IN ANTENNA FILTER UNI (222)2.2877949DIFFERENCE IN RX LEVELS OF MAIN AND DIVERSITY ANTE (222)2.2887990MAINS BREAKDOWN WITHOUT BATTERY BACK-UP (223)2.2897991POWER SUPPLY FAULT (224)2.2908000POWER SUPPLY FAULT (224)2.2918050LOSS OF INCOMING2M SIGNAL (225)2.2928066ALARM INDICATION SIGNAL(AIS)RECEIVED (226)2.2938081LOSS OF FRAME ALIGNMENT (226)2.2948086LOSS OF CRC MULTIFRAME ALIGNMENT (227)2.2958099RECEIVED BIT ERROR RATIO(BER)>1E-3 (228)2.2968102RECEIVED BIT ERROR RATIO(BER)>1E-6 (229)2.2978112FREQUENCY ERROR (229)2.2988179FAR-END ALARM (230)2.2999011FAILURE IN DATA COMMUNICATION NETWORK (231)2.3009041PROCESS RECOVERY IS NEEDED REPEATEDLY (232)2.3019047ALARMS FROM NETWORK ELEMENT NOT ARRIVING (232)2.3029108FAILURE IN OMC-NE COMMUNICATION LINK (233)2.3039112THE MINIMUM NUMBER OF PROCESSES REQUIRED IS NO (234)2.3049122MEASUREMENT DATA HAS NOT ARRIVED FROM THE NE (234)2.3059205FILE SYSTEM IS BECOMING FULL (235)2.3069207NE CLOCK TIME DEVIATION EXCEEDS THE ALARM (236)2.3079212NO CONNECTION TO DATABASE CONNECTION SUPERVIS (236)2.3089224SUPERVISION PROGRAM FAILED (237)2.3099228ALARM DATABASE UPLOAD IN PROGRESS (238)2.3109450CONNECTION FAILURE TO AN SNMP HOST (238)2.3119451SNMP AGENT NOT RESPONDING (239)2.31219800CONNECTION LOST (240)2.31332333CAN NOT INITIALISE CHARGING (240)一. 诺基亚设备告警概述1.1 原始告警格式 ZMMSC2_I OMU-1SWITCH 2006-01-12 16:13:31.98**ALARM OMU-1 1A004-08SAVDAT FILE UPDATING ON AUXILIARY STORAGE IS NOT PROCEEDING 00 10053d 07670000 02A0 4402(1531)2007 交换机名称发送告警单元告警设备类型日期时间告警级别告警输出序列号告警号输出类型出现问题单元告警单元位置告警软件模块告警正文附加信息交换机名称:产生告警的设备名称 告警设备类型:SWITCH 交换单元 O&M 操作维护单元 TRANSM 传输单元 POWER 电源设备 EXTERN 外部设备 日期时间:告警的发生时间 告警级别:*** 需要立即处理** 在一段时间范围内处理 * 一般不需处理 (?). 未知的告警级别以?标识 输出类型:ALARM 故障状态 CANCEL 故障结束 DISTUR 干扰 NOTICE 通知 出现问题单元:产生告警的功能单元。

欧盟TE评估中QSAR报告的要求

欧盟TE评估中QSAR报告的要求

17/832环球农化 欧盟TE 评估指欧盟植物保护剂法规(Regulation (EU) No 1107/2009)中对农药活性成分的等同性评估。

作为欧盟农药产品登记非常重要的环节,TE 评估也是企业进入欧盟市场的主要方式。

然而,企业对TE 评估的资料要求并不是很熟悉,尤其是第二阶段毒理学评估资料以及QSAR 分析报告对大家来说十分陌生。

由于第二阶段可能是TE 评估的最后机会,如果资料不充分或不符合要求,很可能不能通过TE 评估而影响进入欧盟市场,所以第二阶段的资料非常的重要。

那么TE 评估中的QSAR 报告有什么要求呢?什么情况需要提交QSAR 报告? 根据TE 评估指南文件(SANCO/10597/2003),TE 评估共分两阶段开展。

第一阶段先根据生产工艺、五批次实验和部分理化资料进行评估,当满足以下情况时则可视为等同:(1)活性物质纯度高于参考来源;(2)没有新杂质出现;(3)现有杂质含量没有增加;(4)所有相关杂质不超过一定标准。

当产品出现新杂质或现有杂质含量增加时,则不能通过第一阶段的评估,此时则需要进入第二阶段评估,即提交QSAR 分析报告等毒理学资料,来证明新产品不会增加不可接受的风险,如ADI、AOEL、ARfD 降低或危害分类更严重的情况。

QSAR 报告要求是什么? 与传统的QSAR 报告一样,TE 评估中的QSAR 报告主要按照OECD 69所规定的要求进行评估,包括活性终点、模型算法、拟合度、应用域、模型机理五个方面。

此外,针对毒性风险是否增加的法规监管目的,欧盟官方还对报告内容做了如下要求: 预测物质的mol 文件。

QSAR 是根据物质结构定性或定量的预测物质的理化、健康毒理、生态毒理和环境行为等性质的方法,也就是说,物质结构是QSAR 预测的基础。

因此,需要向官方提交预测物质的结构,以证明QSAR 报告中的物质与所要分析的杂质是同一个物质,这也是官方评估QSAR 报告是否合格的前提。

alert的记忆方法

alert的记忆方法

Alert的记忆方法Alert(警报)是一种常见的通知机制,用于向用户传达重要信息或提醒他们采取行动。

在计算机科学和信息技术领域,Alert通常以弹窗、提示框或警告框的形式出现。

为了更好地理解和记忆Alert的概念和使用方法,本文将介绍一种记忆方法。

A - Attention(注意力)首先,Alert需要吸引用户的注意力。

因此,我们可以将A与Attention(注意力)联系起来。

Alert通常以突出的方式呈现,可能是一个突然弹出的窗口、一个有声音提示的对话框或一个闪烁的图标等等。

这些特征都有助于吸引用户的注意力,使其立刻意识到有重要信息需要处理。

L - Level(级别)Alert可以根据其重要性和紧急程度分为不同级别。

L代表Level(级别)。

在设计Alert时,我们应该根据具体情况选择适当的级别,并确保用户能够根据级别判断处理该Alert的优先顺序。

常见的Alert级别包括:•信息(Information):提供一般性信息或提示。

•警告(Warning):表示潜在问题或需要用户注意。

•错误(Error):指示出现错误或操作失败。

•危险(Danger):表示严重错误或潜在的安全风险。

通过设置不同的级别,用户可以更好地理解Alert的重要性,并采取相应的行动。

E - Explanation(解释)Alert不仅需要吸引注意力和指示级别,还需要清楚地解释其原因和内容。

E代表Explanation(解释)。

Alert应该提供足够的信息,以便用户了解发生了什么事情,为什么发生以及如何处理。

例如,当用户尝试删除某个文件时,系统可能会弹出一个Alert,说明该文件正在被其他程序使用,并提供关闭该程序的选项。

这样用户就能够理解为什么无法删除文件,并采取相应的行动。

R - Response(响应)最后一个字母R代表Response(响应)。

Alert需要引导用户采取适当的行动。

无论是点击确定按钮、输入密码、关闭程序还是与其他操作交互,Alert都需要提供明确的响应方式。

Alert类的学习

Alert类的学习

Alert类的学习作者:SCHOLAR_…文章来源:SCHOLAR_II 更新时间:2007-12-26 21:51:36Alert类用来给用户发出警告信息,但内容和类型不一定是警告性质的.可以把Alert认为是一个提供信息的对话框,其类型有:警告,错误,通知,确认等,显不Alert时用户界面会失去焦点.Alert可以自动定时解除,也可以设定一直保持在屏幕上让用户手动解除,(setTimeout(Alert.FOREVER)),解除后应用程序会继续下一个屏幕.Alert类常用方法Alert构造函数new Alert(String str) / new Alert(String title, String alertText, Image alertImage, AlertType alertType)一个简单的例子package demo;import javax.microedition.midlet.*;import javax.microedition.lcdui.*;public class ExampleDemo extends MIDlet implements CommandListener{private Display display;private Form form;private Alert alert;private Command exit;private Command show;public ExampleDemo(){display = Display.getDisplay(this);form = new Form("Alert 的例子");alert = new Alert("Alert的标题","Alert里边的文字",null,);//设置一个Alert对象 alert.setTimeout(Alert.FOREVER);/*正如Alert.FOREVER字面意思一样Alet不会自动消失,当用户按了done时*/exit = new Command("退出" , Command.EXIT, 1);//退出命令show = new Command("显示" , Command.SCREEN,1);//显示Alert的命令form.addCommand(exit);form.addCommand(show);form.setCommandListener(this);}public void startApp(){display.setCurrent(form);}public void pauseApp(){}public void destroyApp(boolean condition){}public void commandAction(Command command ,Displayable displayable) {if(command == exit){destroyApp(true);notifyDestroyed();}if(command == show){display.setCurrent(alert,form);}}}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EUR 23844 EN -2009Development of structural alerts for the in vivo micronucleus assay inrodentsRomualdo Benigni a , Cecilia Bossa a , Olga Tcheremenskaia aand Andrew Worthb aIstituto Superiore di Sanita’, Environment and Health Department,Rome, Italy b Institute for Health & Consumer Protection, European Commission -Joint Research Centre, Ispra, ItalyThe mission of the IHCP is to provide scientific support to the development and implementation of EU policies related to health and consumer protection.The IHCP carries out research to improve the understanding of potential health risks posed by chemical, physical and biological agents from various sources to which consumers are exposed.European CommissionJoint Research CentreInstitute for Health and Consumer ProtectionContact informationAddress: TP 582E-mail:**********************.euTel.: +39 0332 789566Fax: +39 0332 786717http://http://ecb.jrc.ec.europa.eu/qsar/http://ec.europa.eu/dgs/jrc/Legal NoticeNeither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.A great deal of additional information on the European Union is available on the Internet.It can be accessed through the Europa serverhttp://europa.eu/JRC 52274EUR23844 ENISSN 1018-5593Luxembourg: Office for Official Publications of the European Communities© European Communities, 2009Reproduction is authorised provided the source is acknowledgedPrinted in ItalyABSTRACTIn vivo mutagenicity and carcinogenicity studies are posing a high demand for test-related resources. Among these studies, the micronucleus test in rodents is the most widely used, as follow up to positive in vitro mutagenicity results. A recent survey of the (Q)SAR models for mutagenicity and carcinogenicity has indicated that no (Q)SAR models for in vivo micronucleus are available in the public domain. Therefore, the development and extensive use of estimation techniques such as (Q)SARs, read-across and grouping of chemicals, promises to have a huge animal saving potential for this endpoint. In this report, we describe the identification of structural alerts for the in vivo micronucleus assay, and provide the list of underlying chemical structures. These structural alerts provide a coarse-grain filter for the preliminary screening of potential in vivo mutagens.LIST OF ABBREVIATIONSEPA Environmental Protection AgencyEU European UnionFDA Food and Drug AdministrationHOMO Highest Occupied Molecular OrbitalISS Istituto Superiore di Sanita’JRC Joint Research CentreLUMO Lowest Unccupied Molecular OrbitalOECD Organisation for Economic Cooperation and Development(Q)SAR(Quantitative)Structure-Activity RelationshipREACH Registration Evaluation and Authorisation of CHemicalsROC Receiver Operating CurveSA Structural AlertSA_BB Benigni-Bossa structural alerts for mutagnicity /carcinogenicity in ToxtreeSA_Mic Structural alerts refers for the in vivo micronucleus assay inToxtreeSA_Prot Structural alerts for protein binding in the OECD QSAR ToolboxCONTENTS1.Introduction (6)2.Structural alerts (8)3.Development of structural alerts for the in vivo micronucleus assay (10)4. Final considerations (20)5.References (21)Appendix 1 (23)1.IntroductionMutagenicity testing is an important part of the regulatory hazard assessment of chemicals. It is undertaken for two main reasons: a) to detect chemicals that might cause genetic damage in germ cells, and thus increase the burden of heritable (genetic) disease in the human population; and b) to detect chemicals that might be carcinogenic (based on the assumption that mutagenesis, for example in somatic cells, is a key event in the process of carcinogenesis). Since no method is able alone to detect all possible genotoxic events, a wide array of test systems has been developed and accepted internationally in regulatory schemes.Most often, these methods are used within a 2-tiered integrated testing approach: Tier 1 includes in vivo assays, and Tier 2 includes in vivo assays. As a matter of fact, mutagenicity testing was the first toxicity endpoint for which in vivo assays were accepted for regulatory testing, some 25 years ago. The latter usually comprise bacterial mutagenicity and cytogenetics tests, although gene mutation testing in cultured mammalian cells is sometimes also undertaken.Tier 2 of the testing strategy involves the use of short-term in vivo studies (usually a bone-marrow cytogenetics assay) to assess whether any potential for genotoxicity detected at the Tier 1 in vivo stage is actually expressed in the whole animal. Thus, negative results in vivo are usually considered sufficient to indicate lack of mutagenicity, whereas a positive result is not considered sufficient to indicate that the chemical represents a mutagenic hazard (i.e. it could be a false positive). The above approach to genotoxicity testing has been adopted throughout the EU1,and has been recommended internationally as part of the strategy for predicting and quantifying mutagenic and carcinogenic hazard (Ashby et al.,1996; Combes et al.,2007; Kirkland and Speit,2008; Lilienblum et al.,2008).1http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_r7a_en.p df?vers=20_08_08According to an assessment carried out by the former European Chemicals Bureau (ECB), the in vivo mutagenicity studies, shortly followed by carcinogenicity, are posing high demand for test-related recourses (Pedersen et al.,2003; Van der Jagt et al.,2004). Among those, the micronucleus test in rodents is the most widely used, as follow up to positive in vivo mutagenicity results. A recent survey of the (Q)SAR models for mutagenicity and carcinogenicity (performed jointly by ISS and the JRC) has indicated that no (Q)SAR models for in vivo micronucleus are available in the public domain (Benigni et al.,2007): therefore, the development and extensive use of estimation techniques such as (Q)SARs, read-across and grouping of chemicals, might have a huge saving potential for this endpoint.In this report, we describe: a) the collection of data on chemicals tested with the in vivo micronucleus assay; b) preliminary analyses of the data; c) the identification of Structural Alerts (SA) proper to this toxicological endpoint. First, some background information on the concept of SA is provided.2.Structural alertsThe SAs for a toxicological endpoint are molecular functional groups or substructures known to be linked to that type of toxicity.The SAs are a coarse-grained approach to the use of Structure-Activity Relationships (SAR) to understand the toxicity mechanisms and to predict the toxic activity of chemicals. Because of their nature, the SAs have the role of pointing to chemicals potentially toxic, whereas no conclusions or indications about nontoxic chemicals are possible (except by exclusion) (Benigni and Bossa,2006; Benigni and Bossa,2008).A set of chemicals characterized by the same SA constitute a family (class) of compounds that share the same mechanism of action. The reactivity of a SA can be modulated or abolished by the remaining part of the molecule in which the SA is embedded. At a coarse-grain level, such modulating effects can be represented by other molecular substructures (e.g., bulky groups ortho to an aromatic amine group) that are known to have an influence on the reactivity of the SA. Usually, the knowledge on the modulating substructures is quite limited for most of the SAs, thus it provides limited help in deciding which chemicals in a class will actually be toxic and viceversa. A powerful generalization of the Structure-Activity Relationships is provided by the Quantitative Structure-Activity Relationship (QSAR) analysis, which produces a mathematical model that links the biological activity to a limited number of physical chemical or other molecular properties (descriptors) with general relevance. Since most of the descriptors have continuous values, the QSARs provide fine-tuned models of the biological activity,and can give account of subtle differences. General introductions on QSAR are given elsewhere (Hansch and Leo, 1995, Hansch et al.,2002). Thus the SAs are not a discriminant model on the same ground of the QSAR models: the latter produce estimates for both positive and negative chemicals, as well as for the gradation of toxic potency.The main role of the SAs is that of preliminary, or large-scale screenings. They are excellent tools for coarse-grain characterization of chemicals, including: description of sets of chemicals, preliminary hazard characterization, category formation and priority setting (enrichment). Since fine-tuned QSARs do not exist for many types of chemicals, the models based on SAs hold a special place in predictive toxicology. Theknowledge on the action mechanisms as exemplified by the SAs is routinely used in SAR assessment in the regulatory context (see, for example, the mechanistically-based reasoning as presented in Woo et al. (2002). In addition, the SAs are at the basis of popular commercial (e.g., DEREK, by Lhasa Ltd.2) and non-commercial software systems (e.g., Oncologic, by US Environmental Protection Agency[EPA]3).Recently, as follow-up of the collaboration between ISS and JRC,a rulebase for mutagens and carcinogens has been designed and implemented in the software Toxtree 1.51. It uses a structure-based approach consisting of a new compilation of SAs for carcinogenicity and mutagenicity. It also offers three mechanistically based QSARs for congeneric classes (aromatic amines and aldehydes) (Benigni et al., 2008a). Toxtree 1.51 is freely available from the JRC website.42/3/oppt/newchems/tools/oncologic.htm4http://ecb.jrc.ec.europa.eu/qsar/qsar-tools/index.php?c=TOXTREE3.Development of structural alerts for the in vivomicronucleus assay3.1 DataThe compilation of SAs for the in vivo micronucleus assay in rodents provided here, is based on both the existing knowledge on the mechanisms of toxic action and a structural analysis of the chemicals tested in the assay.The in vivo micronucleus data in the public domain is quite limited. A search of the Chemical Carcinogenesis Research Information System(CCRIS) at the Toxnet website with the query: “in vivo micronucleus” points only to 240 chemicals.5For this work, the remarkably larger commercial database by Leadscope Inc., called “FDA SAR Genetox Database” was used.6This database contains more than 700 chemicals tested in in vivo micronucleus with rodents, and includes data from both the public domain and the US Food and Drug Administration (FDA) files. A large majority of data were based on the analysis of micronuclei in bone marrow cells; for details on the technique, see for example, Krishna and Hayashi (2000).3.1 Preliminary analysesSince the main role of the in vivo micronucleus assay in regulatory schemes is that of confirming (or disproving) the positive in vitro results, it is of interest to check how the in vivo micronucleus results relate to the rodent carcinogenicity data and to the primary in vitro prediction test, i.e., the Salmonella typhimurium(Ames) test.Tables I and II display the relationships between the in vivo micronucleus ad the two reference tests. The results for rodent carcinogenicity and the Ames test were retrieved from the freely available ISSCAN v3a database,7which is characterized by:5/cgi-bin/sis/search6/product_info.php?products_id=777http://www.iss.it/ampp/dati/cont.php?id=233&lang=1&tipo=7a) the high quality of both chemical and biological information; b) the QSAR-ready format (Benigni et al.,2008b). Obviously, the total numbers of chemicals in the two tables are relative only to those chemicals tested in both systems.Table I. Contingency table comparing the results of the rodent carcinogenicity testwith the micronucleus testTable II:Contingency table comparing the results of the Salmonella typhimuriumassay with the micronucleus testTable I shows that is the in vivo micronucleus assay is poorly sensitive to the rodent carcinogens: about 60% of the rodent carcinogens are not detected by the micronucleus. The poor sensitivity of the micronucleus assay to potential genotoxins is also apparent from Table II.It should be emphasized that the present results obtained with the large Leadscope micronucleus database are in agreement with previous analyses based on smaller datasets in the public domain (Benigni,1995).In a second round of analyses, the extent to which the micronucleus data are related to well established indicators of DNA and protein binding was checked. This in view of the plethora of the reported mechanisms of micronucleus induction. As a matter of fact, micronuclei are markers of both aneugenic (change in the chromosomes number, usually by loss) and clastogenic (chromosome breakage) effects. It is generally assumed that such effects are generated through a range of different pathways. Evidence (mainly gathered from in vitro studies) indicates that micronuclei can be induced e.g., by typical DNA-attacking agents (e.g., alkylating agents like methylmethane sulfonate), by mitotic spindle poisons (e.g., colcemide, vincristine), or by inhibitors of cytokinesis (e.g., cytochalasin B). The latter effects are probably due to interference with proteins. Other chemicals are thought to be clastogenic through aspecific disturbance of cytokinesis due to lipophilicity (Dorn et al.,2007).The relative influence of DNA and protein binding on micronucleus generation was checked by recording the distribution of structural alerts for the two effects in the Leadscope in vivo micronucleus database. As probes for DNA binding, we used the structural alerts for carcinogenicity / mutagenicity implemented in Toxtree 1.51. As a matter of fact, the large majority of these alerts refer to genotoxic carcinogenicity, which is assumed to be caused through direct interaction with DNA (Benigni and Bossa, 2008). As probes for protein binding, we used the alerts implemented in the Organisation for Economic Cooperation and Development (OECD) QSAR Toolbox.8 These alerts were mainly developed from the mechanistic knowledge on skin sensitization, and model the covalent binding to proteins.The results of the above analysis is displayed in Figure 1 as a ROC graph. It appears that the structural alerts for carcinogenicity /mutagenicity correlate to some extent with the induction of micronuclei, whereas those for protein covalent binding show no correlation (in the graph, they are on the diagonal line which represents random results).8/document/23/0,3343,en_2649_34379_33957015_1_1_1_1,00.htmlFigure 1. Receiver Operating Curve showing the concordance of two sets of structural alerts with the results of the in vivo micronucleus assay(SA_BB refers to the Benigni-Bossa alerts in Toxtree; SA_Prot refers to the alerts for proteinbinding in the OECD QSAR Toolbox)3.3 Structural Alerts for in vivo micronucleus assaySince the above analyses pointed to genotoxic effects as an important determinant of micronuclei induction, we developed the list of Structural alerts for in vivo micronucleus using the carcinogenicity / mutagenicity alerts in Toxtree as a core , and then searching for additional substructures specific to the micronucleus-positive chemicals. From the Toxtree alerts for carcinogenicity / mutagenicity,we excluded four alerts specific for non-genotoxic mechanisms of carcinogenicity.Using linear discriminant analysis as an analytical tool and ROC plots as a graphical tool, a series of additional substructures were added / removed to / from the Toxtreealerts in order to increase sensitivity and specificity.In these exploratory analyses, wescreened the very large collection of substructural patterns and functional groups (more than 27,000) contained in the software Leadscope Enteprise 2.4.15-6. We also re-checked the Toolbox protein binding alerts for individual substructures related with micronucleus induction.The result is the optimized list of alerts in Appendix 1. Together with the Toxtree alerts, it contains five additional substructures identified in the course of this research. For the sake of clarity,the codes of the alerts in Toxtree are maintained, whereas the five additional alerts have new codes.Figure 2 displays the agreement between the alerts for in vivo micronucleus, and the experimental results for this endpoint. Out of 547 negatives, the specificity of the SAs is 0.57. The sensitivity is 0.65 out of 182 positives. The overall accuracy is 0.59. For a comparison, the ROC graph shows the newly developed alerts for micronucleus together with those for DNA and protein binding. It appears that the performance of the final list of alerts is considerably higher than that of the DNA binding and Protein binding alerts.Table III gives the true positive rate for the individual alerts.Figure 2 Receiver Operating Curve showing the concordance of structural alerts for the in vivo micronucleus assay with the experiemtnal results for this assay(SA_Mic refers to the in vivo micronucleus alerts in Toxtree)Table III: Characterisation of Structural Alerts.3.4 Further analyses on the alerts for micronucleusA striking evidence in Table III is the relatively low percentage of true positives identified by many SAs. In other words, often the toxic potential of the alerts is not translated into actual toxicity in the experimental system. For a comparison, the True Positive Rate of the various alerts for mutagenicity /carcinogenicity in Toxtree is remarkably higher, ranging from 70 to 100% (Benigni and Bossa,2008).The above result contributes to better understand the evidence in Tables I and II, where it appears that the micronucleus assay has many more negatives than the carcinogenicity bioassay and the Salmonella mutagenicity test. Table III indicates that the low sensitivity of the micronucleus assay is largely due to the fact that often,chemical functionalities and substructures which are supposed to be reactive do not exert their potential reactivity in this experimental system.The issue of the low sensitivity of the micronucleus assay has been recognized by scientists involved in research aimed at improving the available short-term mutagenicity assays; as a matter of fact, validation of further, more sensitive in vivo assays (e.g., in vivo Comet assay) is presently in progress (Kirkland and Speit,2008).In the context of this research, we investigated if a general effect of bioavailability on the limited sensitivity of micronucleus was apparent. To this aim, we considered two chemical descriptors well known as to be linked to bioavailability: logP (hydrophobicity) and Molar Refractivity (MR) (Hansch and Leo,1995). The two descriptors were calculated with the C-QSAR software (Daylight, Inc.)9for all the chemicals in the micronucleus database. For the two parameters, Table IV reports the ranges of values for positive and negative micronucleus results.Table IV: Ranges of C-logP and C-MR in chemicals assayed withthe micronucleus testIt appears that the micronucleus positives cover a more limited range of logP values than the micronucleus negatives; however, the consideration of exclusion values for logP in combination with the SAs did not improve the overall performance (results not shown).Whereas no general effect of logP (or MR) was found, analyses on the individual chemical classes showed that logP cut-offs can be identified for the classes of Nitroaromatics (Negatives at logP > 0.0), Aromatic Diazo (Negatives at logP < 3.7),9/about/index.htmland Oxolanes (Negatives at logP > 1.5). The consideration of these cut-offs increases the specificity of the SAs from0.57 to 0.60.The above result suggests a possible strategy to understand and modeling the many negative results observed with the micronucleus. Since the bone marrow (main target of the test) is an organ easily accessible by the blood stream, it can be hypothesized that the lack of effect shown by several chemicals with SAs (hence potentially reactive) is due to the many possible targets for reaction encountered in the in vivo situation; this diminishes the probability for the chemicals of reaching, and interacting with the molecular target(s) of the micronucleus test. For example, highly reactive chemicals will probably react with any target encountered in their way (e.g., proteins, water)before reaching the bone marrow. Thus it can be envisaged that QSARs for individual chemical classes should be developed, and that they should consider parameters linked to chemical reactivity(such as HOMO and LUMO energies). It can be hypothesized that the models derived from these QSARs will contribute to modulate the individual SAs.4. Final considerationsStructural alerts point to classes of chemicals with the potential to cause toxic effects (here, in vivo micronucleus). Since this potential is modulated in each molecule by the rest of the structure (e.g., other functional groups, electronic structure, bulky groups), not all chemicals in a class are equally toxic. In the case of the SAs identified in the present study for the in vivo micronucleus test, the percentage of chemicals that have SAs but are not active in the test system is particularly high. This evidence agrees with, and rationalizes the notion that this test system is sensitive to genotoxins to a limited extent, and does not respond to a large number of recognized carcinogens and mutagens. For this reason, a positive in vivo micronucleus result adds a strong weight to an in vivo positive mutagenicity result, whereas a negative in vivo micronucleus result has a much lower relevance. The availability of a wider range of in vivo mutagenicity assays is a priority for the present regulatory strategies.Within the above perspective, the SAs identified in this study provide a coarse-grain filter for a preliminary screening of potentially in vivo mutagens. In a risk assessment process, further information(e.g., QSARs for individual classes, experiments) is necessary to complete this initial screening step.5.ReferencesAshby,J., M.D.Waters, J.Preston, I.D.Adler, G.R.Douglas, R.Fielder, M.D.Shelby,D.Anderson, T.Sofuni, H.N.B.Gopalan, G.Becking and C.Sonich-Mullin(1996). IPCS harmonization of methods for the prediction and quantification of human carcinogenic/mutagenic hazard, and for indicating the probable mechanism of action of carcinogens. Mutat.Res./Fundamental and Molecular Mechanisms of Mutagenesis. 352:153-157.Benigni,R. (1995). Mouse bone marrow micronucleus assay: relationships with in Vitro mutagenicity and rodent carcinogenicity. J.Toxicol.Environ.Health.45:337-347.Benigni,R. and C.Bossa(2006). Structural alerts of mutagens and carcinogens.put.-Aid.Drug Des.2:169-176.Benigni,R. and C.Bossa(2008). Structure Alerts for carcinogenicity,and the Salmonella assay system: a novel insight through the chemical relational databases technology. Mutat.Res.Revs.659:248-261.Benigni,R., C.Bossa, N.G.Jeliazkova, zeva and A.P.Worth(2008a). The Benigni / Bossa rulebase for mutagenicity and carcinogenicity -a module of Toxtree. JRC Report EUR 23241 EN. European Commission Joint Research Centre, Ispra, Italy.http://ecb.jrc.ec.europa.eu/DOCUMENTS/QSAR/EUR_23241_EN.pdfBenigni,R., C.Bossa, A.M.Richard, and C.Yang (2008b). A novel approach: chemical relational databases, and the role of the ISSCAN database on assessing chemical carcinogenicity.Ann.Ist.Super.Sanità. 44:48-56.Benigni,R., C.Bossa, zeva and A.P.Worth(2007).Collection and evaluation of (Q)SAR models for mutagenicity and carcinogenicity. JRC Report EUR 22772 EN. European Commission Joint Research Centre, Ispra, Italy.http://ecb.jrc.ec.europa.eu /documents/QSAR/EUR_22772_EN.pdfCombes,R., C.Grindon, M.T.D.Cronin, D.W.Roberts and J.Garrod(2007). Proposed integrated decision-tree testing strategies for mutagenicity and carcinogenicity in relation to the EU REACH legislation.ATLA. 35:267-287.Dorn,S.B., G.H.Degen, T.Müller, D.Bonacker, H.F.P.Joosten, J.van der Louw,F.A.A.van Acker and H.M.Bolt(2007). Proposed criteria for specific and non-specific chromosomal genotoxicity based on hydrophobic interactions.Mutat.Res./Genetic Toxicology and Environmental Mutagenesis. 628:67-75. Hansch,C., D.Hoekman, A.Leo, D.Weininger and C.D.Selassie(2002).Chem-bioinformatics: comparative QSAR at the interface between chemistry and biology.Chem.Revs.102:783-812.Hansch,C. and A.Leo (1995). Exploring QSAR. 1. Fundamentals and applications in chemistry and biology.American Chemical Society. Washington, D.C.Kirkland,D. and G.Speit(2008). Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens III.Appropriate follow-up testing in vivo.Mutat.Res.654:114-132.Krishna,G. and M.Hayashi(2000). In vivo rodent micronucleus assay: protocol, conduct and data interpretation.Mutat.Res.455:155-166.Lilienblum,W., W.Dekant, H.Foth, T.Gebel, J.G.Hengstler, R.Kahl, P.J.Kramer,H.Schweinfurth and K.M.Wollin(2008). Alternative methods to safety studiesin experimental animals: role in the risk assessment of chemicals under the new European Chemicals Legislation (REACH).Regulat.Toxicol.82:211-236.Pedersen,F., J.de Brujin, S.J.Munn and K.Van Leeuwen(2003).Assessment of additional testing needs under REACH. Effects of (Q)SARs, risk based testing and voluntary industry initiatives. JRC report EUR 20863 EN. European Commission Joint Research Centre, Ispra, Italy.http://ecb.jrc.ec.europa.eu/home.php?CONTENU=/DOCUMENTS/REACH/PUBLICATIONS/ Van der Jagt,K., S.J.Munn, J.Torslov and J.de Brujin (2004).Alternative approaches can reduce the use of test animals under REACH. Addendum to the Report "Assessment of addtional testing needs under REACH. Effects of (Q)SARs, risk based testing and voluntary industry initiatives. JRC Report EUR 21405 EN.European Commission Joint Research Centre, Ispra, Italy.http://ecb.jrc.ec.europa.eu/home.php?CONTENU=/DOCUMENTS/REACH/PUBLICATIONS/ Woo,Y.T., i, J.L.McLain, M.Ko Manibusan and V.Dellarco(2002). Use of mechanism-based structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products. Environ.Health Perspect.110:75-87.Appendix 1European CommissionEUR 23844 EN–Joint Research Centre –Institute for Health and Consumer ProtectionTitle: Development of Structural alerts for the in vivo micronucleus assay in rodentsAuthor(s): Benigni R, Bossa C, Tcheremenskaia O and Worth A Luxembourg: Office for Official Publications of the European Communities 2009–42pp. –21x 29.7cmEUR –Scientific and Technical Research series –ISSN 1018-5593AbstractIn vivo mutagenicity and carcinogenicity studies are posing a high demand for test-related resources. Among these studies, the micronucleus test in rodents is the most widely used, as follow up to positive in vitro mutagenicity results. A recent survey of the (Q)SAR models for mutagenicity and carcinogenicity has indicated that no (Q)SAR models for in vivo micronucleus are available in the public domain. Therefore, the development and extensive use of estimation techniques such as (Q)SARs, read-across and grouping of chemicals, promises to have a huge animal saving potential for this endpoint. In this report, we describe the identification of structural alerts for the in vivo micronucleus assay, and provide the list of underlying chemical structures. These structural alerts provide a coarse-grain filter for the preliminary screening of potential in vivo mutagens.。

相关文档
最新文档