2018年高考数学试题分类汇编-----导数精品
20192018年全国各地高考数学试题及解答分类汇编大全(04 导数及其应用)

2018年全国各地高考数学试题及解答分类汇编大全(04导数及其应用)一、选择题1.(2018全国新课标Ⅰ文、理)设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =1. 答案:D解答:∵()f x 为奇函数,∴()()f x f x -=-,即1a =,∴3()f x x x =+,∴'(0)1f =,∴切线方程为:y x =,∴选D.二、填空1.(2018江苏)若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .1.【答案】3-【解析】由()2620f x x ax '=-=得0x =,3ax =,因为函数()f x 在()0,+∞上有且仅有一个零点且()0=1f ,所以03a>,03a f ⎛⎫= ⎪⎝⎭, 因此3221033a a a ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,3a =,从而函数()f x 在[]1,0-上单调递增,在[]0,1上单调递减,所以()()max 0f x f =,()()(){}()min min 1,11f x f f f =-=-,()()()()max min 01143f x f x f f +=+-=-=-.2.(2018天津文)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为__________. 2.【答案】e【解析】由函数的解析式可得:()11e ln e e ln x x x f x x x x x ⎛⎫=⨯+⨯='+ ⎪⎝⎭,则()111e ln1e 1f ⎛⎫=⨯+= ⎪⎝⎭'.即()1f '的值为e .3.(2018全国新课标Ⅱ文)曲线2ln y x =在点(1,0)处的切线方程为__________. 3.【答案】22y x =-【解析】由()2ln y f x x ==,得()2f x x'=,则曲线2ln y x =在点()1,0处的切线的斜率为()12k f ='=,则所求切线方程为()021y x -=-,即22y x =-.4.(2018全国新课标Ⅱ理)曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 4.【答案】2y x =【解析】21y x '=+Q ,2201k ∴==+,2y x ∴=.5.(2018全国新课标Ⅲ理)曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =________. 5.答案:3-解答:(1)x xy ae ax e =+,则(0)12f a '=+=-,所以3a =-.三、解答题1.(2018北京文)设函数()()23132e xf x ax a x a ⎡⎤=-+++⎣⎦.(1)若曲线()y f x =在点()()22f ,处的切线斜率为0,求a ; (2)若()f x 在1x =处取得极小值,求a 的取值范围.1.【答案】(1)12;(2)()1,+∞. 【解析】(1)()()23132e x f x ax a x a ⎡⎤=-+++⎣⎦Q ,()()211e xf x ax a x ⎡⎤∴=-++⎣⎦', ()()2221e f a -'=,由题设知()20f '=,即()221e 0a -=,解得12a =. (2)方法一:由(1)得()()()()211e 11e x xf x ax a x ax x ⎡⎤=-++=--⎣⎦'. 若1a >,则当11x a ⎛⎫∈ ⎪⎝⎭,时,()0f x '<;当()1x ∈+∞,时,()0f x '>. 所以()f x 在1x =处取得极小值.若1a ≤,则当()01x ∈,时,110ax x -≤-<,()0f x ∴'>. 所以1不是()f x 的极小值点. 综上可知,a 的取值范围是()1,+∞. 方法二:()()()11e x f x ax x =--'.(1)当0a =时,令()0f x '=得1x =,()f x ',()f x 随x 的变化情况如下表:()f x ∴(2)当0a >时,令()0f x '=得11x a =,21x =. ①当12x x =,即1a =时,()()21e 0x f x x '=-≥,()f x ∴在R 上单调递增, ()f x ∴无极值,不合题意.②当1x x >,即01a <<时,()f x ',()f x 随x 的变化情况如下表:()f x ∴在1x =处取得极大值,不合题意.③当x x <,即1a >时,f x ',f x 随x 的变化情况如下表:(f x ∴(3)当0a <时,令()0f x '=得11x =,21x =,()f x ',()f x 随x 的变化情况如下表:(f ∴综上所述,a 的取值范围为()1+∞,.2.(2018北京理)设函数()f x =[2(41)43ax a x a -+++]e x.(Ⅰ)若曲线y= f (x )在点(1,(1)f )处的切线与x 轴平行,求a ;(Ⅱ)若()f x 在x =2处取得极小值,求a 的取值范围.2.【答案】(1)a 的值为1;(2)a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.【解析】(1)因为()()24143e x f x ax a x a ⎡⎤=-+++⎣⎦, 所以()()()2241e 4143e x xf x ax a ax a x a '⎡⎤=-++-+++⎡⎤⎣⎦⎣⎦ ()2–212e xax a x ⎡⎤=++⎣⎦,()()11e f a '=-,由题设知()10f '=,即()1e 0a -=,解得1a =. 此时()13e 0f =≠,所以a 的值为1.(2)由(1)得()()()()2–212e 12e x xf x ax a x ax x '⎡⎤=++=--⎣⎦.若12a >,则当1,2x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<; 当()2,x ∈+∞时,()0f x '>,所以()0f x <在2x =处取得极小值. 若12a ≤,则当()0,2x ∈时,20x -<,1–1102ax x ≤-<,所以()0f x '>,所以2不是()f x 的极小值点. 综上可知,a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.3.(2018江苏)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.3.【答案】(1)见解析;(2)a 的值为e 2; (3)对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”.【解析】(1)函数()f x x =,()222g x x x =+-,则()1f x '=,()22g x x '=+.由()()f x g x =且()()f x g x ''=,得222122x x x x =+-=+⎧⎨⎩,此方程组无解,因此,()f x 与()g x 不存在“S ”点.(2)函数()21f x ax =-,()ln g x x =,则()2f x ax '=,()1g x x'=. 设0x 为()f x 与()g x 的“S ”点,由()0f x 与()0g x 且()0f x '与()0g x ', 得200001ln 12ax x ax x ⎧-==⎪⎨⎪⎩,即200201ln 21ax x ax -==⎧⎨⎩,(*) 得01ln 2x =-,即120e x -=,则2121e e 22a -==⎛⎫ ⎪⎝⎭. 当e2a =时,120e x -=满足方程组(*),即0x 为()f x 与()g x 的“S ”点.因此,a 的值为e2.(3)对任意0a >,设()323h x x x ax a =--+.因为()00h a =>,()11320h a a =--+=-<,且()h x 的图象是不间断的,所以存在()00,1x ∈,使得()00h x =,令()03002e 1x x b x =-,则0b >.函数()2f x x a =-+,()e xb g x x =,则()2f x x '=-,()()2e 1x b x g x x -'=.由()()f x g x =且()()f x g x ''=,得()22e e 12xx b x a xb x x x -+⎧⎪⎪⎨=--=⎪⎪⎩,即()()()00320030202e e 1e 122e 1x x x x x x a x x x x x x x -+=⋅---=⋅-⎧⎪⎪⎨⎪⎪⎩(**), 此时,0x 满足方程组(**),即0x 是函数()f x 与()g x 在区间()0,1内的一个“S 点”.因此,对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”.(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2; (Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.4..答案:(1)略;(2)略.解答:(1)1()f x x '=,不妨设12()()f x f x t''==,即12,x x1tx =的两2102xtx -+=的根,所以1404t ∆=->,得1016t <<12t =1t=,12122111()()ln ln 2ln 22f x f x x x t t t t+=-=-=+,令1()2ln 2g t t t =+,222141()022t g t t t t -'=-=<,∴()g t 在1(0,)16上单调递减. 所以1()()88ln 216g t g >=-,即12()()88ln2f x f x +>-.(2)设()()()ln h x kx a f x kx x a =+-=-+,则当x 充分小时()0h x <,充分大时()0h x>,所以()h x 至少有一个零点,则2111())164h x k k x '=+=-+-,①116k ≥,则()0h x '≥,()h x 递增,()h x 有唯一零点,②1016k <<,则令211())0416h x k '=-+-=,得()h x 有两个极值点1212,()x x x x <,14>,∴1016x <<.可知()h x 在1(0,)x 递增,12(,)x x 递减,2(,)x +∞递增,∴1111111()ln )ln h x kx x a x x ax =++=+11lnx a =-++, 又1111()h x x '=+=, ∴1()h x 在(0,16)上单调递增,∴1()(16)ln163ln16334ln 20h x h a <=-+≤-+-=, ∴()h x 有唯一零点,综上可知,0k >时,y kx a =+与()y f x =有唯一公共点.5.(2018天津文)设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列.(I )若20,1,t d == 求曲线()y f x =在点(0,(0))f 处的切线方程; (II )若3d =,求()f x 的极值;(III )若曲线()y f x = 与直线 12()y x t =---有三个互异的公共点,求d 的取值范围.5.【答案】(1)0x y +=;(2)极大值为;极小值为-(3)((),10,-∞+∞.【解析】(1)由已知,可得()()()311f x x x x x x =-+=-,故()231f x x ='-, 因此()00f =,()01f '=-,又因为曲线()y f x =在点()()0,0f 处的切线方程为()()()000y f f x '-=-,故所求切线方程为0x y +=.(2)由已知可得()()()()()()()332232222222223393399f x x t x t x t x t x t x t x t x t t =-+---=---=-+--+.故()22223639f x x t x t +'=--.令()0f x '=,解得2x t =,或2x t =+. 当x 变化时,()f x ',()f x 的变化如下表:所以函数()f x 的极大值为29f t =-⨯=()f x 的极小值为(329f t =-⨯=-(3)曲线()y f x =与直线()2y x t =---x 的方程()()()()22220x t d x t x t d x t -+---+-+=有三个互异的实数解,令2u x t =-,可得()3210u d u +-+.设函数()()321g x x d x =+-+则曲线()y f x =与直线()2y x t =---价于函数()y g x =有三个零点.()()32'31g x x d =+-.当21d ≤时,()'0g x ≥,这时()g x 在R 上单调递增,不合题意.当21d >时,()'0g x =,解得1x =,2x =.易得,()g x 在()1,x -∞上单调递增,在[]12,x x 上单调递减,在()2,x +∞上单调递增.()g x 的极大值())3221109d g x g ⎛- ==+ ⎝.()g x 的极小值())322219d g x g -==-+. 若()20g x ≥,由()g x 的单调性可知函数()y g x =至多有两个零点,不合题意.若()20g x <,即()322127d ->,也就是d >,此时2d x >,()0g d d =+,且12d x -<,()32620g d d d -=--+-,从而由()g x 的单调性,可知函数()y g x =在区间()12,d x -,()12,x x ,()2,x d 内各有一个零点,符合题意.所以,d 的取值范围是((),10,-∞+∞.6.(2018天津理)已知函数()xf x a =,()log a g x x =,其中a >1. (I )求函数()()lnh x f x x a =-的单调区间;(II )若曲线()y f x =在点11(,())x f x 处的切线与曲线()y g x =在点22(,())x g x 处的切线平行,证明122ln ln ()ln ax g x a+=-; (III )证明当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线. 6.【答案】(1)单调递减区间(),0-∞,单调递增区间为()0,+∞; (2)证明见解析;(3)证明见解析. 【解析】(1)由已知,()ln xh x a x a =-,有()ln ln x h x a a a '=-, 令()0h x '=,解得0x =.由1a >,可知当x 变化时,()h x ',()h x 的变化情况如下表:所以函数(2)由()ln x f x a a '=,可得曲线()y f x =在点()()11,x f x 处的切线斜率为1ln x a a , 由()1ln g x x a=',可得曲线()y g x =在点()()22,x g x 处的切线斜率为21ln x a ,因为这两条切线平行,故有121ln ln x a a x a=,即()122ln 1x x a a =,两边取以a 为底的对数,得212log 2log ln 0a x x a ++=,所以()122ln ln ln ax g x a+=-,(3)曲线()y f x =在点()11,x x a 处的切线()1111:ln x x l y a a a x x -=⋅-,曲线()y g x =在点()22,log a x x 处的切线()22221log :ln a l y x x x x a-=⋅-, 要证明当1ee a ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线,只需证明当1ee a ≥时,存在()1,x ∈-∞+∞,()20,x ∈+∞,使得1l 和2l 重合.即只需证明当1ee a ≥时,方程组1112121ln ln 1ln log ln x x x a a a x a a x a a x a ⎧⎪⎪⎨=⎪-⎪=-⎩①②有解,由①得()1221ln x x a a =,代入②,得111112ln ln ln 0ln ln x x a a x a a x a a -+++=③, 因此,只需证明当1ee a ≥时,关于1x 的方程③存在实数解.设函数()12ln ln ln ln ln x x au x a xa a x a a =-+++, 即要证明当1ee a ≥时,函数()y u x =存在零点.()()21ln x u x a xa ='-,可知(),0x ∈-∞时,()0u x '>; ()0,x ∈+∞时,()u x '单调递减,又()010u '=>,()()21ln 2110ln a u a a ⎡⎤⎢⎥=-⎥'<⎢⎣⎦,故存在唯一的0x ,且00x >,使得()00u x '=,即()0201ln 0x a x a -=, 由此可得()u x 在()0,x -∞上单调递增,在()0,x +∞上单调递减.()u x 在0x x =处取得极大值()0u x ,因为1ee a ≥,故lnln 1a ≥-,所以()0000012ln ln ln ln ln x x a u x a x a a x a a =-+++()02012ln ln 22ln ln 0ln ln ln a a x a a x a +=++≥≥, 下面证明存在实数t ,使得()0u t <,由(1)可得1ln x a x a ≥+,当1ln x a >时, 有()()()12ln ln 1ln 1ln ln ln a u x x a x a x a a ≤+-+++()2212ln ln ln 1ln ln a a x x a a=-++++, 所以存在实数t ,使得()0u t <,因此,当1ee a ≥时,存在()1,x ∈-∞+∞,使得()10u x =,所以,当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线.7.(2018全国新课标Ⅰ文)已知函数()e ln 1xf x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间;(2)证明:当1ea ≥时,()0f x ≥.7.答案:见解析解答:(1)()f x 定义域为(0,)+∞,1()x f x ae x'=-. ∵2x =是()f x 极值点,∴(2)0f '=,∴2211022ae a e-=⇒=. ∵x e 在(0,)+∞上增,0a >,∴xae 在(0,)+∞上增. 又1x在(0,)+∞上减,∴()f x '在(0,)+∞上增.又(2)0f '=, ∴当(0,2)x ∈时,()0f x '<,()f x 减;当(2,)x ∈+∞时,()0f x '>,()f x 增.综上,212a e=,单调增区间为(2,)+∞,单调减区间为(0,2).(2)∵0x e ≥,∴当1a e ≥时有11x x x ae e e e-≥⋅=,∴1()ln 1ln 1x x f x ae x e x -=--≥--.令1()ln 1x g x e x -=--,(0,)x ∈+∞.11()x g x e x -'=-,同(1)可证()g x '在(0,)+∞上增,又111(1)01g e -'=-=,∴当(0,1)x ∈时,()0g x '<,()g x 减;当(1,)x ∈+∞时,()0g x '>,()g x 增. ∴11min ()(1)ln111010g x g e -==--=--=,∴当1a e≥时,()()0f x g x ≥≥.8.(2018全国新课标Ⅰ理)已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.8.答案:(1)见解析;(2)见解析.解答:(1)①∵1()ln f x x a x x =-+,∴221'()x ax f x x -+=-,∴当22a -≤≤时,0∆≤,'()0f x ≤,∴此时()f x 在(0,)+∞上为单调递减.②∵0∆>,即2a <-或2a >,此时方程210x ax -+=两根为12x x ==,当2a <-时,此时两根均为负,∴'()f x 在(0,)+∞上单调递减.当2a >时,0∆>,此时()f x在(0,2a -上单调递减,()f x在(22a a -上单调递增,()f x在()2a ++∞上单调递减.∴综上可得,2a ≤时,()f x 在(0,)+∞上单调递减;2a >时,()f x在,)+∞上单调递减,()f x在上单调递增.(2)由(1)可得,210x ax -+=两根12,x x 得2a >,1212,1x x a x x +=⋅=,令120x x <<,∴121x x =,1211221211()()ln (ln )f x f x x a x x a x x x -=-+--+21122()(ln ln )x x a x x =-+-.∴12121212()()ln ln 2f x f x x x a x x x x --=-+⋅--,要证1212()()2f x f x a x x -<--成立,即要证1212ln ln 1x x x x -<-成立,∴1122212ln0(1)x x x x x x x -+<>-,2221212ln 0x x x x x --+∴<-即要证22212ln 0x x x --+>(21x >) 令1()2ln (1)g x x x x x=--+>,可得()g x 在(1,)+∞上为增函数,∴()(1)0g x g >=,∴1212ln ln 1x x x x -<-成立,即1212()()2f x f x a x x -<--成立.9.(2018全国新课标Ⅰ理)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)10(<<p p ,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p .(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?9. 答案:略解答:(1)由题可知221820()(1)f p C p p =-(01p <<).∴2182172172020()[2(1)18(1)(1)]2(1)(110)f p C p p p p C p p p =-+-⨯-=--∴当1(0,)10p ∈时,()0f p '>,即()f p 在1(0,)10上递增;当1(,1)10p ∈时,()0f p '<,即()f p 在1(,1)10上递减.∴()f p 在点110p =处取得最大值,即0110p =.(2)(i )设余下产品中不合格品数量为Y ,则4025X Y =+,由题可知1(180,)10Y B ,∴11801810EY np ==⨯=.∴(4025)4025402518490EX E Y EY =+=+=+⨯=(元).(ii )由(i )可知一箱产品若全部检验只需花费400元,若余下的不检验则要490元,所以应该对余下的产品作检验.10.(2018全国新课标Ⅱ文)已知函数()()32113f x x a x x =-++.(1)若3a =,求()f x 的单调区间; (2)证明:()f x 只有一个零点.10.【答案】(1)(–,3∞-,()3++∞单调递增,(3-+单调递减; (2)见解析.【解析】(1)当3a =时,()3213333f x x x x --=-,()263x x f x -'-=.令()0f x '=解得3x =-3x =+当(3–,x -∈∞()3++∞时,()0f x '=;当(3x -∈+时,()0f x '<.故()f x 在(–,3∞-,()3++∞单调递增,在(3-+单调递减.(2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++.设()g x =3231x a x x -++,则()()()22222310x x x x x g x ++++'=≥,仅当0x =时()0g x '=,所以()g x 在()–∞+∞,单调递增,故()g x 至多有一个零点,从而()f x 至多有一个零点. 又()22111631260366a a a f a ⎛⎫-+-=--- ⎪⎝⎭=<-,()03131f a +=>,故()f x 有一个零点.综上,()f x 只有一个零点.11.(2018全国新课标Ⅱ理)已知函数2()e x f x ax =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a .11.【答案】(1)见解析;(2)2e 4.【解析】(1)当1a =时,()1f x ≥等价于()21e 10xx -+-≤,设函数()()21e 1x g x x -=+-,则()()()2221e 1e x xg'x x x x --=--+=--,当1x ≠时,()0g'x <,所以()g x 在()0,+∞单调递减, 而()00g =,故当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数()21e xh x ax -=-,()f x 在()0,+∞只有一个零点当且仅当()h x 在()0,+∞只有一个零点.当0a ≤时,()0h x >,()h x 没有零点; 当0a >时,()()2e xh x ax x -'=-.当()0,2x ∈时,()0h'x <;当()2,x ∈+∞时,()0h'x >.()h x ∴在()0,2单调递减,在()2,+∞单调递增.故()2421eah =-是()h x 在[)0,+∞的最小值. ①若()20h >,即2e 4a <,()h x 在()0,+∞没有零点;②若()20h =,即2e 4a =,()h x 在()0,+∞只有一个零点;③若()20h <,即2e 4a >,由于()01h =,所以()h x 在()0,2有一个零点,由(1)知,当0x >时,2e x x >,所以()()()33324421616161411110e 2e a a a a a h a a a =-=->-=->. 故()h x 在()2,4a 有一个零点,因此()h x 在()0,+∞有两个零点.综上,()f x 在()0,+∞只有一个零点时,2e 4a =.12.(2018全国新课标Ⅲ文)已知函数21()exax x f x +-=. (1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥.12.答案:详见解析解答:(1)由题意:()21xax x f x e +-=得222(21)(1)22()()x x x x ax e ax x e ax ax x f x e e +-+--+-+'==,∴2(0)21f '==,即曲线()y f x =在点()0,1-处的切线斜率为2,∴(1)2(0)y x --=-,即210x y --=;(2)证明:由题意:原不等式等价于:1210x e ax x +++-≥恒成立;令12()1x g x e ax x +=++-,∴1()21x g x e ax +'=++,1()2x g x e a +''=+,∵1a ≥,∴()0g x ''>恒成立,∴()g x '在(,)-∞+∞上单调递增,∴()g x '在(,)-∞+∞上存在唯一0x 使0()0g x '=,∴010210x e ax +++=,即01021x eax +=--,且()g x 在0(,)x -∞上单调递减,在0(,)x +∞上单调递增,∴0()()g x g x ≥.又01220000000()1(12)2(1)(2)x g x eax x ax a x ax x +=++-=+--=+-,111()1a g e a -'-=-,∵1a ≥,∴11011a e e -≤-<-,∴01x a ≤-,∴0()0g x ≥,得证.综上所述:当1a ≥时,()0f x e +≥.13.(2018全国新课标Ⅲ理)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .13.答案:(1)见解答;(2)16a =-. 解答:(1)若0a =时,()(2)ln(1)2(1)f x x x x x =++->-,∴1()ln(1)(2)21f x x x x '=+++-+1ln(1)11x x =++-+. 令1()ln(1)11h x x x =++-+, ∴2211()1(1)(1)xh x x x x '=-=+++. ∴当0x >时,()0h x '>,()h x 在(0,)+∞上单调递增, 当10x -<<时,()0h x '<,()h x 在(1,0)-上单调递减. ∴min ()(0)ln1110h x h ==+-=, ∴()0f x '≥恒成立,∴()f x 在(1,)-+∞上单调递增, 又(0)2ln100f =-=,∴当10x -<<时,()0f x <;当0x >时,()0f x >.(2)21()(21)ln(1)11ax f x ax x x +'=+++-+, 22212(1)1()2ln(1)01(1)ax ax x ax f x a x x x ++--''=+++≤++,222(1)ln(1)(21)(1)210a x x ax x ax ax +++++++-≤, 222(1)ln(1)340a x x ax ax x +++++≤, 22[2(1)ln(1)34]a x x x x x ++++≤-.设22()2(1)ln(1)34h x x x x x =++++,∴()4(1)ln(1)2(1)64h x x x x x '=++++++,(0)60h '=>,(0)0h =, ∴在0x =邻域内,0x >时,()0h x >,0x <时,()0h x <.0x >时,222(1)ln(1)34xa x x x x -≤++++,由洛必达法则得16a ≤-,0x <时,222(1)ln(1)34xa x x x x -≥++++,由洛必达法则得16a ≥-, 综上所述,16a =-.高中数学公式及常用结论大全1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠;(3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->-⇔11()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价0)()(21<k f k f ,或0)(1=k f 且22211k k a b k +<-<,或0)(2=k f 且22122k ab k k <-<+.9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下: (1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. ()()()()card A B card B C card C A card A B C ---+(2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩;(3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.真值表13.常见结论的否定形式14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件. (2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数. 18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=. (2)函数()y f x =图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b fb a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=. (2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==. (5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂(1)m na=(0,,a m n N *>∈,且1n >).(2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)na =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rsa a a r s Q =>∈. (3)()(0,0,)r r rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log aa a MM N N=-; (3)log log ()na a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数.(2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a a m nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+. 39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nn ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<. (2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥. 45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=;212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=). 48.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-. 50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤.s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤. tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈. tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈. sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈. cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.61.a 与b 的数量积(或内积) a ·b =|a ||b |cos θ.a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式 ,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=. (5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y . 70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式 22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大;当||y x -最小时,||y x +最小. (2)若和||y x +是定值,则当||y x -最大时, ||xy 最小;当||y x -最小时, ||xy 最大.。
2018全国高考试题分类汇编-导数部分(含解析)

2018年全国高考试题分类汇编-导数部分(含解析)1.(2018·全国卷I高考理科·T5)同(2018·全国卷I高考文科·T6)设函数f=x3+-x2+ax.若f为奇函数,则曲线y=f在点处的切线方程为()A.y=-2xB.y=-xC.y=2xD.y=x2.(2018·全国卷II高考理科·T13)曲线y=2ln(x+1)在点(0,0)处的切线方程为3.(2018·全国卷II高考文科·T13)曲线y=2ln x在点(1,0)处的切线方程为4.(2018·全国Ⅲ高考理科·T14)曲线y=e x在点处的切线的斜率为-2,则a=.5.(2018·天津高考文科·T10)已知函数f(x)=e x ln x,f′(x)为f(x)的导函数,则f′(1)的值为.6.(2018·全国卷I高考理科·T16)已知函数f=2sin x+sin2x,则f的最小值是.7.(12分)(2018·全国卷I高考文科·T21)已知函数f=a e x-ln x-1.(1)设x=2是f的极值点.求a,并求f的单调区间.(2)证明:当a≥时,f≥0.8.(2018·全国Ⅲ高考理科·T21)(12分)已知函数f=ln-2x.(1)若a=0,证明:当-1<x<0时,f<0;当x>0时,f>0.(2)若x=0是f的极大值点,求a.9.(2018·全国Ⅲ高考文科·T21)(12分)已知函数f=-.(1)求曲线y=f在点-处的切线方程.(2)证明:当a≥1时,f+e≥0.10.(本小题13分)(2018·北京高考理科·T18)设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线方程与x轴平行,求a.(2)若f(x)在x=2处取得极小值,求a的取值范围.11.(本小题13分)(2018·北京高考文科·T19)设函数f(x)=[ax2-(3a+1)x+3a+2]e x.(1)若曲线y=f(x)在点(2,f(2))处的切线斜率为0,求a.(2)若f(x)在x=1处取得极小值,求a的取值范围.12.(12分)(2018·全国卷I高考理科·T21)已知函数f=-x+a ln x.(1)讨论f的单调性.(2)若f存在两个极值点x1,x2,证明:-<a-2.-13.(2018·全国卷II高考理科·T21)(12分)已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1.(2)若f(x)在(0,+∞)只有一个零点,求a.14.(2018·全国卷II高考文科·T21)(12分)已知函数f=x3-a.(1)若a=3,求f(x)的单调区间.(2)证明:f(x)只有一个零点.15.(本小题满分14分)(2018·天津高考理科·T20)已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)-x ln a的单调区间.(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=-.(Ⅲ)证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.16.(本小题满分14分)(2018·天津高考文科·T20)设函数f(x)=(x-t1)(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=-(x-t2)-6有三个互异的公共点,求d的取值范围.17.(本小题满分14分)(2018·江苏高考·T17)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围.(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4∶3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)(2018·江苏高考·T19)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x-2不存在“S点”.(2)若函数f(x)=ax2-1与g(x)=ln x存在“S点”,求实数a的值.(3)已知函数f(x)=-x2+a,g(x)=,对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.19.(2018·浙江高考T22)(本题满分15分)已知函数f(x)=-ln x.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8-8ln2.(Ⅱ)若a≤3-4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.1.【解析】选D.因为f(x)为奇函数,所以f(-x)=-f(x),即a=1,所以f(x)=x3+x,所以f′(0)=1,所以切线方程为y=x.2.【解析】y′=,k==2,所以切线方程为y-0=2(x-0),即y=2x.答案:y=2x3.【解析】y′=,k==2,所以切线方程为y-0=2(x-1)即y=2x-2.答案:y=2x-24.【解析】由y=(ax+1)e x,所以y′=a e x+(ax+1)e x=(ax+1+a)e x,故曲线y=(ax+1)e x在(0,1)处的切线的斜率为k=a+1=-2,解得a=-3.答案:-35.【解析】因为f(x)=e x ln x,所以f′(x)=(e x ln x)′=(e x)′ln x+e x(ln x)′=e x·ln x+e x·,f′(1)=e1·ln1+e1·=e.答案:e6.【解析】方法一:f′(x)=2cos x+2cos2x=4cos2x+2cos x-2=4(cos x+1)-, 所以当cos x<时函数单调减,当cos x>时函数单调增,从而得到函数的减区间为--(k∈Z),函数的增区间为-(k∈Z),所以当x=2kπ-,k∈Z时,函数f(x)取得最小值,此时sin x=-,sin2x=-,所以f(x)min=2×--=-.方法二:因为f(x)=2sin x+sin2x,所以f(x)最小正周期为T=2π,所以f′(x)=2(cos x+cos2x)=2(2cos2x+cos x-1),令f′(x)=0,即2cos2x+cos x-1=0,所以cos x=或cos x=-1.所以当cos x=,为函数的极小值点,即x=或x=π,当cos x=-1,x=π,所以f=-,f=,f(0)=f(2π)=0,f(π)=0,所以f(x)的最小值为-.答案:-7.【解析】(1)f(x)的定义域为(0,+∞),f′(x)=a e x-.由题设知,f′(2)=0,所以a=.从而f(x)=e x-ln x-1,f′(x)=e x-.当0<x<2时,f′(x)<0;当x>2时,f′(x)>0.所以f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.(2)当a≥时,f(x)≥-ln x-1.设g(x)=-ln x-1,则g′(x)=-.当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.所以x=1是g(x)的最小值点.故当x>0时,g(x)≥g(1)=0.因此,当时a≥时,f(x)≥0.8.【解析】(1)当a=0时,f(x)=(2+x)ln(1+x)-2x,f′(x)=ln(1+x)-.设函数g(x)=f′(x)=ln(1+x)-,则g′(x)=.当-1<x<0时,g′(x)<0;当x>0时,g′(x)>0.故当x>-1时,g(x)≥g(0)=0,当且仅当x=0时,g(x)=0,从而f′(x)≥0,当且仅当x=0时,f′(x)=0.所以f(x)在(-1,+∞)上单调递增.又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)(i)若a≥0,由(1)知,当x>0时,f(x)≥(2+x)ln(1+x)-2x>0=f(0),这与x=0是f(x)的极大值点矛盾.(ii)若a<0,设函数h(x)==ln(1+x)-.由于当|x|<min时,2+x+ax2>0,故h(x)与f(x)符号相同.又h(0)=f(0)=0,故x=0是f(x)的极大值点,当且仅当x=0是h(x)的极大值点. h′(x)=--=.如果6a+1>0,则当0<x<-,且|x|<min时,h′(x)>0,故x=0不是h(x)的极大值点.如果6a+1<0,则a2x2+4ax+6a+1=0存在根x1<0,故当x∈(x1,0),且|x|<min时,h′(x)<0,所以x=0不是h(x)的极大值点..如果6a+1=0,则h′(x)=---则当x∈(-1,0)时,h′(x)>0;当x∈(0,1)时,h′(x)<0.所以x=0是h(x)的极大值点,从而x=0是f(x)的极大值点.综上,a=-.9.【解析】(1)f(x)的定义域为R,f′(x)=--,显然f(0)=-1,即点(0,-1)在曲线y=f(x)上,所求切线斜率为k=f′(0)=2,所以切线方程为y-(-1)=2(x-0),即2x-y-1=0.(2)方法一(一边为0):令g(x)=-ax2+(2a-1)x+2,当a≥1时,方程g(x)的判别式Δ=(2a+1)2>0,由g(x)=0得,x=-,2,且-<0<2,x,f′(x),f(x)的关系如下①若x∈(-∞,2],f(x)≥f-=-又因为a≥1,所以0<≤1,1<≤e,-≥-e,f(x)+e≥0,②若x∈(2,+∞),ax2+x-1>4a+2-1>0,e x>0,所以f(x)=->0,f(x)+e≥0,综上,当a≥1时,f(x)+e≥0.方法二(充要条件):①当a=1时,f(x)=-.显然e x>0,要证f(x)+e≥0只需证-≥-e, 即证h(x)=x2+x-1+e·e x≥0,h′(x)=2x+1+e·e x,观察发现h′(-1)=0,x,h′(x),h(x)的关系如下所以h(x)有最小值h(-1)=0,所以h(x)≥0即f(x)+e≥0.②当a>1时,由①知,-≥-e,又显然ax2≥x2,所以ax2+x-1≥x2+x-1,f(x)=-≥-≥-e,即f(x)+e≥0.综上,当a≥1时,f(x)+e≥0.方法三(分离参数):当x=0时,f(x)+e=-1+e≥0成立.当x≠0时,f(x)+e≥0等价于-≥-e,等价于ax2+x-1≥-e·e x,即ax2≥-e·e x-x+1等价于a≥--=k(x),等价于k(x)max≤1.k′(x)=--,令k′(x)=0得x=-1,2.x,k′(x),k(x)的关系如下又因为k(-1)=1,k(2)=-<0,所以k(x)max=1,k(x)≤1,x≠0,综上,当a≥1时,f(x)+e≥0.10.【解析】(1)因为f(x)=[ax2-(4a+1)x+4a+3]e x,所以f′(x)=[2ax-(4a+1)]e x+[ax2-(4a+1)x+4a+3]e x=[ax2-(2a+1)x+2]e x. f′(1)=(1-a)e.由题设知f′(1)=0,即(1-a)e=0,解得a=1.此时f(1)=3e≠0,所以a的值为1.(2)由(1)得f′(x)=[ax2-(2a+1)x+2]e x=(ax-1)(x-2)e x.若a>,则当x∈时,f′(x)<0;当x∈(2,+∞)时,f′(x)>0.所以f(x)在x=2处取得极小值.若a≤,则当x∈(0,2)时,x-2<0,ax-1≤x-1<0, 所以f′(x)>0.所以2不是f(x)的极小值点.综上可知,a的取值范围是(,+∞).11.【解析】(1)因为f(x)=[ax2-(3a+1)x+3a+2]e x, 所以f′(x)=[ax2-(a+1)x+1]e x,f′(2)=(2a-1)e2, 由题设知f′(2)=0,即(2a-1)e2=0,解得a=.(2)方法一:由(1)得f′(x)=[ax2-(a+1)x+1]e x=(ax-1)(x-1)e x若a>1,则当x∈时,f′(x)<0.当x∈(1,+∞)时,f′(x)>0.所以f(x)在x=1处取得极小值.若a≤1,则当x∈(0,1)时,ax-1≤x-1<0,所以f′(x)>0.所以1不是f(x)的极小值点.综上可知,a的取值范围是(1,+∞).方法二:f′(x)=(ax-1)(x-1)e x.①当a=0时,令f′(x)=0得x=1.f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极大值,不合题意.②当a>0时,令f′(x)=0得x1=,x2=1.(ⅰ)当x1=x2,即a=1时,f′(x)=(x-1)2e x≥0,所以f(x)在R上单调递增,所以f(x)无极值,不合题意.(ⅱ)当x1>x2,即0<a<1时,f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极大值,不合题意.(ⅲ)当x1<x2,即a>1时,f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极小值,即a>1满足题意.③当a<0时,令f′(x)=0得x1=,x2=1.f′(x),f(x)随x的变化情况如下表:所以f(x)在x=1处取得极大值,不合题意.综上所述,a的取值范围为(1,+∞).12.【解析】(1)f(x)的定义域为(0,+∞),f′(x)=--1+=--.(i)若a≤2,则f′(x)≤0,当且仅当a=2,x=1时f′(x)=0,所以f(x)在(0,+∞)上单调递减.(ii)若a>2,令f′(x)=0得,x=--或x=-.当x∈--∪-时,f′(x)<0;当x∈---时,f′(x)>0.所以f(x)在--,-上单调递减,在---上单调递增.(2)由(1)知,f(x)存在两个极值点,当且仅当a>2.由于f(x)的两个极值点x1,x2满足x2-ax+1=0,所以x1x2=1,不妨设x1<x2,则x2>1.由于--=--1+a--=-2+a--=-2+a--,所以--<a-2等价于-x2+2ln x2<0.设函数g(x)=-x+2ln x,由(1)知,g(x)在(0,+∞)上单调递减,又g(1)=0,从而当x ∈(1,+∞)时,g(x)<0.所以-x2+2ln x2<0,即--<a-2.13.【解析】(1)当a=1时,f(x)≥1等价于(x2+1)e-x-1≤0.设函数g(x)=(x2+1)e-x-1,则g′(x)=-(x2-2x+1)e-x=-(x-1)2e-x.当x≠1时,g′(x)<0,所以g(x)在(0,1)∪(1,+∞)上单调递减.而g(0)=0,故当x≥0时,g(x)≤0,即f(x)≥1.(2)设函数h(x)=1-ax2e-x.f(x)在(0,+∞)上只有一个零点当且仅当h(x)在(0,+∞)上只有一个零点.(i)当a≤0时,h(x)>0,h(x)没有零点;(ii)当a>0时,h′(x)=ax(x-2)e-x.当x∈(0,2)时,h′(x)<0;当x∈(2,+∞)时,h′(x)>0.所以h(x)在(0,2)上单调递减,在(2,+∞)上单调递增.故h(2)=1-是h(x)在[0,+∞)上的最小值.①若h(2)>0,即a<,h(x)在(0,+∞)上没有零点;②若h(2)=0,即a=,h(x)在(0,+∞)上只有一个零点;③若h(2)<0,即a>,由于h(0)=1,所以h(x)在(0,2)上有一个零点,由(1)知,当x>0时,e x>x2,所以h(4a)=1-=1->1-=1->0.故h(x)在(2,4a)有一个零点,因此h(x)在(0,+∞)有两个零点.综上,f(x)在(0,+∞)只有一个零点时,a=.14.【解析】(1)当a=3时,f(x)=x3-3x2-3x-3,f′(x)=x2-6x-3.令f′(x)=0解得x=3-2或3+2.当x∈(-∞,3-2)或(3+2,+∞)时,f′(x)>0;当x∈(3-2,3+2)时,f′(x)<0.故f(x)在(-∞,3-2),(3+2,+∞)上单调递增,在(3-2,3+2)上单调递减.(2)由于x2+x+1>0,所以f(x)=0等价于-3a=0.设g(x)=-3a,则g′(x)=≥0,仅当x=0时g′(x)=0,所以g(x)在(-∞,+∞)上单调递增.故g(x)至多有一个零点.又f(3a-1)=-6a2+2a-=-6--<0,f(3a+1)=>0,故f(x)有一个零点.综上,f(x)只有一个零点.15.【解析】(I)由已知,h(x)=a x-x ln a,有h′(x)=a x ln a-ln a.令h′(x)=0,解得x=0.由a>1,可知当x变化时,h′(x),h(x)的变化情况如表:所以函数h(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞).(II)由f′(x)=a x ln a,可得曲线y=f(x)在点(x1,f(x1))处的切线斜率为ln a.由g′(x)=,可得曲线y=g(x)在点(x2,g(x2))处的切线斜率为.因为这两条切线平行,故有ln a=,即x2(ln a)2=1.两边取以a为底的对数,得log a x2+x1+2log a(ln a)=0,所以x1+g(x2)=-. (III)曲线y=f(x)在点(x1,)处的切线l1:y-=ln a·(x-x1).曲线y=g(x)在点(x2,log a x2)处的切线l2:y-log a x2=(x-x2).要证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线,只需证明当a≥时,存在x1∈(-∞,+∞),x2∈(0,+∞),使得l1和l2重合.即只需证明当a≥时,方程组有解,--由①得x2=,代入②,得-x1ln a+x1++=0③,因此,只需证明当a≥时,关于x1的方程③有实数解.设函数u(x)=a x-xa x ln a+x++,即要证明当a≥时,函数y=u(x)存在零点. u′(x)=1-(ln a)2xa x,可知x∈(-∞,0)时,u′(x)>0;x∈(0,+∞)时,u′(x)单调递减,又u′(0)=1>0,u′[]=1-<0,故存在唯一的x0,且x0>0,使得u′(x0)=0,即1-(ln a)2x0=0.由此可得u(x)在(-∞,x0)上单调递增,在(x0,+∞)上单调递减.u(x)在x=x0处取得极大值u(x0).因为a≥,故ln(ln a)≥-1,所以u(x0)=-x0ln a+x0++=+x0+≥≥0.下面证明存在实数t,使得u(t)<0.由(I)可得a x≥1+x ln a,当x>时,有u(x)≤(1+x ln a)(1-x ln a)+x++=-(ln a)2x2+x+1++,所以存在实数t,使得u(t)<0,因此,当a≥时,存在x1∈(-∞,+∞),使得u(x1)=0.所以,当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.16.【解析】(Ⅰ)由已知,可得f(x)=x(x-1)(x+1)=x3-x,故f′(x)=3x2-1,因此f(0)=0,f′(0)=-1,又因为曲线y=f(x)在点(0,f(0))处的切线方程为y-f(0)=f′(0)(x-0),故所求切线方程为x+y=0.(Ⅱ)由已知可得f(x)=(x-t2+3)(x-t2)(x-t2-3)=(x-t2)3-9(x-t2)=x3-3t2x2+(3-9)x-+9t2.故f′(x)=3x2-6t2x+3-9.令f′(x)=0,解得x=t2-,或x=t2+.当x变化时,f′(x),f(x)的变化情况如表:所以函数f(x)的极大值为f(t2-)=(-)3-9×(-)=6;函数极小值为f(t2+)=()3-9×=-6.(III)曲线y=f(x)与直线y=-(x-t2)-6有三个互异的公共点等价于关于x的方程(x-t2+d)(x-t2)(x-t2-d)+(x-t2)+6=0有三个互异的实数解,令u=x-t2,可得u3+(1-d2)u+6=0.设函数g(x)=x3+(1-d2)x+6,则曲线y=f(x)与直线y=-(x-t2)-6有三个互异的公共点等价于函数y=g(x)有三个零点.g′(x)=3x2+(1-d2).当d2≤1时,g′(x)≥0,这时g′(x)在R上单调递增,不合题意.当d2>1时,g′(x)=0,解得x1=--,x2=-.易得,g(x)在(-∞,x1)上单调递增,在[x1,x2]上单调递减,在(x2,+∞)上单调递增,g(x)的极大值g(x1)=g-=-+6>0,g(x)的极小值g(x2)=g-=--+6.若g(x2)≥0,由g(x)的单调性可知函数y=g(x)至多有两个零点,不合题意.若g(x2)<0,即(d2-1>27,也就是|d|>,此时|d|>x2,g(|d|)=|d|+6>0,且-2|d|<x1,g(-2|d|)=-6|d|3-2|d|+6<-62+6<0,从而由g(x)的单调性,可知函数y=g(x)在区间(-2|d|,x1),(x1,x2),(x2,|d|)内各有一个零点,符合题意.所以d的取值范围是(-∞,-)∪(,+∞)17.【解析】(1)设PO的延长线交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40-40sinθ)=1600(cosθ-sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈.当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是.答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ-sinθcosθ),sinθ的取值范围是.(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ-sinθcosθ) =8000k(sinθcosθ+cosθ),θ∈.设f(θ)=sinθcosθ+cosθ,θ∈,则f′(θ)=cos2θ-sin2θ-sinθ=-(2sin2θ+sinθ-1)=-(2sinθ-1)(sinθ+1).令f′(θ)=0,得θ=,当θ∈时,f′(θ)>0,所以f(θ)为增函数;当θ∈时,f′(θ)<0,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.18.【解析】(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)=g′(x),得-此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数f(x)=ax2-1,g(x)=ln x,则f′(x)=2ax,g′(x)=.设x0为f(x)与g(x)的“S”点,由f(x0)=g(x0)且f′(x0)=g′(x0),得-即-(*)得ln x0=-,即x0=-,则a=-=.当a=时,x0=-满足方程组(*),即x0为f(x)与g(x)的“S”点.因此,a的值为.(3)f′(x)=-2x,g′(x)=-,(x≠0),由f′(x0)=g′(x0),得b=-->0,得0<x0<1,由f(x0)=g(x0),得-+a==--,得a=--,令h(x)=x2---a=---,(a>0,0<x<1),设m(x)=-x3+3x2+ax-a,(a>0,0<x<1),则m(0)=-a<0,m(1)=2>0,得m(0)m(1)<0,又m(x)的图象在(0,1)上连续不断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则f(x)与g(x)在区间(0,+∞)内存在“S”点.19.【解析】(Ⅰ)函数f(x)的导函数f′(x,由f′(x1)=f′(x2)得-=-,因为x1≠x2,所以+=.由基本不等式得=+≥2.因为x1≠x2,所以x1x2>256.由题意得f(x1)+f(x2)=-ln x1+-ln x2=-ln(x1x2).设g(x)=-ln x,则g′(x)=(-4),所以所以g(x)在(256,+∞)上单调递增,故g(x1x2)>g(256)=8-8ln2,即f(x1)+f(x2)>8-8ln2.(Ⅱ)令m=e-(|a|+k),n=+1,则f(m)-km-a>|a|+k-k-a≥0,f(n)-kn-a<n-≤n<0,所以,存在x0∈(m,n)使f(x0)=kx0+a,所以,对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点.由f(x)=kx+a得k=--.设h(x)=--,则h′(x)=--=--,其中g(x)=-ln x.由(Ⅰ)可知g(x)≥g(16),又a≤3-4ln2,故-g(x)-1+a≤-g(16)-1+a=-3+4ln2+a≤0,所以h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,因此方程f(x)-kx-a=0至多1个实根.综上,当a≤3-4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.。
2018年度1-2018年度8高考数学导数分类总汇编(理)

2011 -2018新课标(理科)导数压轴题分类汇编[2011新课标】21.已知函数f (X )二aln X . b ,曲线y 二f(x)在点(1, f (1))处的切线方程为 X + 1 Xx 2y -3 = 0。
(1) 求a 、b 的值;⑵如果当x 0,且x =1时,f (x).旦X k ,求k 的取值范围X -1 x【解析】由于直线x+2y —3=0的斜率为一1,且过点(1 1),21 当 x (0,1)时,h(x) 0,可得 2h(x) 0 ;1 -x— 1当 (1, +::)时,h (x ) <0,可得 2 h (x ) >0 1 -x从而当 x>0,且 x = 1 时,f (x ) - ( — +- ) >0,即 f (x ) >座 +-.x -1 x x T x1 2(ii )设 0<k<1.由于当 (1,)时,(k-1 ) (x 2+1) +2x>0,故 h '(x ) >0,而 h (1)1 -k1 1=0,故当(1, ------------------ )时,h (x ) >0,可得 ---------- h (x ) <0,与题设矛盾。
1-k1-x1(iii )设 k 丄 1.此时 h (x ) >0,而 h (1) =0,故当 x (1, +--)时,h (x ) >0,可得 -1 -xh (x ) <0,与题设矛盾。
综合得,k 的取值范围为(-二,0)(1) f'(x):(-1 一 In x)x(X 1)2故1即af'(1)=-b122 (2)由(1)知1nx1 1,所以x 1X, In x k1f(x)-()=2(2ln x1二——J2X -1 X 1 -X(k -1)(x 2 -1))2考虑函数 h(x) =2ln x (k _1)(x U (x . 0),则 h'(x)工xk(Xj )—(X —1)2 知,当 X = 1 时,2(k-1)(x 1) 2xo(i)设 k 岂 0,由 h '(x)=h'(x) <0。
2018年全国卷文科数学十年真题分类汇编 导数

2018年全国卷文科数学十年真题分类汇编导数导数1.【2008全国1,文4】曲线y=x-2x+4在点(1,2)处的切线的倾斜角为()。
A。
30°B。
45°C。
60°D。
120°解析:设y=f(x),则f'(x)=3x-2.在点(1,2)处的切线斜率为k=f'(1)=1,因此切线的倾斜角为tanθ=1,θ=45°。
所以选B。
2.【2005全国1,文3】函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则f(-3)=()。
A。
2B。
3C。
4D。
5解析:由题意可知f'(x)=3x2+2ax+3,f'(-3)=0,代入可得a=3/2.因此f(x)=x3+(3/2)x2+3x-9,带入f(-3)可得f(-3)=2.所以选A。
3.【2017新课标1,文14】曲线y=x+1在点(1,2)处的切线方程为()。
解析:设y=f(x),则f'(x)=1.在点(1,2)处的切线斜率为k=f'(1)=1,因此切线方程为y-2=1(x-1),即y=x+1.所以选y=x+1.4.【2013课标全国Ⅰ,文20】已知函数f(x)=e(ax+b)-x-4x2,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.求a,b 的值;讨论f(x)的单调性,并求f(x)的极大值。
解析:(1)求a,b的值:由题意可知f(0)=4,f'(0)=4.因此f(0)=e^b-4=4,解得b=ln8.又f'(x)=ae^(ax+b)-1-8x,带入x=0得f'(0)=a-1=4,解得a=5.所以a=5,b=ln8.2)讨论f(x)的单调性,并求f(x)的极大值:f'(x)=5e^(5x+ln8)-1-8x,令f'(x)=0得x=(ln(5e^(5x+ln8)-1))/40.因此f(x)的极大值为f(x)=(ln(5e^(5x+ln8)-1))/40+e^(5x+ln8)-x-4x^2.由f''(x)=25ae^(ax+b)-8,可知f''(0)>0,因此f(x)在x=0处取得极小值,即f(0)为f(x)的极大值。
【高三数学试题精选】2018年高考数学理科试题分类汇编:导数

2018年高考数学理科试题分类汇编:导数
5 c 2或2 (B)-9或3 (c)-1或1 (D)-3或1
【答案】A
【命题意图】本试题主要考查了导数在研究三次函数中的极值的运用。
要是函数图像与轴有两个不同的交点,则需要满足极佳中一个为零即可。
【解析】若函数的图象与轴恰有两个共点,则说明函数的两个极值中有一个为0,函数的导数为,令,解得,可知当极大值为,极小值为由,解得,由,解得,所以或,选A
二、填空题
7【ex,a∈R
(Ⅰ)若曲线=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;
(Ⅱ)试确定a的取值范围,使得曲线=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个共点P
【答案】本题主要考查函数导数的应用、二次函数的性质、函数零点的存在性定理等基础知识,考查推理论证能力、基本运算能力、抽象概括能力,以及分类与整合思想、数形结合思想、化归与转化思想
解答
(Ⅰ)
由题意得
得函数的单调递增区间为,单调递减区间为
(Ⅱ)设;则过切点的切线方程为
令;则
切线与曲线只有一个共点只有一个根
,且。
2018年高考真题汇编(函数与导数)

函数与导数1.【2018年浙江卷】函数y=sin2x的图象可能是A. B.C. D.【答案】D点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D.【答案】D【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果.详解:由题意结合对数函数的性质可知:,,,据此可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则A. B. C. D.【答案】B【解析】分析:求出,得到的范围,进而可得结果。
高三数学-2018年高考题分章节汇编-导数 精品

2018年高考题分章节汇编 选修Ⅱ第三章 导数一、选择题1.(2018年高考·广东卷6)函数13)(23+-=x x x f 是减函数的区间为 ( D )A .),2(+∞B .)2,(-∞C .)0,(-∞D .(0,2)2.(2018年高考·湖北卷·理9)若x x x sin 32,20与则π<<的大小关系( D )A .x x sin 32>B .x x sin 32<C .x x sin 32=D .与x 的取值有关3.(2018年高考·湖北卷·文11)在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( D )A .3B .2C .1D .04.(2018年高考·湖南卷·理6)设f 0(x ) = sinx ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x ) = f n ′(x ),n ∈N ,则f 2018(x )=(C )A .sinxB .-sinxC .cos xD .-cosx5.(2018年高考·江西卷·理7)已知函数)(()(x f x f x y ''=其中的图象如右图所示))(的导函数是函数x f ,下面四个图象中)(x f y =的图象大致是 ( C )6.(2018年高考·全国卷Ⅰ·文3)函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a =( B )A .2B .3C .4D .5二、填空题1.(2018年高考·北京卷·理12)过原点作曲线x e y =的切线,则切点的坐标为 ,切线的斜率为 .(1,e ) e2.(2018年高考·重庆卷·理12)曲线)0)(,(33≠=a a a x y 在点处的切线与x 轴、直线a x =所围成的三角形的面积为a 则,61= . 1± 3.(2018年高考·重庆卷·文12)曲线3x y =在点(1,1)处的切线与x 轴、直线2=x 所围成的三角形的面积为 .38 4.(2018年高考·江苏卷14)曲线13++=x x y 在点(1,3)处的切线方程是_____________________。
2018年全国各地高考数学试题及解答分类汇编大全(04 导数及其应用)

则曲线 y 2ln x 在点 1,0 处的切线的斜率为 k f 1 2 , 则所求切线方程为 y 0 2 x 1 ,即 y 2x 2 .
4.(2018 全国新课标Ⅱ理)曲线 y 2 ln(x 1) 在点 (0, 0) 处的切线方程为__________.
4.【答案】 y 2x
x
,1
1
1,1a
f x
0
f x
Z
极大值
]
f x 在 x 1处取得极大值,不合题意. ③当 x1 x2 ,即 a 1时, f x , f x 随 x 的变化情况如下表:
x
,1 a
1 a
1 a
,1
f x
0
1 a 0 极小值
1 0
1 a
,
Z
1,
f x
Z
极大值
]
极小值
Z
f x 在 x 1处取得极小值,即 a 1满足题意.
1 x
1)2 k 1
4
16
0 ,得 h(x) 有两个极值点 x1, x2 (x1 x2 ) ,
∴
1 x1
1 4
,∴ 0
x1
16 .
可知 h(x) 在 (0, x1) 递增, (x1, x2 ) 递减, (x2 , ) 递增,
∴ h(x1) kx1
x1
ln x1
a
( 2
1 x1
1) x1
(1)证明:函数 f (x) x 与 g(x) x2 2x 2 不存在“S 点”;
(2)若函数 f (x) ax2 1与 g(x) ln x 存在“S 点”,求实数 a 的值; (3)已知函数 f (x) x2 a ,g(x) bex .对任意 a 0 ,判断是否存在 b 0 ,使函数 f (x) 与 g(x)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.( 2018 安徽卷文)设
,函数
的图像可能是
【解析】可得 x a, x b为 y ( x a) 2( x b) 0 的两个零解 .
当 x a 时 ,则 x b f ( x) 0
当 a x b 时 ,则 f ( x) 0, 当 x b 时,则 f ( x) 0. 选 C。
【答案】 C
5.( 2018 江西卷文)若存在过点 (1,0) 的直线与曲线 y x3和 y ax2
( D) y 2x 3
[解析 ]:由 f (x) 2 f (2 x) x2 8x 8得 f (2 x) 2 f (x) (2 x)2 8(2 x) 8 , 即 2 f ( x) f (2 x) x2 4x 4,∴ f ( x) x2 ∴ f / ( x) 2x ,∴切线方程为
y 1 2( x 1) ,即 2x y 1 0 选 A
1 1
x0 a
x0 a 1 y0 0, x 0 1 a 2 .故答案选 B
2.(2018 安徽卷理) 设 a < b, 函数 y ( x a)2 ( x b ) 的图像可能是
[ 解析 ]: y/
( x a)(3 x 2a b) ,由 y /
0 得 x a, x
2a
b
,∴当
x
3
大值 0,当 x 2a b 时 y 取极小值且极小值为负。故选 C。 3
内恒成立的是
A
f ( x) 0 B f ( x) 0
C f (x) x
D f ( x) x
【答案】 A
【解析】由已知,首先令 x 0 ,排除 B, D。然后结合已知条件排除 C,得到 A
【考点定位】本试题考察了导数来解决函数单调性的运用。通过分析解析式的特点,考 查了分析问题和解决问题的能力。
8.(2018 湖北卷理 ) 设球的半径为时间 t 的函数 R t 。若球的体积以均匀速度 c 增长,则球
k n 1 ,在点
(1,1)处的切线方程为 y 1 k ( xn 1) ( n 1)( xn 1) ,不妨设 y 0 , x n
2x 1
A. x y 2 0 B. x y 2 0 C. x 4y 5 0 D. x 4 y 5 0
2x 1 2x
1
解: y |x 1 (2 x 1)2 |x 1 [ (2 x 1)2 ]| x 1 1,
故切线方程为 y 1 ( x 1) ,即 x y 2 0 故选 B.
10.(2018 湖南卷文)若函数 y f (x) 的导.函.数.在区间 [a,b] 上是增函数,
的表面积的增长速度与球半径 A.成正比,比例系数为 C C.成反比,比例系数为 C 【答案】 D
【解析】由题意可知球的体积为
B. 成正比,比例系数为 2C D. 成反比,比例系数为 2C
V (t) 4 R3(t) ,则 c V '(t) 4 R 2(t )R '(t) ,由此可得 3
c
2
'
4 R(t ) ,而球的表面积为 S(t ) 4 R (t ) ,
R(t) R (t )
所以 v表= S' (t ) 4 R2 (t ) 8 R(t)R' (t ) ,
即 v表=8
R(t )R' (t)= 2
4
R(t )
R' (t)=
2c R(t )R' (t)
R' (t )=
2c R(t )
,故选
D
9.(2018 全国卷Ⅱ理)曲线 y
ቤተ መጻሕፍቲ ባይዱ
x 在点 1,1 处的切线方程为
a 时, y 取极
或当 x b 时 y 0 ,当 x b 时, y 0 选 C
2
3.(2018 安徽卷理)已知函数 f ( x) 在 R上满足 f ( x) 2 f (2 x) x 8x 8,则曲线
y f ( x) 在点 (1, f (1))处的切线方程是
(A) y 2x 1
( B) y x ( C) y 3x 2
y 2x 1,则曲线 y f ( x) 在点 (1, f (1))处切线的斜率为
A. 4
答案: A
1
B.
4
C. 2
1
D.
2
【解析】由已知 g (1) 2 ,而 f (x) g (x) 2x ,所以 f (1) g (1) 2 1 4 故选 A
7.(2018 天津卷文) 设函数 f(x) 在 R 上的导函数为 f ’(x),且 2f(x)+xf ’(x)>x 2 ,x 下面的不等式在 R
即y 当 x0 当 x0
3x02x 2 x03 ,又 (1,0) 在切线上,则 x0 0 或 x0
3
,
2
0 时,由 y 0与 y ax2 15 x 9 相切可得 a 4
25
,
64
3 时,由 y
27 27
x
与y
ax 2
15 x
9 相切可得 a
2
44
4
1 ,所以选 A .
6.(2018 江西卷理) 设函数 f (x) g (x) x 2 ,曲线 y g ( x) 在点 (1,g(1)) 处的切线方程为
2018 年高考数学试题分类汇编 -----导数(解析版)
1.(2018 全国卷Ⅰ理) 已知直线 y=x+1 与曲线 y ln( x a) 相切,则 α的值为 ( B )
(A)1
(B)2
(C) -1
(D)-2
解: 设切点 P ( x0, y0 ) ,则 y0
x0 1, y0
ln( x0
a) , 又
y' |x x0
n1
*
11.(2018 陕西卷文)设曲线 y x ( n N ) 在点( 1,1)处的切线与 x 轴的交点的横坐
标为 xn ,则 x1 x2
xn 的值为
1
(A)
n
答案 : B
1
(B)
n1
n
(C)
n1
(D) 1
解析 : 对 y
n1
x (n
N * )求导得
'
y
(n
n
1)x
,令
x
1 得在点( 1, 1 )处的切线的斜率
a 等于 A. 1或 - 25
64
B. 1或 21 4
C. 7 或 - 25 4 64
15 x 9 都相切,则
4 D. 7 或 7 4
答案: A
【 解 析 】 设 过 ( 1 , 0的) 直 线 与 y x3 相 切 于 点 ( x0 , x03 ) , 所 以 切 线 方 程 为
y x0 3 3 x02 (x x0 )
则函数 y f ( x) 在区间 [a, b] 上的图象可能是【 A 】
y
y
y y
oa
bx o a
bx o a
bx o a
bx
A.
B.
C.
D.
解: 因为函数 y f ( x) 的导.函.数. y f ( x) 在区间 [a,b] 上是增函数,即在区间 [a, b] 上
各点处的斜率 k 是递增的,由图易知选 A. 注意 C 中 y k 为常数噢 .