人教版七年级上册数学1.1正数和负数同步练习
2020年人教版七年级上册:1.1 正数和负数 同步练习部分含答案5份汇总
正数和负数巩固练习(附答案)一、选择题1.如图某用户微信支付情况,3月28日显示的意思A. 转出了150元B. 收入了150元C. 转入元D. 抢了20元红包2.规定10吨记为0吨,11吨记为吨,则下列说法错误的是A. 8吨记为吨B. 15吨记为吨C. 6吨记为吨D. 吨表示重量为13吨3.规定:表示向右移动3,记作,则表示向左移动2,记作A. B. C. D.4.一动物爬行,逆时针旋转记为,则顺时针旋转记为A. B. C. D.5.某种药品说明书上标明保存温度是,则该药品最合适保存的温度A. B. C. D.6.中国古代著作九章算术在世界数学史上首次正式引入负数,如果盈利70元记作元,那么亏本50元记作A. 元B. 元C. 元D. 元7.下列用正数和负数表示相反意义的量,其中正确的是A. 一天凌晨的气温是,中午比凌晨上升,所以中午气温是B. 如果表示比海平面高,那么表示比海平面低C. 如果生产成本增长记作,那么表示生产成本降低D. 收入增加8元记作元,那么元表示支出减少5元8.五个数,0,,,8中正数的个数是A. 1B. 2C. 3D. 49.给出一列数:1,,5,,观察它的规律可知,第10个数是.A. 19B.C. 21D.10.下列各数中:,0,,,3,正数与负数一共有A. 2个B. 3个C. 4个D. 5个11.若有理数,则A. 三个数中至少有两个负数B. 三个数中有且只有一个负数C. 三个数中至少有一个负数D. 三个数中有两个是正数或两个是负数二、填空题12.如果用表示温度升高3摄氏度,那么温度降低2摄氏度可表示为______.13.向指定方向变化用正数表示,向指定方向的相反方向变化用负数表示,“体重减少”换一种说法可以叙述为“体重增加______kg”.14.如果规定向北为正,那么走米表示______.15.将上升记作,那么表示______.16.下列各数中:,,5,0,,,100,正数有:________;负数有:________.三、计算题17.某市第5路公交车从起点到终点共有8个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如下表:站次二三四五六七八人数下车人24375816上车人7864350求起点站上车人数;若公交车收费标准为上车每人2元,计算此趟公交车从起点到终点的总收入;公交车在哪两个站之间运行时车上乘客最多?是几人?18.有10筐西红柿,以每筐25千克为标准,超过千克数记为正数,不足的千克数记为负数,记录如表:01与标准质量的差值单位:千克筐数22312这10筐西红柿一共重多少千克?若西红柿每筐进价75元,每千克售价5元,则出售这10筐西红柿可获利多少元?答案和解析1.B解:如图某用户微信支付情况,3月28日显示的意思是收入了150元2.A解:A、吨所以8吨记为吨,而不是吨,故A说法错误;B、吨所以15吨记为吨说法正确;C、吨所以吨表示重量为6吨说法正确;D、吨所以吨表示重量为13吨说法正确;3.B解:表示向左移动2,记作.4.D解:“正”和“负”相对,所以若逆时针旋转记作,则顺时针旋转表示.5.C解:所以该药品在范围内保存才合适.6.A解:如果盈利70元记作元,那么亏本50元记作元,7.C解:A、一天凌晨的气温是,中午比凌晨上升,所以中午的气温是,故本选项错误;B、如果表示比海平面高,那么表示比海平面低9m,故本选项错误;C、如果生产成本增加记作,那么表示生产成本降低,故本选项正确;D、如果收入增加8元,记做元,那么表示支出5元,故本选项错误.8.B解:由正数的定义可得正数有:,8.正数共有2个,9.B解:第10个数是.10.C解:正数有:,,3,负数有:,即正数与负数一共有4个.11.C解:有理数,三个数中至少有一个负数.12.解:如果用表示温度升高3摄氏度,那么温度降低2摄氏度可表示为:.13.解:“体重减少”换一种说法可以叙述为“体重增加”.14.向南走200米解:规定向北走为正,则向南走为负,故走米表示向南走200米.15.下降解:上升记作,上升与下降是具有相反意义的量,表示下降;16.,5,100,;,,解:下列各数中:,,5,0,,,100,.正数有:,5,100,;负数有:,,.17.解:根据题意得:人,则起始站上车12人;根据题意得:元,则此趟公交车从起点到终点的总收入为90元;根据表格得:四站到五站车上的乘客最多,是24人.18.【小题1】解:因为,所以这10筐西红柿一共重千克.【小题2】解:因为,所以这10筐西红柿一共重千克.因此这10筐西红柿可获利元.人教版七年级数学上册第一章第1节正数与负数(附答案)一、选择题1.气温上升,记作,那么下降记为A. B. C. D.2.飞机上升了米,实际上是A. 上升80米B. 下降米C. 先上升80米,再下降80米D. 下降80米3.2019年内,甲同学的体重增加了记为,乙同学的体重减少了,应记为A. B. 3 C. D.4.一个物体做左右方向的运动,规定向右运动6m记做,那么向左运动8m记做A. B. C. D.5.小红设计了一个游戏规则:先向南走5米,再向南走米,最后向北走5米,则结果是A. 向南走10米B. 向北走5米C. 回到原地D. 向北走10米6.下列不是具有相反意义的量是A. 前进5米和后退5米B. 收入30元和支出10元C. 向东走10米和向北走10米D. 超过5克和不足2克7.给出下列各数:,0,,,,,2004,其中是负数的有A. 2个B. 3个C. 4个D. 5个8.下列各组数中,具有相反意义的量是A. 节约汽油10公斤和浪费酒精10公斤B. 向东走5公里和向南走5公里C. 收入300元和支出500元.D. 身高180cm和身高90cm9.下列各数一定是负数的是.A. B. C. D.10.一袋大米的质量标识为“千克”,则下列大米中质量合格的是A. 千克B. 千克C. 千克D. 千克11.向东行进米表示的意义是A. 向东行进30米B. 向东行进米C. 向西行进30米D. 向西行进米12.如果将“收入50元”记作“元”,那么“支出20元”记作A. 元B. 元C. 元D. 元13.在0,,,5这四个数中,正数是A. 0B.C.D. 514.若存入2500元记做“”,则支出3000元记做A. B. C. D.15.某图纸上注明:一种零件的直径是,下列尺寸合格的是A. B. C. D.二、计算题16.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数:星期一二三四五六日增减辆生产量最多的一天比生产量最少的一天多生产多少辆?本周的总生产量和原计划相比___________填“增加”或“减少”了_____辆.17.有10筐西红柿,以每筐25千克为标准,超过千克数记为正数,不足的千克数记为负数,记录如表:01与标准质量的差值单位:千克筐数22312(1)这10筐西红柿一共重多少千克?(2)若西红柿每筐进价75元,每千克售价5元,则出售这10筐西红柿可获利多少元?三、解答题18.某自行车厂计划一周生产自行车1400辆,平均每天计划生产200辆,但由于种种原因,实际每天的生产量与计划量相比有出入.下表是一周的生产情况超过每天计划量记为正、不足每天计划量记为负.星期一二三四五六日与计划量的差值该厂星期四生产自行车________辆;产量最多的一天比产量最少的一天多生产自行车________辆;求该厂本周实际平均每天生产多少辆自行车?19.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况增产为正,减产为负,单位:个星期一二三四五六日增根据记录可知前三天共生产____个;产量最多的一天比产量最少的一天多生产____个;该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?答案1.【答案】B2.【答案】D3.【答案】A4.【答案】B5.【答案】D6.【答案】C7.【答案】B8.【答案】C9.【答案】C10.【答案】C12.【答案】A13.【答案】D14.【答案】B15.【答案】D16.【答案】解:辆;答:生产量最多的一天比生产量最少的一天多生产17辆;减少;4.17.【答案】【1】解:因为,所以这10筐西红柿一共重千克.【2】解:因为,所以这10筐西红柿一共重千克.因此这10筐西红柿可获利元.18.【答案】解:辆,所以该厂星期四生产自行车213辆,故答案为:213;辆,所以产量最多的一天比产量最少的一天多生产自行车24辆,故答案为:24;19.【答案】解:;故答案为298;;故答案为23;这一周多生产的总辆数是:个;元;答:该厂工人这一周的工资是35390元.1.1 正数和负数(附答案)一.选择题1.为防止新型冠状病毒的传染,某药店2020年1月份买进6000只一次性口罩,记作+6000,那么卖出5000只一次性口罩,记作()A.+1000B.+6000C.+5000D.﹣50002.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.﹣2℃B.+2℃C.+3℃D.﹣3℃3.一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()A.B.C.D.4.规定:(↑30)表示零上30摄氏度,记作+30,(↓8)表示零下8摄氏度,记作()A.+8B.﹣8C.+D.﹣5.某种食品保存的温度是﹣2±2℃,以下几个温度中,适合储存这种食品的是()A.1℃B.﹣8℃C.4℃D.﹣1℃6.如果一个物体向右移动2米记作移动+2米,那么这个物体又移动了﹣2米的意思是()A.物体又向右移动了2米B.物体又向右移动了4米C.物体又向左移动了2米D.物体又向左移动了4米7.一小袋味精的质量标准为“50±0.25克”,那么下列四小袋味精质量符合要求的是()A.50.35克B.49.80克C.49.72克D.50.40克8.在下列四个数中,负数是()A.0B.﹣2C.0.5D.π9.拖拉机加油50L记作+50L,用去油30L记作﹣30L,那么+50+(﹣30)等于()A.20B.40C.60D.8010.四个数﹣2,2,﹣1,0中,负数的个数是()A.0B.1C.2D.3二.填空题11.一种零件的内径尺寸在图纸上是(9±0.05)mm,表示这种零件的标准尺寸是mm,加工要求最大不超过mm,最小不小于mm.12.向指定方向变化用正数表示,向指定方向的相反方向变化用负数表示,“体重减少1.5kg”换一种说法可以叙述为“体重增加kg”.13.在90%,+8,0,﹣15,﹣0.7,+,19中正数有个.14.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额元.支付宝帐单日期交易明细10.16乘坐公交¥﹣4.0010.17转帐收入¥+200.0010.18体育用品¥﹣64.0010.19零食¥﹣82.0010.20餐费¥﹣100.0015.如果“节约10%”记作+10%,那么“浪费6%”记作:.16.在一次数学测验中,一年(4)班的平均分为86分,把高于平均分的部分记作正数.(1)李洋得了90分,应记作;(2)刘红被记作﹣5分,她实际得是;(3)王明得了86分,应记作;(4)李洋和刘红相差分.三.解答题17.下列各数中哪些是正数,哪些是负数?﹣6.1,+20,72,0,﹣5,﹣32,20%.18.超市购进8筐白菜,以每筐25kg为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?19.在新型冠状病毒疫情期间,某粮店购进标有50千克的大米5袋,可实际上每袋都有误差,若超出部分记为正数,不足部分记为负数,那么这5袋大米的误差如下(单位:千克):+0.2,﹣0.1,﹣0.5,+0.6,+0.3(1)这5袋大米总计超过多少千克或不足多少千克?(2)这5袋大米总重量多少千克?20.某检修小组乘一辆汽车沿一条东西向公路检修线路,约定向东为正,某天从地出发到收工时,行走记录如下:(单位:km)+15,﹣2,+5,﹣3,+8,﹣3,﹣1,+11,+4,﹣5,﹣2,+7,﹣3,+5(1)请问:收工时检修小组距离A有多远?在A地的哪一边?(2)若检修小组所乘的汽车每一百千米平均耗油8升,则汽车从A地出发到收工大约耗油多少升?21.“冬桃”是我区某镇的一大特产,现有20箱冬桃,以每箱25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如表:﹣0.3﹣0.2﹣0.1500.10.25与标准质量的差值(单位:千克)箱数142328(1)20箱冬桃中,与标准质量差值为﹣0.2千克的有箱,最重的一箱重千克.(2)与标准重量比较,20箱冬桃总计超过多少千克?(3)若冬桃每千克售价3元,则出售这20箱冬桃可卖多少元?22.今年夏天某市发生特大山洪泥石流灾害,该市消防总队迅即出动兵力驰援灾区,在抗险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+10(1)B地在A地何处?(2)冲锋舟距离A地最远在东或西方向多少千米?(3)若冲锋舟每千米耗油0.5升,出发时油箱还剩20升汽油,求途中至少还需补充多少升汽油?参考答案一.选择题1.D.2.A.3.D.4.B.5.D.6.C.7.B.8.B.9.A.10.C.二.填空题11.9;9.05;8.95.12.﹣1.5.13.4.14.810.15.﹣6%.16.4分;81分;0分;9.三.解答题17.解:正数有+20,72,20%;负数有﹣6.1,﹣5,﹣32.18.解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),答:以每筐25千克为标准,这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),25×8﹣5.5=194.5(千克),答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元),583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.19.解:(1)与标准重量比较,这5袋大米总计超过+0.2﹣0.1﹣0.5+0.6+0.3=0.5(千克).故这5袋大米总计超过0.5千克;(2)5×50+0.5=250.5(千克).故这5袋大米总重量250.5千克.20.解:(1)(+15)+(﹣2)+(+5)+(﹣3)+(+8)+(﹣3)+(﹣1)+(+11)+(+4)+(﹣5)+(﹣2)+(+7)(﹣3)+(+5)=36(km),∵36>0,∴收工时检修小组在A地的东边.答:收工时检修小组在A地的东边,距离A地36千米.(2)|+15|+|﹣2|+|+5|+|﹣3|+|+8|+|﹣3|+|﹣1|+|+11|+|+4|+|﹣5|+|﹣2|+|+7|+|﹣3|+|+5|=74(km),(升)答:汽车站从A地出发收工大约耗油5.92升.21.解:(1)25+0.25=25.25,20箱冬桃中,与标准质量差值为﹣0.2千克的有4箱,最重的一箱重25.25千克;故答案为:4,25.25,;(2)1×(﹣0.3)+4×(﹣0.2)+2×(﹣0.15)+3×0+0.1×2+8×0.25=0.8(千克).故20箱冬桃总计超过0.8千克;(3)3×(25×20+0.8),=3×500.8,=1502.4(元).故出售这20箱冬桃可卖1502.4元.22.解:+14+(﹣9)+8+(﹣7)+13+(﹣6)+10=23(千米)答:B在A的东方23千米的地方.(2)每一次救援离开A地的距离为:14千米,5千米,13千米,6千米,19千米,13千米,23千米,答:冲锋舟距离A地最远,在东方23千米.(3)0.5×(14+9+8+7+13+6+10)﹣20=0.5×67﹣20=13.5(升)答:途中至少还需补充13.5升汽油.第一章正数和负数1、正数和负数(附答案)建议用时:45分钟总分50分一选择题(每小题3分,共18分)1.下列各数中,是负数的为()A.﹣1 B.0 C.0.2 D.2.如果零上15℃记作+15℃,那么零下3℃可记为()A.﹣3℃B.+3℃C.﹣12℃D.12℃3.如图所示的是图纸上一个零件的标注,Φ30±表示这个零件直径的标准尺寸是30mm,实际合格产品的直径最小可以是29.98mm,最大可以是()A.30mm B.30.03mm C.30.3mm D.30.04mm4.如图某用户微信支付情况,3月28日显示+150的意思()A.转出了150元B.收入了150元C.转入151.39元D.抢了20元红包5.在检测排球质量时,将质量超过标准的克数记为正数,不足的克数记为负数,下面是检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.6.下面对“0”的说法正确的个数是()①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定意义;④0是正数;⑤0是自然数.A.3 B.4 C.5 D.0二、填空题(每小题3分,共9分)7.规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作:.8. 某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如,9:15记为-1,10:45记为1等等,依此类推,上午7:45应记为__.9.每袋大米以50kg为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际重量是kg.三、解答题(共23分)10.(7分)有一个水库某天8:00的水位为﹣0.1m(以警戒线为基准,记高于警戒线的水位为正)在以后的6个时刻测得的水位升降情况如下(记上升为正,单位:m):0.5,﹣0.8,0,﹣0.2,﹣0.3,0.1经过6次水位升降后,水库的水位超过警戒线了吗?11.(8分)某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“﹣”表示出库)+31,﹣32,﹣16,+35,﹣38,﹣20.(1)经过这6天,仓库里的货品是(填增多了还是减少了).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?12.(8分)“冬桃”是我区某镇的一大特产,现有20箱冬桃,以每箱25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如表:﹣0.3 ﹣0.2 ﹣0.15 0 0.1 0.25 与标准质量的差值(单位:千克)箱数 1 4 2 3 2 8 (1)20箱冬桃中,与标准质量差值为﹣0.2千克的有4箱,最重的一箱重25.25千克.(2)与标准重量比较,20箱冬桃总计超过多少千克?(3)若冬桃每千克售价3元,则出售这20箱冬桃可卖多少元?正数和负数参考答案一选择题1.A2.A3.B4.B5.C6.B二、填空题(每小题3分,共9分)7.﹣3.8.-39.49.3kg.三、解答题(共23分)10.解:﹣0.1+0.5﹣0.8+0﹣0.2﹣0.3+0.1=﹣0.8.答:水库的水位没有超过警戒线.11.解:(1))+31﹣32﹣16+35﹣38﹣20=﹣40(吨),∵﹣40<0,∴仓库里的货品是减少了.故答案为:减少了.(2)+31﹣32﹣16+35﹣38﹣20=﹣40,即经过这6天仓库里的货品减少了40吨,所以6天前仓库里有货品460+40=500吨.(3)31+32+16+35+38+20=172(吨),172×5=860(元).答:这6天要付860元装卸费.12.解:(1)25+0.25=25.25,20箱冬桃中,与标准质量差值为﹣0.2千克的有4箱,最重的一箱重25.25千克;故答案为:4,25.25,;(2)1×(﹣0.3)+4×(﹣0.2)+2×(﹣0.15)+3×0+0.1×2+8×0.25=0.8(千克).故20箱冬桃总计超过0.8千克;(3)3×(25×20+0.8),=3×500.8,=1502.4(元).故出售这20箱冬桃可卖1502.4元.第1章有理数 1.1正数和负数(附答案)一、选择题1.下列各数:53,+4,-7,0,-0.5,3.456,-516中,负数有( )A.2个B.3个C.4个D.5个2.下列关于“0”的说法正确的是( )A.0既是正数,也是负数B.0是偶数,但不是自然数C.0既不是正数,也不是负数D.0 ℃表示没有温度3.在下列选项中,具有相反意义的量的是( )A.收入20元与支出30元B.上升6米与后退7米C.卖出10千克米与盈利10元D.长大1岁与减少2千克4.若海平面以上1045米,记作+1045米,则海平面以下155米,记作( ) A.-1200米B.-155米C.155米D.1200米5.在跳远测验中,合格的标准是4.00 m,王非跳了4.12 m,记作+0.12 m,何叶跳了3.95 m,记作( )A.+0.05 m B.-0.05 mC.+3.95 m D.-3.95 m6.质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是( ) A.-3 B.-1 C.2 D.47.某粮食店出售三种品牌的面粉,袋上分别标有质量为(25±0.1)千克,(25±0.2)千克,(25±0.3)千克的字样.从中任意拿出两袋,它们的质量最多相差( )A.0.8千克B.0.6千克C.0.5千克D.0.4千克二、填空题8.如果节约用水30吨,记为+30吨,那么浪费水20吨,记为________吨.9.若指针顺时针旋转4圈记作+4圈,则-5圈表示的意义是______________.10.若小亮的体重增加了3 kg,记作+3 kg,则小阳的体重减少了2 kg,可记作________kg.11.在4个不同时刻,对同一水池中的水位进行测量,记录如下:上升3厘米,下降6厘米,下降1厘米,不升不降.如果上升3厘米记为+3厘米,那么,其余3个记录分别记为____________________.12.如果运进40千克大米记为+40千克,那么运进-45千克大米表示的意义是________________.13.将下列各数填在相应的横线上:-15,-0.02,67,-171,4,-213,1.3,0,3.14,π.正数:_____________________________________________________________________ __;负数:_____________________________________________________________________ _.链接听P1例1归纳总结14.写出与下列各量具有相反意义的量:(1)飞机上升200米,____________;(2)铝球的质量低于标准质量2克,__________________________________________;(3)木材公司购进木材2000立方米,_____________________________________________.15.如果实验室标准温度为10 ℃,高于标准温度的记为正,那么+5 ℃表示实验室内的温度为__________℃;-5 ℃表示实验室内的温度为________℃.16.某种药品的说明书上标明保存温度是(20±2)℃,请你写出一个适合药品保存的温度:________.三、解答题17.2019年,小明、小刚、小兰、小颖四个家庭的旅游费用开支比上一年的变化情况如下:小明家增长20%,小刚家减少15%,小兰家增长18%,小颖家与上一年持平.请用正、负数分别表示这一年中四个家庭的旅游费用增长率;哪些家庭的旅游费用增长了?哪些家庭的旅游费用减少了?哪个家庭的旅游费用的增长率最高?哪个家庭的旅游费用最高?18.某次数学期末考试,成绩80分以上为优秀,老师以80分为基准,将某一小组五名同学的成绩(单位:分)简记为+12,-5,0,+7,-2.这里的正数、负数分别表示什么意义?这五名同学的实际成绩分别为多少?19.粮库粮食进出记录如下(运进为正):请说明每天粮食进出记录的实际意义.链接听P1例3归纳总结20.“牛牛”饮料公司的一种瓶装饮料外包装上有“(500±30)mL”的字样,那么“±30 mL”是什么含义?质检局抽查了5瓶该产品,容量分别为503 mL,511 mL,489 mL,473 mL,527 mL,则抽查的产品的容量是否合格?21.某化肥厂计划每月生产化肥500吨,2月份超额生产12吨,3月份少生产2吨,4月份少生产3吨,5月份超额生产6吨,6月份刚好完成计划指标,7月份超额生产5吨.请你设计一个表格,用所学知识表示这6个月的生产情况.参考答案1.B 2.C 3.A 4.B 5.B6.B7.B8.-209.指针逆时针旋转5圈10.-211.-6厘米,-1厘米,0厘米12.运出45千克大米13.67,4,1.3,3.14,π-15,-0.02,-171,-21314.(答案不唯一)(1)飞机下降200米(2)铝球的质量高于标准质量2克(3)木材公司售出木材2000立方米15.15 516.答案不唯一,如20 ℃[解析] 只要是大于或等于18 ℃且小于或等于22 ℃的温度都正确.17.解:小明家:+20%,小刚家:-15%,小兰家:+18%,小颖家:0;小明家和小兰家的旅游费用增长了,小刚家的旅游费用减少了;小明家的旅游费用的增长率最高;无法比较各个家庭的旅游费用.18.解:这里的正数表示实际成绩比基准高,负数表示实际成绩比基准低,所以“+12”表示比80分高12分,“-5”表示比80分低5分,“0”表示80分,“+7”表示比80分高7分,“-2”表示比80分低2分.所以这五名同学的实际成绩分别为92分,75分,80分,87分,78分.19.解:由表格可知15日运进粮食82 t,16日运出粮食17 t,17日运出粮食30 t,18日运进粮食68 t,19日既没有运进粮食也没有运出粮食.20.解:“±30 mL”表示产品的实际容量比500 mL最多多30 mL,最少少30 mL.抽查的5瓶产品容量都在(500-30)mL和(500+30)mL之间,所以抽查的产品的容量都是合格的.21.解:规定500吨为标准,超过的吨数记为正数,不足的吨数记为负数,则该化肥厂2~7月份的生产情况如下:。
度七年级数学上册第一章有理数1.1正数和负数同步检测试卷(含解析)(新版)新人教版
1.1正数和负数一、选择题(每小题3分,总计30分。
请将唯一正确答案的字母填写在表格内)1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.在实数﹣1,﹣2,0,﹣π中,其中负数共有( ) A .1个 B .2个 C .3个 D .4个2.在﹣4、﹣2、0、1、3、4这六个数中,正数有()A .1个B .2个C .3个D .4个3.如果向东走2m 记为+2m ,则向西走3m 可记为( ) A .+3m B .+2m C .﹣3m D .﹣2m4.某大米包装袋上标注着“净含量10kg ±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是( )A .100gB .150gC .300gD .400g5.某种药品说明书上标明保存温度是(20±3)℃,则该药品在( )范围内保存最合适. A .17℃~20℃ B .20℃~23℃ C .17℃~23℃ D .17℃~24℃6.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( ) A .+0.8B .﹣3.5C .﹣0.7D .+2.17.如果+20%表示增加20%,那么﹣8%表示( ) A .增加12% B .增加8% C .减少28% D .减少8%8.水文观测中,常遇到水位上升或下降的问题.我们规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天上升3cm ,今天的水位为0cm ,那么2天前的水位用算式表示正确的是( )A .(+3)×(+2)B .(+3)×(﹣2)C .(﹣3)×(+2)D .(﹣3)×(﹣2) 9.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):当北京6月15日23时,悉尼、纽约的时间分别是( )A .6月16日1时;6月15日10时B .6月16日1时;6月14日10时C .6月15日21时;6月15日10时D .6月15日21时;6月16日12时10.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为( ) A .零上3℃ B .零下3℃ C .零上7℃ D .零下7℃ 二、 填空题(每空2分,总计20分)11.若向北走5km 记作﹣5km ,则+10km 的含义是 .12.南京市1月份的平均气温是零下5℃,用负数表示这个温度是 .13.如果水位升高2m 时,水位的变化记为+2m ,那么水位下降3m 时,水位的变化情况是 . 14.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为+0.25,﹣1,+0.5,﹣0.75,小红快速准确地算出了4筐白菜的总质量为 千克.15.一种零件的直径尺寸在图纸上是30±(单位:mm ),它表示这种零件的标准尺寸是30mm ,加工要求尺寸最大不超过 mm .16.如果把“收入500元”记作+500元,那么“支出100元”记作 .17.在一次全市的数学监测中某6名学生的成绩与全市学生的平均分80的差分别为5,﹣2,8,11,5,﹣6,则这6名学生的平均成绩为 分.18.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y ℃与向上攀登的高度x km 的几组对应值如表:若每向上攀登1km ,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.5km 时,登山队所在位置的气温约为 ℃.19.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际重量是 kg .20.阅览室某一书架上原有图书20本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书 本. 三.解答题(每题10分,总计50分)21.某地区图书馆平均每天借出图书50册,超出50册的用正数表示,不足50册的用负数表示,以下是上一周该图书馆借出图书的记录.(1)上周星期二比星期四多借出多少册?(2)上周平均每天借出图书多少册?22.某检修小组乘一辆汽车沿公路东西方向检修线路,约定向东为正.某天从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣2,+6.(1)计算收工时检修小组在A地的哪一边?距A地多远?(2)若每千米汽车耗油量为0.4升,求出发到收工汽车耗油多少升.23.已知买入股票与卖出股票均需支付成交金额的0.5%的交易费,张先生上周星期五在股市收盘价每股20元买进某公司的股票1000股,下表为本周交易日内,该股票每天收盘时每股的涨跌情况:注:①涨记作“+”,跌记作“﹣”;②表中记录的数据每天收盘价格与前一天收盘价格的变化量,星期一的数据是与上星期五收盘价格的变化量.(1)直接判断:本周内该股票收盘时,价格最高的是那一天?(2)求本周星期五收盘时,该股票每股多少元?(3)若张先生在本周的星期五以收盘价将全部股票卖出,求卖出股票应支付的交易费.24.某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为450克,则抽样检测的总质量是多少?25.阅读与理解:如图,一只甲虫在5×5的方格(每个方格边长均为1)上沿着网格线爬行.若我们规定:在如图网格中,向上(或向右)爬行记为“+”,向下(或向左)爬行记为“﹣”,并且第一个数表示左右方向,第二个数表示上下方向.例如:从A到B记为:A→B(+1,+4),从D到C记为:D→C(﹣1,+2).思考与应用:(1)图中A→C(,),B→C(,),D→A(,)(2)若甲虫从A到P的行走路线依次为:(+3,+2)→(+1,+3)→(+1,﹣2),请在图中标出P的位置.(3)若甲虫的行走路线为A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),请计算该甲虫走过的总路程.参考答案与试题解析一.选择题(共10小题)1.【解答】解:在实数﹣1,﹣2,0,﹣π中,其中负数有﹣1,﹣2,﹣π,共有3个.故选:C.2.【解答】解:∵1>0,3>0,4>0,∴1,3,4是正数,故选:C.3.【解答】解:若向东走2m记作+2m,则向西走3m记作﹣3m,故选:C.4.【解答】解:根据题意得:10+0.15=10.15(kg),10﹣0.15=9.85(kg),因为两袋两大米最多差10.15﹣9.85=0.3(kg)=300(g),所以这两袋大米相差的克数不可能是400g;故选:D.5.【解答】解:20℃﹣3℃=17℃20℃+3℃=23℃所以该药品在17℃~23℃范围内保存才合适.故选:C.6.【解答】解:∵|+0.8|=0.8,|﹣3.5|=3.5,|﹣0.7|=0.7,|+2.1|=2.1,0.7<0.8<2.1<3.5,∴从轻重的角度看,最接近标准的是﹣0.7.故选:C.7.【解答】解:如果+20%表示增加20%,那么﹣8%表示减少8%,故选:D.8.【解答】解:根据题意得:2天前的水位用算式表示为(+3)×(﹣2),故选:B.9.【解答】解:悉尼的时间是:6月15日23时+2小时=6月16日1时,纽约时间是:6月15日23时﹣13小时=6月15日10时.故选:A.10.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.二.填空题(共10小题)11.【解答】解:∵向北走5km记作﹣5km,∴+10km的含义是向南走10km.故答案为:向南走10km12.【解答】解:若规定零上用正数表示,零下用负数表示.零下5℃可表示为:﹣5℃故答案为:﹣5℃13.【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降3m时水位变化记作﹣3m.故答案是:﹣3m.14.【解答】解:4筐白菜的总质量为25×4+(0.25﹣1+0.5﹣0.75)=99,故答案为:9915.【解答】解:根据正数和负数的意义可知,图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,误差不超过0.03mm;加工要求尺寸最大不超过30.03mm.故答案为:30.0316.【解答】解:规定收入为正,支出为负.收入500元记作+500元,那么支出100元应记作﹣100元,故答案为:﹣100元.17.【解答】解:由题意知,这6名学生的平均成绩=80+(5﹣2+8+11+5﹣6)÷6=83.5(分).故答案为83.5.18.【解答】解:由表格中的数据可知,每上升0.5km,温度大约下降3℃,∴向上攀登的海拔高度为2.5km时,登山队所在位置的气温约为﹣10℃,故答案为:﹣10.19.【解答】解:50+(﹣0.7)=49.3kg,故答案为:49.3kg.20.【解答】解:20﹣3+1﹣1+2=19(本)故答案为:19三.解答题(共5小题)21.【解答】解:(1)2﹣(﹣4)=6(册)答:上周星期二比星期四多借出6册;(2)50+(3+2+3﹣4+1)÷5=50+1=51(册)答:上周平均每天借出图书51册.22.【解答】解:(1)15﹣2+5﹣1+10+3﹣2+12+4﹣2+6=48,答:检修小组在A地东边,距A地48千米;(2)(15+|﹣2|+5+|﹣1|+10+|3|+|﹣2|+12+4+|﹣2|+6)×0.4=62×0.4=24.8(升),答:出发到收工检修小组耗油24.8升.23.【解答】解:(1)价格最高的是星期四;(2)该股票每股为:20+2+3﹣2.5+3﹣2=23.5元/股;(3)卖出股票应支付的交易费为:23.5×1000×0.5%=117.5元24.【解答】解:(1)根据题意得:﹣5×1﹣2×4+0×3+1×4+3×5+6×3=﹣5﹣80+4+15+18=24(克),则这批样品的质量比标准质量多,多24克;(2)根据题意得:20×450+24=9024(克),则抽样检测的总质量是9024克.25.【解答】解:(1)A→C向右3个单位,向上4个单位,所以A→C(+3,+4),同理:B→C(+2,0),D→A(﹣4,﹣2).故答案是:A→C(+3,+4),B→C(+2,0),D→A(﹣4,﹣2)(2)如图2所示.(3)甲虫走过的总路程:|+1|+|+4|+|+2|+|+1|+|﹣2|+|﹣4|+|﹣2|=16.。
人教版初中七年级上册数学《正数和负数》同步练习含答案解析
《1.1 正数和负数》一.选择.1.下列语句正确的是()A.“+15米”表示向东走15米B.0℃表示没有温度C.在一个正数前添上一个负号,它就成了负数D.0 既是正数也是负数2.下列说法正确的是()A.有最小的整数 B.有最小的负数C.有最大的整数 D.有最大的负整数3.下列说法正确的是()A.一个有理数不是正数就是负数B.一个有理数不是整数就是分数C.正整数集合、负整数集合、正分数集合、负分数集合合并在一起就是全体有理数集合D.以上说法都正确4.向东行进﹣50m表示的意义是()A.向东行进50 m B.向南行进50 m C.向北行进50 m D.向西行进50 m5.下列结论中正确的是()A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数D.0既不是正数,也不是负数二.填空6.以下各数中,正数有;负数有.﹣,0.6,﹣100,0,,368,﹣2.7.北京与埃及的时差为﹣5小时,(“+”表示同一时刻比北京时间早的时数)当北京时间是17:00 时,埃及时间是.8.如果收入15元记作+15元,那么支出20元记作元.9.海面上的高度为正,海面下的高度为负,那么海面上982米记作米,﹣1190米的意义是.10.若下降8米记作﹣8米,那么+12米表示,不升不降记作.11.如表是某周周一至周五每日某一股票的涨跌情况(单位:元)星期一二三四五涨跌+0.4 +0.55 ﹣0.2 +0.34 ﹣0.5则该股票上涨的是星期,下跌的是星期.三.解答12.一次体检中,5位同学的身高分别是156cm,157cm,153cm,154cm,155cm.(1)求这5位同学的平均身高.(2)以平均身高为基础,用正数和负数分别表示每位同学的身高比平均身高高出的长度.13.某工厂有一种秘密的记账方式.当他们收入300元时,记为﹣240元;当他们用去300元时,记为360元.猜一猜当他们用去100元时,可能记为多少元?当他们收入100元时,可能记为多少元?说说你的理由.14.对于正整数a,b,规定一种新运算*,a*b 等于由a开始的连续b个正整数之和,如2*3=2+3+4=9.(1)计算7*8 的值.(2)计算 1*(2*6)的值.15.某停车场原停有汽车50辆,每辆10分钟记录一次,驶入为正,1小时内驶入和驶出的汽车情况如下(单位:辆):12,﹣6,3,15,﹣20,﹣12.问:1小时后停车场内还有多少辆汽车?16.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增长值如表:星期一二三四五六日增减﹣5 +7 ﹣3 +4 +10 ﹣9 ﹣25根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?《1.1 正数和负数》参考答案与试题解析一.选择.1.下列语句正确的是()A.“+15米”表示向东走15米B.0℃表示没有温度C.在一个正数前添上一个负号,它就成了负数D.0 既是正数也是负数【考点】正数和负数.【分析】根据正负数的意义进行选择即可.【解答】解:A、“+15米”表示向东走15米,故错误;B、0℃表示没有温度,故错误;C、在一个正数前添上一个负号,它就成了负数,故正确;D、0 既不是正数也不是负数,故错误;故选C.【点评】本题考查了正数和负数,掌握正负数的意义、性质是解题的关键.2.下列说法正确的是()A.有最小的整数 B.有最小的负数C.有最大的整数 D.有最大的负整数【考点】有理数.【专题】计算题;实数.【分析】利用整数,负数的定义判断即可.【解答】解:A、没有最小的整数,错误;B、没有最小的负数,错误;C、没有最大的整数,错误;D、有最大的负整数,正确,故选D【点评】此题考查了有理数,熟练掌握各自的定义是解本题的关键.3.下列说法正确的是()A.一个有理数不是正数就是负数B.一个有理数不是整数就是分数C.正整数集合、负整数集合、正分数集合、负分数集合合并在一起就是全体有理数集合D.以上说法都正确【考点】有理数.【分析】按照有理数的分类即可求解.【解答】解:(A)有理数分为正数,负数和0,故A错误;(B)有理数分为整数与分数,故B正确;(C)整数包括正整数、负整数和0,故C错误;故选(B)【点评】本题考查有理数的分类,属于基础题型.4.向东行进﹣50m表示的意义是()A.向东行进50 m B.向南行进50 m C.向北行进50 m D.向西行进50 m【考点】正数和负数.【分析】根据向东和向西是相反意义的量解答即可.【解答】解:向东行进﹣50m表示的意义是向西行进50 m,故选:D.【点评】本题考查了正数和负数,掌握正数和负数的意义是解题关键.5.下列结论中正确的是()A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数D.0既不是正数,也不是负数【考点】正数和负数.【专题】常规题型.【分析】根据实数分为正数,负数和零,即可得出答案.【解答】解:根据0既不是正数,也不是负数,可以判断A、B、C都错误,D正确.故选D.【点评】本题考查了正数和负数的知识,属于基础题,注意基础概念的熟练掌握.二.填空6.以下各数中,正数有0.6,,368 ;负数有﹣,﹣100,﹣2.﹣,0.6,﹣100,0,,368,﹣2.【考点】正数和负数.【分析】根据正数和负数的定义分别进行解答即可,正数都大于0,负数都小于0.【解答】解:在﹣,0.6,﹣100,0,,368,﹣2中,其中正数有0.6,,368;负数有﹣,﹣100,﹣2;故答案为:0.6,,368;﹣,﹣100,﹣2.【点评】此题考查了正数和负数,掌握正数和负数的定义是本题的关键,正数都大于0,负数都小于0,0既不是正数也不是负数.7.北京与埃及的时差为﹣5小时,(“+”表示同一时刻比北京时间早的时数)当北京时间是17:00 时,埃及时间是12时.【考点】正数和负数.【分析】根据负数的意义,用北京的时间减去时差计算即可得解.【解答】解:∵北京与埃及的时差为﹣5小时,∴北京时间是17:00 时,埃及时间是17﹣5=12时.故答案为:12时.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.8.如果收入15元记作+15元,那么支出20元记作﹣20 元.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以如果收入15元记作+15元,那么支出20元记作﹣20元.故答案﹣20元.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.9.海面上的高度为正,海面下的高度为负,那么海面上982米记作+982 米,﹣1190米的意义是海面下1190米.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:由题意知:海面上的高度记为正,海面下的高度记为负;则海面上982米记作+982米,﹣1190米表示海面下1190米.故答案为:+982;海面下1190米.【点评】本题考查了正负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.10.若下降8米记作﹣8米,那么+12米表示上升12米,不升不降记作0米.【考点】正数和负数.【分析】根据正负数表示相反意义的量,升高记为正,可得下降记为负,不升不降记为0.【解答】解:如果下降8米记作﹣8米,那么+12米表示上升12米,水位不升不降时,水位变化记为0m.故答案为:上升12米,0米.【点评】本题主要考查了用正负数表示两种具有相反意义的量.具有相反意义的量都是互相依存的两个量,包含两个要素,一是它们的意义相反,二是它们都是数量.11.如表是某周周一至周五每日某一股票的涨跌情况(单位:元)星期一二三四五涨跌+0.4 +0.55 ﹣0.2 +0.34 ﹣0.5则该股票上涨的是星期一、二、四,下跌的是星期三、五.【考点】正数和负数.【分析】根据正负数的意义,正数则是上涨的,负数是下跌的即可判断.【解答】解:∵星期一、二、四涨跌为正,三、五涨跌为负,∴星期一、二、四是上涨的;三、五是下跌的,故答案为:一、二、四;三、五.【点评】本题考查了正负数的意义,理解题意是关键.三.解答12.一次体检中,5位同学的身高分别是156cm,157cm,153cm,154cm,155cm.(1)求这5位同学的平均身高.(2)以平均身高为基础,用正数和负数分别表示每位同学的身高比平均身高高出的长度.【考点】正数和负数.【分析】(1)根据平均数的计算方法列式计算即可得解;(2)根据正负数的定义分别写出即可.【解答】解:(1)平均身高=×(156+157+153+154+155),=×775,=155cm;(2)5位同学的身高分别是+1cm,+2cm,﹣2cm,﹣1cm,0cm.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.13.某工厂有一种秘密的记账方式.当他们收入300元时,记为﹣240元;当他们用去300元时,记为360元.猜一猜当他们用去100元时,可能记为多少元?当他们收入100元时,可能记为多少元?说说你的理由.【考点】正数和负数.【专题】应用题.【分析】收入记为负数,用去记为正数,再按比例进行计算.【解答】解:∵收入300记﹣240,300和240相差60,用去300记360,300和360相差60,所以用去100元记作:100+60=160元,收入100元记作﹣(100﹣60)=﹣40元.∴当他们收入100元时,可能记为﹣40元.【点评】考查逆向思维,难度较大.14.对于正整数a,b,规定一种新运算*,a*b 等于由a开始的连续b个正整数之和,如2*3=2+3+4=9.(1)计算7*8 的值.(2)计算 1*(2*6)的值.【考点】有理数的混合运算.【分析】(1)根据题意可以求得7*8 的值;(2)根据题意可以求得1*(2*6)的值.【解答】解:(1)7*8=7+8+9+10+11+12+13+14=84;(2)1*(2*6)=1*(2+3+4+5+6+7)=1*27=1+2+3+…+27=378.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.15.某停车场原停有汽车50辆,每辆10分钟记录一次,驶入为正,1小时内驶入和驶出的汽车情况如下(单位:辆):12,﹣6,3,15,﹣20,﹣12.问:1小时后停车场内还有多少辆汽车?【考点】正数和负数.【分析】由正负数的意义,结合有理数的加减运算,可求得答案.【解答】解:由题意可在:50+12﹣6+3+15﹣20﹣12=50+12+3+15﹣6﹣20﹣12=42,答:1小时后停车场内还有42辆.【点评】本题考查了正数与负数,有理数加减混合运算,根据题意准确列式是解题的关键.16.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增长值如表:星期一二三四五六日增减﹣5 +7 ﹣3 +4 +10 ﹣9 ﹣25根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?【考点】正数和负数.【分析】根据给出的数据和正数和负数的意义解答即可.【解答】解:由表可知,星期二、星期四、星期五生产的摩托车比计划量多;250+10=260辆,则星期五生产的摩托车最多,是260辆;250﹣25=225辆,则星期日生产的摩托车最少,是225辆.【点评】本题考查了正数和负数,掌握正数和负数的意义、有理数的加法运算是解题关键.---------------------学习小技巧---------------小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。
〈精选〉人教版七年级数学上册 1.1 正数和负数 同步测试题部分含答案5份汇总
1.1正数和负数随堂练习一、选择题1.如果收入80元记作+80元,那么支出20元记作()A.+20元B.-20元C.+100元D.-100元2.一个物体做左右方向的运动,规定向右运动6m记做+6m,那么向左运动8m记做( )。
A.+8mB.-8mC.+14mD.-14m3.下列说法:①+2是正数,但2不是正数;②0既不是正数也不是负数;③0℃表示没有温度;④一个数不是正数就是负数;⑤如果a是正数,那么-a一定是负数,其中正确的有()A.1个B.2个C.3个D.4个4.四个数-3.14,0,1,2中为负数的是()A.-3.14 B.0 C.1 D.25. 如果收入100元记作+100元,那么支出100元记作()A.-100元B.+100元C.-200元D.+200元6.若某日最低气温为“-3 ℃”,则它的意义是 ( )。
A.零上3 ℃B.零下3 ℃C.比最低气温多3 ℃D.比最低气温少3 ℃7.在-3,-5,-1,0这四个数中,与其余三个数不同的是()A.-3 B.-5 C.-1 D.08. 某天的温度上升了-2℃的意义是( )A.上升了2℃ B.下降了-2℃C.下降了2℃ D.没有变化9.我国是较早认识负数的国家,南宋数学家李冶在算筹的个位数上用斜画一杠表示负数,如“-32”写成“”,下列算筹表示负数的是()。
A. B. C. D.10. 纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市悉尼纽约时差/时 +2 -13当北京6月15日23时,悉尼、纽约的时间分别是( )A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时二、填空题11. 用正数或负数表示下面的数量:(1)零下7 ℃:________;(2)海拔220 m:________;(3)如果向右走150 m记作+150 m,那么向左走280 m记作________.12.小王利用计算机设计了一个计算程序,输入和输出的数据如下表所示。
最新人教版七年级数学上册全册同步练习含答案
第一章 有理数1.1 正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( )A.-4米B.+16米C.-6米D.+6米 3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有 ; 负数有 ; 既不是正数,也不是负数的有 .1.2.1 有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( ) A.-12 B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …};非负有理数集合:{ …}; 非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.-3的相反数是( ) A.-3 B.3 C.-13 D.132.下列各组数中互为相反数的是( ) A.4和-(-4) B.-3和13C.-2和-12D.0和03.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ; (2)-(-3)= ; (3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4 绝对值 第1课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( ) A.5 B.-5 C.0 D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是 .5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时 有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 3.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时 有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2 有理数的减法 第1课时 有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时 多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127 B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时 有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2 有理数的除法 第1课时 有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时 分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时 有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( ) A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时 有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2 科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3 近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章 整式的加减2.1 整 式第1课时 用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A.(m +0.8n)元B.0.8n 元C.(m +n +0.8)元D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是( )A.5个B.4个C.3个D.2个2.多项式3x2-2x-1的各项分别是( )A.3x2,2x,1B.3x2,-2x,1C.-3x2,2x,-1D.3x2,-2x,-13.多项式1+2xy-3xy2的次数是( )A.1B.2C.3D.44.多项式3x3y+2x2y-4xy2+2y-1是次项式,它的最高次项的系数是.5.写出一个关于x,y的三次二项式,你写的是(写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2 整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时整式的加减1.化简x+y-(x-y)的结果是( )A.2x+2yB.2yC.2xD.02.已知A=5a-3b,B=-6a+4b,则A-B为( )A.-a+bB.11a+bC.11a-7bD.-a-7b3.已知多项式x3-4x2+1与关于x的多项式2x3+mx2+2相加后不含x的二次项,则m 的值是( )4.若某个长方形的周长为4a,一边长为(a-b),则另一边长为( )A.(3a+b)B.(2a+2b)C.(a+b)D.(a+3b)5.化简:(1)(-x2+5x+4)+(5x-4+2x2);(2)-2(3y2-5x2)+(-4y2+7xy).第三章一元一次方程3.1 从算式到方程3.1.1 一元一次方程1.下列各方程是一元一次方程的是( )2.方程x+3=-1的解是( )A.x=2B.x=-4C.x=4D.x=-23.若关于x的方程2x+a-4=0的解是x=-2,则a的值是( )A.-8B.0C.8D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x名学生,则由题意可列方程为.5.商店出售一种文具,单价3.5元,若用100元买了x件,找零30元,则依题意可列方程为.6.七(2)班有50名学生,男生人数是女生人数的倍.若设女生人数为x名,请写出等量关系,并列出方程.3.1.2 等式的性质1.若a=b,则下列变形一定正确的是( )2.下列变形符合等式的基本性质的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x-x=1-2C.若-2x=5,则x=5+2D.3.解方程- x=12时,应在方程两边( )A.同时乘-B.同时乘4C.同时除以D.同时除以-4.由2x-16=5得2x=5+16,此变形是根据等式的性质在原方程的两边同时加上了.5.利用等式的性质解下列方程:(1)x+1=6; (2)3-x=7;(3)-3x=21;3.2 解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是( )2.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个4.将下列几何体分类:其中柱体有,锥体有,球体有(填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.把下列图形与对应的名称用线连起来:圆柱四棱锥正方体三角形圆第2课时从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是( )2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是( )3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是( )4.下面图形中是正方体的展开图的是( )5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是( )A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2 点、线、面、体1.围成圆柱的面有( )A.1个B.2个C.3个D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识.(1)飞机穿过云朵后留下痕迹表明;(2)用棉线“切”豆腐表明;(3)旋转壹元硬币时看到“小球”表明.4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2 直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是( )A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时线段的长短比较与运算1.如图所示的两条线段的关系是( )A.a=bB.a<bC.a>bD.无法确定第1题图第2题图2.如图,已知点B在线段AC上,则下列等式一定成立的是( )A.AB+BC>ACB.AB+BC=ACC.AB+BC<ACD.AB-BC=BC3.如图,已知D是线段AB的延长线上一点,C为线段BD的中点,则下列等式一定成立的是( )A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD的长.4.3 角4.3.1 角1.图中∠AOC的表示正确的还有( )A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(只计算180°以内的)的个数是( )A.1个B.2个C.3个D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是°.4.把下列角度大小用度分秒表示:(1)50.7°; (2)15.37°.5.把下列角度大小用度表示:(1)70°15′; (2)30°30′36″.4.3.2 角的比较与运算1.如图,其中最大的角是( )A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第2题图2.如图,OC为∠AOB内的一条射线,且∠AOB=70°,∠BOC=30°,则∠AOC的度数为°.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC为∠AOB内的一条射线,OM,ON分别平分∠AOC,∠COB.若∠AOM=30°,∠NOB=35°,求∠AOB的度数.4.3.3 余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4 课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是( )2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为( )A.14B.10C.8D.73.如图,该几何体的展开图可能是( )4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章有理数1.1正数和负数1.B2.C3.B4.输1场5.从Q出发后退4下6.227,2.7183,2020,480-18,-0.333…,-25901.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2 有理数的减法 第1课时 有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃). 答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140. (2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)2832.B3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 4.解:32-6+2×2=30(℃).答:关掉空调2小时后的室温为30℃.1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.B2.D3.C4.D5.⎝⎛⎭⎫344 34的4次方⎝⎛⎭⎫或34的4次幂6.(1)-1 (2)-81 (3)0 (4)1258。
人教版七年级数学上册同步练习卷1.1 正数和负数( 答案不 全)
1.1 正数和负数一、选择题(共8小题;共32分)1. 如果增长15%记作+15%,那么−80%表示( )A. 增长20%B. 下降20%C. 增长80%D. 下降80%2. 如果收入200元记作+200元,那么支出150元记作( )A. +150元B. −150元C. +50元D. −50元3. 如果60m表示“向北走60m”,那么“向南走40m”可以表示为( )A. −20mB. −40mC. 20mD. 40m4. 如果零上5∘C记作+5∘C,那么零下7∘C可记作( )A. −7∘CB. +7∘CC. +12∘CD. −12∘C5. 如图所示,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )A. B.C. D.6. 下列说法正确的是( )A. −a表示的数一定是负数B. −a表示的数一定是正数C. −a表示的数一定是正数或负数D. −a可以表示正数、负数或零7. 下列各数:−8,2.1,1,3,0,−2.5,10,−1,其中非负数有( )9A. 2个B. 3个C. 4个D. 5个8. 下列判断正确的是( )A. 0,13,1,2.5 是正数B. −1,0,1,2,3 是自然数C. 0,−3,−1,−12,−13 是负数D. 0,−12,−5,−4.1 不是正数二、填空题(共4小题;共16分)9. 一个物体做左右方向的运动,如果向左运动 2 m 记作 +2 m ,那么向右运动 3 m 记作 .10. 举出一个数字“0”表示正负之间分界点的实际例子,如 .11. 不用负数,说明下列表述的意义:(1)向北走 −3 米:------ ;(2)卖出大米 −25 千克: ;(3)后退 −7 步: ;(4)温度升高 −2∘C : .12. 设海平面高度为 0 m ,若一艘潜水艇所在高度为 −50 m ,一条鲨鱼在该潜水艇的正上方 10 m ,则这条鲨鱼所在的高度是 m .三、解答题(共4小题;共52分)13. 举例说明什么是正数?什么是负数?0 和正数、负数有何关系?14. 学校对六年级男生进行立定跳远测试,以 1.7 m 及以上为达标,超过1.7 m 的厘米数用正数表示,不足 1.7 m 的厘米数用负数表示,第一组 10 名男生成绩如下(单位:cm ):+2−40+5+8−70+2+10−3问:第一组有百分之几的学生达标?15. 你能在下列圆圈的各区域内分别填入2个符合要求的数吗?16. 举例说明现实生活中具有相反意义的量(至少2对).答案第一部分1. D2. B3. B4. A5. C6. D7. D8. D第二部分9. −3m10. 答案不唯一,0∘C可以表示温度正负分界等11. 向南走3米,买入大米25千克,前进7步,温度降低2∘C12. −40第三部分13. 略14. 70%15. 略16. 略。
2023-2024学年人教版七年级数学上册《第一章 正数和负数》同步练习题带答案
2023-2024学年人教版七年级数学上册《第一章正数和负数》同步练习题带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1. 下面四个数中,负数是( )A. 0B. −12C. 1D. +72. 如果规定收入为正,支出为负,收入3元记作3元,那么支出8元记作( )A. 5元B. −11元C. 11元D. −8元3. 中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作( )A. 10℃B. 0℃C. −10℃D. −20℃4. 如果水位升高2m时水位变化记作+2m,那么水位下降2m时水位变化记作( )A. −2mB. −1mC. 1mD. 2m5. 如果把一个物体向右移动1m时记作移动+1m,那么这个物体向左移动2m时记作移动( )A. −1mB. +2mC. −2mD. +3m6. 一种面粉的质量标识为“(25±0.25)千克”,则下列面粉中合格的是( )A. 24.70千克B. 24.80千克C. 25.30千克D. 25.51千克7. 有下列四组数: ①−3,2.3,−14; ②34,0,212; ③113,0.3,7; ④12,15,2.其中三个数都不是负数的是( )A. ① ②B. ② ④C. ③ ④D. ② ③ ④8. −a一定是( )A. 正数B. 负数C. 0D. 以上都不对9. 体育课上全班女生进行百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“−”表示成绩小于18秒,“0”表示刚好达标,这个小组女生的达标率是( )A. 25%B. 37.5%C. 50%D. 75%10. 北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00.小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A. 10:00B. 12:00C. 15:00D. 18:00二、填空题11. 如果盈利100元记作+100元,那么亏损50元记作元.12. 如果收入100元记作+100元,则−55元表示.13. 翠屏山高于海平面503米,记作+503米,吐鲁番盆地低于海平面155米,记作______ 米.14. 某种试剂的说明书上标明保存温度是(10±2)℃,请你写出一个适合该试剂保存的温度:______ ℃.15. 某仓库记账员为方便记账,将进货10件记作+10,那么出货5件应记作______ .16. 负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数”数量相等,意义相反”.若向东走200米记作+200米,则向西走80米记作米.17. 把下列各数填在相应的横线上.−18,227,3.1416,0,2001,−35,−0.142857,95%.正数:.负数:.18. A,B,C三位同学一次立定跳远的成绩分别是1.75米,2米,1.80米.若以C同学的成绩为基准,大于C同学的成绩记为正数,小于C同学的成绩记为负数,则A同学的成绩记为米,B同学的成绩记为米.19. 某同学计划在假期每天做6道数学题,超过的题数记为正数,不足的题数记为正数负数,十天中做题记录如下:3,5,4,2,-1,1,0,-3,8,7,那么他十天共做的数学题有______ 道.20. 观察这一列数:−34,57,−910,1713,−3316⋯则第6个数是.三、解答题21. 某股民A上星期五买进某公司股票1000股,每股27元,如表为本周内每日该股票的涨跌情况(单位:元),根据表格解答下列问题:星期一二三四五每股涨跌+4+4.5−1−2.5−6(1)星期三收盘时,每股是多少元?(2)本周内每股最高价多少元?最低价是多少元?22. 2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量与计划相比有出入,下表是二月份某一周的生产情况:(超产为正,减产为负,单位:个)星期一二三四五六日增减+100−200+400−100−100+350+150(1)这一周共生产多少个口罩?(2)产量最多的一天比产量最少的一天多生产多少个?(3)该口罩加工厂实行计件工资制,每生产一个口罩0.15元,本周口罩加工厂应支付工人的工资总额是多少元?23. 某巡警骑摩托车在一条东西大道上巡逻.某天他从岗亭出发,晚上停留在A处.规定向东方向为正,当天行驶记录如下(单位:千米):+10,−8,+6,−13,+7,−12,+3,−1(1)A在岗亭何方?通过计算说明A距离岗亭多远?(2)在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站______ 次.(3)若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?24. 在一次质量检测中,测得七袋牛奶的质量分别为498克、500克、503克、496克、497克、502克、504克.这七袋牛奶质量的平均值是500克,以平均值为标准,用正、负数分别表示出它们对应的数.25. 外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定送餐量超过50单(送一次外卖称为一单)的部分记为“+”,低于50单的部分记为“−”,如表是该外卖小哥一周的送餐量:星期一二三四五六日送餐量−3+4−5+14−8+7+12 (单位:单)(1)求该外卖小哥这一周平均每天送餐多少单?(2)外卖小哥每天的工资由底薪60元加上送单补贴构成,送单补贴的方案如下:每天送餐量不超过50单的部分,每单补贴2元;超过50单但不超过60单的部分,每单补贴4元;超过60单的部分,每单补贴6元.求该外卖小哥这一周工资收入多少元?参考答案1、B 2、D 3、C 4、A 5、C 6、B 7、D 8、D 9、D 10、C 11、−50 12、支出55元 13、−155 14、10(答案不唯一) 15、−5 16、−8017、227,3.1416,2001,95% −18,−35,−0.142857 18、−0.05 +0.20 19、78 20、651921、解:(1)最初的股票每股为27元,则:星期三收盘时每股价格为27+4+4.5−1=34.5元.(2)从图表可知本周内最高价应该在星期二,最低价格在星期五,分别算出这两天收盘时的价格就是本周内每股最高价和最低价.在星期二时每股价格为27+4+4.5=35.5元,即本周内最高价每股为35.5元.在星期五时每股价格为27+4+4.5−1−2.5−6=26元,即本周内最低价每股为26元.22、解:(1)5000×7+100−200+400−100−100+350+150=35600(个)答:这一周共生产35600个口罩 (2)400−(−200)=600(个)答:产量最多的一天比产量最少的一天多生产600个 (3)35600×0.15=5340(元)答:本周口罩加工厂应支付工人的工资总额是5340元.23、424、 以500克为标准,将多于500克的部分记为正,少于500克的部分记为负,则这七袋牛奶的质量分别表示为−2克、0克、+3克、−4克、−3克、+2克、+4克.25、解:(1)由题意,得:50+[(−3)+(+4)+(−5)+(+14)+(−8)+(+7)+(+12)]÷7 =50+3 =53(单)答:该外卖小哥这一周平均每天送餐53单 (2)由题意,得:(50×7−3−5−8)×2+(4+7+10×2)×4+(4+2)×6+60×7 =668+124+36+420=1248(元)答:该外卖小哥这一周工资收入1248元.。
人教版七年级上数学同步练习题及答案
第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。
2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、 ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.3 拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( )①742 是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
人教版七年级数学上册1.1 正数和负数练习题
1.1正数和负数一、选择题1.下列各数:5,+4,—7,0,—0.5,3.456,一福中,负数有()316A.2个B.3个C.4个D.5个2.在下列选项中,具有相反意义的量是()4.收入20元与支出30元B.上升6米与后退7米C.卖出10千克米与盈利10元D.长大1岁与减少2千克3.如果向东走2m记为+2m,那么向西走3米可记为()A.+3mB.+2mC.—3mD.—2m4.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数,若其意义相反,则分别叫做正数与负数.若气温为零上10℃记作+10℃,则—3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃5.某天的气温上升了—2℃,其意义是()链接听课例3归纳总结A.气温上升了2℃B.气温没有变化C.气温下降了一2℃D.气温下降了2℃6.下列关于“0”的说法正确的是()A.0既是正数,也是负数B.0是偶数,但不是自然数C.0既不是正数,也不是负数D.0℃表示没有温度二、填空题7.在4个不同的时刻,对同一水池中的水位进行测量,记录如下:上升3厘米,下降6 厘米,下降1厘米,不升不降.如果上升3厘米记为+3厘米,那么其余3个记录分别是8.在某校第十二届校运会的跳远比赛中,以4.00米为标准,如小明跳了4.22米,可记作+0.22米.若小聪跳出的成绩记作-0.32米,则小聪实际跳了米.9.某药品说明书上标明该药品保存的温度是(20±2)℃,则该药品在范围内保存才合适.10.有一列数:1,—2,3,—4,…,根据这个规律,第2019个数是.三、解答题11.读出下列各数,并指出其中哪些是正数,哪些是负数.61195,-0.02,7,一五,一4,一23,1.3,0,3.14,n.链接听课例1归纳总结12.写出与下面各量具有相反意义的量,并用正负数表示.(1)气温是零上8℃,零上为正;(2)向南走100米,向南为负;(3)转动转盘,顺时针转3圈,顺时针为正;(4)甲地高于海平面500米,高于海平面为正.链接听课例2归纳总结13.2018年,A,B,C,D四个国家的军费开支比上一年的变化情况如下:A国增长14%,B国减少1.5%,C国与上年持平,D国增长21.5%.请用正负数分别表示这一年中四个国家的军费增长率;哪些国家的军费开支增长了?哪些国家的军费开支减少了?哪个国家的增长率最高?14.在一次数学活动中,同学们测量一幢楼的高度,七次测量的数据分别是79.5m,80.7m,80.9m,79.2m,80m,79.3m,80.4m.(1)这七次测量的平均值是多少?(2)以平均值为标准,用正数表示超出部分,用负数表示不足部分,它们对应的数分别是什么?15.某只股票上周五的收盘价格是10.00元,本周一到周五的涨跌情况如下表(“+”表示股票比前一天上涨,“-”表示股票比前一天下跌):(1)本周一至周五这只股票每天的收盘价各是多少元?(2)本周五的收盘价比上周五的收盘价是上涨了还是下跌了?(3)这五天的收盘价中哪天的最高?哪天的最低?最高和最低相差多少?16.某超市出售三种品牌的面粉,面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样.(1)若小明从三种品牌的面粉中任意拿出两袋,它们的质量最多相差多少?(2)小明买了一袋面粉,面粉袋上标有质量为(25±0.3)kg的字样,”(25±0.3)kg”表示什么意义?小明拿去称了一下,发现只有24.8kg,则面粉厂有没有欺诈行为?1.B2.A3.C4.B5.D6.C.7.-6厘米,-1厘米,0厘米8.3.689.18〜22℃(包括18℃和22℃)10.2019611.解:读法略.正数:95,7,1.3,3.14,n;负数:一0.02,一五,一4,一23.12.解:本题答案不唯一,如:(1)气温是零下5℃,-5℃.(2)向北走50米,+50米.(3)转动转盘,逆时针转5圈,-5圈.(4)乙地低于海平面50米,-50米.13.解:A国:+14%,B国:一1.5%,C国:0,D国:+21.5%;A国、D国的军费开支增长了,B国的军费开支减少了;D国的增长率最高.14.解:(1)(79.5+80.7+80.9+79.2+80+79.3+80.4):7=560:7=80(m).答:这七次测量的平均值是80m.(2)79.5—80=—0.5(m),80.7-80=0.7(m),80.9—80=0.9(m),79.2-80=-0.8(m),80—80=0(m),79.3—80=—0.7(m),80.4—80=0.4(m).则以平均值为标准,它们对应的数分别是:—0.5m,0.7m,0.9m,—0.8m,0m,—0.7m,0.4m.15.解:(1)周一:10.00+0.28=10.28(元),周二:10.28—2.36=7.92(元),周三:7.92+1.80=9.72(元),周四:9.72—0.35=9.37(元),周五:9.37+0.08=9.45(元).(2)因为9.45元<10.00元,所以本周五的收盘价比上周五的收盘价下跌了.(3)因为10.28>9.72>9.45>9.37>7.92,10.28—7.92=2.36(元),所以周一的收盘价最高,周二的收盘价最低,最高和最低相差2.36元.16.解:(1)质量最重为25+0.3=25.3(kg),最轻为25—0.3=24.7(kg),所以质量最多相差25.3—24.7=0.6(kg).(2)“(25±0.3)kg”表示实际质量比25kg最多多0.3kg,最少少0.3kg.24.8kg在(25—0.3)kg与(25+0.3)kg之间,所以面粉厂没有欺诈行为.[素养提升]1.[解析]B本题是计算题,正确理解题意,直接进行计算.因为墨尔本时间比北京时间早3小时,所以墨尔本时间8:00起飞的航班就相当于北京时间5:00起飞的航班,由于飞行时间是12小时,所以飞机准点到达北京机场时,北京时间是17:00.故选B.2.解:因为收入360元时,记作+200元,收入120元时,记作—40元,即360元与200元相差160元,+120元与—40元相差160元,所以基数是+160元.因此支出300元,应记作—460元.。
人教版数学七年级上册 同步练习
人教版数学七年级上册 同步练习第一章有理数1.1正数和负数第一课时1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数. 若气温为零上10 ℃记作+10 ℃,则-3 ℃表示气温为( )A .零上3 ℃B .零下3 ℃C .零上7 ℃D .零下7 ℃2.如果盈利5%记作+5%,那么-3%表示( )A .亏损3%B .亏损8%C .盈利2%D .少赚3%3.下列各数中,不是负数的是( )A .-2B .3C .-58D .-0.104.在-1,0,1,2这四个数中,既不是正数也不是负数的是__ __.5.(1)如果+8元表示收入8元,则-6元表示__ __;(2)若高出海平面789 m 记作+789 m ,则-789 m 表示__ __;(3)若减少60 kg 记作-60 kg ,则+80 kg 表示__ __;(4)若公元2018年记作+2018年,则-20年表示__ __.6.下列各数中哪些是正数?哪些是负数?-15,-0.02,67,-171,4,-213,1.3,0,3.14,π.7.不改变下列语句所表达的实际意义,把它们改成使用正数的说法.(1)温度下降了-3 ℃;(2)现金支出了-80元;(3)长度减少了-7 cm.8.某项科学研究需要以30分钟为一个时间单位,并将研究那天的上午10时记为0,10时以前记为负,10时以后记为正.例如那天的9:30记为-1,10:30记为+1,等等,依此类推,那天上午7:30应记为() A.-3 B.-5C.-2.30 D.-2.59.若规定体育成绩80分为标准,超过记为正,不足记为负,老师将三名同学的成绩记为:+18,-14,0,则这三名同学的实际成绩分别是__ __.10.水是生命之源,某社区居民积极响应政府的号召,珍惜水资源、节约用水,原来每天的用水总量超过100 m3,现在每天的用水量在原来的基础上大幅度地下降,小明记录了这个社区居民一周的用水量情况(以80 m3为基础,超过为正),是+7,+3,0,-2,-3,-4,-6.试求这个社区的居民这一周每天的用水量分别是多少.11.观察下面一列数:-1,2,-3,4,-5,6,-7,8,-9,….(1)请写出这一列数中的第100个数和第2 016个数.(2)在前2 016个数中,正数和负数分别有多少个?(3)2 015和-2 015是否都在这一列数中?若在,请指出它们分别是第几个数;若不在,请说明理由.参考答案1.B 2.A 3.B 4.05.(1)支出6元(2)低于海平面789 m(3)增加80 kg(4)公元前20年6.略7.(1)温度上升了3 ℃;(2)现金收入了80元;(3)长度增加了7 cm.8.B9.98分,66分,80分10.这个社区的居民这一周每天的用水量分别为87 m3,83 m3,80 m3,78 m3,77 m3,76 m3,74 m3.11.(1)第100个数是100,第2 016个数是2 016;(2)在前2 016个数中,正数和负数都有1 008个;(3)2 015不在这一列数中,-2 015在这一列数中,是第2 015 个数,理由略.第二课时1.下列用正数和负数表示相反意义的量,正确的是()A.一天凌晨的气温是-5 ℃,中午比凌晨上升4 ℃,所以中午的气温是+4 ℃B.如果+3.2 m表示比海平面高3.2 m,那么-9 m表示比海平面低5.8 mC.如果生产成本增长5%记作+5%,那么-5%表示生产成本降低5% D.收入增加8元记作+8元,那么-5元表示支出减少5元2.如图1-11是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()图1-11A ..C ..3.湖边一段堤岸高出湖面4 m,附近有一建筑物,高出湖面20 m,湖底有一沉船,在湖面下8 m处.现以湖边堤岸为“基准”,那么建筑物的高度及沉船的深度应如何表示?4.小聪、小明、小慧三位同学分别记录了各自一周中各天的收支情况,如下表所示(记收入为正,单位:元):根据上表回答下列问题:(1)说出小聪这一行中10,-5.20,0,-4.80,5,-3,-3,-1各数的实际意义;(2)说出星期五这一列中-6,6的实际意义;(3)说出最后一列中-1,1,0的实际意义.5.一种商品的标准价格是a元,但是随着季节的变化,商品价格可浮动±10%.(1)请用文字说明“商品价格可浮动±10%”的含义;(2)请你计算出该商品的最高价格和最低价格;(3)当a=120时,求该商品价格的变化范围.6.在一次数学测验中,小明所在班的平均成绩是92分,小明的成绩比班平均分高+6分,小亮的成绩比班最高分105分高-6分.请问两人的成绩谁比较高?高出多少?参考答案1.C 2.B3.建筑物的高度表示为16 m,沉船的深度表示为-12 m.4.略5.(1)商品的价格可能上涨0~10%,也可能下调0~10%;(2)最高价格是1.1a元,最低价格是0.9a元;(3)该商品价格的变化范围是108~132元.6.小亮的成绩比小明的成绩高,高出1分.。
人教七年级数学上册同步练习题及答案
人教七年级数学上册同步练习题及答案第一章 有理数1.1 正数和负数(第一课时)(基础训练)1.任意写出5个正数:________________;任意写出5个负数:_______________.2.在银行存入款存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.3.已知下列各数:51-,432-,3.14,+305,0,-23. 则正数有___________ _;负数有______ ______.4.向东行进-50m 表示的意义是( )A .向东行进50m C .向北行进50mB .向南行进50m D .向西行进50m5.下列结论中正确的是( )A .0既是正数,又是负数B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数6.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008.其中是负数的有 ( )A .2个B .3个C .4个D .5个7.下列各数中,哪些是正数?哪些是负数?+8,-25,68,O ,722,-3.14,0.001,-889.(综合训练)1.写出比O 小4的数,比4小2的数,比-4小2的数.2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.1.1 正数和负数(第二课时)(课前小测)1.如果向南走5米,记作+5米,那么向北走8米应记作___________.2.零下15℃,表示为_____,比O℃低4℃的温度是_____.3.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.4.“甲比乙大-3岁”表示的意义是________________.5.在-7,0,-3,34,+9100,-0.27中,负数有( ) A .0个 B .1个 C .2个D .3个(基础训练)1.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分90分和80分应分别记作__________.2.如果把+210元表示收入210元,那么-60元表示______________.3.粮食产量增产11%,记作+11%,则减产6%应记作______________.4.如果把公元2008年记作+2008年,那么-205年表示______________.5.如果向西走12米记作+12米,则向东走-120米表示的意义是__________________.6.甲、乙两人同时从A地出发,如果甲向南走50m记为+50m,则乙向北走30m记为;这时甲、乙两人相距米。
1.1 正数和负数 同步练习2021-2022学年人教版七年级数学上册
1.1 正数和负数一、选择题1.规定:(→3)表示向右移动3,记作+3,则(←2)表示向左移动2,记作()A. +2B. −2C. +12D. −122.规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()A. 8吨记为−8吨B. 15吨记为+5吨C. 6吨记为−4吨D. +3吨表示重量为13吨3.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的工件是()A. −3B. −1C. 2D. 54.先向东走3m,然后又向东走−3m,结果是()A. 向东走6mB. 向西走3mC. 向西走6mD. 回到原地5.为防止新型冠状病毒的传染,某药店2020年1月份买进6000只一次性口罩,记作+6000,那么卖出5000只一次性口罩,记作()A. +1000B. +6000C. +5000D. −50006.下列用正数和负数表示的相反意义的量,其中正确的是().A. 一天凌晨的气温是−4℃,中午比凌晨上升了4℃,所以中午的气温是+4℃B. 盈利20元记作+20元,那么−50元表示亏本50元C. 如果收入增加110元记作+110元,那么−110元表示支出减少110元D. 如果+300米表示比海平面高300米,那么−200米表示比海平面低−200米7.下列说法中正确的是()A. 不带“−”的数都是正数B. 不存在既不是正数,也不是负数的数C. 如果a是正数,那么−a一定是负数D. 0℃表示没有温度8.在下列选项中,具有相反意义的量是()A. 向东走3千米与向北走3千米B. 收入100元与支出50元C. 气温上升3°C与上升7°CD. 5个老人与5个小孩9.大米包装袋上(10±0.1)kg的标识表示此袋大米重()A. (9.9∽10.1)kgB. 10.1kgC. 9.9kgD. 10kg10.下列说法正确的个数是() ①加正号的数是正数,加负号的数是负数; ②任意一个正数,前面加上“−”,就是一个负数; ③0是最小的正数; ④大于零的数是正数; ⑤字母a既是正数,又是负数.A. 0B. 1C. 2D. 3二、填空题11.某种零件标明要求是Φ25±0.02mm(Φ表示直径,单位:mm),经检查,一个零件的直径是25.1mm,则该零件(填“合格”或“不合格”).12.一次考试中,老师采取一种记分制:得130分记为+30分,得50分记为−50分,那么得96分应记为,李明的成绩记C为−12分,那么他的实际得分为.13.每袋大米以50kg为标准,其中超过标准的千克数记为一正数,不足的千克数记为负数,则图中第4袋大米的实际质量是kg.14.如果水位升高2m时水位变化记作+2m,那么水位下降3m时水位变化记作______m.15.用正数和负数可以表示_______________的量.如规定向前为正,向后为负,则向前走−5米的意义是______________________________.16.用正数说出下列各题的意义.(1)某企业2012年生产结余是−200万元.______________________________.(2)洋阳向西走了−100米.___________________________________________.(3)今年夏季小河的水位下降了−0.2米.________________________________.(4)吐鲁番盆地的海拔高度为−155米.___________________________________..三、解答题17.一辆货车为一家仓库运货,仓库在记录进出货时把运进记作正数,运出记作负数.某天下午记录如下(单位:吨):5.5,4.6,−5.3,5.4,−3.4,4.8,−3.(1)若仓库上午存货60吨,下午运货结束后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?18.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,−3,+4,+2,−8,+13,−2,+12,+8,+5.(1)收工时检修小组在A地前面还是后面,距A地多少千米?(2)若每千米耗油0.3升,从A地出发到收工时共耗油多少升?19.某方便面厂生产的100g袋装方便面外包装上印有“(100±5)g”的字样,请问“±5g”表示什么意义?小亮同学购买了一袋这样的方便面,称了一下发现只有97g,请问厂家有没有欺诈行为?20.某村共有8块小麦试验田,每块试验田今年的收成与去年相比情况如下(增产为正,减产为负,单位:kg):55,−40,10,−16,27,−5,−23,38.那么今年的小麦总产量与去年相比是增加了还是减少了?增加或减少了多少?21.某公交车每月的支出费用为5000元,每月的乘车人数x与每月的利润(利润=收入费用−支出费用)y(元)的变化关系如表所示(票价是固定不变的):(1)请直接写出上表中m的值;(2)观察表中数据可知,每月的乘车人数达到______ 人时,该公交车才不会亏损;(3)当每月乘车人数为4000时,请你估计每月的利润为多少元.答案和解析1.【答案】B【解析】【分析】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以(←2)表示向左移动2记作−2.【解答】解:∵(→3)表示向右移动3,记作+3,∴(←2)表示向左移动2,记作−2.故选:B.2.【答案】A【解析】【分析】此题首先要知道以谁为标准,规定超出标准的为正,低于标准的为负,由此用正负数解答问题.主要用正负数来表示具有意义相反的两种量:选10吨为标准记为0,超过部分为正,不足的部分为负,直接得出结论即可.【解答】解:∵10吨记为0吨,11吨记为+1吨,∴A、10−8=2(吨),所以8吨记为−2吨,而不是−8吨,故A说法错误;B、15−10=5(吨),所以15吨记为+5吨的说法正确;C、10−6=4(吨),所以6吨记为−4吨的说法正确;D、13−10=3(吨),所以+3吨表示重量为13吨的说法正确.故选A.3.【答案】B【解析】解:因为|−3|=3,|−1|=1,|2|=2,|5|=5,由于|−1|最小,所以从轻重的角度看,质量是−1的工件最接近标准工件.故选:B.比较各个工件克数的绝对值,绝对值最小的工件最接近标准,从而得出结论.本题考查了正负数在生活中的应用.理解从轻重的角度看,绝对值最小的工件最接近标准工件是解决本题的关键.4.【答案】D【解析】【分析】本题考查了正数和负数以及有理数加法,相反意义的量用正数和负数表示.向东走3m,向东走−3m就是向西走3m,故结果是回到原地.根据正数和负数表示相反意义的量以及有理数加法解答即可.【解答】解:∵先向东走3m,然后又向东走−3m,∴3m+(−3)m=0(m),∴先向东走3m,然后又向东走−3m,又回到原地.故选:D.5.【答案】D【解析】【分析】本题考查了正数和负数的概念,相反意义的量用正数和负数表示.由题意可知买进记作“+”,那么卖出记作“−”,根据正数和负数表示相反意义的量解答即可【解答】解:∵买进6000只一次性口罩,记作+6000,∴卖出5000只一次性口罩,记作−5000.故选D.6.【答案】B【解析】【分析】本题考查正数和负数表示相反意义的量,刚规定一个量用正数表示时,其相反意义的量用负数表示.【解答】解:对于A,根据题意可知中午的温度为−4+4=0,故A错误;对于B,根据正负表示相反意义的量可判断其正确,故B正确;对于C,若收入增加110元记作+110元,则−110元应表示收入减少110元,故C错误;对于D,若+300米表示比海平面高300米,则−200米表示比海平面低200米,故D错误.故选B.7.【答案】C【解析】【分析】本题考查了正负数的概念,熟练掌握正负数的概念是解题关键.根据正负数的概念解答即可.【解答】解:A.例如:0不带“−”,但不是正数,也不是负数,故A选项错误;B.0既不是正数,也不是负数,故B选项错误;C.a是正数,−a一定是负数,故C正确;D.0℃就是表示温度是0,不是没有温度,故D选项错误.故选C.8.【答案】B【解析】【分析】本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.根据正数和负数表示相反意义的量,可得答案.【解答】解:收入100元与支出50元具有相反意义的量,故选:B.9.【答案】A【解析】根据大米包装袋上的质量标识为(10±0.1)kg可知大米质量的范围是(10−0.1)kg∽(10+0.1)kg,即(9.9∼10.1)kg.10.【答案】C【解析】【分析】本题考查了正数和负数的定义.解本题的根据是掌握正数和负数的概念.根据正数和负数的定义解答即可.【解答】解: ①加正号的数不一定是正数,如+(−3),同样,加负号的数不一定是负数,故 ①不正确; ②任意一个正数,前面加上“−”,就是一个负数,故②正确; ③0既不是正数,又不是负数,故 ③不正确; ④大于零的数是正数,故④正确; ⑤字母a可以表示正数,也可以表示负数,但不能既是正数又是负数,故 ⑤不正确.∴正确的有②④2个.故选C.11.【答案】不合格【解析】【分析】此题考查了正数和负数,弄清零件要求的范围是解本题的关键.根据零件的要求判断即可.【解答】解:∵零件标明要求是Φ25±0.02mm,即24.98mm≤Φ≤25.02mm,∴直径是25.1mm的零件不合格.故答案为不合格.12.【答案】−4分;88分【解析】【分析】本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.“正”和“负”是表示互为相反意义的量,超过100分,超过的记作正数,那么少于100分的,不足的记为负数.【解答】解:得130分记为+30分,得50分记为−50分,那么是以100分为基准记分,则得96分应记为−4分,李明的成绩记为−12分,那么他的实际得分为88分.故答案为−4分;88分.13.【答案】51.1【解析】【分析】本题考查了正数和负数,正确的理解题意是解题的关键.根据有理数的加法,可得答案.【解答】解:因为每袋大米的标准质量为50kg,且第4袋大米超过标准质量1.1kg,所以第4袋大米的实际质量是51.1kg.故答案为51.114.【答案】−3【解析】【分析】本题考查正负数的意义,属于基础题型.根据正负数的意义即可求出答案.【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降3m时水位变化记作−3m.故答案为−3.15.【答案】具有相反意义;向后走5米.【解析】【分析】本题考查正负数的基本概念,若规定向前为正,向后为负,易得−5m的意义.【解答】解:用正数和负数表示具有相反意义的量,如规定向前为正,向后为负,则向前走−5米的意义是向后走5m.故本题答案为具有相反意义;向后走5米.故答案为:具有相反意义;向后走5米.16.【答案】(1)某企业2012年生产亏损200万元.(2)洋阳向东走了100米.(3)今年夏季小河的水位上升了0.2米.(4)吐鲁番盆地的海拔低于海平面155米.【解析】【分析】本题考查了正数和负数的文字表达的问题,如:结余了−200万元表达为正数应为亏损了200万元【解答】解:结余−200万元表达为正数为亏损了200万元;向西走了−100米表达为正数为向东走了100米;下降了−0.2米表达为正数为上升了0.2米;海拔高度为−155米表达为正数为低于海平面155米。
人教新版七年级上学期《1.1 正数和负数》同步练习组卷 (1)
人教新版七年级上学期《1.1 正数和负数》同步练习组卷一.选择题(共5小题)1.小嘉全班在操场上围坐成一圈.若以班长为第1人,依顺时针方向算人数,小嘉是第17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人.求小嘉班上共有多少人()A.36 B.37 C.38 D.392.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记下降数).那么本周星期几水位最低()A.星期二B.星期四C.星期六D.星期五3.体育课上全班女生进行百米测验达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组女生的达标率是()A.25% B.37.5% C.50% D.75%4.学校、家、书店,依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家的北边70米,小明同学从家出发,向北走了50米,接着又向南走了﹣20米,此时小明的位置是()A.在家B.在书店C.在学校D.在家的北边30米处5.某项科学研究,以45分钟为1个时间单位,并记每天上午10:00时间为0,10时以前记为负,10时以后记为正,例如:9:15记为﹣1,10:45记为1等等,依此类推,上午6:15记为()A.﹣4 B.﹣5 C.﹣3.45 D.6.15二.填空题(共5小题)6.某种零件,标明要求是φ:20±0.02 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件(填“合格”或“不合格”).7.每袋大米以50kg为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际重量是kg.8.某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,﹣8),(﹣5,+6),(﹣3,+2),(+1,﹣7),则车上还有人.9.小明乘电梯从地下2层升至地上8层,电梯一共升了层.10.若把95分的成绩记作+15分,那么62分的成绩记作,这样记分时,某学生的成绩记作+5分,他的实际成绩是.三.解答题(共3小题)11.某茶叶加工厂一周生产任务为182kg,计划平均每天生产26kg,由于各种原因实际每天产量与计划量相比有出入,某周七天的生产情况记录如下(超产为正、减产为负):+3,﹣2,﹣4,+1,﹣1,+6,﹣5(1)这一周的实际产量是多少kg?(2)若该厂工人工资实际计件工资制,按计划每生产1kg茶叶50元,每超产1kg奖10元,每天少生产1kg扣10元,那么该厂工人这一周的工资总额是多少?12.出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”.他这天下午行车情况如下:(单位:千米)﹣2,+5,﹣1,+10,﹣3,﹣2,﹣5,+6请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.而小王的出租车每千米耗油0.3升,每升汽油6元,不计汽车的损耗,那么小王这天下午是盈利还是亏损了?盈利(或亏损)多少钱?13.王师傅与刘师傅在某工厂上班,下表记录了他俩在连续10天内每天完成定额的情况:(单位:件)(1)表格中的正数、负数各表示什么实际意义?(2)工厂规定:平均每天超过定额3件给予奖励;平均每天少于定额3件给予处罚.那么,王师傅、刘师傅两人在10天里得到什么样的奖惩?(3)若工厂规定每天完成的定额为30件,那么王师傅和刘师傅两人在这10天里一共完成多少件?人教新版七年级上学期《1.1 正数和负数》2018年同步练习组卷参考答案与试题解析一.选择题(共5小题)1.小嘉全班在操场上围坐成一圈.若以班长为第1人,依顺时针方向算人数,小嘉是第17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人.求小嘉班上共有多少人()A.36 B.37 C.38 D.39【分析】若以班长为第1人,依顺时针方向算人数,小嘉是第17人,此时共有17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人,此时共有21人,但班长和小嘉两次都数了,所以要减去2.【解答】解:根据题意小嘉和班长两次都数了,所以17+21﹣2=36.故选:A.【点评】主要考查正负数在实际生活中的应用.本题中班长和小嘉两次都数了,可能有学生考虑不到.2.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记下降数).那么本周星期几水位最低()A.星期二B.星期四C.星期六D.星期五【分析】用正数记水位比前一日上升数,用负数记下降数.由图表可知从周二开始水位下降,一直降到周六,所以星期六水位最低.【解答】解:由于用正数记水位比前一日上升数,用负数记下降数,由图表可知,周一水位比上周末上升0.12米,从周二开始水位下降,一直降到周六,所以星期六水位最低.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分内容时一定要联系实际,不能死学.3.体育课上全班女生进行百米测验达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组女生的达标率是()A.25% B.37.5% C.50% D.75%【分析】成绩记录中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,由于达标成绩为18秒,记录中的数不大于0则表示成绩达标.故应该有6人达标,从而求出达标率.【解答】解:∵“正”和“负”相对,从表格中我们会发现,这8人中有6人是达标的,∴这个小组女生的达标率是=75%.故选:D.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.注意这里是不大于0即为达标.4.学校、家、书店,依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家的北边70米,小明同学从家出发,向北走了50米,接着又向南走了﹣20米,此时小明的位置是()A.在家B.在书店C.在学校D.在家的北边30米处【分析】在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.向北走是+50米,向南走﹣20米就是向北走20米.【解答】解:向南走了﹣20米,实际是向北走了20米,∴此时小明的位置是在家的北边50+20=70米处,故选:B.【点评】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.5.某项科学研究,以45分钟为1个时间单位,并记每天上午10:00时间为0,10时以前记为负,10时以后记为正,例如:9:15记为﹣1,10:45记为1等等,依此类推,上午6:15记为()A.﹣4 B.﹣5 C.﹣3.45 D.6.15【分析】先计算出上午6:15到10:00之间有多少分钟,再计算出有多少个45分钟,然后根据“正”和“负”的相对性,即可计算出正确结果.【解答】解:由于记每天上午10:00时间为0,10时以前记为负,10时以后记为正,故上午6:15距10:00有225分钟,记为﹣5.故选:B.【点评】此题主要考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.二.填空题(共5小题)6.某种零件,标明要求是φ:20±0.02 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件不合格(填“合格”或“不合格”).【分析】φ20±0.02 mm,知零件直径最大是20+0.02=20.02,最小是20﹣0.02=19.98,合格范围在19.98和20.02之间.【解答】解:零件合格范围在19.98和20.02之间.19.9<19.98,所以不合格.故答案为:不合格.【点评】本题考查数学在实际生活中的应用.7.每袋大米以50kg为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际重量是49.3kg.【分析】根据有理数的加法,可得答案.【解答】解:50+(﹣0.7)=49.3kg,故答案为:49.3kg.【点评】本题考查了正数和负数,利用有理数的加法运算是解题关键.8.某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,﹣8),(﹣5,+6),(﹣3,+2),(+1,﹣7),则车上还有12人.【分析】根据有理数的加法,可得答案.【解答】解:由题意,得22+4+(﹣8)+6+(﹣5)+2+(﹣3)+1+(﹣7)=12(人),故答案为:12【点评】本题考查了正数和负数,利用了有理数的加法运算.9.小明乘电梯从地下2层升至地上8层,电梯一共升了9层.【分析】地下2层,地上8﹣1=7层一共为十层.【解答】解:地下2层加地上8﹣1层共9层,由于是升至7层,所以一共升了8﹣1+2=9层.故答案为9.【点评】此题是正数、负数的意义,结合实际理解地下和地上层数是解本题的关键.10.若把95分的成绩记作+15分,那么62分的成绩记作﹣18,这样记分时,某学生的成绩记作+5分,他的实际成绩是85.【分析】由题意可得95分为基准点,从而可得出62的成绩应记为﹣18,也可得出某学生的实际成绩.【解答】解:∵把95分的成绩记为+15分,∴95分为基准点,故62的成绩记为﹣18分,某学生的成绩记作+5分,他的实际成绩是85故答案为:﹣18,85.【点评】本题考查了正数与负数的知识,解答本题的关键是找到基准点.三.解答题(共3小题)11.某茶叶加工厂一周生产任务为182kg,计划平均每天生产26kg,由于各种原因实际每天产量与计划量相比有出入,某周七天的生产情况记录如下(超产为正、减产为负):+3,﹣2,﹣4,+1,﹣1,+6,﹣5(1)这一周的实际产量是多少kg?(2)若该厂工人工资实际计件工资制,按计划每生产1kg茶叶50元,每超产1kg奖10元,每天少生产1kg扣10元,那么该厂工人这一周的工资总额是多少?【分析】(1)根据七天的生产情况记录(超产为正、减产为负),可以计算每天实际产量,求和即可.(2)根据(1)中结果,算出金额,再将一周的超产、减产相加乘以10元,求出二者之和即可以得出答案.【解答】解:(1)∵七天的生产情况记录如下(超产为正、减产为负):+3,﹣2,﹣4,+1,﹣1,+6,﹣5,∴七天的生产情况实际值为:29kg、24kg、22kg、27kg、25kg、32kg、21kg.∴一周总产量:29+24+22+27+25+32+21=180(kg).答:这一周的实际产量是180kg.(2)∵+3+(﹣2)+(﹣4)+1+(﹣1)+6+(﹣5)=﹣2180×50+(﹣2)×10=9000﹣20=8980(元)答:该厂工人这一周的工资总额是8980元.【点评】题目考查了正数负数在实际生活中的应用,通过实际例子,可以让学生体会数学与生活的密切相关,提升学生在实际生活中发现数学、应用数学的情商.12.出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”.他这天下午行车情况如下:(单位:千米)﹣2,+5,﹣1,+10,﹣3,﹣2,﹣5,+6请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.而小王的出租车每千米耗油0.3升,每升汽油6元,不计汽车的损耗,那么小王这天下午是盈利还是亏损了?盈利(或亏损)多少钱?【分析】(1)根据正数大于0,负数小于0,可判断小王在下午出车的出发地的什么方向,距下午出车的出发地多远;(2)根据收入与支出的差,大于0盈利,小于0亏损.【解答】解:(1)﹣2+5﹣1+10﹣3﹣2﹣5+6=8(千米)答:小王将最后一名乘客送到目的地时,小王在下出车的出发地的南面,距下午出车的出发地8千米;(2)小王的收入为:10+(10+2×2)+10+(10+7×2)+10+10+(10+2×2)+(10+3×2)=108(元)小王的支出:(|﹣2|+|+5|+|﹣1|+|+10|+|﹣3|+|﹣2|+|﹣5|+|+6|)×0.3×6=61.2 (元)收入与支出的差:108﹣61.2=46.8(元)答:小王这天下午是盈利,盈利46.8元.【点评】本题考查了正数和负数,注意不论正数还是负数,都耗油,计算路程耗油时要加绝对值.13.王师傅与刘师傅在某工厂上班,下表记录了他俩在连续10天内每天完成定额的情况:(单位:件)(1)表格中的正数、负数各表示什么实际意义?(2)工厂规定:平均每天超过定额3件给予奖励;平均每天少于定额3件给予处罚.那么,王师傅、刘师傅两人在10天里得到什么样的奖惩?(3)若工厂规定每天完成的定额为30件,那么王师傅和刘师傅两人在这10天里一共完成多少件?【分析】(1)根据正负数的意义,即可解答;(2)利用正负数的加法,即可解答;(3)根据正负数的加法,即可解答.【解答】解:(1)正数表示每天超过定额的件数,负数表示每天少于定额的件数;(2)王师傅:8+6﹣2+0+6﹣3+5+7﹣5+9=31(件),李师傅:6+3﹣6+3﹣3﹣4﹣7+0﹣4﹣8=﹣20((件),答:王师傅得到奖励,李师傅得到处罚;(3)30×10×2+31﹣20=611(件),答:王师傅和刘师傅两人在这10天里一共完成611件.【点评】本题考查了正数和负数,解决本题的关键是熟记正负数的意义.。
人教版七年级上册数学正数和负数同步测试
1.1 正数和负数同步测试◆基础检测1、 521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有_______, 负数有_______。
2、 如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作___m ,水位不升不降时水位变化记作___m 。
3、 在同一个问题中,分别用正数与负数表示的量具有___的意义。
●拓展提高1、下列说法正确的是( )A 、零是正数不是负数B 、零既不是正数也不是负数C 、零既是正数也是负数D 、不是正数的数一定是负数,不是负数的数一定是正数2、向东行进-30米表示的意义是( )A 、向东行进30米B 、向东行进-30米C 、向西行进30米D 、向西行进-30米3、甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为__这时甲乙两人相距___m.4、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在__℃~__℃范围内保存才合适。
5、如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?6、某老师把某一小组五名同学的成绩简记为:+10,-5,0,+8,-3,又知道记为0的成绩表示90分,正数表示超过90分,则五名同学的平均成绩为多少分?7、某地一天中午12时的气温是7℃,过5小时气温下降了4℃,又过7小时气温又下降了4℃,第二天0时的气温是多少?●体验中考1、零上13℃记作+13℃,零下2℃可记作( )A 、2B 、-2C 、2℃D 、-2℃2、(2009年,山东)某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高( )A 、-10℃ B 、-6℃ C 、6℃ D 、10℃参考答案:基础检测:1、;106,34,5.2 521,76,14.3,732.1,1----- 根据是正负数的定义。
数学人教版(2024)版七年级初一上册 1.1 正数和负数 课时练 含答案01
第一章 有理数1.1 正数和负数一、单选题1.若零下2摄氏度记为2-℃,则零上2摄氏度记为( )A .2+℃B .0℃C .2-℃D .1-℃2.热气球上升5米记为5+,则下降3米应该记为( )A .3B .2C .2-D .3-3.某建筑工地仓库管理员如果将进货水泥2吨记为2+吨,那么出货水泥2吨可记为( )A .2-吨B .0吨C .2+吨D .4吨4.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D .5.负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入50元记作50+元,那么支出50元记作( )A .50-元B .50+元C .0元D .100+元6.下列各数中:553025.827---+,,,,,,负数有( )A .1个B .2个C .3个D .4个7.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思就是:在计算过程中遇到具有相反意义的量,要用正数和负数来区分.如果室内温度为零上8℃,记为8+℃,那么室外温度为零下2℃,记为( )A .2-℃B .2+℃C .8-℃D .8+℃8.下列各数中,是正数的有( )5,﹣59,0,0.56A .1个B .2个C .3个D .4个9.在-2,+3,5,0,―23,-0.7,11中,负数有( )A .1个B .2个C .3个D .4个10.下列为负数的是( )A .0B .2024C .2024-D .2024-二、填空题11.如果收入80元,记作80+元,那么支出37元应记作 元.12.由于没有大气层的保护,在太阳光线直射下的空间站表面温度可达150℃以上,在背阳面温度最低可达零下100℃以下,可以说太空环境“冰火两重天”.为了保持空间站设备正常运行并为航天员提供适宜工作生活的温度环境,热控系统发挥了十分关键的作用.空间站的热控系统中的“中央空调”——流体回路遍布在舱段的各个角落,通过特殊液体在管路内的往复循环,将舱内设备以及航天员生活产生的热量收集起来,通过回路再带到相应的设备和结构中,给过热的地方散热,给过冷的地方加热,便实现了散热和补热功能.如果把150℃记作150+℃,那么零下100℃记作 ℃.13.某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶.种类原味草莓味香草味巧克力味净含量/mL 17518019018514.某蓄水池的标准水位记为0m ,若0.08m +表示水面高于标准水位0.08m ,则水面低于标准水位1.2m ,可记为 m .15.某厂家生产一种袋装食品的标准重量是500克,质检员把每袋超出的部分记作正数,不足的部分记作负数,质检员随机测得袋食品质量为501克,则记作 .16.生活中常有用正负数表示范围的情形,例如某种食品的说明书上标明保存温度是()252±℃,请你写出一个适合该食品保存的温度: ℃.17.若指针沿顺时针方向旋转26°,记作26-°,则指针沿逆时针方向旋转106°,记18.某市某一时刻的气温是零上2℃,记作2+℃,另一时刻的气温是零下1℃,则记作 ,若某时气温是零摄氏度,则记作 .19.中国历史上刘徽首先给出了正负数的定义,“今两算得失相反,要令正负以名之”.意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们.如果收入5000元记作5000+元,那么支出2000元记作 元.20.金星表面的白天平均温度为零上480℃,夜间平均温度为零下120℃.如果零上480℃记作480+℃,那么零下120℃应该记作 ℃.三、解答题21.某饮料公司生产的一种瓶装饮料,外包装上印有“60030mL ()±”的字样,那么“60030mL ()±”是什么含义?质检局对该产品抽查了5瓶,容量分别为603mL ,611mL ,588mL ,568mL ,628mL ,抽查的产品容量是否合格?22.如图,一只甲虫在55´的方格(每小格边长为1)上沿着网格线运动,他从A 处出发去看望B 、C 、D 处的其他甲虫,规定:向上向右走均为正,向下向左走均为负,如果从A 到B 记为14{}A B ®,,从B 到A 记为:}14{B A ®--,,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C ®{______,______},C B ® {______,______}:(2)若这只甲虫的行走路线为A B C D ®®®,请计算该甲虫走过的最短路程;(3)若图中另有两个格点M 、N ,且}15{M A a b ®--,,}52{M N a b ®--,,则A N ®应记为什么?直接写出你的答案.23.下列各数中,哪些是正数?哪些是负数?235,8,9,3,0,3,7,101311-+-+--.24.如果前进5km 记作+5km ,后退6km 记作-6km ,那么下列各数分别表示什么?(1)+8km(2)-4.5km25.某班抽查了10名同学的期末成绩,以90分为基准,超出的记为正数,不足的记为负数,记录结果如下:+7,﹣3,+10,﹣7,﹣9,﹣3,﹣8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于90分的所占的是多少?(3)10名同学的平均成绩是多少?26.(1)某人转动转盘,如果用5+圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 g 记作+0.02g ,那么- 0.03g 表示什么?(3)某大米包装袋上标注着“净含量:10kg 150g ±”,这里的“10kg 150g ±”表示什么?参考答案1.A2.D3.A4.A5.A6.C7.A8.B9.C10.D11.37-12.100-13.香草味14. 1.2-15.1+16.25(答案不唯一).17.106+°18.1-℃0℃19.2000-20.120-21.解:30mL +表示比600mL 多30mL ,30mL -表示比600mL 少30mL ;所以产品合格的容量为570mL 630mL ~这个范围内,所以抽查样品容量603mL ,611mL ,588mL ,568mL ,628mL ,只有568mL 不合格,其它的都合格.22.(1)解:图中{}3,4A C ®,{}2,0C B ®-故答案为:3,4;2-,0.(2)解:由已知可得:A B ®表示为{}1,4,B C ®记为{}2,0,C D ®记为{}1,2-,则该甲虫走过的路程为:1421210++++=.(3)解:由{}1,5M A a b ®--,{}5,2M N a b ®--,可知:()514a a ---=,()253b b ---=,∴点A 向右走4个格点,向上走3个格点到点N ,∴A N ®应记为()4,3.23.解:正数有:28,3,33++;负数有:35,9,7,10111----.24.(1)+8km 表示前进+8km ;(2)-4.5km 表示后退4.5km ;(3)0km 表示没有动25.解:(1)根据题意得:最高分为90+10=100分,最低分为90-9=81分;(2)低于90分的为87,83,81,87,82,共5个,一共有10个,510¸´100%=50% ,占的百分比为50%;(3)10名同学的平均成绩为110(+7﹣3+10﹣7﹣9﹣3﹣8+1+0+10+90×10)=89.8(分).26.解:(1)如果用5+圈表示沿逆时针方向转了5圈,则沿顺时针方向转了12圈记作12-圈;(2)超出标准质量0.02 g 记作+0.02g ,则0.03g -表示乒乓球的质量低于标准质量0.03g ;(3)每袋大米的标准质量应为10 kg ,但实际每袋大米可能有150 g 的误差,即最多超出标准质量150 g ,最少少于标准质量150 g .。
人教版数学七年级上册1.1《正数和负数》同步测试题(含解析)
《正数和负数》同步测试题一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣3的相反数是()A.13-B.13C.3-D.32.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的工件是()A.﹣3 B.﹣1 C.2 D.53.某地一天的最高气温是8 ℃,最低气温是-2 ℃,则该地这天的温差是( )A.-10℃B.10℃C.6℃D.-6℃4.一种面粉包装袋上的质量合格标识为“25±0.5kg”,则下列四袋面粉中不合格的是().A.24.5 kg B.25.5 kg C.24.8 kg D.26.1 kg5.下列对“0”的说法正确的个数是()①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定的意义,如0℃;④0是正数;⑤0是自然数.A.3个B.4个C.5个D.0个6.四个数-3.14,0,1,2中为负数的是()A.-3.14B.0C.1D.27.南、北为两个相反方向,如果+4m表示一个物体向北运动4m,那么3-m表示的是()A.向东运动3m B.向南运动3m C.向西运动3m D.向北运动3m 8.在3,1,1,3--这四个数中,比2-小的数是()A.3-B.1-C.1D.39.如果水位升高6m时水位变化记作+6m,那么水位下降3m时水位变化记作()A.-3m B.3m C.6m D.-6m10.下列具有相反意义的量的是()A.向西走20米与向南走30米B.胜2局与负三局C.气温升高3℃与气温为-3℃D.盈利8万元与支出8万元11.向东行进-50 m表示的意义是()A.向东行进50 m B.向南行进50 m C.向北行进50 m D.向西行进50 m12.在数0.25,12-,6,0,3-,100中,正数的个数是().A.1个B.2个C.3个D.4个二.填空题13.如果盈利100元记作+100元,那么亏损50元记作__________元.14.某地中午的气温是+3℃,晚上气温比中午下降了8℃,则该地晚上的气温是_____℃.15.若水位上升15米记作+15米,则下降5米记作______米.16.某地平均气温以26摄氏度为标准,统计员将某5天的气温简记为+3,0,-4,+5,-5,则这5天实际温度最高的是______摄氏度.三.解答题(解答应写出文字说明、证明过程或演算步骤)17.把下面有理数填在相应的大括号里:20,-52,23,-14,16,0,-99,5.6,45-正数:{ …};负数:{ …};18.将下列具有相反意义的量用线连起来.①向北走5米a胜球4个②输球3个b盈利5000元③低于海平面500米c运进100吨粮食④亏损1万元d向南走20米⑤运出300吨粮食e高于海平面400米19.把下列各数填入相应的大括号里:5,1-,0,6-,8+,0.3,132-,154+,0.72-,①正数集合:{ }.②整数集合:{ }.③负数集合:{ }.④分数集合:{ }.20.第三次G20财长和央行行长会议在成都举行,订制某品牌茶叶作为纪念品,该品牌茶叶加工厂接到一周生产任务为182kg,计划平均每天生产26kg,由于各种原因实际每天产量与计划量相比有出入,某周七天的生产情况记录如下(超产为正、减产为负):+3,﹣2,﹣4,+1,﹣1,+6,﹣5(1)这一周的实际产量是多少kg?(2)若该厂工人工资实行每日计件工资制,按计划每生产1kg茶叶50元,若超产,则超产的每千克奖20元;若每天少生产1kg,则扣除10元,那么该厂工人这一周的工资总额是多少?参考解析1.【解析】根据相反数的定义可得:-3的相反数是3.故选D.2.【解析】|-3|=3,|-1|=1,|2|=2,|5|=5,∵1<2<3<5,∴从轻重的角度来看,最接近标准的是记录为-1.故选B.3.【解析】根据题意算式,计算即可得到结果.根据题意得:8﹣(﹣2)=8+2=10,则该地这天的温差是10℃,故选B.4.【解析】质量标识为“25±0.5kg”表示25上下0.25即24.75到25.25之间为合格;分析答案可得26.1kg不在此范围内,不合格.故选D.5.【解析】①0是正数和负数的分界点;②0不只表示“什么也没有”;③0可以表示特定的意义,如0℃;④0不是正数;⑤0是自然数.所以,正确有①③⑤三个.故选A6.【解析】负数是指比零小的数,在一个正数的前面添加“-”号,就变成了负数,本题中-3.14是负数,1和2是正数. 故选A7.【解析】东、西为两个相反方向,如果−4m表示一个物体向西运动4m,那么3-m 表示的是向南运动3m,故选:B.-<-,故答案为:A.8.【解析】在这四个数中329.【解析】水位升高6m时水位变化记作+6m,那么水位下降3m时水位变化记作-3m,故选:A.10.【解析】A、向西和向东对应,故错误;B、正确;C、升高与下降对应,故错误;D、盈利和亏损对应,故错误.11.【解析】由题意得:“﹣”代表反向∴向东行进﹣50m的意思即是向西行进50m.故选D.12.【解析】0.25,6,100是正数.故选C.-元13.【解析】由正数与负数的意义得:亏损50元记作5014.【解析】中午的气温是+3℃,晚上气温比中午下降了8℃,则该地晚上的气温是3﹣8=﹣5(℃).15.【解析】若上升15米记作+15米,则下降5米记作-5米.16.【解析】由题意可得,这5天的实际温度分别为:26+3=29(℃),26+0=26(℃),26-4=22(℃),26+5=31(℃),26-5=21(℃),31>29>26>22>21,故这这5天实际温度最高的是31℃ .17.【解析】根据正数、负数、正整数、负分数的定义可得:正数有:20,23,16,5.6;负数有:-52,-14,-99,45 -;18.【解析】①向北走5米,d向南走20米②输球3个,a胜球4个③低于海平面500米,e高于海平面400米④亏损1万元,b盈利5000元⑤运出300吨粮食,c运进100吨粮食19.【解析】①正数集合:{5,+8,0.3,154+};②整数集合{5,-1,0,-6,+8 };③负数集合{-1,-6,132-,-0.72 };④分数集合{0.3,132-,154+,-0.72 };20.【解析】(1)∵七天的生产情况记录如下(超产为正、减产为负):+3,﹣2,﹣4,+1,﹣1,+6,﹣5,∴七天的生产情况实际值为:29kg、24kg、22kg、27kg、25kg、32kg、21kg.∴一周总产量:29+24+22+27+25+32+21=180(kg).答:这一周的实际产量是180kg;(2)26×50+3×20+(26﹣2)×50+10×(﹣2)+(26﹣4)×50+(﹣4)×10+26×50+1×20+(26﹣1)×50+(﹣1)×10+26×50+6×20+(26﹣5)×50+(﹣5)×10=8580(元)答:该厂工人这一周的工资总额是8580元.。
2024-2025学年人教版七年级数学上册《1.1正数和负数》自主学习同步练习题(附答案)
2024-2025学年人教版七年级数学上册《1.1正数和负数》自主学习同步练习题(附答案)一、单选题1.下面四个选项中,不具有相反意义的量的是()A.借贷5万元与还贷6万元B.高出海平面8888米与低于海平面188米C.亏损2万元与盈利8万元D.增产10吨粮食与减产−10吨粮食2.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下9℃可记作()A.0℃B.−9℃C.9℃D.−10℃3.温度由z变为+2℃,表示温度()A.上升了2℃B.下降了2℃C.上升了z D.下降了z4.一条东西走向的道路上,若向东走5米记作“+5米”,则“−3米”表示()A.向东走3米B.向西走−3米C.向西走5米D.向西走3米5.中国是最早采用正负数表示相反意义的量的国家.成都实行的“新中考”中“引体向上”项目男生满分标准为15次,若在平时训练时小成把18次记为+3,则应把14次记为()A.−1B.0C.+1D.+26.小慧和小谷玩猜字游戏,规则为:胜一次记作“+1”分,平局记作“0”分,负一次记作“−1”分.猜字两次后,小慧得分为+2分,则小谷此时的得分为()A.+2B.−2C.+1D.−17.古人都讲“四十不惑”,如果以40岁为基,张明60岁,记为+20岁,那么王横25岁,记为()A.25岁B.−25岁C.−15岁D.+15岁8.人体的正常体温大约为36.5℃,如果低于正常体温0.5℃记作−0.5℃;那么高于正常体温0.8℃应该记作()A.−0.8℃B.+0.8℃C.−37.3℃D.+37.3℃二、填空题9.气球上升10米,记作+10米,那么−3米表示.10.若−12元表示亏损12元,则+31元表示.11.如果公元前121年记作−121年,那么公元后2024年应记作年.12.在数5.7,−15,0,7,−6,25%,−823中,负数一共有个.13.某食品包装袋上标有“净含量385±5”,379克是否合格?(填“是”或“不是”)14.一次考试中,老师采取一种记分制:得120分记为+20分,李明的成绩记为−8分,那么他的实际得分为.15.一种零件标明的要求是5±0.03(单位:mm),表示这种零件的标准尺寸为mm,该零件的最大直径不超过mm,最小不少于mm,方为合格产品.16.世界上最冷的地方在南极洲,全洲年平均气温为零下二十五摄氏度,记作()℃,世界上最热的地方是非洲埃塞俄比亚的达洛尔地区,年平均气温高达三十四点四摄氏度,记作()℃.三、解答题17.写出与下面各量具有相反意义的量,并用正负数表示.(1)气温是零上8℃,零上为正;(2)向南走200米,向南为负;(3)转动转盘,顺时针转动5圈,顺时针旋转为正;(4)高于海平面8米,高于海平面为正.18.把下列具有相反意义的量用线连接起来.前进20米收入300元运出250吨盈利0元上升6°C后退50米支出100元运进800吨亏损20元下降1°C19.(1)如果节约20kW⋅h电记作+20kW⋅h,那么浪费10kW⋅h电记作什么?(2)如果−20.50元表示亏本20.50元,那么+100.57元表示什么?(3)如果+20%表示增加20%,那么−6%表示什么?20.某班同学的标准身高为170cm,如果用正数表示身高高于标准身高的高度.那么:(1)5cm和−13cm各表示什么?(2)身高低于标准身高10cm和高于标准身高8cm各怎么表示?(3)既不高于标准身高,也不低于标准身高怎么表示?21.某防洪大堤所标的警戒水位是37m,规定在记录每天的水位时,高于警戒水位的部分记为正数,低于警戒水位的部分记为负数.(1)若夏季某一天的水位为41m,则应记为多少?若冬季某一天的水位为32m,则应记为多少?(2)若夏季某一天的水位记为+3.8m,则实际水位是多少?若冬季某一天的水位记为−1.8m,则实际水位是多少?(3)若冬季某一天的水位记为−1.5m,第二天一场雨后水位上升0.2m,此时水位应记为多少?实际水位又是多少?参考答案:1.解:A、借贷5万元与还贷6万元是具有相反意义的量,故A不符合题意;B、高出海平面8888米与低于海平面188米,具有相反意义的量,故B不符合题意;C、亏损2万元与盈利8万元,具有相反意义的量,故C不符合题意;D、增产10吨粮食与减产−10吨粮食,因为减产−10吨粮食相当于增产10吨粮食,所以是不具有相反意义的量,故D符合题意;故选:D.2.解:∵零上10℃记作+10℃,∴零下9℃可记作−9℃.故选:B3.解:∵温度由z变为+2℃,∴表示温度上升了2℃,故选:A.4.解:∵向东走5米记作“+5米”,∴“−3米”表示向西走3米,故选D.5.解:∵“新中考”中“引体向上”项目男生满分标准为15次,若在平时训练时小成把18次记为+3,∴应把14次记为−1,故选:A.6.解:∵猜字两次后,小慧得分为+2分,∴小谷负了两次,∴小谷此时的得分为−2.故选∶B.7.解:由题意得:王横25岁,记为−15岁,故选:C.8.解:体温低于正常体温0.5℃记作−0.5℃;那么高于正常体温0.8℃应该记作+0.8℃,故选:B.9.解:如果气球上升10米,记作+10米,那么−3米表示气球下降3米.故答案为:气球下降3米.10.解:−12元表示亏损12元,则+31表示盈利31元.故答案为:盈利31元.11.解:公元前121年记作−121年,那么公元后2024年应记作+2024年;故答案为:+2024.12.解:−15,−6,−823均为负数,共3个,故答案为:3.13.解:由题意得,净含量不低于385−5克,不高于385+5克,即合格范围是380~390克,因为379<380,所以379克不是合格,故答案为:不是.14.解:∵把120分的成绩记为+20分,∴100分为基准点.∵李明的成绩记为−8分,∴100−8=92(分).故答案为:92分.15.解:5±0.03mm意思是这种零件的标准尺寸为5mm,直径最大不超过(5+0.03)= 5.03mm,最小不低于(5−0.03)=4.97mm,故答案为:5;5.03;4.97.16.解:零下二十五摄氏度记作−25℃,三十四点四摄氏度34.4℃,故答案为:−25,34.4.17.(1)解:依题意,气温是零下8℃,即−8℃;(2)解:依题意,向北走200米,+200米(3)解:依题意,逆时针转动转盘5圈,即−5圈(4)解:依题意,低于海平面8米,即−8米18.见详解【分析】相反意义的量指的是:具有相反意义,有数量(数量可以相等,也可以不相等),成对出现,由此即可求解.【详解】解:根据相反意义的量的含义得,19.解:(1)节约与浪费是具有相反意义的量,若节约20kW⋅h电记作+20kW⋅h,那么浪费10kW⋅h电记作−10kW⋅h;(2)盈利与亏本是具有相反意义的量,若−20.50元表示亏本20.50元,那么+100.57元表示盈利100.57元;(3)增加和减少是具有相反意义的量,若+20%表示增加20%,那么−6%表示减少6%.20.解:(1)5cm表示比标准身高高5cm;−13cm表示比标准身高低13cm;(2)身高低于标准身高10cm表示为−10cm;身高高于标准身高8cm表示为+8cm;(3)既不高于标准身高,也不低于标准身高表示为0.21.解:(1)41−37=+4,故水位为41m,应记为+4m;37−32=5,水位为32m,应记为−5m;(2)37+3.8=40.8,实际水位是40.8m;37−1.8=35.2,实际水位是35.2m;(3)37−1.5+0.2=35.7,实际水位是35.7m.。
人教版七年级数学上学期 1. 1正数和负数 同步练习
1.1 正数和负数一.选择题1.在0,﹣1,3,﹣0.1,0.08中,负数的个数是()A.1B.2C.3D.42.如果收入10元记作+10元,那么支出10元记作()A.+20 元B.+10元C.﹣10元D.﹣20元3.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.﹣2℃B.+2℃C.+3℃D.﹣3℃4.一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()A.B.C.D.5.规定一个物体向上移动1m,记作+1m,则这个物体向下移动了2m,可记作()A.﹣2m B.2m C.3m D.﹣1m6.《九章算术》中注有“今两算得失相反,要令正负以名之.”意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入120元记作+120,则﹣40元表示()A.收入40元B.收入80元C.支出40元D.支出80元7.如果收入1000元记作+1000元,那么支出300元记作()A.﹣300 元B.+300 元C.1300 元D.+1300 元8.规定:(↑30)表示零上30摄氏度,记作+30,(↓8)表示零下8摄氏度,记作()A.+8B.﹣8C.+D.﹣9.如果零上15℃记作+15℃,那么零下3℃可记为()A.﹣3℃B.+3℃C.﹣12℃D.12℃二.填空题10.如果收入100元记作+100元,则支出20元记作元.11.每袋大米以50kg为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第4袋大米的实际质量是kg.12.某规格的钢管长度范围是“10m±1mm”,则钢管长度范围应是m~10.001m.13.如果把一个物体向前移动5m记作+5m,那么这个物体向后移动4m记作m.14.如果用+3℃表示温度升高3摄氏度,那么温度降低2摄氏度可表示为.15.中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为吨.16.在90%,+8,0,﹣15,﹣0.7,+,19中正数有个.17.某同学计划在假期每天做6道数学题超过的题数记为正数,不足的题数记为负数,十天中做题记录如下:﹣3,5,﹣4,2,﹣1,1,0,﹣3,8,7,那么他十天共做的数学题有道.18.某检修小组乘检修车沿检修公路检修线路,约定前进为正,后退为负,某天自A地出发到收工时所走的路程为(单位汗米):+10,﹣3,+4,+2,﹣8,+13,﹣2,+12,+8,+5.若检修车每千米耗油0.2升,则从A地出发到收工时共耗油升.19.检查商店出售的袋装白糖,白糖每袋按规定重500g,一袋白糖重499g,就记作﹣1g,如果一袋白糖重503g,应记作.三.解答题20.在新型冠状病毒疫情期间,某粮店购进标有50千克的大米5袋,可实际上每袋都有误差,若超出部分记为正数,不足部分记为负数,那么这5袋大米的误差如下(单位:千克):+0.2,﹣0.1,﹣0.5,+0.6,+0.3(1)这5袋大米总计超过多少千克或不足多少千克?(2)这5袋大米总重量多少千克?21.超市购进8筐白菜,以每筐25kg为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?参考答案一.选择题1.B.2.C.3.A.4.D.5.A.6.C.7.A.8.B.9.A.二.填空题10.﹣20.11.51.1.12.9.999.13.﹣4.14.﹣2℃.15.﹣8.16.4.17.72.18.13.4.19.+3g.三.解答题20.解:(1)与标准重量比较,这5袋大米总计超过+0.2﹣0.1﹣0.5+0.6+0.3=0.5(千克).故这5袋大米总计超过0.5千克;(2)5×50+0.5=250.5(千克).故这5袋大米总重量250.5千克.21.解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),答:以每筐25千克为标准,这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),25×8﹣5.5=194.5(千克),答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元),583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.。
新人教版数学七年级上册同步练习(分章节全册)含答案
新人教版数学七年级上册同步练习(分章节全册)含答案1.1 正数和负数知识点 1 正数和负数的概念 1.下列各数中,是负数的是( ) A .2B.12C .0D .-0.22.在-2,-3,0,1四个数中,既不是正数也不是负数的是( ) A .-3 B .-2C .0D .13.在数-1,0,0.2,17,3中,正数一共有________个.知识点 2 用正数和负数描述相反意义的量 4.2018·绍兴 若向东走2 m 记为+2 m ,则向西走3 m 可记为( ) A .+3 m B .+2 m C .-3 mD .-2 m5.2017·太和县一模 中国人很早就开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果盈利50元记作+50元,那么亏损30元记作( )A .-30元B .-50元C .+50元D .+30元6.在下列横线上填上适当的词,使前后构成具有相反意义的量: (1)收入1500元,________5000元;(2)________60 米,下降24米;(3)减少60 kg,________80 kg.7.如果运进大米40千克记为+40千克,那么-45千克表示__________________.8.用正数和负数表示下列问题中的数据:(1)节约水10 m3,浪费水0.5 m3;(2)向油罐车里注入汽油4 t,放出汽油1.8 t;(3)赤道地区的年平均气温是零上32 °C,南极大陆中部某地的年平均气温是零下56 °C.9.在体育课的跳远比赛中,以4.00米为标准,若小明跳出了4.22米,可记作+0.22米,则小东跳出了3.85米,记作()A.-0.15米B.+0.22米C.+0.15米D.-0.22米10.如图1-1-1是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()图1-1-1A.45.02B.C.44.98D.45.0111.下表是某年5月的11—20日我国50个城市主要食品平均价格变动情况:12.体育课上,某学校对九年级男生进行了引体向上测试,以能做7个为标准,超过的个数记为正,不足的个数记为负,其中8名男生的成绩(单位:个)如下:2,-1,0,3,-2,-3,1,0.(1)求这8名男生引体向上测试成绩的达标率;(2)他们共做了多少个引体向上?详解详析1.D 2.C3.3 [解析] 正数有0.2,17,3,共3个.4.C 5.A6.(1)支出 (2)上升 (3)增加 7.运出大米45千克8.解:(1)若节约为正,浪费为负,则节约水10 m 3记作+10 m 3,浪费水0.5 m 3记作-0.5 m 3.(2)若注入为正,放出为负,则注入汽油4 t 记作+4 t ,放出汽油1.8 t 记作-1.8 t. (3)若零上为正,零下为负,则零上32 ℃记作+32 ℃,零下56 °C 记作-56 °C. 9.A [解析] 根据高于标准记为正,可得低于标准记为负,以4.00米为标准,若小明跳出了4.22米,可记作+0.22米,则小东跳出了3.85米,记作-0.15米.10.B [解析] 因为45+0.03=45.03(mm),45-0.04=44.96(mm), 所以零件的直径的合格范围是44.96 mm ≤零件的直径≤45.03 mm. 因为44.9 mm 不在该范围之内,所以不合格的是B.11.解:大米平均价格与上期相比没有变化;面粉平均价格比上期跌了0.2%;豆制品平均价格比上期涨了0.3%;花生油平均价格比上期跌了0.4%.12.解:(1)因为8名男生中有5名引体向上的成绩为正数或0,所以达标率为58×100%=62.5%.(2)(7+2)+(7-1)+7+(7+3)+(7-2)+(7-3)+(7+1)+7=56(个), 所以他们共做了56个引体向上.1.2.1 有理数知识点 1 有理数的有关概念1.下列各数中,不是有理数的是( ) A .-3.14B .0C.73D .π2.下列既是分数又是负数的是( ) A .-3.1B .-13C .0D .2.43.有下列各数:3,-5,-12,0,2,0.97,-0.21,-6,9,23,85,1,其中正数有________个,负数有________个,正分数有________个,负分数有________个.4.在适当的空格里打上“√”号.5.下列说法错误的是( ) A .负整数和负分数统称为负有理数B.正整数、负整数和0统称为整数C.正有理数和负有理数统称为有理数D.0是整数,但不是分数6.给出一个有理数-1.2及下列判断:(1)这个数不是分数,但是有理数;(2)这个数是负数,也是分数;(3)这个数与π一样,不是有理数;(4)这个数是一个负小数,也是负分数.其中正确的个数是()A.1 B.2 C.3 D.47.已知数:-13,0.2·51·,260,-2019,56,-53%,0.将它们填到下面相应的集合圈内.(1)图1-2-1(2)图1-2-2(3)图1-2-38.请用两种不同的分类标准将下列各数分类: -15,+6,-2,-0.9,1,35,0,314,0.63,-4.95.9.将一串有理数按下列规律排列,回答下列问题:图1-2-4(1)在A 位置的数是正数还是负数? (2)A ,B ,C ,D 中哪个位置的数是负数?(3)第50个数是正数还是负数?排在对应A ,B ,C ,D 中的哪个位置?详解详析1.D [解析] 有理数是指分数和整数,π既不是整数,也不能化成分数,所以π不是有理数.2.A3.7 4 2 2 [解析] 根据有理数的有关概念进行判断,其中3,2,0.97,9,23,85,1是正数,共7个;-5,-12,-0.21,-6是负数,共4个;0.97,23是正分数,共2个;-12,-0.21是负分数,共2个. 4.为正有理数、0和负有理数.C 中缺少了0,所以C 的说法是错误的.6.B 7.解:(1)(2)(3)8.解:分类一:⎩⎪⎨⎪⎧整数:-15,+6,-2,1,0;分数:-0.9,35,314,0.63,-4.95. 分类二:⎩⎪⎨⎪⎧正数:+6,1,35,314,0.63;0;负数:-15,-2,-0.9,-4.95.说明:若按其他分类标准分类,只要分类正确也可. 9.解:(1)在A 位置的数是正数. (2)B和D 位置的数是负数. (3)第50个数是正数,排在C 位置.1.2.2 数轴知识点 1数轴的概念及画法1.关于数轴,下列说法最准确的是()A.是一条直线B.是有原点、正方向的一条直线C.是有单位长度的一条直线D.是规定了原点、正方向、单位长度的一条直线2.下列各语句中,正确的是()A.数轴上的单位长度可以不一样长B.数轴的单位长度必须是1厘米C.数轴的正方向必须向右D.数轴上原点的位置可以是任意的3.图1-2-5中,所画数轴正确的是()图1-2-5知识点 2读出数轴上表示的数4.如图1-2-6,数轴上点M表示的数可能是()图1-2-6 A.-4.5 B.-2.5 C.-3.5 D.3.55.有理数a ,b ,c 在数轴上对应的点的位置如图1-2-7所示,则下列说法正确的是( )图1-2-7A .a ,b ,c 是负数B .a ,b ,c 是正数C .a ,b 是负数,c 是正数D .a 是负数,b ,c 是正数6.指出如图1-2-8所示的数轴上A ,B ,C ,D ,O 各点分别表示什么数.图1-2-8知识点 3 在数轴上表示数7.(1)数轴上表示4的点在原点的________边,与原点的距离是________个单位长度; (2)数轴上表示-4的点在原点的________边,与原点的距离是________个单位长度; (3)与原点的距离是4个单位长度的点有______个,它们分别表示数________和________.8.如图1-2-9,在数轴上表示-2的点是( )图1-2-9A .点AB .点BC .点CD .点D9.在数轴上表示数-2,0,6.3,15的点中,在原点右边的点有( )A. 0个B. 1个C. 2个D. 3个10.数轴上,在原点的左侧,距原点6个单位长度的点表示的数为________. 11.如图1-2-10,数轴上的点P 表示的数是-1,将点P 向右移动3个单位长度得到点P′,则点P′表示的数是________.图1-2-1012.在数轴上画出表示下列各数的点: -2,212,3.5,0,-0.5,+74.图1-2-1113.下列说法中正确的是( )A .数轴上一个点可以表示两个不同的有理数B .数轴上两个不同的点可以表示同一个有理数C .有的有理数不能表示在数轴上,如-0.00005D .任何一个有理数都可以在数轴上找到和它对应的唯一的一个点14.如图1-2-12,数轴上有A ,B ,C 三个点,若点C 表示的数是2,点B 表示的数是4,则点A 表示的数是________.图1-2-1215.已知点A在数轴上的位置如图1-2-13所示,点B也在数轴上,且A,B两点之间的距离是2,则点B表示的数是________.图1-2-1316.如图1-2-14,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm”和“8 cm”分别对应数轴上的-3和x,那么x的值为________.图1-2-1417.A,B,C,D四名同学的家和学校在同一条街上,以学校为原点,四名同学的家与学校之间的位置分别记作210米,-700米,300米,-450米.(1)画一条数轴,并把四名同学家的位置标在数轴上;(2)指出谁家离学校最近,谁家离学校最远.18.超市、书店、玩具店依次坐落在一条东西走向的大街上,超市在书店西边20米处,玩具店在书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、玩具店的位置以及小明最后的位置.19.(1)借助数轴,回答下列问题:①从-1到1有3个整数,分别是________________________________________________________________________;②从-2到2有5个整数,分别是________________________________________________________________________;③从-3到3有7个整数,分别是________________________________________________________________________;④从-200到200有________个整数;⑤从-n到n有________个整数(n≥1,且n为整数).(2)根据以上规律,直接写出从-2.9到2.9有________个整数,从-10.1到10.1有________个整数.(3)在单位长度是1 cm的数轴上随意画一条长为1000 cm的线段AB,则线段AB盖住的整数点有____________个.20.2017·吴兴区期中操作探究:已知在纸面上有一条数轴(如图1-2-15所示).操作一:(1)折叠纸面,使表示数1的点与表示数-1的点重合,则表示数-3的点与表示数________的点重合.操作二:(2)折叠纸面,使表示数-1的点与表示数3的点重合,回答以下问题:①表示数5的点与表示数________的点重合;②若数轴上A,B两点之间的距离为11(点A在点B的左侧),且A,B两点经折叠后重合,求A,B两点表示的数分别是多少.图1-2-15详解详析1.D 2.D3.D [解析] A 选项没有指明正方向,所以不正确;B 选项漏掉了原点,所以不正确;C 选项负数排列错误,所以不正确;D 选项正确.4.C 5.D6.解:点A 表示的数为-2.5,点B 表示的数为-0.5,点C 表示的数为2,点D 表示的数为2.5,点O 表示的数为0.7.(1)右 4 (2)左 4 (3)2 4 -4 8.A9.C [解析] 原点右边的点表示的数是正数,在-2,0,6.3,15中,6.3和15是正数.10.-6 [解析] 在原点的左侧,说明这个点表示的数是一个负数,距原点6个单位长度,则这样的点表示的数为-6.11.212.解:如图所示:13.D [解析] 所有的有理数都可以在数轴上找到唯一的一个点与之对应,在同一条数轴上,不同的点不能表示同一个有理数.14.-2 [解析] 因为点C 表示的数是2,点B 表示的数是4,所以数轴上每两个相邻刻度线之间的线段长为一个单位长度.因为点C 往左两个单位长度处是原点,而点A 距点C 四个单位长度,所以点A 表示的数是-2.15.-5或-116.5 [解析] 刻度尺上的8 cm 到数轴上原点的距离是5,所以x 的值是5. 17.解:(1)画数轴如下:(2)A同学的家离学校最近,B同学的家离学校最远.18.[解析] 以向东为正方向,书店为原点画数轴,规定1个单位长度代表10米长,然后根据数轴表示数的方法在数轴上分别表示出超市、书店、玩具店和小明最后的位置.解:(数轴画法不唯一)以向东为正方向,书店为原点画数轴,规定1个单位长度代表10米长.由于小明从书店出来沿街向东走了50米,接着又向东走了-80米,则小明最后的位置在书店西边30米处,如图所示.19.(1)①-1,0,1②-2,-1,0,1,2③-3,-2,-1,0,1,2,3④401⑤(2n+1)(2)521(3)1000或100120.解:(1)因为表示数1的点与表示数-1的点重合,所以折痕过原点.所以表示数-3的点与表示数3的点重合.故答案为3.(2)①因为表示数-1的点与表示数3的点重合,所以折痕过表示数1的点.所以表示数5的点与表示数-3的点重合.故答案为-3.②由题意可得A,B两点到折痕所在直线的距离均为11÷2=5.5.因为折痕过表示数1的点,所以A ,B 两点表示的数分别是-4.5,6.5.1.2.3 相反数知识点 1 相反数的意义1.如图1-2-16,数轴上表示3的点是点________,表示-3的点是点________,它们到原点O 的距离________(填“相等”或“不相等”),所以3与-3互为__________.图1-2-162.2018·绥化 -32的相反数是( )A .1.5B.23C .-1.5D .-233.一个数a 的相反数是5,则a 的值为( ) A.15B .5C .-15D .-54.2017·贵阳 在1,-1,3,-2这四个数中,互为相反数的是( ) A .1与-1 B .1与-2 C .3与-2D .-1与-25.如图1-2-17,数轴上表示数-2的相反数的点是( )图1-2-17A .点PB .点QC .点MD .点N6.如图1-2-18,表示互为相反数的两个数在数轴上的对应点是____________.图1-2-187.写出下列各数的相反数: 11.2,9,0,-58,423.8.写出5,4,-3的相反数,并在如图1-2-19所示的数轴上表示出各数及它们的相反数.图1-2-19知识点 2 利用相反数的意义化简符号9.-(+5)表示________的相反数,即-(+5)=________;-(-5)表示________的相反数,即-(-5)=________.10.化简-(-6)的结果为( )A .6B .-6C.16 D .-1611.下列各式中,化简正确的是( ) A .+(-7)=7B .+(+7)=-7C .-(+7)=-7D .-(-7)=-712.下列四组数中,互为相反数的一组是( ) A .+2与-3B .-8与+8C .-(-2)与2D .+(-1)与-(+1)13.化简:(1)-(+8); (2)-(+2.7);(3)-(-3); (4)-⎝⎛⎭⎫-34.14.若一个数的相反数不是正数,则这个数一定是( ) A .正数 B .正数或零 C .负数 D .负数或零 15.下列说法正确的有( )①-x 一定是负数;②任何一个有理数都有相反数;③只有正数和负数才能互为相反数;④互为相反数的数是指两个不同的数;⑤符号不同的两个数互为相反数.A .1个B .2个C .3个D .4个16.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是6个单位长度,那么这个数是()A.6或-6 B.3或-3C.6或-3 D.-6或317.如图1-2-20,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则与点A表示的数互为相反数的是()图1-2-20A.-2 B.3 C.-3 D.218. 若x-1与-5互为相反数,则x的值为________.19.化简下列各式的符号,并回答问题:-[-(-4)]=________;-[-(+3.5)]=________;-{-[-(-5)]}=________;-{-[-(+5)]}=________.(1)当+5前面有2020个负号时,化简后的结果是多少?(2)当-5前面有2019个负号时,化简后的结果是多少?你能总结出什么规律?20.在数轴上点A表示7,点B,C表示的数互为相反数,且点C与点A的距离为2,求点B,C表示的数分别是什么.21.小李在做题时,画一条数轴,数轴上原有一点A,其表示的数是-3,由于一时粗心,把数轴的原点标错了位置,使点A正好落在-3的相反数的位置.想一想:要把这条数轴画正确,原点应向哪个方向移动几个单位长度?22.已知表示数a的点在数轴上的位置如图1-2-21所示.图1-2-21(1)在数轴上标出表示数a的相反数的点的位置;(2)若表示数a的点与表示其相反数的点相距20个单位长度,则a是多少?(3)在(2)的条件下,若表示数b的点与表示数a的相反数的点相距5个单位长度,求b 是多少.详解详析1.A B相等相反数2.A3.D[解析] -5的相反数是5,故a=-5.故选D.4.A5.A[解析] 因为-2的相反数是2,数2在数轴上的对应点为点P.故选A. 6.点B和点C7.解:11.2的相反数是-11.2,9的相反数是-9,0的相反数是0,-58的相反数是58,423的相反数是-423.8.解:5,4,-3的相反数分别是-5,-4,3.在数轴上表示如图所示.9.5-5-5510.A11.C[解析] 看数字前面负号的个数,若有偶数个,则结果为正;若有奇数个,则结果为负.12.B[解析] 根据相反数的定义:A项,+2的相反数是-2,错误;B项,-8的相反数是+8,正确;C项,-(-2)的相反数是-2,错误;D项,+(-1)的相反数是1,错误.13.解:(1)因为+8的相反数是-8,所以-(+8)=-8.(2)类似地,-(+2.7)=-2.7.(3)因为-3的相反数是3,所以-(-3)=3. (4)类似地,-⎝⎛⎭⎫-34=34. 14.B [解析] 一个数的相反数不是正数,则这个数的相反数是负数或零,故这个数一定是正数或零.15.A [解析] 当x 是一个负数时,-x 就是正数,①错;0的相反数是0,③④错;只有符号不同,其余完全相同的两个数才互为相反数,⑤错.16.B [解析] 因为这两个互为相反数的数对应的点之间的距离为6个单位长度,并且它们到原点的距离相等,故这两个数为3和-3.17.D [解析] 点C 表示的数是1,向左移动5个单位长度到点B ,则点B 表示的数是-4,点B 向右移动2个单位长度到点A ,则点A 表示的数是-2,-2的相反数是2.18.6 [解析] 因为x -1与-5互为相反数,又-5的相反数是5,所以x -1=5,解得x =6.19.解:-4 3.5 5 -5(1)当+5前面有2020个负号时,化简后的结果是5. (2)当-5前面有2019个负号时,化简后的结果是5.规律:在一个数的前面有偶数个负号,化简结果是其本身;在一个数的前面有奇数个负号,化简结果是这个数的相反数.20.解:因为数轴上点A 表示7,点C 与点A 的距离为2,所以数轴上点C 表示5或9.因为点B ,C 表示的数互为相反数,所以数轴上点B 表示-5或-9. 所以点B ,C 表示的数分别是-5,5或-9,9.21.解:要把这条数轴画正确,原点应向右移动6个单位长度. 22.解:(1)如图:(2)a 是-10.(3)由(2)知-a =10.当表示数b 的点在表示数-a 的点的右边时,b =10+5=15; 当表示数b 的点在表示数-a 的点的左边时,b =10-5=5. 综上可得,b 是5或15.1.2.4 第1课时 绝对值知识点 1 绝对值的意义1.数轴上表示2的点到原点的距离是________,所以|2|=________;数轴上表示-2的点到原点的距离是________,所以|-2|=________;数轴上表示0的点到原点的距离是________,所以|0|=________.2.2017·株洲 如图1-2-22,数轴上点A 所表示的数的绝对值为( )图1-2-22A .2B .-2C .±2D .以上均不对3.|-2020|的意义是数轴上表示数________的点到原点的距离. 知识点 2 绝对值的性质 4.-2的绝对值是( ) A .-2 B .-12C.12D .25.⎪⎪⎪⎪-15等于( ) A .-15 B.15C .5D .-56.一个数的绝对值等于3,则这个数是( ) A .3B .-3C .±3D.137.下列说法正确的是( ) A .绝对值等于它本身的数只有0 B .绝对值等于它本身的数是正数 C .绝对值等于它本身的数有0和正数 D .绝对值等于它本身的数的相反数是负数 8.任何一个有理数的绝对值一定( ) A .大于0B .小于0C .不大于0D .不小于09.求-2,-13,7.2,0,8的绝对值.10.已知x =8,y =-2,求|x |-4|y |的值.知识点 3绝对值的应用11.某家企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.0021升的误差,现抽查6瓶食用调和油.超过规定净含量的部分记作正数,不足规定净含量的部分记作负数,结果如下(单位:升):+0.0019,-0.0022,+0.0021,-0.0015,+0.0024,-0.0009.请用绝对值的知识说明这6瓶食用调和油中有几瓶符合要求.12.已知零件的标准直径是100 mm,超过标准直径的数量(mm)记作正数,不足标准直径的数量(mm)记作负数,检验员某次抽查了五件样品,检查结果如下:(1)(2)如果规定误差的绝对值在0.18 mm之内的是优品,误差的绝对值在0.18 mm~0.22 mm之间(包括0.18 mm和0.22 mm)的是次品,误差的绝对值超过0.22 mm的是废品,那么这五件样品分别属于哪类产品?13.⎪⎪⎪⎪-13的相反数是( ) A.13B .-13C .3D .-314.如图1-2-23,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是( )图1-2-23A .-4B .-2C .0D .415.一个数a 在数轴上的对应点在原点左边,且|a |=4,则a 的值为( ) A .4或-4B. 4C .-4D .以上都不对16.(1)-3的绝对值的相反数是________;(2)若一个数的相反数的绝对值是3,则这个数是________. 17.计算:(1)|-35|+|+21|+|-27|;(2)|-345|-|-45|+|-312|;(3)|-49|×|-21 7|.18.已知|x+2|+|y-3|=0.(1)求x,y的值;(2)求|x|+|y|的值.19.出租车司机小李某天下午的营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午的行驶情况(单位:千米)如下:+15,-3,+14,-11,+10.若出租车耗油量为0.06升/千米,则这天下午出租车共耗油多少升?20.数学老师出了如下一道计算题,孙良看了看说:“这么多数怎么算啊?”请聪明的你来帮他解决吧!写出你的解题过程.计算:⎪⎪⎪⎪1-12+⎪⎪⎪⎪12-13+⎪⎪⎪⎪13-14+|14-15|+…+⎪⎪⎪⎪12017-12018+⎪⎪⎪⎪12018-12019.详解详析1.2 2 2 2 0 0 2.A 3.-2020 4.D 5.B6.C [解析] 因为||a =3,所以a =±3.故选C. 7.C 8.D9.解:|-2|=2,⎪⎪⎪⎪-13=13,|7.2|=7.2,|0|=0,|8|=8. 10.解:当x =8,y =-2时,|x|-4|y|=|8|-4×|-2|=8-4×2=0. 11.解:因为|+0.0019|=0.0019<0.0021, |-0.0022|=0.0022>0.0021, |+0.0021|=0.0021, |-0.0015|=0.0015<0.0021, |+0.0024|=0.0024>0.0021, |-0.0009|=0.0009<0.0021,绝对值小于或等于0.0021的是符合要求的,所以这6瓶食用调和油中有4瓶符合要求. 12.解:(1)因为|0.1|=0.1,|-0.15|=0.15,|-0.2|=0.2,|-0.05|=0.05,|-0.25|=0.25,且0.05<0.1<0.15<0.2<0.25, 所以第4件样品的大小最接近标准.(2)因为|0.1|=0.1<0.18,|-0.15|=0.15<0.18,|-0.05|=0.05<0.18,所以第1,2,4件样品是优品;因为|-0.2|=0.2,0.18<0.2<0.22,所以第3件样品是次品; 因为|-0.25|=0.25>0.22,所以第5件样品是废品.13.B [解析] 因为⎪⎪⎪⎪-13=13,13的相反数是-13,所以⎪⎪⎪⎪-13的相反数是-13.故选B. 14.B 15.C16.(1)-3 (2)±317.[解析] 先根据绝对值的意义化去绝对值符号,再计算. 解:(1)原式=35+21+27=83. (2)原式=345-45+312=612.(3)原式=49×157=105.18.解:(1)由题意,得x +2=0,y -3=0, 解得x =-2,y =3.(2)|x|+|y|=|-2|+|3|=2+3=5.19.解:出租车共行驶:|+15|+|-3|+|+14|+|-11|+|+10|=15+3+14+11+10=53(千米),所以共耗油:53×0.06=3.18(升). 答:这天下午出租车共耗油3.18升.20.解:原式=1-12+12-13+13-14+14-15+…+12017-12018+12018-12019=1-12019=20182019.1.2.4 第2课时 有理数的大小比较知识点 1借助数轴比较有理数的大小1.冬季某天,我国三个城市的最高气温分别是-9 °C,1 °C,-4 °C,通过观察温度计,可以把它们从低到高排列为________________;若是在数轴上表示-9,1,-4这三个数,通过观察数轴,可以发现它们从左到右排列为________.由此我们发现,在数轴上左边的数总是________右边的数.2.已知有理数a,b,c在数轴上对应的点的位置如图1-2-24所示,则下列关系正确的是()A.a>b>c>0 B.b>c>0>aC.b>0>c>a D.b>0>a>c1-2-243.如图1-2-25,下列各点表示的数中,比1大的数对应的点是()1-2-25A.A B.B C.C D.D4.画出数轴,把下列各数在数轴上表示出来,并用“<”号把各数连接起来:-2.5,1,0,-2,3,-4,1.5.知识点 2运用法则比较有理数的大小5.2018·广东在有理数0,13,-3.14,2中,最小的数是()A .0B.13C .-3.14D .26.下列各数中,比-2小的数是( ) A .-3B .-1C .0D .17.2017·咸宁 下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是( )A.C .隐水洞D .三湖连江8.比较-12,-13,14的大小,结果正确的是( )A .-12<-13<14B .-12<-13C.14<-13<-12D .-13<-12<149.比较下列各组数的大小: (1)3与-7; (2)-5.3与-5.4;(3)-38与-58.10.下列有理数的大小关系正确的是( ) A .-0.2>-0.02 B .|-36|<0 C .-|10|>|-5| D .-⎝⎛⎭⎫-12>-⎪⎪⎪⎪-13 11.2018·攀枝花 如图1-2-26,有理数-3,x ,3,y 在数轴上的对应点分别为M ,N ,P ,Q ,这四个数中绝对值最小的数对应的点是( )A .MB .NC .PD .Q12.2017·红桥区一模 有理数a ,b 在数轴上的对应点的位置如图1-2-27所示,则a ,b ,-a ,|b |的大小关系正确的是( )图1-2-27A .|b |>a >-a >bB .|b |>b >a >-aC .a >|b |>b >-aD .a >|b |>-a >b13.下面各数的大小排列正确的是( ) A .0<-⎝⎛⎭⎫-12<-⎪⎪⎪⎪-34<+⎝⎛⎭⎫-23<-⎝⎛⎭⎫+12B .-⎪⎪⎪⎪-34<+⎝⎛⎭⎫-23<-⎝⎛⎭⎫+12<0<-⎝⎛⎭⎫-12C .-⎝⎛⎭⎫-12<-⎪⎪⎪⎪-34<0<+⎝⎛⎭⎫-23<-⎝⎛⎭⎫+12D .-⎝⎛⎭⎫+12<+⎝⎛⎭⎫-23<-⎪⎪⎪⎪-34<0<-⎝⎛⎭⎫-12 14.绝对值小于4的整数有________个,它们是________________.15.最大的负整数是______,绝对值最小的数是______,绝对值最小的正整数是______,绝对值最小的负整数是______.16.比较大小:(1)-(-2.75)与-(-2.67);(2)-(+3)与0;(3)-π与-|3.14|;(4)-(-5)与-|+6|.17.画一条数轴,在数轴上表示下列各数:3.5和它的相反数,-12,绝对值等于3的数,最大的负整数,并把这些数由大到小用“>”号连接起来.18.动物王国里举行了一场乌龟与兔子的竞走比赛,所走路线及方向如图1-2-28所示,在同一时间内,兔子向西走了20 m ,乌龟向东走了1 m ,狐狸宣布乌龟获胜,其理由是向西为负,向东为正,根据正数大于一切负数的原理,+1>-20,表明同一时间里乌龟走的路程大于兔子走的路程.你认为这样公平吗?图1-2-286 23,-417,-311,-1247的大小.19.比较-详解详析1.-9 °C ,-4 °C ,1 °C -9,-4,1 小于 2.D 3.D4.解:将各数在数轴上表示略.-4<-2.5<-2<0<1<1.5<3. 5.C 6.A7.C [解析] 因为-2<-1<0<2,所以隐水洞的气温最低.故选C.8.A [解析] 在-12,-13,14这三个数中,14是正数,-12和-13是负数,正数大于负数,所以14最大,⎪⎪⎪⎪-12>⎪⎪⎪⎪-13,所以-12<-13,所以选A. 9.解:(1)3>-7.(2)-5.3>-5.4. (3)-38>-58.10.D [解析] 因为|-0.2|=0.2,|-0.02|=0.02,而0.2>0.02,根据两个负数,绝对值大的反而小,所以-0.2<-0.02,故A 错误;因为|-36|=36>0,故B 错误;因为-|10|=-10,|-5|=5,根据负数小于正数,所以-|10|<|-5|,故C 错误;因为-⎝⎛⎭⎫-12=12,-⎪⎪⎪⎪-13=-13,根据正数大于负数,得12>-13,所以-⎝⎛⎭⎫-12>-⎪⎪⎪⎪-13,故D 正确.11.B [解析] 绝对值最小的数对应的点应该离原点的距离最近,在M ,N ,P ,Q 四个点中,点N 离原点的距离最近.故选B.12.A [解析] 因为a 是大于1的数,b 是负数,且|b|>|a|,所以|b|>a >-a >b.故选A. 13.B14.7 0,±1,±2,±3 15.-1 0 1 -116.解:(1)-(-2.75)>-(-2.67).(2)-(+3)<0. (3)-π<-|3.14|. (4)-(-5)>-|+6|.17.[解析] 在数轴上,原点左侧的点表示的数为负数,右侧的点表示的数为正数,表示3.5的点在原点右侧,表示-3.5的点在原点左侧,表示-12的点在原点左侧,绝对值为3的数有3和-3,表示3的点在原点右侧,表示-3的点在原点左侧,最大的负整数为-1,表示-1的点在原点左侧.解:如图所示:由大到小排列:3.5>3>-12>-1>-3>-3.5.18.解:不公平.因为路程为非负数,故应比较绝对值的大小,|+1|<|-20|,所以乌龟走的路程小于兔子走的路程.19.解:因为⎪⎪⎪⎪-623=623=1246,⎪⎪⎪⎪-417=417=1251,⎪⎪⎪⎪-311=311=1244,⎪⎪⎪⎪-1247=1247, 1244>1246>1247>1251, 所以-311<-623<-1247<-417.1.3.1 第1课时 有理数的加法法则知识点 1 有理数的加法法则1.计算: (1)(+3)+(+2)=+(|+3|________|+2|)=5,(-3)+(-2)=________(|-3|+|-2|)=________;(2)3+(-2)=________(|3|-|-2|)=________,(-3)+(+2)=-(|-3|________|+2|)=________.2.下列各式中,计算结果为正的是( ) A .4.1+(-5.5) B .(-6)+2 C .(-3)+5D .0+(-1)3.2017·颍州区校级月考 下面的数中,与-5的和为0的数是( ) A.15B .-15C .5D .-54.计算(-3)+(-9)的结果是( ) A .-12 B .-6C .+6D .125.下列各式中正确的是( ) A .-5+(-4)=9B .(-5)+6=-11C.⎝⎛⎭⎫-16+0=-16 D .3.6+()-5.6=-1.6 6.计算:(1)(-12)+12=________;(2)(-5)+0=________. 7.计算下列各题: (1)(-18)+(-7);(2)6.5+(-6.5);(3)⎝⎛⎭⎫-314+⎝⎛⎭⎫+213;(4)⎝⎛⎭⎫-514+(-3.5);(5)(-32.8)+(+51.76).8.列式计算:(1)比-18大-30的数;(2)75与-24的和.知识点 2有理数加法的应用9.2018·武汉温度由-4 ℃上升7 ℃后是()A.3 ℃B.-3 ℃C.11 ℃D.-11 ℃10.已知飞机的飞行高度为10000 m,上升-5000 m后,飞机的飞行高度是________m.11.篮球比赛分上半场、下半场进行,规定赢分记为“+”,输分记为“-”,不输不赢记为“0”. 下面是某校篮球队六场比赛的得分情况,请填表:12.-7的相反数加上-3,结果是()A.10 B.-10 C.4 D.-413.如果两个数的和为正数,那么这两个数()A.都是正数B.都是负数C.一正一负D.至少有一个是正数14.2017·滨州计算-(-1)+|-1|,其结果为()A.-2 B.2 C.0 D.-115.有理数a,b在数轴上的对应点的位置如图1-3-1所示,则a+b的值()图1-3-1A.大于0B.小于0C.大于a D.小于b16.在1,-1,-2这三个数中,任意两个数的和的最大值是()A.1 B.0 C.-1 D.-317.已知||a=15,||b=14,且a>b,则a+b的值为()A.29或1 B.-29或1C.-29或-1 D.29或-118.比-312大而比213小的所有整数的和为________.19.某自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正,减产为负):(1)(2)产量最多的一天比产量最少的一天多生产多少辆?20.已知|x |=3,|y |=2. (1)x +y 的值为__________; (2)若|x +y |≠x +y ,求x +y 的值.21.将-4,-3,-2,-1,0,1,2,3,4这9个数分别填入图1-3-2中的方格中,使得横、竖、斜对角的3个数相加都得0.图1-3-2详解详析1.(1)+--5(2)+1--12.C 3.C 4.A5.C[解析] -5+(-4)=-9,(-5)+6=1,3.6+()-5.6=-2.故选C. 6.(1)0(2)-57.(1)-25(2)0(3)-1112(4)-8.75(5)18.968.解:(1)(-18)+(-30)=-48.(2)75+(-24)=51.9.A[解析] (-4)+7=3(℃).故选A.10.5000[解析] 根据题意,得10000+(-5000)=5000(m).11.解:二:赢12分(+18)+(-6)=+12三:不输不赢(+18)+(-18)=0四:输4分(+10)+(-14)=-4五:输23分(-12)+(-11)=-23六:输13分(-13)+0=-1312.C[解析] 根据题意,得-(-7)+(-3)=7-3=4.13.D[解析] 根据有理数的加法法则进行逐一分析即可.A.不一定,例如:-1+2=1,错误.B.错误,两负数相加和必为负数.C.不一定,例如:2与6的和8为正数,但是2与6都是正数,并不是一正一负,错误.D.正确.故选D.14.B15.B16.B[解析] 1+(-1)=0,1+(-2)=-1,(-1)+(-2)=-3,故最大值为0.17.A[解析] 因为||a=15,||b=14,所以a=±15,b=±14.由于a>b,所以a=15,b=±14.所以a +b 的值为29或1.18.-3 [解析] 比-312大而比213小的整数有-3,-2,-1,0,1,2,-3+(-2)+(-1)+0+1+2=-3.19.解:(1)根据记录可知,前三天生产自行车的数量分别为:200+(+5)=205(辆); 200+(-2)=198(辆); 200+(-4)=196(辆).答:前三天生产的自行车依次为205辆,198辆,196辆.(2)产量最多的一天是星期六,生产自行车的数量为200+(+16)=216(辆); 产量最少的一天是星期五,生产自行车的数量为200+(-15)=185(辆). 216-185=31(辆).答:产量最多的一天比产量最少的一天多生产31辆. 20.解:(1)由题意知x =±3,y =±2. 当x =3,y =2时,x +y =5;当x =3,y =-2时,x +y =3+(-2)=1; 当x =-3,y =2时,x +y =-3+2=-1; 当x =-3,y =-2时,x +y =(-3)+(-2)=-5. 故答案为±5或±1. (2)因为|x|=3,|y|=2, 所以x =±3,y =±2.当x =3,y =2时,|x +y|=x +y ,不合题意; 当x =3,y =-2时,|x +y|=x +y ,不合题意; 当x =-3,y =2时,|x +y|≠x +y , 此时x +y =-3+2=-1;当x=-3,y=-2时,|x+y|≠x+y,此时x+y=-3+(-2)=-5.综上可得,x+y的值为-1或-5.21.解:如图所示(答案不唯一):1.3.1第2课时有理数的加法运算律知识点 1利用运算律简化计算1.(1)3+(-2)=________+3,即a+b=________;(2)(-5)+(-31)+(+31)=(-5)+[______+____],即(a+b)+c=__________. 2.在答题线上填上这一步所依据的运算律.(+7)+(-22)+(-7)=(-22)+(+7)+(-7)________________=(-22)+[(+7)+(-7)]________________=(-22)+0=-22.3.小磊解题时,将式子(-15)+4+(-45)变成4+[(-15)+(-45)]再计算结果,则小磊运用了( )A .加法交换律B .加法交换律和加法结合律C .加法结合律D .无法判断4.下列变形,运用加法运算律正确的是( ) A .3+(-2)=2+3B .4+(-6)+3=(-6)+4+3C .[5+(-2)]+4=[5+(-4)]+2 D.16+(-1)+⎝⎛⎭⎫+56=⎝⎛⎭⎫16+56+(+1) 5.计算:(1)(-23)+(+58)+(-17);(2)(-2.8)+(-3.6)+3.6;(3)16+⎝⎛⎭⎫-27+⎝⎛⎭⎫-56+⎝⎛⎭⎫+57.。
七年级上册数学同步练习册参考答案(人教版)
七年级上册数学同步练习册参考答案(人教版)第一章有理数§1.1正数和负数(一)一、1. D 2. B 3. C二、1. 5米 2. -8℃ 3. 正西面600米 4. 90三、1. 正数有:1,2.3,68,+123;负数有:-5.5, ,-11 2.记作-3毫米,有1张不合格3. 一月份超额完成计划的吨数是-20, 二月份超额完成计划的吨数是0, 三月份超额完成计划的吨数是+102.§1.1正数和负数(二)一、1. B 2. C 3. B二、1. 3℃ 2. 3℃ 3. -2米 4. -18m三、xxxx, 最小不小于8.95cm;2.甲地,丙地最低,的地方比最低的地方高50米3. 70分§1.2.1有理数一、1. D 2. C 3. D二、1. 0 2. 1,-1 3. 0,1,2,3 4. -10三、1.自然数的集合:{6,0,+5,+10…}整数集合:{-30,6,0,+5,-302,+10…}负整数集合:{-30,-302… }分数集合:{ ,0.02,-7.2, , ,2.1…}负分数集合:{ ,-7.2, … }非负有理数集合:{0.02, ,6,0,2.1,+5,+10…};2. 有31人可以达到引体向上的标准3. (1) (2) 0§1.2.2数轴一、1. D 2. C 3. C二、1. 右 5 左 3 2. 3. -3 4. 10三、1. 略 2.(1)依次是-3,-1,2.5,4 (2)1 3. ±1,±3§1.2.3相反数一、1. B 2. C 3. D二、1. 3,-7 2. 非正数 3. 3 4. -9三、1. (1) -3 (2) -4 (3) 2.5 (4) -62. -33. 提示:原式= =§1.2.4绝对值一、1. A 2. D 3. D二、1. 2. 3. 7 4. ±4三、1. 2. 20 3. (1)|0|§1.3.1有理数的加法(一)一、1. C 2. B 3. C二、1. -7 2.这个数 3. 7 4. -3,-3.三、1. (1) 2 (2) -35 (3) - 3.1 (4) (5) -2 (6) -2.75;2.(1) (2) 190.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.+8
B.﹣8
C.+ 1 8
D.﹣ 1 8
4.在 −3, −1,1,3这四个数中,比 −2 小的数是( )
A. −3
B. −1
C.1
D. 3
5.手机截屏显示吐鲁番盆地的海拔高度,它表示吐鲁番盆地( )
A.高于海平面 154 米
B.低于海平面﹣154 米
C.低于海平面 154 米
D.海平面 154 米以下
1.1 正数和负数同步练习
一、单选题
1.下列各数中,是负数的是( )
A.-1
B.0
C.0.2
2.如果收入 1000 元记作+1000 元,那么支出 300 元记作( )
D. 1 2
A.-300 元
B.+300 元
C.1300 元
D.+1300 元
3.规定:(↑30)表示零上 30 摄氏度,记作+30,(↓8)表示零下 8 摄氏度,记作( )
6.不等式 a>0 表示的意义是( )
A.a 不是负数
B.a 是负数
C.a 是非负数
D.a 是正数
7.规定:(→2)表示向右移动 2 记作+2,则(←3)表示向左移动 3 记作( )
1/5
A.+3
B.﹣3
C.﹣ 1 3
D.+ 1 3
8.如果 +5 表示前进了五个名次,那么某位同学倒退了三个名次应记为( )
试问:(1) B 地在 A 地的哪个方向?它们相距多少千米? (2)如果汽车行驶每千米耗油 m 升,那么该小组一天共耗油多少升?
22.“十一”黄金周,坚胜家电城大力促销,收银情况一直看好.下表为当天与前一天的营业 额的涨跌情况.已知 9 月 30 日的营业额为 26 万元.
10 月 1 日 2 日
3日
18.四个数 −6 ,0,1, 2 中的负数是_______.
19.甲、乙两地海拔高度分别为 20 米和﹣9 米,那么甲地比乙地高_____米. 20.负数最早出现在_____书中 (填书名) 三、解答题
21.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从 A 地出发,晚上到达 B 地,
2/5
约定向东为正方向,当天的行驶记录如下(单位千米): +18,-9,+7,-14,-6,+13,-6;-8
14.如果﹣20%表示减少 20%,那么+6%表示_____.
15.如果 a 0, a b 0, a c 0 ,那么 a b c _________0(用“ ”或“ ”填空)
16.如果把向西走 5 米记为-5 米,则向东走 8 米表示为________米; 17.某地平均气温以 26 摄氏度为标准,统计员将某 5 天的气温简记为+3,0,-4,+5, -5,则这 5 天实际温度最高的是______摄氏度.
22.(1)9 月 30 日的营业额为 26 万元, 10 月 1 日的营业额为:26+4=30 万元, 10 月 2 日的营业额为:30+3=33 万元, 10 月 3 日的营业额为:33+2=35 万元, 10 月 4 日的营业额为:35+0=35 万元, 10 月 5 日的营业额为:35-1=34 万元, 10 月 6 日的营业额为:34-3=31 万元, 10 月 7 日的营业额为:31-5=26 万元, 所以收入最低的是 10 月 7 日.
1/5
(2)七天总营业额为 30+33+35+35+34+31+26=224 万元, 所以平均每天营业额为 224÷7=32 万元.
2/5
11.某种零件,标明要求是 φ20±0.2 mm(φ 表示直径,单位:毫米),经检查,一个零 件的直径是 19.9mm,该零件_____________(填“合格” 或“不合格”).
12.举出一个数字“0”表示正负之间分界点的实际例子,如__________.
13.如果水位升高 6m, 记做 +6m, 那么水位下降 3m, 记做_____.
A.3
B. −3
C. 1 3
D. − 1 3
9.若火箭发射点火前 5 秒记为-5 秒,那么火箭发射点火后 10 秒应记为( )
A.-10 秒
B.-5 秒
C.+5 秒
10.在-数有( ) 3
A.1 个
B.2 个
C.3 个
D.+10 秒 D.4 个
二、填空题
21.(1)约定向东为正方向,当天的行驶记录相加就是车的现在位置: +18-9+7-14-6+13-6-8=﹣5 ∴B 地在 A 地的正西方向,相距 5 千米; (2)总耗油=总行程×m =(18+9+7+14+6+13+6+8)×m =81m(升)
∴如果汽车行驶每千米耗油 m 升,那么该小组一天共耗油 81m 升.
4日
5日
6日
7日
4
3
2
0
−1
−3
−5
(1) 黄金周内收入最低的哪一天?直接回答,不必写过程.
(2) 黄金周内平均每天的营业额是多少?
3/5
参考答案 1.A 2.A 3.B 4.A 5.C 6.D 7.B 8.B 9.D 10.C
11.合格 12.0℃可以表示温度正负分界等(答案不唯一) 13. −3m 14.增加 6% 15.< 16.+8. 17.31 18. −6 19.29 20.《九章算术》