三角函数与解三角形讲解

合集下载

三角函数中的三角恒等式与解三角形

三角函数中的三角恒等式与解三角形

三角函数中的三角恒等式与解三角形三角函数在数学中有着广泛的应用,并且与解三角形密切相关。

在研究三角函数时,我们常常会遇到一些重要的三角恒等式,它们对于解题和证明非常有帮助。

本文将介绍一些常见的三角恒等式,并探讨如何利用它们解决三角形问题。

一、基本三角恒等式1. 正弦恒等式正弦恒等式是最基本的三角函数恒等式之一,它是指对于任意的角度θ,都有sin²θ + cos²θ = 1。

这个恒等式表明,在单位圆上,正弦值的平方与余弦值的平方之和始终等于1。

这个恒等式在解三角形的过程中经常被使用,特别是在已知某个角度的正余弦值后,可以利用此恒等式求得其他角度的正余弦值。

2. 余弦恒等式余弦恒等式是指对于任意的角度θ,都有1 + tan²θ = sec²θ。

这个恒等式表明,在单位圆上,切线值的平方与割线值的平方之和始终等于1。

余弦恒等式在解三角形问题中也经常被使用,特别是在已知某个角度的切割线值后,可以利用此恒等式求得其他角度的切割线值。

二、倒角公式倒角公式是指通过已知角度θ,可以得到以θ/2为角的三角函数值的方法。

在解三角形问题中,倒角公式经常被用来转化成更简单的情况。

1. 正弦倒角公式正弦倒角公式是指对于任意角度θ/2,都有sin(θ/2) = √[(1 - cosθ) / 2]。

这个公式可以将原本复杂的三角函数问题转化成简单的问题,如求取已知角度的一半角度的正弦值。

2. 余弦倒角公式余弦倒角公式是指对于任意角度θ/2,都有cos(θ/2) = √[(1 + cosθ) / 2]。

这个公式也常用于解决三角形问题,可以将已知角度的一半角度的余弦值转化为简单的表达式。

三、解三角形问题在解三角形问题中,我们经常需要根据已知条件求解未知角度和边长。

通过运用三角恒等式和倒角公式,可以简化求解的过程。

1. 已知两边和夹角当我们已知两边和夹角时,可以利用余弦定理和正弦定理求解未知边长和角度。

高中数学中的三角函数与解三角形方法

高中数学中的三角函数与解三角形方法

高中数学中的三角函数与解三角形方法在高中数学学习中,三角函数和解三角形方法是重要的内容之一。

本文将介绍三角函数的概念和常见的解三角形方法,以帮助同学们更好地掌握这些知识点。

一、三角函数的概念1. 正弦函数(sin):正弦函数是一个周期函数,表示直角三角形中对边与斜边的比值。

用sin表示,公式为sinθ=对边/斜边。

2. 余弦函数(cos):余弦函数也是一个周期函数,表示直角三角形中邻边与斜边的比值。

用cos表示,公式为cosθ=邻边/斜边。

3. 正切函数(tan):正切函数用来表示直角三角形中对边与邻边的比值。

用tan表示,公式为tanθ=对边/邻边。

4. 正割函数(sec)、余割函数(csc)和余切函数(cot)是对应于正弦函数、余弦函数和正切函数的倒数函数。

二、常见的解三角形方法解三角形是指已知某些角度或边长,求解其余角度或边长的过程。

在高中数学中,常见的解三角形方法有以下几种。

1. 三角形的两边和夹角法(SAS法):已知三角形的两条边和它们之间的夹角,可以利用余弦定理来求解第三边和其余角。

2. 三角形的两角和边法(ASA法):已知三角形的两个角和它们之间的一条边,可以利用正弦定理和余弦定理求解其余边长和第三个角度。

3. 三角形的两边和一个对应角法(SSA法):已知三角形的两条边和一个对应的角度,可以利用正弦定理来求解第三边和另外两个角度。

但要注意,SSA法可能有多解或无解的情况,需要根据具体情况进行讨论。

4. 直角三角形的特殊情况:如果已知三角形是直角三角形,可以直接根据已知边长关系来求解其余边长和角度。

在解三角形时,可以通过使用辅助线、引入辅助角等方法来简化问题,提高解题效率。

三、示例题以一个具体的示例来说明三角函数和解三角形方法的应用。

例题:已知直角三角形的一条直角边长为6cm,另一条直角边长为8cm,求解其余角度和斜边长。

解题过程:1. 根据已知条件,我们可以得知一个直角角度为90度,两条直角边的长度分别为6cm和8cm。

三角函数解三角形计算

三角函数解三角形计算

三角函数解三角形计算在解三角形计算中,三角函数是一种非常有用的工具。

通过运用三角函数,我们可以轻松地计算出三角形的各种属性,包括角度、边长和面积等。

一、三角函数的定义在解三角形计算中,三角函数包括正弦函数(sin)、余弦函数(cos)和正切函数(tan)。

它们的定义如下:1. 正弦函数(sin):正弦函数用于计算三角形中的角度和边长之间的关系。

对于一个角度为θ的三角形,其正弦值为三角形的对边与斜边的比值,即sinθ =对边 / 斜边。

2. 余弦函数(cos):余弦函数可用于计算三角形中的角度和边长之间的关系。

对于一个角度为θ的三角形,其余弦值为三角形的邻边与斜边的比值,即cosθ = 邻边 / 斜边。

3. 正切函数(tan):正切函数可以计算三角形中的角度和边长之间的关系。

对于一个角度为θ的三角形,其正切值为三角形的对边与邻边的比值,即tanθ = 对边 / 邻边。

二、应用实例下面以一个具体的实例来说明如何利用三角函数解三角形计算。

假设有一个三角形,已知其中一条边长为8 cm,另一条边长为10 cm,夹角为30度。

我们要求解该三角形的角度和剩余边长。

1. 求解角度:首先,利用余弦函数可以解出夹角的值。

根据余弦函数的定义,cosθ = 邻边 / 斜边,代入已知数据可得cosθ = 8 / 10,解得cosθ = 0.8。

然后,通过反余弦函数可求得夹角的值,即θ = arccos(0.8) ≈ 37度。

2. 求解剩余边长:利用正弦函数可以解出对边的长度。

根据正弦函数的定义,sinθ =对边/ 斜边,代入已知数据可得sinθ = x / 10,其中x表示对边的长度。

解得x ≈ 5.77 cm。

三、总结通过上述实例,我们可以看出,三角函数在解三角形计算中的重要性。

通过运用正弦函数、余弦函数和正切函数,我们可以准确地计算出三角形的各种属性。

在实际应用中,掌握三角函数的使用方法可以更加便捷地解决与三角形相关的问题。

三角函数及解三角形知识点总结

三角函数及解三角形知识点总结

1. 任意角的三角函数的定义: 设〉是任意一个角,p (x,y )是〉的终边上的任意一点(异于原点),它与原点的距离是「“x 2r 2.o ,位置无关。

2. 三角函数在各象限的符号:(一全二正弦,三切四余弦)+L i+ ——L+ _ - + ------ ■——+ -■sin : cos : tan :3. 同角三角函数的基本关系式:4.三角函数的诱导公式 k 二.一诱导公式(把角写成2…形式,利用口诀:奇变偶不变,符(2)商数关系:tan-E屮一、cos 。

(用于切化弦) (1)平方关系: 2 2 2sin 工 cos ■■ -1,1 tan : 1cos 2:※平方关系一般为隐含条件,直接运用。

注意“ 1”的代换si …y,cos 」那么r三角函数值只与角的大小有关,而与终边上点5. 特殊角的三角函数值度 0s30cA45“A60“90 120cA135“150s 180c 270° 360弧31JIJI2n3兀 5兀 JI3兀 2兀度64323462si n 。

01 竝迈1旦1 01222222cosa亦11念力12_112 2222号看象限)sin (2k .亠 x ) = sin x cos (2k ■亠 x ) = cosx [)tan (2k ,亠 x )二 tanxsin ( -x ) - - sin x cos (-x ) =cosx H )tan(-x ) - - tanxm )|sin (,亠 x ) = -sin x cos (m ) = - cosx tan (二 x ) IV ) Sin (兀 _x ) =sin x cos (兀—x ) = —cosx tan (兀一sin (— -〉)= cos ..zsin (㊁:)=cos :V )-?) = sin :6. 三角函数的图像及性质7.函数厂Asi n( X J图象的画法:n 5m —兀-2兀①“五点法” __设X-x…•,令X = 0, 2,,2,求出相应的X 值,计算得出五点的坐标,描点后得出图象;②图象变换法:这是作函数简图常用方法。

三角函数与解三角形

三角函数与解三角形

三角函数与解三角形三角函数是数学中重要的概念,它与解三角形密切相关。

在本文中,我将详细介绍三角函数的定义、性质及其在解三角形中的应用。

一、三角函数的定义与性质1. 正弦函数(Sin):在直角三角形中,正弦函数定义为对边与斜边之比,即sinA=opposite/hypotenuse。

正弦函数是一个周期函数,其周期为2π,且在0到2π之间取值范围为[-1,1]。

2. 余弦函数(Cos):在直角三角形中,余弦函数定义为邻边与斜边之比,即cosA=adjacent/hypotenuse。

余弦函数也是一个周期函数,其周期为2π,取值范围同样为[-1,1]。

3. 正切函数(Tan):在直角三角形中,正切函数定义为对边与邻边之比,即tanA=opposite/adjacent。

正切函数是一个无界函数,它的取值范围是所有实数。

此外,还存在反三角函数,如反正弦函数(Arcsin)、反余弦函数(Arccos)和反正切函数(Arctan),它们与正弦函数、余弦函数和正切函数的关系是:Arcsin(sinA) = AArccos(cosA) = AArctan(tanA) = A二、解三角形的基本步骤解三角形指的是已知三角形中的一些条件,推导出其它未知条件的过程。

求解三角形的基本步骤如下:1.已知三角形的两个边长和一个夹角:根据三角函数的定义,可以使用正弦定理、余弦定理或正切定理来求解其他未知边长和夹角。

2.已知三角形的两个角度和一个边长:根据三角函数的定义,可以使用正弦定理、余弦定理或正切定理来求解其他未知边长和角度。

3.已知三角形的三个边长:可以使用正弦定理、余弦定理和海伦公式来求解三个角度。

三、正弦定理与余弦定理1. 正弦定理:对于任意三角形ABC,其边长对应的角度分别为a、b 和c,则有sinA/a = sinB/b = sinC/c。

这个定理可以用来求解已知三角形两个边长和一个角度的情况。

2. 余弦定理:对于任意三角形ABC,其边长对应的角度分别为a、b 和c,则有c^2 = a^2 + b^2 - 2ab*cosC。

三角函数和解三角形知识点汇总

三角函数和解三角形知识点汇总

三角函数和解三角形知识点汇总知识点一三角函数(一)、角的概念的推广1.定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.2.分类:按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.3.终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.(二)、弧度制的定义和公式1.定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 2.公式(三)、任意角的三角函数(四)、同角三角函数的基本关系 1.平方关系:sin 2α+cos 2α=1. 2.商数关系:sin αcos α=tan α.(五)、三角函数的诱导公式知识点二 三角函数的图像与性质(一)、用五点法作正弦函数和余弦函数的简图1.正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).2.余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).(二)、正弦、余弦、正切函数的图象与性质(下表中k ∈Z )知识点三函数y=A sin(ωx+φ)的图像及应用(一)、“五点法”作函数y=A sin(ωx+φ)(A>0,ω>0)的简图“五点法”作图的五点是在一个周期内的最高点、最低点及与x轴相交的三个点,作图时的一般步骤为:1.定点:如下表所示.2.作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y=A sin(ωx+φ)在一个周期内的图象.3.扩展:将所得图象,按周期向两侧扩展可得y=A sin(ωx+φ)在R上的图象.(二)、函数y=A sin(ωx+φ)中各量的物理意义当函数y=A sin(ωx+φ)(A>0,ω>0),x∈[0,+∞) 表示一个振动量时,几个相关的概念如下表:(三)、函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的两种途径知识点四 三角恒等变换(一)、两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β. cos(α∓β)=cos αcos β±sin αsin β. tan(α±β)=tan α±tan β1∓tan αtan β.(二)、二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α1-tan 2α.(三)、有关公式的逆用、变形等 1.tan α±tan β=tan(α±β)(1∓tan αtan β). 2.cos 2α=1+cos 2α2, sin 2α=1-cos 2α2. 3.1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4.(四)、函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a 或f (α)=a 2+b 2cos(α-φ)⎝ ⎛⎭⎪⎫其中tan φ=a b .知识点五 解三角形(一)、正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则(二)、S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R,r.(三)、实际问题中的常用角1.仰角和俯角:在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).2.方位角:从某点的指北方向线起按顺时针转到目标方向线之间的水平夹角叫作方位角.如B点的方位角为α(如图2).3.方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.4.坡度:坡面与水平面所成的二面角的正切值.。

三角函数与解三角形

三角函数与解三角形

三角函数与解三角形三角函数是解决三角形相关问题的一种重要工具。

在解三角形的过程中,我们可以运用三角函数的定义和性质,从而得出角度和边长的关系,进而求解未知的角度或边长。

本文将介绍三角函数的定义和性质,并结合实例来解释如何利用三角函数解三角形的问题。

一、三角函数的定义与基本性质在直角三角形ABC中,角A的对边为a,邻边为b,斜边为c。

根据三角函数的定义,我们可以得到以下三个基本的三角函数:1. 正弦函数(sine):sin(A) = a/c2. 余弦函数(cosine):cos(A) = b/c3. 正切函数(tangent):tan(A) = a/b这些定义是解决三角形问题的基础,通过它们我们可以求解未知的角度或边长。

此外,三角函数还具有以下一些基本性质:1. sin(A) = cos(90° - A)cos(A) = sin(90° - A)tan(A) = 1/tan(90° - A)2. sin^2(A) + cos^2(A) = 1tan(A) = sin(A) / cos(A)3. sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)tan(A ± B) = (tan(A) ± tan(B)) / (1 ∓ tan(A)tan(B))这些基本性质在解三角形问题时经常被使用,可以帮助我们得出更多的关系式,从而进一步求解未知的角度或边长。

二、根据三角函数解三角形在解三角形的过程中,我们通常会遇到以下几种情况:1. 已知两边和夹角:如果我们已知两边和它们夹角的大小,我们可以使用余弦定理和正弦定理来求解第三边的长度和其他角度的大小。

2. 已知两边和一个角的正弦:如果我们已知两边和一个角的正弦值,我们可以使用正弦函数的逆函数来求解这个角度的大小,然后再根据已知的角度和两边长度使用正弦定理或余弦定理来求解其他未知的角度或边长。

解三角形与三角函数最全知识总结

解三角形与三角函数最全知识总结

解三角形与三角函数最全知识总结三角形与三角函数是数学中非常重要的内容,广泛应用于几何学、物理学、工程学等多个领域。

以下是对三角形与三角函数的最全知识总结。

一、基本概念1.三角形:由三条边和三个内角组成的图形。

根据边的长度和角的大小关系,可以分为等边三角形、等腰三角形、直角三角形等等。

2.内角和:三角形的三个内角的和为180度,或者π弧度。

3.值得注意的几何关系:三角形的内角对应的边对边长相等,相等的两个角对应的边对边长也相等。

4.三角形的面积:可以通过底边和高的乘积的一半来计算,也可以通过三边的长度来计算。

二、三角函数的定义与性质1. 正弦函数(sin):在直角三角形中,对于一个锐角A,正弦函数的值等于对边与斜边的比值。

即sin(A) = 对边/斜边。

2. 余弦函数(cos):在直角三角形中,对于一个锐角A,余弦函数的值等于邻边与斜边的比值。

即cos(A) = 邻边/斜边。

3. 正切函数(tan):在直角三角形中,对于一个锐角A,正切函数的值等于对边与邻边的比值。

即tan(A) = 对边/邻边。

4.三角恒等式:包括平方恒等式、和差恒等式、倍角恒等式等等,可以通过这些恒等式将一个三角函数的式子转化为另外一个三角函数的式子。

5.周期性:三角函数是周期函数,即在每个周期内的函数值是相同的。

三、三角函数的图像与性质1.正弦函数图像:正弦函数的图像是一个连续、周期为2π的曲线,以原点为对称中心。

2.余弦函数图像:余弦函数的图像也是一个连续、周期为2π的曲线,但它的图像是以横坐标π/2为对称轴。

3.正切函数图像:正切函数的图像是一个连续、以π为周期的曲线,有无穷多个渐近线。

四、三角函数的应用1.解三角形:通过已知的边长和角度,可以利用三角函数解出未知的边长和角度。

2.测高度:利用三角形的性质,可以通过测量两个视角和距离,计算出高度的长度。

3.平衡力问题:在物理学中,利用三角函数可以计算出干涉力、斜面上的力等问题。

(完整版)三角函数解三角形知识点总结

(完整版)三角函数解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y xr rαα==,()tan ,0yx xα=≠三角函数值只与角的大小有关,而与终边上点P 的位置无关。

2.三角函数在各象限的符号:(一全二正弦,三切四余弦)+ + - + - + - - - + + -sin α cos α tan α3. 同角三角函数的基本关系式:(1)平方关系:22221sin cos 1,1tan cos αααα+=+= (2)商数关系:sin tan cos ααα=(用于切化弦) ※平方关系一般为隐含条件,直接运用。

注意“1”的代换4.三角函数的诱导公式诱导公式(把角写成απ±2k 形式,利用口诀:奇变偶不变,符号看象限)Ⅰ)⎪⎩⎪⎨⎧=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)⎪⎩⎪⎨⎧-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ⎪⎩⎪⎨⎧=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)⎪⎩⎪⎨⎧-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)⎪⎪⎩⎪⎪⎨⎧=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)⎪⎪⎩⎪⎪⎨⎧-=+=+ααπααπsin )2cos(cos )2sin(5.特殊角的三角函数值6.三角函数的图像及性质sin y x =cos y x = tan y x =图像定义域 R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k Z ∈时,max 1y =;当22x k ππ=-()k Z ∈时,当()2x k k Z π=∈时,max 1y =;当2x k ππ=+()k Z ∈时,min 1y =-.既无最大值也无最小值度0 30 45 6090 120 135 150 180︒270360弧度0 6π 4π 3π 2π 23π 34π 56π π32π 2π sin α1222 32132 22121cos α132 221212- 22-32-1- 0 1tan α 0 331 3无3- 1-33-无7.函数sin()y A x ωϕ=+图象的画法: ①“五点法”――设X x ωϕ=+,令X =0,3,,,222ππππ求出相应的x 值,计算得出五点的坐标,描点后得出图象; ②图象变换法:这是作函数简图常用方法。

三角函数与解三角形三角函数与解三角形问题的解题方法

三角函数与解三角形三角函数与解三角形问题的解题方法

三角函数与解三角形三角函数与解三角形问题的解题方法三角函数与解三角形问题的解题方法三角函数是解三角形问题中不可或缺的工具,通过运用三角函数的定义和性质,可以使用解析几何和三角恒等式等方法,解决各种与三角形相关的问题。

本文将介绍三角函数与解三角形问题的解题方法,并提供一些例题加以说明。

一、正弦定理正弦定理是解决三角形任意一边与其对应的角之间的关系的重要定理。

对于任意三角形ABC,设a、b、c分别为边BC、AC和AB的长度,A、B、C分别为∠BAC、∠ABC和∠BCA的大小,则正弦定理可以表示为:sin(A)/a = sin(B)/b = sin(C)/c利用正弦定理可以解决已知三角形的两个角和一个边,以及已知三角形的两个边和一个角的问题。

例题1:已知三角形ABC,∠A=30°,a=5cm,b=8cm,求∠B和c 的长度。

解:由正弦定理可得:sin(∠B)/8 = sin(30°)/5解得 sin(∠B) = (8/5) * sin(30°)∠B = arcsin((8/5) * sin(30°))然后,再由三角形内角和定理可得∠C = 180° - 30° - ∠B最后,再由正弦定理可得 sin(∠C)/c = sin(30°)/5解得 c = (5/ sin(30°)) * sin(∠C)通过计算,可以得到∠B 和 c 的具体数值。

二、余弦定理余弦定理是解决三角形边与边、角之间关系的重要定理。

对于任意三角形ABC,设a、b、c分别为边BC、AC和AB的长度,A、B、C分别为∠BAC、∠ABC和∠BCA的大小,则余弦定理可以表示为:c^2 = a^2 + b^2 - 2abcos(C)利用余弦定理可以解决已知三角形的三边或两边一角,求解另外一个角的问题。

例题2:已知三角形ABC,a=5cm,b=8cm,∠C=60°,求c的长度。

三角函数与解三角形

三角函数与解三角形

三角函数与解三角形在数学中,三角函数是研究角度和三角形之间关系的重要工具。

通过三角函数的使用,我们可以解决很多与角度和三角形相关的问题。

本文将介绍三角函数的基本概念以及如何应用三角函数解决三角形的各类问题。

一、三角函数的基本概念1. 正弦函数(sine function)正弦函数常用符号为sin,对于任意角θ,其正弦值sinθ等于对边与斜边的比值:sinθ = 对边/斜边。

2. 余弦函数(cosine function)余弦函数常用符号为cos,对于任意角θ,其余弦值cosθ等于邻边与斜边的比值:cosθ = 邻边/斜边。

3. 正切函数(tangent function)正切函数常用符号为tan,对于任意角θ,其正切值tanθ等于对边与邻边的比值:tanθ = 对边/邻边。

4. 余切函数(cotangent function)余切函数常用符号为cot,对于任意角θ,其余切值cotθ等于邻边与对边的比值:cotθ = 邻边/对边。

5. 正割函数(secant function)正割函数常用符号为sec,对于任意角θ,其正割值secθ等于斜边与邻边的比值:secθ = 斜边/邻边。

6. 余割函数(cosecant function)余割函数常用符号为csc,对于任意角θ,其余割值cscθ等于斜边与对边的比值:cscθ = 斜边/对边。

二、解三角形的常用方法1. 已知边长求角度假设我们已知一个三角形的两条边长a和b,以及它们之间的夹角θ。

我们可以利用正弦、余弦或正切函数求解这个角度。

- 已知边长a和b,以及夹角θ,可以使用正弦函数来求解:sinθ = a/b,从而可以解得角度θ。

- 已知边长a和b,以及夹角θ,可以使用余弦函数来求解:cosθ = a/b,从而可以解得角度θ。

- 已知边长a和b,以及夹角θ,可以使用正切函数来求解:tanθ = a/b,从而可以解得角度θ。

2. 已知角度求边长假设我们已知一个三角形的一条边长a,以及与这条边相连的两个角度θ和φ。

三角函数和解三角形知识点汇总

三角函数和解三角形知识点汇总

三角函数和解三角形知识点汇总三角函数和解三角形是高中数学中的重要内容,这两个知识点在解决几何问题和求解三角方程等方面具有广泛的应用。

本文将对三角函数和解三角形的相关概念和性质进行汇总和总结。

一、三角函数的基本概念和性质1. 正弦函数(sin):在直角三角形中,正弦函数定义为对边与斜边之比。

在单位圆中,正弦函数定义为点在单位圆上的纵坐标。

2. 余弦函数(cos):在直角三角形中,余弦函数定义为邻边与斜边之比。

在单位圆中,余弦函数定义为点在单位圆上的横坐标。

3. 正切函数(tan):在直角三角形中,正切函数定义为对边与邻边之比。

在单位圆中,正切函数定义为点在单位圆上的纵坐标与横坐标之比。

4. 三角函数的周期性:正弦函数、余弦函数和正切函数都具有周期性,周期为360度或2π弧度。

5. 三角函数的基本关系:正弦函数、余弦函数和正切函数之间存在一定的关系,如正弦函数与余弦函数的平方和等于1,正切函数与正弦函数的比值等于余弦函数。

二、解三角形的基本方法1. 解直角三角形:直角三角形是最简单的三角形,可以通过已知两个角或两个边长度,求解出三个角和三个边的长度。

解直角三角形常用的方法包括正弦定理、余弦定理和勾股定理。

2. 解一般三角形:一般三角形包括三个不等边和三个不等角。

解一般三角形的关键是要找到足够的已知条件,一般包括已知两个角和一个边的长度,或已知两个边和一个角的大小。

解一般三角形常用的方法有正弦定理和余弦定理。

三、三角函数和解三角形的应用1. 几何问题的求解:三角函数和解三角形广泛应用于几何问题的求解,如求解三角形的面积、角度、边长等。

2. 物理问题的求解:三角函数和解三角形也在物理问题的求解中发挥着重要作用,如求解力的合成与分解、两个物体之间的角度等。

3. 工程问题的求解:在工程问题中,三角函数和解三角形用于求解斜面的倾斜角度、测量高楼大厦的高度等。

四、总结本文对三角函数和解三角形的相关知识进行了汇总和总结。

三角函数及解三角形知识点总结

三角函数及解三角形知识点总结

三角函数及解三角形知识点总结三角函数是数学中一个重要的分支,它研究了三角形中角度和边长之间的关系。

解三角形则是利用已知的一些条件,计算出三角形中的未知量。

本文将总结三角函数和解三角形的相关知识点,以帮助读者更好地理解和应用这些概念。

一、三角函数的基本概念1. 正弦函数(sine function)正弦函数是三角函数中最基本的一种,用sin表示。

它表示一个角的对边与斜边之比,即sinθ = 对边 / 斜边。

2. 余弦函数(cosine function)余弦函数是与正弦函数相似的三角函数,用cos表示。

它表示一个角的邻边与斜边之比,即cosθ = 邻边 / 斜边。

3. 正切函数(tangent function)正切函数也是常见的三角函数,用tan表示。

它表示一个角的对边与邻边之比,即tanθ = 对边 / 邻边。

二、三角函数的性质1. 周期性三角函数具有周期性,即在一定范围内,函数值会重复出现。

例如正弦函数和余弦函数的周期是2π,而正切函数的周期是π。

2. 定义域和值域不同的三角函数具有不同的定义域和值域。

正弦函数和余弦函数的定义域是整个实数集,值域是[-1, 1];而正切函数的定义域是除去其奇点的整个实数集,值域是整个实数集。

三、解三角形的基本方法解三角形是根据已知条件来计算未知量和角度的过程。

下面介绍几种常用的解三角形方法。

1. 余弦定理(Law of Cosines)余弦定理可以用来计算三角形中的边长。

对于一个三角形ABC,已知边长a、b和夹角C,余弦定理可以表示为c^2 = a^2 + b^2 - 2ab cosC。

通过此公式,我们可以计算出任意一条边的长度。

2. 正弦定理(Law of Sines)正弦定理可以用来计算三角形中的角度和边长。

对于一个三角形ABC,已知边长a,b和夹角C,正弦定理可以表示为a/sinA = b/sinB = c/sinC。

通过此公式,我们可以计算出未知的角度和边长。

三角函数和三角变换的初步了解

三角函数和三角变换的初步了解

三角函数和三角变换的初步了解一、三角函数1.1 定义:三角函数是用来描述直角三角形各个边与角度之间关系的函数。

1.2 基本三角函数:(1)正弦函数(sin):正弦函数是直角三角形中对边与斜边的比值,即sinθ = 对边/斜边。

(2)余弦函数(cos):余弦函数是直角三角形中邻边与斜边的比值,即cosθ = 邻边/斜边。

(3)正切函数(tan):正切函数是直角三角形中对边与邻边的比值,即tanθ = 对边/邻边。

(4)余切函数(cot):余切函数是直角三角形中邻边与对边的比值,即cotθ = 邻边/对边。

(5)正割函数(sec):正割函数是直角三角形中斜边与邻边的比值,即secθ = 斜边/邻边。

(6)余割函数(csc):余割函数是直角三角形中斜边与对边的比值,即cscθ = 斜边/对边。

1.3 三角函数的性质:(1)周期性:三角函数具有周期性,周期为360°或2π。

(2)奇偶性:正弦函数、余弦函数和正切函数为奇函数,余切函数、余割函数为偶函数。

(3)对称性:正弦函数、余弦函数、正切函数关于y轴对称,余切函数、余割函数关于x轴对称。

二、三角变换2.1 三角函数的基本变换:(1)和差变换:两个角的和(差)的三角函数可以通过两个角的三角函数的和(差)来表示。

(2)倍角公式:一个角的倍数的三角函数可以通过该角的三角函数的加减来表示。

(3)半角公式:一个角的半倍的三角函数可以通过该角的三角函数的平方根来表示。

2.2 三角函数的图像和性质:(1)正弦函数:图像为波浪线,性质有:周期性、奇偶性、对称性等。

(2)余弦函数:图像为水平线,性质有:周期性、奇偶性、对称性等。

(3)正切函数:图像为斜线,性质有:周期性、奇偶性、对称性等。

3.1 三角函数在实际生活中的应用:(1)测量学:利用三角函数测量物体的高度、距离等。

(2)工程学:利用三角函数计算结构的稳定性、角度等。

(3)物理学:利用三角函数描述波动、振动等现象。

三角函数与解三角形

三角函数与解三角形

三角函数与解三角形三角函数是数学中重要的一部分,广泛应用于解决三角形相关的问题。

本文将讨论三角函数的基本概念和性质,并介绍如何利用三角函数来解决解三角形的问题。

一、三角函数的基本概念和性质1. 正弦函数(Sine function):正弦函数是将一个角的对边长度与斜边长度之比定义为三角函数的一种。

用符号sin表示。

对于角度为θ的三角形,其正弦值可以表示为sinθ = 对边/斜边。

2. 余弦函数(Cosine function):余弦函数是将一个角的邻边长度与斜边长度之比定义为三角函数的一种。

用符号cos表示。

对于角度为θ的三角形,其余弦值可以表示为cosθ = 邻边/斜边。

3. 正切函数(Tangent function):正切函数是将一个角的对边长度与邻边长度之比定义为三角函数的一种。

用符号tan表示。

对于角度为θ的三角形,其正切值可以表示为tanθ = 对边/邻边。

4. 余割函数(Cosecant function)、正割函数(Secant function)和余切函数(Cotangent function):余割函数cscθ = 1/sinθ,正割函数secθ = 1/cosθ,余切函数cotθ =1/tanθ。

5. 三角函数的周期性:正弦函数、余弦函数、正割函数和余割函数的周期都为2π,而正切函数和余切函数的周期为π。

二、解三角形的基本原理和方法解三角形是指根据已知条件求解三角形的各个未知量,其中常见的未知量包括角度和边长。

三角函数在解三角形中发挥着重要的作用。

在已知三角形的两个边长(a、b)和一个夹角(C)的情况下,可以使用余弦定理来计算第三边(c):c² = a² + b² - 2ab*cosC在已知三角形的两个边长(a、b)和一个对应的角度(C)的情况下,可以使用正弦定理来计算第三边(c):(a/sinA) = (b/sinB) = (c/sinC)在已知三角形的三个边长(a、b、c)的情况下,可以使用余弦定理和正弦定理来计算角度(A、B、C):cosA = (b² + c² - a²) / 2bcsinA = √(1 - cos²A)通过以上定理和公式,我们可以利用三角函数解决各种不同类型的三角形问题,如已知三个边长求解角度,已知两个边长和一个夹角求解另外两个角度等。

三角函数与解三角形

三角函数与解三角形

三角函数与解三角形三角函数是数学中重要的概念,广泛用于解决与三角形相关的问题。

本文将介绍三角函数的概念和性质,并探讨如何利用三角函数的知识来解决三角形的各种问题。

一、三角函数的概念和性质1. 正弦函数(sin):在直角三角形中,对于一个锐角A,正弦函数的值等于该角的对边与斜边之比。

即sin(A) = 对边/斜边。

2. 余弦函数(cos):在直角三角形中,对于一个锐角A,余弦函数的值等于该角的邻边与斜边之比。

即cos(A) = 邻边/斜边。

3. 正切函数(tan):在直角三角形中,对于一个锐角A,正切函数的值等于该角的对边与邻边之比。

即tan(A) = 对边/邻边。

4. 三角函数的基本关系:根据勾股定理,我们知道在直角三角形中,斜边的平方等于对边的平方与邻边的平方之和。

利用这个关系,可以推导出三角函数之间的互相关系,例如sin^2(A) + cos^2(A) = 1。

二、解三角形的常用方法1. 已知两边求角:如果已知一个三角形的两边长度,我们可以利用余弦定理来求解这个三角形的角度。

余弦定理表达式为c^2 = a^2 + b^2 - 2abcos(C),其中c为三角形的斜边,a和b为两个已知边的长度,C为斜边对应的角度。

通过求解这个方程,我们可以得到角C的值。

2. 已知一边一角求边:如果已知一个三角形的一边长度和一个角度,我们可以利用正弦定理来求解这个三角形的另外两条边。

正弦定理表达式为a/sin(A) = b/sin(B) = c/sin(C),其中a、b、c为三角形的三条边的长度,A、B、C为对应的角度。

通过代入已知的值和未知的变量,可以解出另外两条边的长度。

3. 已知两角求边:如果已知一个三角形的两个角度和一条边的长度,我们可以利用正弦函数或者正切函数来求解这个三角形的其他边的长度。

根据已知的信息,可以设置各种方程式来解出未知变量。

三、实例分析假设一个三角形的两条边分别为3cm和4cm,对应的角度为60度。

第三章 三角函数、解三角形 复习讲义

第三章 三角函数、解三角形 复习讲义

第1节 任意角和弧度制及任意角的三角函数◆考纲·了然于胸◆ 1.了解任意角的概念.2.了解弧度制的概念,能进行弧度与角度的互化. 3.理解任意角的三角函数(正弦、余弦、正切)的定义.[要点梳理]1.角的概念(1)角的分类(按旋转的方向):角⎩⎪⎨⎪⎧正角:按照逆时针方向旋转而成的角。

负角:按照顺时针方向旋转而成的角。

零角:射线没有旋转.(2)象限角与轴线角:(3)终边相同的角所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为S ={β|β=α+k·360°,k ∈Z }. 质疑探究1:(1)第二象限角一定是钝角吗?(2)终边相同的角一定相等吗?提示:(1)钝角是第二象限角,但第二象限角不一定是钝角;(2)终边相同的角不一定相等. 2.弧度制(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角.弧度记作rad. (2)公式(3)规定:正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx(x ≠0).三个三角函数的初步性质如下表:如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .质疑探究[小题查验]1.-870°角的终边在第几象限( )A .一B .二C .三D .四2.(2016·龙岩质检)已知α为第二象限角,sin α=45,则tan α的值为( )A.34 B .-34 C.43 D .-433.(2016·洛阳一模)已知△ABC 为锐角三角形,且A 为最小角,则点P (sin A -cos B,3cos A -1)位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是________. 5.给出下列命题:①三角形的内角必是第一、二象限角.②第一象限角必是锐角.③不相等的角终边一定不相同.④若β=α+k ·720°(k ∈Z ),则α和β终边相同.⑤点P (tan α,cos α)在第三象限,则角α的终边在第二象限. 其中正确的是________.(写出所有正确命题的序号)考点一 象限角及终边相同的角(基础型考点——自主练透)[方法链接]1.利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角. 2.表示区间角的三个步骤:(1)先按逆时针方向找到区域的起始和终止边界.(2)按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间. (3)起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.3.已知角α终边所在的象限,求2α、α2、π-α等角的终边所在象限问题,可由条件先写出α的范围,解不等式得出角2α、α2、π-α等的范围,再根据范围确定象限.[题组集训]1.若角θ的终边与6π7角的终边相同,则在[0,2π)内终边与θ3角的终边相同的角为________.2.终边在直线y =3x 上的角的集合为________. 3.已知角α的终边落在阴影所表示的范围内(包括边界),则角α的集合为______________________.4.如果α是第三象限的角,则角-α的终边所在位置是____________,角2α的终边所在位置是________,角α3终边所在的位置是________.考点二 三角函数的定义(深化型考点——引申发散)[一题多变]【例1】 设角α终边上一点P (-4a,3a )(a <0),求sin α的值. [发散1] 若本例中“a <0”,改为“a ≠0”,求sin α的值.[发散2] 若本例中条件变为:已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值. 活学活用 若本例中条件变为:已知角α的终边上一点P (-3,m )(m ≠0), 且sin α=2m4,求cos α,tan α的值. [类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.考点三 三角函数线、三角函数值的符号(重点型考点——师生共研) 【例2】 (1)若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 (2)已知cos α≤-12,则角α的集合为________.【名师说“法”】(1)熟练掌握三角函数在各象限的符号.(2)利用单位圆解三角不等式(组)的一般步骤:①用边界值定出角的终边位置;②根据不等式(组)定出角的范围;③求交集,找单位圆中公共的部分;④写出角的表达式.跟踪训练(1)y=sin x-32的定义域为____________.(2)已知sin 2θ<0,且|cos θ|=-cos θ,则点P(tan θ,cos θ)在第________象限.考点四扇形的弧长、面积公式的应用(深化型考点——引申发散)【例3】已知扇形周长为10,面积是4,求扇形的圆心角.[发散1]去掉本例条件“面积是4”,问当它的半径和圆心角取何值时,才使扇形面积最大?[发散2]若本例中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.[发散3]若本例条件变为:扇形的圆心角是α=120°,弦长AB=12 cm,求弧长l.[类题通法]应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.易错警示3错用三角函数的定义(2016·天津模拟)已知角θ的终边上一点P(3a,4a)(a≠0),则sin θ=________.成功破障已知角α的终边经过点P(-3,m),且sin α=34m(m≠0),则tan α的值为________.[课堂小结]【方法与技巧】1.在利用三角函数定义时,点P可取终边上任一点,如有可能则取终边与单位圆的交点.|OP|=r一定是正值.2.三角函数符号是重点,也是难点,在理解的基础上可借助口诀:一全正,二正弦,三正切,四余弦.3.在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.【失误与防范】1.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.课时活页作业(十七)[基础训练组]1.(2016·南平质检)喜洋洋从家步行到学校,一般需要10分钟,则10分钟时间钟表的分针走过的角度是() A.30°B.-30°C.60°D-60°2.(2014·新课标全国卷Ⅰ)若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>03.(2016·乌鲁木齐模拟)设函数f (x )满足f (sin α+cos α)=sin α cos α,则f (0)=( )A .-12B .0 C.12 D .14.(2016·潍坊模拟)如图,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( ) A .(cos θ,sin θ) B .(-cos θ,sin θ) C .(sin θ,cos θ) D .(-sin θ,cos θ) 5.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫-32,-12C.⎝⎛⎭⎫-12,-32D.⎝⎛⎭⎫-32,126.在与2010°终边相同的角中,绝对值最小的角的弧度数为________. 7.已知角β的终边在直线y =3x 上,则sin β=________.8.(2016·玉溪模拟)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=________.9.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ+cos θ的值. 10.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB .[能力提升组]11.(2016·海淀模拟)若α=k ·360°+θ,β=m ·360°-θ(k ,m ∈Z ),则角α与β的终边的位置关系是( )A .重合B .关于原点对称C .关于x 轴对称D .关于y 轴对称12.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-313.(2016·太原模拟)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 14.(2016·合肥调研)函数y =lg(3-4sin 2x )的定义域为________. 15.已知sin α<0,tan α>0.(1)求α角的集合;(2)求α2终边所在的象限;(3)试判断tan α2 sin α2 cos α2的符号.第2节 同角三角函数基本关系及诱导公式◆考纲·了然于胸◆1.理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α.2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.[要点梳理]1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2.下列各角的终边与角α的终边的关系31.给出下列命题:①sin 2θ+cos 2φ=1.②同角三角函数的基本关系式中角α可以是任意角.③六组诱导公式中的角α可以是任意角. ④诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”与α的大小无关. ⑤若sin(k π-α)=13(k ∈Z ),则sin α=13.其中正确的是( )A .①③B .④C .②⑤D .④⑤2.(2015·高考福建卷)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-512 3.sin 585°的值为( )A .-22 B.22 C .-32 D.324.若cos α=-35,且α∈(π,3π2),则tan α=________.5.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2 α的值是________.考点一 同角三角函数关系式的应用(深化型考点——引申发散)[一题多变]【例1】 已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值;(2)把1cos 2α-sin 2α用tan α表示出来,并求其值.[发散1] 若本例中的条件和结论互换:已知α是三角形的内角,且tan α=-13,求sin α+cos α的值.[发散2] 保持本例条件不变,求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值.[发散3] 若本例条件变为:sin α+3cos α3cos α-sin α=5,求tan α的值.[类题通法]1.利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.3.注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α. 考点二 三角函数的诱导公式的应用(基础型考点——自主练透)[方法链接](1)给角求值的原则和步骤①原则:负化正、大化小、化到锐角为终了.②步骤:利用诱导公式可以把任意角的三角函数转化为0~π4之间角的三角函数,然后求值,其步骤为:(2)给值求值的原则:寻求所求角与已知角之间的联系,通过相加或相减建立联系,若出现π2的倍数,则通过诱导公式建立两者之间的联系,然后求解.常见的互余与互补关系①常见的互余关系有:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等.②常见的互补关系有:π3+θ与2π3-θ;π4+θ与3π4-θ等.遇到此类问题,不妨考虑两个角的和,要善于利用角的变换的思想方法解决问题.[题组集训]1.sin(-1 200°)·cos 1 290°+cos (-1 020°)·sin(-1 050°)+tan 945°=________. 2.已知cos(π6-α)=23,则sin(α-2π3)=________.3.设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos (3π2+α)-sin 2(π2+α)(1+2sin α≠0),则f (-23π6)=________.4.已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,则sin (-α-32π)cos (32π-α)cos (π2-α)sin (π2+α)·tan 2(π-α)=________.考点三 同角关系式、诱导公式在三角形中的应用(重点型考点——师生共研)【例2】 在△ABC 中,若sin(3π-A )=2sin(π-B ),cos(3π2-A )=2cos(π-B ).试判断三角形的形状.【名师说“法”】(1)在△ABC 中常用到以下结论:sin(A +B )=sin(π-C )=sin C ,cos(A +B )=cos(π-C )=-cos C ,tan(A +B )=tan(π-C )=-tan C , sin(A 2+B 2)=sin(π2-C 2)=cos C 2,cos(A 2+B 2)=cos(π2-C 2)=sin C 2.(2)求角时,一般先求出该角的某一个三角函数值,如正弦值,余弦值或正切值,再确定该角的范围,最后求角. 跟踪训练在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos (π-B ),求△ABC 的三个内角.思想方法11 分类讨论思想在三角函数化简中的应用 典例 化简:sin(4n -14π-α)+cos(4n +14π-α)(n ∈Z ).即时突破 已知A =sin (kπ+α)sin α+cos (kπ+α)cos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}[课堂小结]【方法与技巧】同角三角恒等变形是三角恒等变形的基础,主要是变名、变式.1.同角关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围,判断符号后,正确取舍.2.三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan x =sin xcos x化成正弦、余弦函数;(2)和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化;(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ(1+1tan 2θ)=tan π4=….【失误与防范】利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.课时活页作业(十八)[基础训练组]1.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( )A .-32 B.32 C .-12 D.122.(2016·济南质检)α∈(-π2,π2),sin α=-35,则cos(-α)的值为( )A .-45 B.45 C.35 D .-353.已知f (α)=sin (π-α)·cos (2π-α)cos (-π-α)·tan (π-α),则f (-25π3)的值为( )A.12 B .-12 C.32 D .-324.(2016·皖北模拟)若sin(π6+α)=35,则cos(π3-α)=( )A .-35 B.35 C.45 D .-455.(2016·石家庄模拟)已知α为锐角,且2tan(π-α)-3cos(π2+β)+5=0,tan(π+α)+6sin(π+β)=1,则sin α的值是( )A.355 B.377 C.31010 D.136.(2016·成都一模)已知sin(π-α)=log 814 ,且α∈(-π2,0),则tan(2π-α)的值为________.7.(2015·辽宁五校第二次联考)已知sin x =m -3m +5,cos x =4-2m m +5,且x ∈(3π2,2π),则tan x =________.8.已知cos(π6-θ)=a (|a |≤1),则cos(5π6+θ)+sin(2π3-θ)的值是________.9.已知sin(3π+α)=2sin(3π2+α),求下列各式的值:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+sin 2α.10.设0≤θ≤π,P =sin 2θ+sin θ-cos θ.(1)若t =sin θ-cos θ,用含t 的式子表示P ; (2)确定t 的取值范围,并求出P 的最大值和最小值.[能力提升组]11.(2016·厦门模拟)已知cos 31°=a ,则sin 239°·tan 149°的值是( )A.1-a 2aB.1-a 2C.a 2-1aD .-1-a 212.(2016·太原二模)已知sin α+cos α=2,α∈(-π2,π2),则tan α=( )A .-1B .-22 C.22D .1 13.(2016·海淀模拟)已知sin 2θ+4cos θ+1=2,那么(cos θ+3)(sin θ+1)的值为( )A .6B .4C .2D .014.(2016·新疆阿勒泰二模)已知α为第二象限角,则cos α1+tan 2α+sin α1+1tan 2α=________. 15.已知A 、B 、C 是三角形的内角,3sin A ,-cos A 是方程x 2-x +2a =0的两根.(1)求角A ;(2)若1+2sin B cos Bcos 2B -sin 2B=-3,求tanB.第3节 三角函数的图象与性质◆考纲·了然于胸◆1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值,图象与x 轴的交点等),理解正切函数在区间(-π2,π2)内的单调性.[要点梳理]1.用五点法作正弦函数和余弦函数的简图:正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象和性质1.下列说法正确的是( )A .函数y =cos x 在第一象限内是减函数B .函数y =tan x 在定义域内是增函数C .函数y =sin x cos x 是R 上的奇函数D .所有周期函数都有最小正周期2.(2015·新课标卷Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A .(k π-14,k π+34),k ∈ZB .(k -14,k +34),k ∈ZC .(2k π-14,2k π+34),k ∈ZD .(2k -14,2k +34),k ∈Z3.(2016·三明模拟)已知函数f (x )=2sin(ωx +φ)对任意x 都有f (π6+x )=f (π6-x ),则f (π6)等于( )A .2或0B .-2或2C .0D .-2或0 4.函数y =tan (2x +π4)的图象与x 轴交点的坐标是________.5.(2015·江苏高考)已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是__.考点一 三角函数的定义域、值域问题(基础型考点——自主练透)[方法链接](1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型的题目:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域); ②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).[题组集训]1.函数y =sin x -cos x 的定义域为________.2.函数f (x )=3sin(2x -π6)在区间[0,π2]上的值域为________.3.当x ∈[π6,7π6]时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.考点二 三角函数的单调性(重点型考点——师生共研) 【例】 (1) y =sin(π3-2x )的单调递减区间为________.(2)(2016·洛阳模拟)若f (x )=2sin ωx +1(ω>0)在区间[-π2,2π3] 上是增函数,则ω的取值范围是________.互动探究 在本例(1)中函数不变,求函数在[-π,0]上的单调递减区间. 【名师说“法”】求三角函数单调区间的两种方法](1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间.(2)图象法:函数的单调性表现在图象上是:从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.提醒:]求解三角函数的单调区间时若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域. 跟踪训练(1)y =tan(2x -π3)的单调递增区间为________.(2)已知函数f (x )=sin x +3cos x ,设a =f (π7),b =f (π6),c =f (π3),则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a 考点三 三角函数的奇偶性、周期性和对称性(高频型考点——全面发掘)[考情聚焦]正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有:(1)三角函数的周期;(2)求三角函数的对称轴或对称中心;(3)三角函数对称性的应用. 角度一 三角函数的周期1.函数y =-2cos 2(π4+x )+1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的非奇非偶函数2.(2016·长沙一模)若函数f (x )=2tan(kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为________.角度二 求三角函数的对称轴或对称中心3.(2016·揭阳一模)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f (3π4-x )( )A .是奇函数且图象关于点(π2,0)对称 B .是偶函数且图象关于点(π,0)对称C .是奇函数且图象关于直线x =π2对称 D .是偶函数且图象关于直线x =π对称角度三 三角函数对称性的应用 4.(2016·辽宁五校联考)设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为( )A .-34 B .-14 C .-12 D.345.函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________.[通关锦囊](1)求三角函数周期的方法: ①利用周期函数的定义;②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|;③利用图象:对含绝对值的三角函数的周期问题,通常要画出图象,结合图象进行判断. (2)三角函数的对称性、奇偶性①正弦、余弦函数的图象既是中心对称图形,又是轴对称图形,正切函数图象只是中心对称图形,应熟记它们的对称轴和对称中心.②若f (x )=A sin(ωx +φ)为偶函数,则φ=π2+k π(k ∈Z );若f (x )=A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z ).③若求f (x )=A sin(ωx +φ)的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x ;若求f (x )=A sin(ωx +φ)的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.[题组集训]1.(2016·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( )A.π6B.π3 C .-π6 D .-π32.(2016·湖南六校联考)若函数f (x )=a sin ωx +b cos ωx (0<ω<5,ab ≠0)的图象的一条对称轴方程是x =π4ω,函数f ′(x )的图象的一个对称中心是(π8,0),则f (x )的最小正周期是________.易错警示4 三角函数单调性忽视x 的系数致错 典例 求函数y =12sin(π4-2x3)的单调区间为________.提醒:](1)对于其它形式的三角函数,首先要变换到y =A sin(ωx +φ)或y =A cos(ωx +φ),y =A tan(ωx +φ)(ω>0)才可.(2)求单调区间要注意定义域.即时突破 函数y =cos(2x +π6)的单调递增区间为________.[课堂小结]【方法与技巧】1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质. 【失误与防范】1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响. 2.要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,尽量化成ω>0时情况.课时活页作业(十九)[基础训练组]1.函数y =cos x -32的定义域为( ) A .[-π6,π6] B .[k π-π6,k π+π6],k ∈Z C .[2k π-π6,2k π+π6],k ∈Z D .R2.(2016·南昌联考)已知函数f (x )=sin (ωx +π6)-1(ω>0)的最小正周期为2π3,则f (x )的图象的一条对称轴方程( )A .x =π9B .x =π6C .x =π3D .x =π23.(2016·广州测试)若函数y =cos(ωx +π6)(ω∈N *)的一个对称中心是(π6,0),则ω的最小值为( )A .1B .2C .4D .8 4.(2016·九江模拟)下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11° 5.将函数f (x )=3sin 2x -cos 2x 的图象向左平移|m |个单位,若所得的图象关于直线x =π6对称,则|m |的最小值为( )A.π3 B.π6 C .0 D.π126.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的________条件.7.(2016·大庆模拟)若f (x )=2sin ωx (0<ω<1)在区间[0,π3]上的最大值是2,则ω=________.8.(2016·荆州质检)函数y =sin(ωx +φ)(ω>0,0<φ<π)的最小正周期为π,且函数图象关于点(-3π8,0)对称,则函数的解析式为________.9.设函数f (x )=cos ⎝⎛⎭⎫2x -π3+2sin 2⎝⎛⎭⎫x +π2.(1)求f (x )的最小正周期和对称轴方程;(2)当x ∈⎣⎡⎦⎤-π3,π4时,求f (x )的值域. 10.设函数f (x )=sin(πx 3-π6)-2cos 2πx6.(1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.[能力提升组]11.(2014·课标全国Ⅰ)在函数①y =cos |2x |,②y =|cos x |,③y =cos(2x +π6),④y =tan(2x -π4)中,最小正周期为π的所有函数为( )A .②④ B .①③④ C .①②③ D .①③12.(2016·济南调研)已知f (x )=sin 2 x +sin x cos x ,则f (x )的最小正周期和一个单调增区间分别为( )A .π,[0,π]B .2π,[π4,3π4]C .π,[-π8,3π8]D .2π,[-π4,π4]13.(2016·豫北六校联考)若函数f (x )=cos(2x +φ)的图象关于点(4π3,0)成中心对称,且-π2<φ<π2,则函数y =f (x +π3)为( )A .奇函数且在(0,π4)上单调递增B .偶函数且在(0,π2)上单调递增C .偶函数且在(0,π2)上单调递减D .奇函数且在(0,π4)上单调递减14.(2015·安阳模拟)已知函数y =A cos(π2x +φ)(A >0)在一个周期内的图象如图所示,其中P ,Q 分别是这段图象的最高点和最低点,M ,N 是图象与x 轴的交点,且∠PMQ =90°,则A 的值为________. 15.(2016·荆门调研)已知函数f (x )=a (2cos 2x 2+sin x )+b .(1)若a =-1,求函数f (x )的单调增区间;(2)若x ∈[0,π]时,函数f (x )的值域是[5,8],求a ,b 的值.第4节 函数y =A sin(ωx +φ)的图象及应用◆考纲·了然于胸◆1.了解函数y =A sin(ωx +φ)的物理意义,能画出函数y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响.2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单的实际问题.[要点梳理]1.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点.如下表所示.2.函数y3.图象的对称性:函数y =A sin(ωx +φ) (A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中ωx k +φ=k π+π2,k ∈Z )成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形.[小题查验]1.函数y =sin(2x -π3)在区间[-π2,π]上的简图是( )2.(2015·高考山东卷)要得到函数y =sin(4x -π3)的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位3.函数y =tan(π4x -π2)的部分图象如图所示,则(OB →-OA →)·OB →=( )A .-4B .2C .-2D .44.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.5.把函数y =sin(5x -π2)的图象向右平移π4个单位,再把所得函数图象上各点的横坐标缩短为原来的12,所得的函数解析式为________.考点一 求函数y =A sin(ωx +φ)的解析式(基础型考点——自主练透)确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法(1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT ;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图象的“峰点”)时ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图象的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π.[题组集训]1.(2016·山西四校联考)已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则y =f (x +π6)取得最小值时x 的集合为( )A .{x |x =k π-π6,k ∈Z }B .{x |x =k π-π3,k ∈Z }C .{x |x =2k π-π6,k ∈Z }D .{x |x =2k π-π3,k ∈Z }2.(2016·东北三校联考)已知函数y =A sin(ωx +φ)+b (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式为( ) A .y =4sin(4x +π6) B .y =2sin(2x +π3)+2 C .y =2sin(4x +π3)+2 D .y =2sin(4x +π6)+23.已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图所示,则f (π24)等于( )A .2+3 B.3 C.33D .2- 3 考点二 函数y =A sin(ωx +φ)的图象(题点多变型考点——全面发掘)【例1】 (2014·重庆高考)将函数f (x )=sin(ωx +φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f (π6)=________.[发散1] 将本例变为:由函数y =sin x 的图象作怎样的变换可得到y =2sin(2x -π3)的图象?[发散2] 将本例中函数f (x )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值为. [发散3] 将本例变为:若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小值为________.[类题通法]函数y =A sin(ωx +φ)(A >0,ω>0)的图象的两种作法(1)五点法:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,3π2,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换法:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”.[提醒] ]平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 考点三 三角函数模型的应用(重点型考点——师生共研)【例2】 (2014·湖北高考)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cosπ12t -sin π12t ,t ∈[0,24). (1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温? 【名师说“法”】本题属三角函数模型的应用,通常的解决方法:转化为y =sin x ,y =cos x 等函数解决图象、最值、单调性等问题,体现了化归的思想方法;用三角函数模型解决实际问题主要有两种:一种是用已知的模型去分析解决实际问题,另一种是需要建立精确的或者数据拟合的模型去解决问题,尤其是利用数据建立拟合函数解决实际问题,充分体现了新课标中“数学建模”的本质. 跟踪训练如图所示,某地夏天从8~14时用电量变化曲线近似满足函数y =A sin(ωx +φ)+b ,φ∈(0,π).(1)求这一天的最大用电量及最小用电量;(2)写出这段曲线的函数解析式.规范答题3 三角函数图象与性质的综合问题典例 (本小题满分12分)已知函数f (x )=23sin(x 2+π4)·cos (x 2+π4)-sin(x +π).(1)求f (x )的最小正周期.(2)若将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.即时突破 (2016·湖北八校联考)已知函数f (x )=2cos 2x +23sin x cos x ,x ∈R .(1)求函数f (x )的最小正周期;(2)求函数f (x )在区间[-π6,π4]上的值域.[课堂小结]【方法与技巧】1.五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化. 2.由图象确定函数解析式由函数y =A sin(ωx +φ)的图象确定A 、ω、φ的题型,常常以“五点法”中的第一个零点(-φω,0)作为突破口,要从图象的升降情况找准第一个零点的位置.要善于抓住特殊量和特殊点. 3.对称问题函数y =A sin(ωx +φ)的图象与x 轴的每一个交点均为其对称中心,经过该图象上坐标为(x ,±A )的点与x 轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻平衡点间的距离) 【失误与防范】1.由函数y =sin x 的图象经过变换得到y =A sin(ωx +φ)的图象,如先伸缩,则平移时要把x 前面的系数提出来. 2.复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看做一个整体.若ω<0,要先根据诱导公式进行转化.课时活页作业(二十)[基础训练组]1.(2016·深圳二模)如果函数f (x )=sin(πx +θ)(0<θ<2π)的最小正周期为T ,且当x =2时,f (x )取得最大值,那么( )A .T =2,θ=π2B .T =1,θ=πC .T =2,θ=πD .T =1,θ=π22.已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是( )A .[12,54]B .[12,34]C .(0,12] D .(0,2]3.(2016·长沙一模)定义⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3,若函数f (x )=⎪⎪⎪⎪⎪⎪sin2x cos 2x 1 3,则将f (x )的图象向右平移π3个单位所得曲线的一条对称轴的方程是( )A .x =π6B .x =π4C .x =π2D .x =π4.(2016·长春模拟)函数f (x )=sin(2x +φ)(|φ|<π2)向左平移π6个单位后是奇函数,则函数f (x )在[0,π2]上的最小值为( )A .-32 B .-12 C.12 D.32。

高中数学中的三角函数与解三角形

高中数学中的三角函数与解三角形

高中数学中的三角函数与解三角形在高中数学中,三角函数是一个重要的概念,它与解三角形密切相关。

本文将从三角函数的定义和性质入手,详细讨论三角函数与解三角形的关系。

一、三角函数的定义与性质三角函数主要包括正弦函数、余弦函数和正切函数,它们的定义如下:1. 正弦函数(sin):在直角三角形中,对于给定的角θ,正弦函数的值等于对边与斜边的比值,即sinθ = 对边/斜边。

2. 余弦函数(cos):在直角三角形中,对于给定的角θ,余弦函数的值等于邻边与斜边的比值,即cosθ = 邻边/斜边。

3. 正切函数(tan):在直角三角形中,对于给定的角θ,正切函数的值等于对边与邻边的比值,即tanθ = 对边/邻边。

三角函数具有一些重要的性质,包括:1. 周期性:正弦函数和余弦函数的周期是2π,而正切函数的周期是π。

2. 平移性:正弦函数、余弦函数和正切函数在横轴方向上可以进行平移,具体平移的距离由相位差决定。

3. 对称性:正弦函数是奇函数,即sin(-θ) = -sinθ;余弦函数是偶函数,即cos(-θ) = cosθ;正切函数是奇函数,即tan(-θ) = -tanθ。

4. 奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。

二、三角函数的运用三角函数在解决实际问题中有着广泛的应用,其中包括解三角形的问题。

解三角形的关键是利用三角函数,根据已知条件求解未知量。

1. 已知两边求解角度:对于给定的两边长度 a 和 b,可以利用正弦函数或余弦函数求解夹角θ。

具体步骤如下:- 使用正弦函数:sinθ = 对边/斜边,即sinθ = a/b,解得θ = arcsin(a/b)。

- 使用余弦函数:cosθ = 邻边/斜边,即cosθ = a/b,解得θ = arccos(a/b)。

2. 已知一边一角求解另外两边和另外两个角度:对于给定的一边长度 a 和夹角θ,可以利用正弦函数、余弦函数或正切函数求解未知量。

具体步骤如下:- 使用正弦函数:利用a/sinθ = b/sin(90°),求解未知边 b。

三角函数与解三角形知识点总结

三角函数与解三角形知识点总结

三角函数与解三角形知识点总结三角函数是数学中的一种重要的函数,在几何学、物理学、工程学等多个学科中都有广泛的应用。

解三角形则是利用三角函数求解三角形的各个边长和角度的过程。

下面将对三角函数和解三角形的相关知识进行总结。

一、三角函数的概念及性质1. 正弦函数:在一个直角三角形中,对于一些锐角,其对边与斜边的比值被定义为正弦,用sin表示。

正弦函数的定义域是实数集,值域是[-1,1]。

2. 余弦函数:在一个直角三角形中,对于一些锐角,其邻边与斜边的比值被定义为余弦,用cos表示。

余弦函数的定义域是实数集,值域是[-1,1]。

3. 正切函数:在一个直角三角形中,对于一些锐角,其对边与邻边的比值被定义为正切,用tan表示。

正切函数的定义域是实数集,值域是(-∞,∞)。

4. 余切函数:在一个直角三角形中,对于一些锐角,其邻边与对边的比值被定义为余切,用cot表示。

余切函数的定义域是实数集,值域是(-∞,∞)。

5. 正割函数:在一个直角三角形中,对于一些锐角,其斜边与邻边的比值被定义为正割,用sec表示。

正割函数的定义域是实数集,值域是(-∞,-1]∪[1,∞)。

6. 余割函数:在一个直角三角形中,对于一些锐角,其斜边与对边的比值被定义为余割,用csc表示。

余割函数的定义域是实数集,值域是(-∞,-1]∪[1,∞)。

二、解三角形的基本原理解三角形的基本原理是利用三角函数的定义和性质来求得三角形的各个边长和角度。

1.利用已知边长和角度求解三角形:如果已知一个三角形的两个角度和一个边长,可以利用三角函数的定义和性质来求解三角形的其他边长和角度。

例如,已知一个三角形的两边长分别为a和b,以及夹角C,可以利用余弦定理和正弦定理来求解三角形的第三边长和其他两个角度。

2.利用已知边长求解三角形的角度:如果已知一个三角形的三个边长,可以利用余弦定理和正弦定理来求解三角形的三个角度。

例如,已知一个三角形的三个边长分别为a、b、c,可以利用余弦定理求解三个角度。

高中数学 三角函数与解三角形知识点总结

高中数学 三角函数与解三角形知识点总结

三角函数与解三角形一、三角函数的图象与性质 1.三角函数图象变换由函数sin y x =的图象通过变换得到sin()y A x ωϕ=+(A >0,ω>0)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.如下图.2.三角函数的性质(1)函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的定义域均为R ; 函数tan()y A x ωϕ=+的定义域均为ππ{|,}2k x x k ϕωωω≠-+∈Z . (2)函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的最大值为||A ,最小值为||A -; 函数tan()y A x ωϕ=+的值域为R .(3)函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的最小正周期为2πω; 函数tan()y A x ωϕ=+的最小正周期为πω.(4)对于()sin y A x ωϕ=+,当且仅当()πk k ϕ=∈Z 时为奇函数,当且仅当()ππ2k k ϕ=+∈Z 时为偶函数; 对于()c o s y A xωϕ=+,当且仅当()ππ2k k ϕ=+∈Z 时为奇函数,当且仅当()πk k ϕ=∈Z 时为偶函数;对于()tan y A x ωϕ=+,当且仅当()π2k k ϕ=⋅∈Z 时为奇函数. (5)函数()()s i n 0,0y A x A ωϕω=+>>的单调递增区间由不等式ππ2π2π(22k x k k ωϕ-≤+≤+ )∈Z 来确定,单调递减区间由不等式()π3π2π2π22k x k k ωϕ+≤+≤+∈Z 来确定; 函数()()c o s 0,0y A x A ωϕω=+>>的单调递增区间由不等式()2ππ2πk x k k ωϕ-≤+≤∈Z 来确定,单调递减区间由不等式()2π2ππk x k k ωϕ≤+≤+∈Z 来确定;函数()()t a n 0,0y A x A ωϕω=+>>的单调递增区间由不等式()ππππ22k x k k ωϕ-<+<+∈Z 来确定. 【注】函数sin()y A x ωϕ=+,cos()y A x ωϕ=+,tan()y A x ωϕ=+(ω有可能为负数)的单调区间:先利用诱导公式把ω化为正数后求解. (6)函数sin()y A x ωϕ=+图象的对称轴为ππ()2k x k ϕωωω=-+∈Z ,对称中心为π(,0)()k k ϕωω-∈Z ; 函数c o s (y Ax ωϕ=+图象的对称轴为π()k x k ϕωω=-∈Z ,对称中心为ππ(,0)()2k k ϕωωω-+∈Z ; 函数tan()y A x ωϕ=+图象的对称中心为π(,0)()2k k ϕωω-∈Z . 【注】函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的图象与x 轴的交点都为对称中心,过最高点或最低点且垂直于x 轴的直线都为对称轴. 函数tan()y A x ωϕ=+的图象与x 轴的交点和渐近线与x 轴的交点都为对称中心,无对称轴.1.同角三角函数的基本关系式 (1)平方关系:22sin cos 1αα+=. (2)商的关系:sin cos tan ααα=. (3)常见变形:2222sin 1cos ,cos 1sin αααα=-=-,sin sin tan cos ,cos tan αααααα=⋅=. 2.诱导公式3.两角和与差的正弦、余弦、正切公式 (1)()C αβ-:cos()αβ-=cos cos sin sin αβαβ+ (2)()C αβ+:cos()cos cos sin sin αβαβαβ+=- (3)()S αβ+:sin()αβ+=sin cos cos sin αβαβ+ (4)()S αβ-:sin()αβ-=sin cos cos sin αβαβ- (5)()T αβ+:tan()αβ+=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ++≠+∈-Z(6)()T αβ-:tan()αβ-=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ--≠+∈+Z(1)2S α:sin 2α=2sin cos αα(2)2C α:cos 2α=2222cos sin 12sin 2cos 1αααα-=-=- (3)2T α:tan 2α=22tan πππ(π,)1tan 224k k k αααα≠+≠+∈-Z 且5.公式的常用变形(1)tan tan tan()(1tan tan )αβαβαβ±=±;tan tan tan tan tan tan 11tan()tan()αβαβαβαβαβ+-=-=-+-(2)降幂公式:21cos 2sin 2αα-=;21cos 2cos 2αα+=;1sin cos sin 22ααα= (3)升幂公式:21cos 22cos αα+=;21cos 22sin αα-=;21sin 2(sin cos )ααα+=+;21sin 2(sin cos )ααα-=-(4)辅助角公式:sin cos a x b x +)x ϕ=+,其中cos ϕϕ==,tan baϕ=三、解三角形 1.正弦定理 (1)内容在ABC △中,若角A ,B ,C 对应的三边分别是a ,b ,c ,则各边和它所对角的正弦的比相等,即sin sin sin a b c ==A B C.正弦定理对任意三角形都成立. (2)常见变形①sin sin sin ,,,sin sin ,sin sin ,sin sin ;sin sin sin A a C c B ba Bb A a Cc A b C c B B b A a C c ====== ②;sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b cA B C A B A C B C A B C+++++======+++++ ③::sin :sin :sin ;a b c A B C =④正弦定理的推广:===2sin sin sin a b c R A B C,其中R 为ABC △的外接圆的半径. (3)应用①已知两角和任意一边,求其他的边和角; ②已知两边和其中一边的对角,求其他的边和角. 2.余弦定理 (1)内容三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222222222cos ,2cos 2cos .a b c bc A b a c ac B c a b ab C =+-=+-=+-,(2)余弦定理的推论从余弦定理,可以得到它的推论:222222222cos ,cos ,cos 222b c a c a b a b c A B C bc ca ab+-+-+-===.(3)应用①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两角. 3.解三角形的实际应用 (1)三角形的面积公式设ABC △的三边为a ,b ,c ,对应的三个角分别为A ,B ,C ,其面积为S .①12S ah = (h 为BC 边上的高);②111sin sin sin 222S bc A ac B ab C ===;③1()2S r a b c =++(r 为三角形的内切圆半径).(2)解三角形实际应用题的步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
考点一 三角形边角的求解 [例 4] 在平面四边形 ABCD 中,∠A=∠B=∠C=75°,BC=2,则 AB 的取值范 围是__________. [解析] 通性通法:将四边形分割为三角形,将问题转化为求函数的值域.
3+2-2×


6- 4
2=
6+ 2
2 .
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
(2)求△BPC 周长的最大值. 解析:(2)由(1)可知 BC=2 或 BC=1,又因为求△BPC 周长的最大值,所以 BC= 2. 设 BP=m,PC=n,则 m2+n2=4. 由于 BC 长为定值,因此求△BPC 周长的最大值只需求 BP+PC=m+n 的最大值 即可. 又 4=m2+n2≥m+2 n2,则 m+n≤2 2, 当且仅当 m=n= 2时取等号,此时△BPC 的周长取得最大值,为 2+2 2.
a
b
c
sin A= 2R ,sin B= 2R ,sin C= 2R (R 为△ABC 的外接圆半径).
a∶b∶c= sin A∶sin B∶sin C .
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
类型一 利用正、余弦定理求三角形内角、周长及面积
突破定理正用、逆用、变形用 [例 1] (本题满分 12 分)(2019·合肥二模)在△ABC 中,角 A,B,C 的对边分别是 a, b,c.已知 bsinC-π3-csin B=0. (1)求角 C 的值; (2)若 a=4,c=2 7,求△ABC 的面积.
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
(1)求船的航行速度是每小时多少千米?
解析:(1)在 Rt△PAB 中,∠PAB=90°,∠APB=60°,PA=1,
∴AB= 3.

Rt△PAC
中,∠PAC=90°,∠APC=30°,∴AC=
3 3.
在△ACB 中,∠CAB=30°+60°=90°,
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
[自我总结] _____________________________________ _____________________________________ _____________________________________ _____________________________________
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
2.在△ABC 中,a>b⇔A>B⇔sin A>sin B. 3.若三角形 ABC 为锐角三角形,则 A+B>π2,sin A>cos B,cos A<sin B,a2+b2>c2. 若三角形 ABC 为钝角三角形(假如 C 为钝角),则 A+B<π2,sin A<cos B,cos A>sin B. 4.在△ABC 中,ccos B+bcos C=__a__.
解析:(1)由题意知 1=AC2=AB2+BC2-2AB·BCcos∠ABC=3+BC2-3BC,
解得 BC=2(BC=1 舍去,因为在 Rt△BPC 中,BC>BP= 2),
则∠CAB=90°.
又∠BPC=90°,且 BP= 2,所以∠PBC=45°,从而∠ABP=75°.
连接 AP,由余弦定理得 AP=
【知规则·规范解答】
①正弦定理运用正确.得 2 分 ②化简得到 sinC+π3=0.得 4 分
应用余弦定理得到关于 b 的一元二次方程.得 3 分
——采点得分说明
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
1.(2019·高考全国卷Ⅲ)△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知 asin A+2 C=bsin A. (1)求 B; 解析:(1)由题设及正弦定理得 sin Asin A+2 C=sin Bsin A. 因为 sin A≠0,所以 sin A+2 C=sin B.
解析:(2)由题设及(1)知△ABC 的面积 S△ABC= 43a.
由正弦定理得 a=cssiinnCA=sin1s2in0°C-C=2tan3C+12.
由于△ABC 为锐角三角形,故 0°<A<90°,0°<C<90°,由(1)知 A+C=120°,所以
30°<C<90°故12<a<2,从而
3 8 <S△ABC<
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
[自我总结] _____________________________________ _____________________________________ _____________________________________ _____________________________________
∴BC= AC2+AB2=
332+
32=
330,
则船的航行速度为 330÷16=2 30(千米/时).
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
(2)又经过一段时间后,船到达海岛的正西方向的 D 处,问此时船距岛 A 有多远?
解析:(2)sin∠DCA=sin(180°-∠ACB)=sin∠ACB=BACB= 330=130 10. 3
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
【悟方法·善于总结】 1.将四边形分割为三角形. 2.把已知条件转化到同一个三角形中再运用正余弦定理. 3.先选已知条件较多的三角形求解.
上一页
返回导航
下一页
[自我总结] _____________________________________ _____________________________________ _____________________________________ _____________________________________ _____________________________________
BA
的长度为5 3
6 .
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
3.如图,在海岛 A 上有一座海拔 1 千米的山,山顶设有一个观察站 P,上午 11 时,测得一轮船在岛北偏东 30°,俯角为 30°的 B 处,到 11 时 10 分又测得该船在 岛北偏西 60°,俯角为 60°的 C 处.
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
B+C 5.sin A=sin(B+C),sin A2= cos 2 .
6.sina
A=sinb
B=sinc
C=sin
a+b+c A+sin B+sin
C=2R.
由 a=2Rsin A,b=2Rsin B,c=2Rsin C(R 为△ABC 的外接圆半径).可推出
23.因此,△ABC
面积的取值范围是
83,
23.
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
【悟方法·善于总结】 解三角形边角互化的主要途径与方法
途径一:化边为角
途径二:化角为边
(1)通过正弦定理实现边角互化
主要方法
(2)通过余弦定理实现边角互化 (3)通过三角变换找出角之间的关系
(4)选用已知角的面积公式实现边角互化
2 5.
在△BCD 中,由余弦定理得
BC2=BD2+DC2-2·BD·DC·cos∠BDC=25+8-2×5×2 2× 52=25. 所以 BC=5.
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
2.(2017·安徽省“江南十校”联考)如图,在△ABC 中,∠ABC= 30°,AB= 3,AC=1,P 为 BC 右上方一点,满足∠BPC=90°. (1)若 BP= 2,求 AP 的长;
专题一 三角函数与解三角形 第二讲 解三角形
栏目 导航
解答题专项练 选择填空题专项练 题型专项练
专题限时训练
新课标高考第二轮总复习•理科数学
1.求三角形面积常用公式 S=12(a+b+c)r(r 为内切圆半径). S=12 PP-aP-bP-cP=12a+b+c. S=12bcsin A=12acsin B=12absin C. S=12ah1=12bh2=12ch3(h1,h2,h3 分别为边 a,b,c 上的高).
返回导航
下一页
新课标高考第二轮总复习•理科数学
(2)∵c2=a2+b2-2abcos C, ∴b2+4b-12=0,(8 分) ∵b>0, ∴b=2,(10 分) ∴△ABC 的面积 S=12absin C=12×2×4× 23=2 3.
(12 分)
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
∵∠DAC=90°-60°=30°,∴sin∠CDA=sin(∠ACB-30°)=sin∠ACB·cos 30°-
cos∠ACB·sin 30°=130 10× 23-12×
1-130
102=3
3-1 20
10 .
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
在△ACD 中,由正弦定理,得sin∠ADDCA=sin∠ACCDA,
sinB∠D A=sin∠ABADB.
由题设知,sin545°=sin∠2ADB,所以
相关文档
最新文档