应用二次函数求最值面积最大

合集下载

二次函数的最值问题面积

二次函数的最值问题面积

二次函数的最值问题面积全文共四篇示例,供读者参考第一篇示例:二次函数是高中数学中非常重要的一个概念,它的图像是一个拱形或者倒置的碗形,最常见的表达式为f(x) = ax^2 + bx + c。

在二次函数中,最值问题是许多学生觉得比较困难的一个问题,今天我们就来一起讨论一下关于二次函数的最值问题和与之相关的面积计算。

让我们来回顾一下二次函数的最值问题。

当我们在解题的时候,通常会遇到两种情况,一种是求二次函数的最大值,另一种是求二次函数的最小值。

对于f(x) = ax^2 + bx + c这个二次函数来说,最值问题就是求出这个函数的最大值或最小值。

而最值点一般都在抛物线的顶点处,也就是拱形或者碗形的中心点。

接下来,让我们来看一下如何求解二次函数的最值问题。

我们需要知道二次函数的顶点公式:x = -b/2a。

通过这个公式,我们可以求出二次函数的顶点坐标,进而得到最值点。

如果a大于0,则顶点是一个最小值点,如果a小于0,则顶点是一个最大值点。

通过这个简单的方法,我们就可以得到二次函数的最值点。

现在,让我们来讨论一下关于二次函数最值问题和面积的联系。

在解决二次函数的最值问题的过程中,有时候我们会遇到需要求解二次函数所围成的区域的面积的问题。

这个时候,我们需要利用计算积分的方法来求解。

通常情况下,我们可以通过二次函数与x轴所围成的图形的面积就是二次函数的定积分,即∫[a,b]f(x)dx。

通过这个公式,我们可以方便地计算出二次函数与x轴所围成的图形的面积。

二次函数的最值问题和面积计算是高中数学中非常重要的一个知识点,它不仅需要我们掌握二次函数的最值问题的解法,还需要我们了解如何通过计算面积来更深入地理解二次函数。

希望通过今天的讨论,大家对于二次函数的最值问题和面积计算有了更深入的认识。

希望大家在学习数学的过程中能够多加练习,提高自己的解题能力,做好数学知识的应用。

【字数不足,还需要再添加一些内容】第二篇示例:二次函数是高中数学中的重要内容之一,许多学生在学习过程中会遇到与二次函数有关的最值问题。

最新中考数学专题复习——二次函数的实际应用(面积最值问题11页)及答案

最新中考数学专题复习——二次函数的实际应用(面积最值问题11页)及答案

第 1 页二次函数的实际应用——面积最大(小)值问题知识要点:在生活理论中,人们经常面对带有“最〞字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。

求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用根本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度挪动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度挪动,假如P 、Q 两点同时出发,分别到达B 、C 两点后就停顿挪动.〔1〕运动第t 秒时,△PBQ 的面积y(cm²)是多少?〔2〕此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.〔3〕t 为何值时s 最小,最小值时多少?答案:[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门〔木质〕.花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米那么长为:x x 4342432-=+-(米)那么:)434(x x S -= ∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小, ∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大. [例3]:边长为4的正方形截去一个角后成为五边形ABCDE 〔如图〕,其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y ,那么矩形PNDM 的面积S=xy 〔2≤x≤4〕易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H那么有△AFB ∽△BHP∴PH BH BF AF =,即3412--=y x , 此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值y 随x 的增大而增大,对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】此题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考察学生的综合应用才能.同时,也给学生探究解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖〔如图(1)所示〕是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,假设将此种地砖按图(2)所示的形式铺设,且能使中间的阴影局部组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 那么BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10]当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2021浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米 .2.(2021庆阳市)兰州市“安居工程〞新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);点(x ,y )都在一个二次函数的图像上,(如下图),那么6楼房子的价格为 元/平方米.提示:利用对称性,答案:2080.3.如下图,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2 ∵AD ∥BC ∴△MAD ∽△MBN第 3 页 ∴MB MA BN AD =,即5512x b -=,)5(512x b -= )5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值. 4.(2021湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大〔 C 〕A .7B .6C .5D .45.如图,铅球运发动掷铅球的高度y (m)与程度间隔 x (m)之间的函数关系式是:35321212++-=x x y ,那么该运发动此次掷铅球的成绩是( D ) A .6 m B .12 m C .8 m D .10m解:令0=y ,那么:02082=--x x 0)10)(2(=-+x x〔图5〕 〔图6〕 〔图7〕6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,假如抛物线的最高点M 离墙1 m ,离地面340m ,那么水流落地点B 离墙的间隔 OB 是( B )A .2 mB .3 mC .4 mD .5 m 解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a 令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=3 7.(2021乌兰察布)小明在某次投篮中,球的运动道路是抛物线21 3.55y x =-+的一局部,如图7所示,假设命中篮圈中心,那么他与篮底的间隔 L 是〔 B 〕A .4.6mB .4.5mC .4mD .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.假设设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;〔2〕根据〔1〕中求得的函数关系式,描绘其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解:)240(x x y -=)20(22x x --=∵二次函数的顶点不在自变量x 的范围内,而当205.12<≤x 内,y 随x 的增大而减小,∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,假如用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)假如中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比拟(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,那么宽为350x -米,设面积为S 平方米. ∴当25=x 时,3625max =S (平方米) 即:鸡场的长度为25米时,面积最大. (2) 中间有n 道篱笆,那么宽为250+-n x 米,设面积为S 平方米. 那么:)50(212502x x n n x x S -+-=+-⋅= ∴当25=x 时,2625max +=n S (平方米) 由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米.即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式. 解:∵∠APQ=90°,∴∠APB+∠QPC=90°.∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90°.∴△ABP ∽△PCQ.11.(2021年南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,•分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?解:∵矩形MFGN ∽矩形ABCD∴MF=2MN =2x ∴ EM=10-2x∴S=x 〔10-2x 〕=-2x 2+10x=-2(x-2.5)2+12.5当x=2.5时,S 有最大值12.512.(2021四川内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,那么绳子的最低点距地面的间隔 为 0.5 米.答案:如下图建立直角坐标系那么:设c ax y +=2将点)1,5.0(-,)5.2,1(代入,第 5 页⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2021黑龙江哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.〔1〕求S 与x 之间的函数关系式,并写出自变量x 的取值范围;〔2〕当x 是多少时,矩形场地面积S 最大?最大面积是多少?解:〔1〕根据题意,得x x x x S 3022602+-=⋅-= 自变量的取值范围是〔2〕∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2021年南宁市)随着绿城南宁近几年城市建立的快速开展,对花木的需求量逐年进步.某园林专业户方案投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)〔1〕分别求出利润与关于投资量的函数关系式; 〔2〕假如这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?解:〔1〕设=,由图12-①所示,函数=的图像过〔1,2〕,所以2=, 故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设2y =,由图12-②所示,函数2y =的图像过〔2,2〕,所以,故利润2y 关于投资量的函数关系式是2221x y =; 〔2〕设这位专业户投入种植花卉万元〔〕,那么投入种植树木(x -8)万元, 他获得的利润是万元,根据题意,得∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润.因为,所以在对称轴2=x 的右侧,z 随x 的增大而增大所以,当8 x 时,z 的最大值为32.15.(08山东聊城)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子〔纸板的厚度忽略不计〕.〔1〕要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?〔2〕你感到折合而成的长方体盒子的侧面积会不会有更大的情况?假如有,请你求出最大值和此时剪去的正方形的边长;假如没有,请你说明理由;〔3〕假如把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;假如有,请你求出最大值和此时剪去的正方形的边长;假如没有,请你说明理由.解:〔1〕设正方形的边长为cm , 那么. 即. 解得〔不合题意,舍去〕,. 剪去的正方形的边长为1cm .〔2〕有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2, 那么与的函数关系式为: 即. 改写为. 当时,.即当剪去的正方形的边长为2.25cm 时,长方体盒子的侧面积最大为40.5cm 2.〔3〕有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2.假设按图1所示的方法剪折, 那么与的函数关系式为: 即. 当时,.假设按图2所示的方法剪折, 那么与的函数关系式为:即.当时,.比拟以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm2.16.(08兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m,跨度20m,相邻两支柱间的间隔均为5m.〔1〕将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式;〔2〕求支柱的长度;〔3〕拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:〔1〕根据题目条件,的坐标分别是.设抛物线的解析式为,将的坐标代入,得解得.所以抛物线的表达式是.〔2〕可设,于是从而支柱的长度是米.〔3〕设是隔离带的宽,是三辆车的宽度和,那么点坐标是.过点作垂直交抛物线于,那么.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.第 7 页。

二次函数求三角形面积最大值的典型题目

二次函数求三角形面积最大值的典型题目

二次函数求三角形面积最大值的典型题目篇一:哎呀呀,说到二次函数求三角形面积最大值的题目,这可真是让我头疼了好一阵子呢!就比如说有这么一道题:在平面直角坐标系中,有一个二次函数图像,然后给了一堆点的坐标,让咱们求由这些点构成的三角形面积的最大值。

这可咋整?我一开始看到这题,那真是脑袋都大了!心里就想:“这啥呀?怎么这么难!”我瞪大眼睛,死死地盯着题目,手里的笔都快被我捏出汗来了。

我同桌小明呢,他倒是挺自信,还跟我说:“这有啥难的,看我的!”我心里暗暗不服气,哼,你就吹吧!然后老师开始讲题啦,老师说:“同学们,咱们得先找到这个二次函数的顶点坐标,这就好比是找到宝藏的钥匙!”我一听,宝藏?这比喻还挺有意思的。

老师接着说:“然后再看看那些给定的点,能不能通过一些巧妙的方法把三角形的面积表示出来。

”我就在那拼命点头,好像听懂了,其实心里还是有点迷糊。

我扭头看看后面的学霸小红,她一脸轻松,好像这题对她来说就是小菜一碟。

我忍不住问她:“小红,你咋这么厉害,这题你都懂啦?”小红笑了笑说:“多做几道类似的题,你也能懂!”我又埋头苦想,想着要是能像玩游戏一样,一下子就找到解题的秘诀该多好啊!经过一番折腾,我终于有点明白了。

原来求这个三角形面积最大值,就像是爬山,得找到那个最高的山峰,而我们要找的就是能让面积最大的那个点或者那条线。

你说,数学咋就这么难呢?但我就不信我搞不定它!我一定要把这些难题都攻克下来,让数学成为我的强项!总之,我觉得做这种二次函数求三角形面积最大值的题目,虽然过程很艰难,但只要我们不放弃,多思考,多练习,就一定能找到解题的窍门,取得胜利!篇二:哎呀!说起二次函数求三角形面积最大值的题目,这可真是让我又爱又恨呀!有一次上课,数学老师在黑板上出了一道这样的题:已知一个二次函数图像,还有三角形的三个顶点坐标都在这个函数图像上,让我们求三角形面积的最大值。

当时我一看,脑袋就嗡嗡响,这啥呀?我就开始在草稿纸上乱画,心里想着:“这咋这么难呢?”同桌小明凑过来,瞅了瞅我的草稿纸,说:“你这算的啥呀,思路都不对!”我瞪了他一眼,回道:“那你行你上啊!”然后我俩就你一句我一句地争论起来。

二次函数在实际生活中的应用及建模应用

二次函数在实际生活中的应用及建模应用

二次函数的建模 知识归纳:求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.一、利用二次函数解决几何面积最大问题1、如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。

(1)设矩形的一边长为x (米),面积为y (平方米),求y 关于x 的函数关系式;(2)当x 为何值时,所围成的苗圃面积最大?最大面积是多少?解:(1)设矩形的长为x (米),则宽为(18- x )(米), 根据题意,得: x x x x y 18)18(2+-=-=; 又∵180,0180<x<x >x >∴⎩⎨⎧- (自变量x 的取值范围是关键,在几何类题型中,经常采用的办法是:利用含有自变量的加减代数式的边长来确定自变量的取值范围,例如上式中,18-x ,就是含有自变量的加减代数式,考虑到18-x 是边长,所以边长应该>0,但边长最长不能超过18,于是有0<18-x <18,0<x <18)(2)∵x x x x y 18)18(2+-=-=中,a= -1<0,∴y 有最大值, 即当9)1(2182=-⨯-=-=a b x 时, 81)1(41804422max =-⨯-=-=a b ac y 故当x=9米时,苗圃的面积最大,最大面积为81平方米。

点评:在回答问题实际时,一定注意不要遗漏了单位。

2、如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。

问如何围,才能使养鸡场的面积最大?解:设养鸡场的长为x (米),面积为y (平方米),则宽为(250x-)(米),根据题意,得:x x x x y 2521)250(2+-=-=; 又∵500,02500<x<>x x >∴⎪⎩⎪⎨⎧- ∵x x x x y 2521)250(2+-=-=中,a=21-<0,∴y 有最大值,即当25)21(2252=-⨯-=-=a b x 时,2625)21(42504422max =-⨯-=-=a b ac y 故当x=25米时,养鸡场的面积最大,养鸡场最大面积为2625平方米。

利用二次函数解决面积最大问题

利用二次函数解决面积最大问题

S x(30 x)
x
x2 30x (x 15)2 225
30-x
(0 x 30)
当x 15时,S有最大值,S 225
答:当长、宽各是15m时,羊圈的面积S最大
变式1 小孟有总长为60m的篱笆,想围成一个一边靠
墙的矩形羊圈,墙长32m,这个羊圈的长、宽各为多少
时,羊圈的面积最大,最大面积是多少?
180 135 90 45
x -1 0 3 6 9 12 15 18 21 24 27 30
小 孟
例1 小孟有总长为60m的篱笆,想围成一个矩形羊圈, 这个羊圈的长、宽各为多少时,羊圈的面积最大?
1、设 2、列式
3、范围 4、最值 5、答
解:设羊圈的面积为S,最大羊圈的 一边长为x米, 则另一边为(30 - x)米
最大面积为450m 2
变式2 小孟有总长为60m的篱笆,想围成一个一边靠 墙的矩形羊圈,墙长18m,这个羊圈的长、宽各为多少 时,羊圈的面积最大,最大面积是多少?
解:设羊圈面积为Sm2,与墙垂直的一边为x米, 则与墙垂直的一边为(60-2x)米
S x(60 2x)
x
2x 2 60x
2(x 15) 2 450
32
1、设
2、列式
3、范围
4、最值 5、答
解:设羊圈的面积为Sm 2 ,与墙垂直的一边
为x米, 则与墙平行的一边为(60 - 2x)米
S x(60 2x)
32
2x 2 60x
.
2( x
15)2
450
x
(14 x 30)
当x 15时S有最大值,S 450
x 60-2x
答:当长为30m,宽为15m时,羊圈的面积S最大,

二次函数的实际应用——面积最大(小)值问题

二次函数的实际应用——面积最大(小)值问题

二次函数的实际应用——面积最大(小)值问题[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内,而当205.12<≤x 内,y 随x 的增大而减小,∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.[例3]如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x -米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x ∴当25=x 时,3625max =S (平方米) 即:鸡场的长度为25米时,面积最大.(2) 中间有n 道篱笆,则宽为250+-n x 米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米) 由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米.即:使面积最大的x 值与中间有多少道隔墙无关.。

二次函数的实际应用(典型例题分类)

二次函数的实际应用(典型例题分类)

二次函数与实际问题1、理论应用(基本性质的考查:解析式、图象、性质等)2、实际应用(求最值、最大利润、最大面积等)解决此类问题的基本思路是:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)做函数求解;(5)检验结果的合理性,拓展等.例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系并求出绿地面积的最大值@变式练习1:如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(㎡)与它与墙平行的边的长x(m)之间的函数关系式当x为多长时,花园面积最大·例二:某商店经营T恤衫,已知成批购进时单价是元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多设销售单价为x元,(0<x≤元,那么(1)销售量可以表示为____________________;(2)销售额可以表示为____________________;(3)@(4)所获利润可以表示为__________________;(5)当销售单价是________元时,可以获得最大利润,最大利润是__________。

~变式练习2:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)问题中有哪些变量其中自变量是_______,因变量是___________.(2)假设增种棵橙子树,那么果园里共有_________棵橙子树,这时平均每棵树结_________个橙子.(3)如果橙子的总产量为y个,请你写出x与y之间的关系式_______________.(4)果园里种_____棵橙子树橙子的总产量最多,最多是________________。

二次函数的应用——面积最大问题》说课稿—获奖说课稿

二次函数的应用——面积最大问题》说课稿—获奖说课稿

二次函数的应用——面积最大问题》说课稿—获奖说课稿22.过程与方法:培养学生利用所学知识构建数学模型,解决实际问题的能力,掌握建模思想,熟练掌握最值问题的解法。

23.情感态度与价值观:通过实际问题的应用,让学生感受到数学在生活中的实际应用价值,培养学生对数学的兴趣和热爱。

本节课的重点是最值问题的解法和建模思想的培养,难点是对实际问题的分析和建模思想的掌握。

三、教学方法的选择本节课采用“引导发现、归纳总结、启发式教学”等多种教学方法,其中引导发现法是本节课的核心教学方法,通过引导学生发现实际问题中的规律和模式,培养学生独立思考和解决问题的能力;归纳总结法是巩固知识的有效方法,通过对学生已有的知识进行梳理和总结,加深对知识的理解和记忆;启发式教学法则是在教学中采用启发式问题,激发学生的思考和求知欲,提高学生的研究兴趣和积极性。

四、教学过程的设计本节课的教学过程分为四个环节:导入、讲授、练、归纳总结。

导入环节通过引入实际问题,激发学生的兴趣和求知欲,让学生认识到最值问题的实际应用价值;讲授环节通过具体例子和图像分析,讲解最值问题的解法和建模思想;练环节则通过多种形式的练,巩固学生的知识和技能;归纳总结环节则对本节课的知识点进行总结和梳理,加深对知识的理解和记忆。

五、教学效果预测通过本节课的教学,学生将能够掌握最值问题的解法和建模思想,能够熟练应用所学知识解决实际问题,同时也能够感受到数学在生活中的实际应用价值,培养学生对数学的兴趣和热爱,为学生今后的研究打下坚实的理论和思想方法基础。

2、___要在一块长为20米、宽为15米的空地上建一个长方形花园,他想让花园的面积最大,你能帮他算一下最大面积是多少吗?3、某公司生产一种产品,销售价格为每个10元,生产成本为每个5元,每天能生产1000个,你能帮助他们算一下每天的最大利润是多少吗?设计思路]通过这三个问题,引导学生发现实际问题中的最值问题,从而引出二次函数的最值问题。

用二次函数解面积最值问题

用二次函数解面积最值问题

用二次函数解面积最值问题
例子:
1设p坐标,先随便在抛物线上标个p,方便使用下面的方法
2用其中一种方法算
3最后得出解析式
4将解析式变成顶点坐标式,就能看出p坐标x为什么时,面积最大
都适用于三角形没有横平竖直的边时,且都是把求得线段长短代入面积公式,后得出一条解析式,变成顶点坐标式即可
用二次函数解面积最值有如下三种方法:
1割补法
连接op,割补得三个三角形,然后得一个式子(看图)
2铅垂法
作一条高,使p点所在线段垂直于纵坐标,看图
3平行线法
过点p做BC的平行线ED,求线段BC解析式,再求ED的解析式(a与BC解析式的a一样),看下图,主要求D坐标
————————————
先把面积公式列出来
再在抛物线上随便标个p,
设p坐标(知道解析式后,坐标设其中一个就好了)
选任意一种方法后作线段,看看求什么坐标,不用求具体坐标,带一个字母的就行(那个字母取决于你设p坐标用什么字母)
求得后把你求得的坐标换成线段代入面积公式里(换成线段的方法就是x1-x2或者y1-y2的绝对值)
得到的解析式换成顶点坐标式,就能一眼看成来答案。

中考数学综合题专题【二次函数的实际应用——面积最大(小)值问题】专题训练

中考数学综合题专题【二次函数的实际应用——面积最大(小)值问题】专题训练

中考数学综合题专题【二次函数的实际应用——面积最大(小)值问题】专题训练知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。

求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少? 答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S tt t t y =∴+-=<<+-=+--⨯=+-=⋅-=Θ[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -= x x 3442+-=4289)417(42+--=x ∵104340≤-<x∴2176<≤x∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小,∴当6=x 时,604289)4176(42max =+--=S (平方米)答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x≤4) 易知CN=4-x ,EM=4-y . 过点B 作BH ⊥PN 于点H 则有△AFB ∽△BHP ∴PHBHBF AF =,即3412--=y x , ∴521+-=x y , x x xy S 5212+-==)42(≤≤x ,此二次函数的图象开口向下,对称轴为x=5, ∴当x≤5时,函数值y 随x 的增大而增大, 对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省? 解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C点按顺(逆)时针方向旋转90°后得到的,故CE=CF =CG.∴△CEF是等腰直角三角形因此四边形EFGH是正方形.(2)设CE=x, 则BE=0.4-x,每块地砖的费用为y元那么:y=x×30+×0.4×(0.4-x)×20+[0.16-x-×0.4×(0.4-x)×10]-=xx102+()24.02.0=x)4.0102+-(3.2)1.0<x0(<当x=0.1时,y有最小值,即费用为最省,此时CE=CF=0.1.答:当CE=CF=0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度h(单位:米)与小球运动时间t(单位:秒)的函数关系式是,那么小球运h 4.9米.动中的最大高度=最大2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/平方米)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8);已知点(x,y)都在一个二次函数的图像上,(如图所示),则6楼房子的价格为元/平方米.5 m 12m ABCD提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2∵AD ∥BC ∴△MAD ∽△MBN ∴MB MA BN AD =,即5512x b -=,)5(512x b -=)5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值.4.(2008湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C ) A .7 B .6 C .5 D .45.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是:35321212++-=x x y ,则该运动员此次掷铅球的成绩是( D ) A .6 mB .12 mC .8 mD .10m解:令0=y ,则:02082=--x x 0)10)(2(=-+x xxyO AM O(图5) (图6) (图7)6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是( B )A .2 mB .3 mC .4 mD .5 m 解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=3 7.(2007乌兰察布)小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( B ) A .4.6m B .4.5m C .4m D .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少? 解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x ∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内, 而当205.12<≤x 内,y 随x 的增大而减小, ∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x-米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x∴当25=x 时,3625max =S (平方米)即:鸡场的长度为25米时,面积最大.(2) 中间有n 道篱笆,则宽为250+-n x米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米)由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米. 即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.ABCD PQ解:∵∠APQ=90°, ∴∠APB+∠QPC=90°. ∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90° .∴△ABP ∽△PCQ.,86,yxx CQ BP PC AB =-= ∴x x y 34612+-=.11.(2006年南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,•分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少? 解:∵矩形MFGN ∽矩形ABCD ∴MF=2MN =2x ∴ EM=10-2x∴S=x (10-2x )=-2x 2+10x=-2(x-2.5)2+12.5 ∵1020<<x ,∴50<<x当x=2.5时,S 有最大值12.512.(2008四川内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 0.5 米. 答案:如图所示建立直角坐标系则:设c ax y +=2将点)1,5.0(-,)5.2,1(代入,⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2008黑龙江哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少? 解:(1)根据题意,得x x x xS 3022602+-=⋅-=自变量的取值范围是(2)∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2008年南宁市)随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?解:(1)设= ,由图12-①所示,函数=的图像过(1,2),所以2=,故利润关于投资量的函数关系式是=;y=,因为该抛物线的顶点是原点,所以设2y=的图像过(2,2),由图12-②所示,函数2所以,故利润2y 关于投资量的函数关系式是2221x y;(2)设这位专业户投入种植花卉万元(),则投入种植树木(x 8)万元,他获得的利润是万元,根据题意,得==+21y y +==∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润.因为,所以在对称轴2=x 的右侧,z 随x 的增大而增大所以,当8=x 时,z 的最大值为32.15.(08山东聊城)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.解:(1)设正方形的边长为cm,则.即.解得(不合题意,舍去),.剪去的正方形的边长为1cm.(2)有侧面积最大的情况.设正方形的边长为cm,盒子的侧面积为cm2,则与的函数关系式为:.即.改写为.当时,.即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.(3)有侧面积最大的情况.设正方形的边长为cm,盒子的侧面积为cm2.若按图1所示的方法剪折,则与的函数关系式为:x xx x y ⋅-⋅+-=22102)28(2 即.当时,.若按图2所示的方法剪折,则与的函数关系式为:x xx x y ⋅-⋅+-=2282)210(2. 即.当时,.比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm时,折成的有盖长方体盒子的侧面积最大,最大面积为cm2.16.(08兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式;(2)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:(1)根据题目条件,的坐标分别是.设抛物线的解析式为,将的坐标代入,得解得.所以抛物线的表达式是.(2)可设,于是从而支柱的长度是米.(3)设是隔离带的宽,是三辆车的宽度和,则点坐标是.过点作垂直交抛物线于,则.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车. 知识要点:二次函数的一般式c bx ax y 2++=(0≠a )化成顶点式ab ac a b x a y 44)2(22-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当0>a 时,函数有最小值,并且当abx 2-=,a b ac y 442-=最小值;当0<a 时,函数有最大值,并且当abx 2-=,a b ac y 442-=最大值.如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当abx 2-=,a b ac y 442-=最值,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小.[例1]:求下列二次函数的最值:(1)求函数322-+=x x y 的最值. 解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.(2)求函数322-+=x x y 的最值.)30(≤≤x 解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 则:)10300)(4060(1x x y -+-=)60010(102---=x x6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y (元))20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y (元)综合两种情况,应定价为65元时,利润最大.[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 解:设每件价格提高x 元,利润为y 元, 则:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额? 解:设旅行团有x 人)30(≥x ,营业额为y 元, 则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x 当55=x ,30250max =y (元)答:当旅行团的人数是55人时,旅行社可以获得最大营业额.[例3]: 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表: 若日销售量y 是销售价x 的一次函数. ⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴设一次函数表达式为b kx y +=.则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,•即一次函数表达式为40+-=x y .⑵ 设每件产品的销售价应定为x 元,所获销售利润为w 元y x w )10(-=)40)(10(+--=x x 400502-+-=x x 225)25(2+--=x 当25=x ,225max =y (元)答:产品的销售价应定为25元时,每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)”的设问中, “某某”要设为自变量,“什么”要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程. 3.(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少? ⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案). 解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P (元)(或通过配方,4500)35(202+--=x P ,也可求得最大值)答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x ≤34或36≤x≤39.作业布置:1.二次函数1212-+=x x y ,当x=_-1,_时,y 有最_小_值,这个值是23-. 2.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为12--=x y (只写一个),此类函数都有_大_值(填“最大”“最小”).3.不论自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是29>m ,此时关于一元二次方程2x 2-6x +m =0的解的情况是_有解_(填“有解”或“无解”)解:29)23(22-+-=m x y ∵0)23(22≥-x ,要使0>y ,只有029>-m ∴29>m 4.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L 是 4.5米 .解:当05.3=y 时,21 3.55y x =-+05.3= 45.052⨯=x ,5.1=x 或5.1-=x (不合题意,舍去)5.在距离地面2m 高的某处把一物体以初速度V 0(m/s )竖直向上抛出,•在不计空气阻力的情况下,其上升高度s (m )与抛出时间t (s )满足:S=V 0t-12gt 2(其中g 是常数,通常取10m/s 2),若V 0=10m/s ,则该物体在运动过程中最高点距离地面__7_m .解:t t s 1052+-=5)1(52+--=t当1=t 时,5max =s ,所以,最高点距离地面725=+(米).6.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究表明,晴天 在某段公路上行驶上,速度为V (km/h )的汽车的刹车距离S (m )可由公式S=1100V 2确定;雨天行驶时,这一公式为S=150V 2.如果车行驶的速度是60km/h ,•那么在雨天 行驶和晴天行驶相比,刹车距离相差_36_米.7.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_5_元,最大利润为_625_元.解:设每件价格降价x 元,利润为y 元, 则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.8.如图,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .xyA B O解:设9)8(2+-=x a y ,将点A )1,0(代入,得81-=a12819)8(8122++-=+--=x x x y令0=y ,得09)8(812=+--=x y98)8(2⨯=-x268±=x ,)0,268(+C ,∴5.242688≈++=OC (米)9.(2006年青岛市)在2006年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年的销售价x (元/千克) … 25 242322…销售量y (千克)… 2000 2500 3000 3500 …(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式;(2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大? 解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,•∵点(•25,2000),(24,2500)在图象上,∴200025500,:25002414500k bk k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 , ∴y=-500x+14500. (2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.10.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式; (2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)? 解:(1)由题意知:p=30+x,(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000. (3)设总利润为W 元则:W=Q -1000×30-400x=-10x 2+500x=-10(x 2-50x) =-10(x -25)2+6250.当x=25时,总利润最大,最大利润为6250元. 答:这批蟹放养25天后出售,可获最大利润.11.(2008湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? (3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? 解:)802)(20()20(+--=-=x x w x y)40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x160012022-+-=x x当30=x ,200max =y (元)(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元. (3) 150200)30(22=+--x ,25)30(2=-x28351>=x (不合题意,舍去)252=x答:该农户想要每天获得150元的销售利润,销售价应定为25元.12.(2008河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)。

二次函数面积最值问题

二次函数面积最值问题

二次函数面积最值问题1. 问题概述二次函数是代数学中的重要概念,它服从形如f(x) = ax^2 + bx + c的数学表达式,其中a、b、c为实数且a不等于零。

二次函数的图像是一个抛物线,它在平面上呈现出优美的曲线形状。

本文将探讨与二次函数相关的面积最值问题。

2. 背景知识在进一步讨论二次函数面积最值问题之前,我们需要了解一些基本的数学知识。

### 2.1 二次函数的图像特点 * 二次函数的图像是一个抛物线,可以开口向上或者向下。

* 如果a大于0,则抛物线开口向上,称为上凸函数;如果a小于0,则抛物线开口向下,称为下凸函数。

2.2 二次函数的面积计算公式对于一个给定的二次函数f(x),在给定区间[a, b]内的曲线与x轴之间的面积可以通过积分来计算:S = ∫[a, b] |f(x)|dx3. 二次函数面积最值问题二次函数面积最值问题是指在某个给定的区间内,找到一个二次函数的图像与x轴之间的面积最大或最小的情况。

接下来,我们将探讨如何解决这个问题。

3.1 二次函数面积最大值问题对于一个上凸的二次函数,它的图像与x轴之间的面积是连续且单调递增的。

因此,我们可以通过求解二次函数f(x) = ax^2 + bx + c的顶点坐标来确定面积最大值时的x值。

3.1.1 求解顶点坐标一个二次函数的顶点坐标可以通过如下公式得出: x_v = -b / (2a) y_v = f(x_v) = f(-b / (2a))3.1.2 面积最大值计算已知二次函数的顶点坐标后,我们可以计算出它与x轴之间的面积,即面积最大值。

由于上凸二次函数对称,我们可以将区间[a, b]划分为两部分,分别计算两个子区间内的面积,并将它们相加,即得到整个区间[a, b]内的面积最大值。

3.2 二次函数面积最小值问题对于一个下凸的二次函数,它的图像与x轴之间的面积是连续且单调递减的。

因此,我们可以通过求解二次函数f(x) = ax^2 + bx + c的顶点坐标来确定面积最小值时的x值。

初中数学专题复习-二次函数的实际应用面积最值问题

初中数学专题复习-二次函数的实际应用面积最值问题

二次函数的实际应用——面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。

求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--⨯=+-=⋅-=Θ[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -=2 x x 3442+-= 4289)417(42+--=x ∵104340≤-<x∴2176<≤x ∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小, ∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y ,则矩形PNDM 的面积S=xy (2≤x≤4)易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H则有△AFB ∽△BHP∴PHBH BF AF =,即3412--=y x , ∴521+-=x y , x x xy S 5212+-==)42(≤≤x , 此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值y 随x 的增大而增大,对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10] )24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米 .2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为 元/平方米.5 m 12 m AB CD提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )。

10.二次函数的应用题(面积最值问题

10.二次函数的应用题(面积最值问题

二次函数的实际应用——面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。

求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为米,面积为平方米x S则长为:(米)x x 4342432-=+-则:)434(x x S -=x x 3442+-= 4289417(42+--=x ∵104340≤-<x ∴ 2176<≤x ∵,∴与的二次函数的顶点不在自变量的范围内, 6417<S x x 而当内,随的增大而减小, 2176<≤x S x ∴当时,(平方米) 6=x 6042894176(42max =+--=S 答:可设计成宽米,长10米的矩形花圃,这样的花圃面积最大. 6[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y ,则矩形PNDM 的面积S=xy (2≤x≤4)易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H则有△AFB ∽△BHP∴,即, PHBH BF AF =3412--=y x ∴, 521+-=x y , x x xy S 5212+-==)42(≤≤x 此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值随的增大而增大,y x 对于来说,当x=4时,. 42≤≤x 12454212=⨯+⨯-=最大S 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形. (2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10])24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x 当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度(单位:米)与小球运动时间h t (单位:秒)的函数关系式是,那么小球运动中的最大高度 4.9米 .=最大h 2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为 元/平方米.利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .mB .6 mC .15 mD .m 42425解:AB =x m ,AD=,长方形的面积为y m 2b ∵AD ∥BC ∴△MAD ∽△MBN ∴,即, MB MA BN AD =5512x b -=)5(512x b -=, 当时,有最大值. )5(512)5(5122x x x x xb y --=-⋅==5.2=x y 4.(2008湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C )A .7B .6C .5D .4 5.如图,铅球运动员掷铅球的高度(m)与水平距离(m)之间的函数关系式是:y x ,则该运动员此次掷铅球的成绩是( D ) 35321212++-=x x y A .6 mB .12 mC .8 mD .10m 解:令,则:0=y 02082=--x x 0)10)(2(=-+x x(图5) (图6) (图7)6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面m ,则水流落地点B 340离墙的距离OB 是( B )A .2 mB .3 mC .4 mD .5 m 解:顶点为,设,将点代入, )340,1(340)1(2+-=x a y )10,0(310-=a 令,得:,所以OB=3 0340)1(3102=+--=x y 4)1(2=-x7.(2007乌兰察布)小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( B )A .4.6mB .4.5mC .4mD .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解: )240(x x y -=)20(22x x --=200)10(22+--=x ∵152400≤-<x ∴205.12<≤x ∵二次函数的顶点不在自变量的范围内,x 而当内,随的增大而减小,205.12<≤x y x ∴当时,5.12=x (平方米)5.187200)105.12(22max =+--=y 答:当米时花园的面积最大,最大面积是187.5平方米.5.12=x9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为米,设面积为平方米. 350x -S )50(313502x x x x S --=-⋅=。

二次函数的应用——面积最大问题教学设计

二次函数的应用——面积最大问题教学设计

二次函数的应用——面积最大问题教学设计各位评委:你们好!我是良乡三中的杨素芳,很高兴有机会参加这次说课比赛,并能得到各位专家的指导,我说课的课题是:二次函数的应用——面积最大问题。

所用教材是北京市义务教育课程改革实验教材九年级上第20章第五节二次函数的应用,本节共需四课时,面积最大是第一节。

下面我将从教材内容的分析、教学目标、重点、难点的确定、教学方法的选择、教学过程的设计和教学效果预测几方面对本节课进行说明。

一、教学内容的分析1、地位与作用:二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。

新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对于面积问题学生易于理解和接受,故而在这儿作专题讲座,为求解最大利润等问题奠定基础。

目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关的应用问题。

此部分内容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。

2、课时安排:教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最大、利润最大、运动中的二次函数、综合应用四课时,本节是第一课时。

3.学情及学法分析对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。

二次函数面积最值问题的4种解法

二次函数面积最值问题的4种解法

微信公众号
从小学数学-------------------------------------------------
解法二:铅锤定理,在求二次函数三角形面积最值问题,运用非常多。 设动点 P 的坐标,然后用代数式分别表达出铅锤高度和水平宽度,然后利用铅锤定理的 计算公式,得出二次函数,必有最大值。
微信公众号
从小学数学-------------------------------------------------
原 题 :在( 1)中 的 抛 物 线 上 的 第 二 象 限 是 否 存 在 一 点 P,使 △PBC 的 面 积 最 大 ? 若 存 在 , 求出 P 点的坐标及△PBC 的面积最大值,若没有,请说明理由。 考试题型,大多类似于此。求面积最大值的动点坐标,并求出面积最大值。 一般解题思路和步骤是,设动点 P 的坐标,然后用代数式表达各线段的长。通过公式计 算,得出二次函数顶点式,则坐标和最值,即出。
解法一:补形,割形法。方法要点是,把所求图像的面积适当的割补,转化成有利于面 积表达的常规几何图形。请看解题步骤。
微信众号
从小学数学-------------------------------------------------
解 法 二 : 铅 锤 定 理 , 面 积 =铅 锤 高 度 ×水 平 宽 度 ÷2。 这 是 三 角 形 面 积 表 达 方 法 的 一 种 非 常 重要的定理。 铅锤定理,在教材上没有,但是大多数数学老师都会作为重点,在课堂上讲解。因为, 铅 锤 定 理 ,在 很 多 地 方 都 用 的 到 。这 里 ,也 有 铅 锤 定 理 的 简 单 推 导 ,建 议 大 家 认 真 体 会 。
解法四:三角函数法。请大家认真看上面的解题步骤。 总之,从以上的四种解法可以得出一个规律。过点 P 做辅助线,然后利用相关性质,找 出各元素之间的关系。 设动点 P 的坐标,然后找出各线段的代数式,再通过面积计算公式,得出二次函数顶点 式,求出三角形面积的最大值。 对于同学们中考数学来说,只要你熟练掌握解法一和解法二,那么二次函数几何综合题 中,求三角形面积最大值问题,就非常简单了。

[详细讲解]利用二次函数求几何图形面积的最值问题

[详细讲解]利用二次函数求几何图形面积的最值问题

利用二次函数求几何图形面积的最值问题构造二次函数来确定几何图形中的有关面积最大值的问题是近年来常考的题型,求解这类问题,实际上,只要我们能充分运用条件,根据图形的特点,综合运用所学知识,如,勾股定理、全等三角形、相似三角形、解直角三角形、图形的面积公式等等来寻求等量关系,从而构造出二次函数,再利用二次函数的性质即可求解.现举例说明.方法:1、用含有自变量的代数式分别表示出与所求几何图形相关的量(如周长、长、宽、半径等)。

2、根据几何图形的特征,列出其面积的计算公式,用函数表示这个面积。

3、根据函数关系式求出最大值及取得最大值的自变量的值,当 的值不在自变量的取值范围内时,应根据取值范围来确定最大值。

例1(2006年旅顺口区中考试题)已知边长为4的正方形截去一个角后成为五边形ABCDE (如图1),其中AF =2,BF =1.试在AB 上求一点P ,使矩形PNDM 有最大面积.简析 设矩形PNDM 的边DN =x ,NP =y ,则矩形PNDM 的面积S =xy (2≤x ≤4), 易知CN =4-x ,EM =4-y .且有NP BC CN-=BFAF(作辅助线构造相似三角形),即34y x --=12,所以y =-12x +5,S =xy =-12x 2+5x (2≤x ≤4),此二次函数的图象开口向下,对称轴为x =5,所以当x ≤5时,函数的值是随x 的增大而增大,对2≤x ≤4来说,当x =4时,S 有最大值S 最大=-12×42+5×4=12.说明 本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给同学们探索解题思路留下了思维空间.例2(2006年南京市中考试题)如图2,在矩形ABCD 中,AB =2AD ,线段EF =10.在EF 上取一点M ,分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN =x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?简析 因为矩形MFGN ∽矩形ABCD ,所以MNAD=MF AB,因为AB =2AD ,MN =x ,所以MF =2x ,所以EM =EF -MF =10-2x ,所以S =x (10-2x )=-2x 2+10x =-2(x -52)2+252,所以当x =52时,S 有最大值为252.说明 本题是利用相似多边形的性质,求出矩形的边之间的关系,再运用矩形的面积构造出二次函数的表达式,使问题求解.例3(2006年泉州市中考试题)一条隧道的截面如图3所示,它的上部是一个以AD 为直径的半圆O ,下部是一个矩形ABCD .(1)当AD =4米时,求隧道截面上部半圆O 的面积;(2)已知矩形ABCD 相邻两边之和为8米,半圆O 的半径为r 米.①求隧道截面的面积S (米)关于半径r (米)的函数关系式(不要求写出r 的取值范围);②若2米≤CD ≤3米,利用函数图象求隧道截面的面积S 的最大值.(π取3.14,结果精确到0.1米)简析(1)当AD =4米时,S半圆=12π×22AD ⎛⎫ ⎪⎝⎭=12π×22=2π(米2).(2)①因为AD =2r ,AD +CD =8,所以CD =8-AD =8-2r ,所以S =12πr 2+AD ·CD =12πr 2+2r (8-2r )=(12π-4)r 2+16r ;②由①知CD =8-2r ,又因为2米≤CD ≤3米,所以2≤8-2r ≤3,图 2 图1所以 2.5≤r ≤3,由①知S =(12π-4)r 2+16r =(12×3.14-4)r 2+16r =-2.43r 2+16r =-2.43(r -82.43)2+642.43,因为-2.43<0,所以函数图象为开口向下的抛物线,因为函数图象对称轴r =82.43≈3.3.又2.5≤r ≤3<3.3,由函数图象的性质可知,在对称轴左侧S 随r 的增大而增大,故当r =3时,S 有最大值,S最大值=(12π-4)×32+16×3≈(12×3.14-4)×9+48=26.13≈26.1(米2).即隧道截面面积S 的最大值约为26.1米2.说明 本题是一道典型的代数与几何的综合题,集图形的面积、不等式与二次函数的知识有机的结合在一起,有助于培养同学们的综合应用能力.例4(2006年陕西中考课改试题)王师傅有两块板材边角料,其中一块是边长为60cm 的正方形板子;另一块是上底为30cm ,下底为120cm ,高为60cm 的直角梯形板子(如图4),王师傅想将这两块板子裁成两块全等的矩形板材.他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE 围成的区域(如图5),由于受材料纹理的限制,要求裁出的矩形要以点B 为一个顶点.(1)求FC 的长;(2)利用如图5求出矩形顶点B 所对的顶点到BC 边的距离x (cm)为多少时,矩形的面积最大?最大面积时多少?图3(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长.简析(1)由题意,得△DEF ∽△CGF ,FC DF =CGDE,即603060=-FC FC , 所以FC =40(cm).(2)如图5,设矩形顶点B 所对顶点为P ,则①当顶点P 在AE 上时,x =60,y 的最大值为60×30=1800(cm 2);②当顶点P 在EF 上时,过点P 分别作PN ⊥BG 于点N ,PM ⊥AB 于点M .根据题意,得△GFC ∽△GPN ,所以CGFG NG DF =,所以NG =23x ,所以BN =120-23x ,所以y =x (120-23x )=-23(x -40)2+2400,所以当x =40时,y 的最大值为2400(cm 2);③当顶点P 在FC 上时,y 的最大值为60×40=2400(cm 2).综合①②③,得x =40cm 时,矩形的面积最大,最大面积为2400cm 2.(3)根据题意,正方形的面积y (cm 2)与边长x (cm)满足的函数表达式为: y =-23x 2+120x .当y =x 2时,正方形的面积最大,所以x 2=-23x 2+120x .解之,得 x 1=0(舍去),x 2=48(cm).图4图5所以面积最大得正方形得边长为48 cm.说明本题是一道典型的二次函数与几何综合应用的问题,在解第(2)小题时,一定不要忽视分类讨论来求出每一种情况的最大值后,再进行比较得出结论,第(3)小题只需根据题意列出方程就能解决.。

二次函数的实际应用(面积最值问题含答案)

二次函数的实际应用(面积最值问题含答案)

二次函数的实际应用——面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。

求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少? (2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少? 答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S tt t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -= x x 3442+-=4289)417(42+--=x ∵104340≤-<x∴2176<≤x∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小,∴当6=x 时,604289)4176(42max =+--=S (平方米)答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x≤4) 易知CN=4-x ,EM=4-y . 过点B 作BH ⊥PN 于点H 则有△AFB ∽△BHP ∴PHBHBF AF =,即3412--=y x , ∴521+-=x y , x x xy S 5212+-==)42(≤≤x ,此二次函数的图象开口向下,对称轴为x=5, ∴当x≤5时,函数值y 随x 的增大而增大, 对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省? 解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点 按顺(逆)时针方向旋转90°后得到的, 故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形. (2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元 那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10])24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米 .2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为 元/平方米.5 m 12m ABCD提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2∵AD ∥BC ∴△MAD ∽△MBN ∴MB MA BN AD =,即5512x b -=,)5(512x b -=)5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值.4.(2008湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C ) A .7 B .6 C .5 D .45.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是:35321212++-=x x y ,则该运动员此次掷铅球的成绩是( D ) A .6 mB .12 mC .8 mD .10m解:令0=y ,则:02082=--x x 0)10)(2(=-+x xxyO AB M O(图5) (图6) (图7)6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是( B )A .2 mB .3 mC .4 mD .5 m解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a 令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=3 7.(2007乌兰察布)小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( B )8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少? 解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x ∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内, 而当205.12<≤x 内,y 随x 的增大而减小, ∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ? (2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x-米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x∴当25=x 时,3625max =S (平方米)即:鸡场的长度为25米时,面积最大.(2) 中间有n 道篱笆,则宽为250+-n x米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米)由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米. 即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.ABCD PQ解:∵∠APQ=90°, ∴∠APB+∠QPC=90°. ∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90° .∴△ABP ∽△PCQ.,86,yxx CQ BP PC AB =-= ∴x x y 34612+-=.11.(2006年南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,•分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少? 解:∵矩形MFGN ∽矩形ABCD ∴MF=2MN =2x ∴ EM=10-2x ∴S=x (10-2x )=-2x 2+10x=-2(x-2.5)2+12.5 ∵1020<<x ,∴50<<x当x=2.5时,S 有最大值12.5易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 0.5 米. 答案:如图所示建立直角坐标系则:设c ax y +=2将点)1,5.0(-,)5.2,1(代入,⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2008黑龙江哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少? 解:(1)根据题意,得x x x xS 3022602+-=⋅-=自变量的取值范围是(2)∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2008年南宁市)随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少? 解:(1)设=,由图12-①所示,函数=的图像过(1,2),所以2=,故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设2y =,由图12-②所示,函数2y =的图像过(2,2),所以,故利润2y 关于投资量的函数关系式是2221x y =; (2)设这位专业户投入种植花卉万元(),则投入种植树木(x -8)万元,他获得的利润是万元,根据题意,得 ==+21y y +== ∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润.因为,所以在对称轴2=x 的右侧, z 随x 的增大而增大所以,当8=x 时,z 的最大值为32.15.(08山东聊城)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.解:(1)设正方形的边长为cm,则.即.解得(不合题意,舍去),.剪去的正方形的边长为1cm.(2)有侧面积最大的情况.设正方形的边长为cm,盒子的侧面积为cm2,则与的函数关系式为:.即.改写为.当时,.即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.设正方形的边长为cm ,盒子的侧面积为cm 2.若按图1所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=22102)28(2 即.当时,.若按图2所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=2282)210(2. 即.当时,.比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm 2.16.(08兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式; (2)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:(1)根据题目条件,的坐标分别是.设抛物线的解析式为,将的坐标代入,得解得.所以抛物线的表达式是.(2)可设,于是从而支柱的长度是米.(3)设是隔离带的宽,是三辆车的宽度和,则点坐标是.过点作垂直交抛物线于,则.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.已知,直角三角形的两直角边的和为2,求斜边长可能达到的最 小值,以及当斜边长达到最小值时两条直角边的长。(P45,第2题)
1.解:∵隧道的底部宽为x,周长为16,
π +2 8- x 4

x
答:当隧道的底部宽度为4.48米时,隧道的截面积最大。
2.解:设其中的一条直角边长为x, 则另一条直角边长为(2-x), 又设斜边长为y, 则:
N
何时面积最大
如图,在一个直角三角形的内部作一个矩形ABCD, 其中AB和AD分别在两直角边上. M (1)如果设矩形的一边AD=xcm,那 么AB边的长度如何表示? C D 2 (2)设矩
30cm

4 A bcm B 40cm 解 : 1设AB bcm,易得b x 40. 3 4 2 4 4 2y xb x x 40 x 40 x x 152 300. 3 3 3 b 4ac b 2 或用公式 : 当x 15时, y最大值 300. 2a 4a
2、图中所示的二次函数图像的解析式
为:
y
y=2x2+8x+13
⑴若-3≤x≤3,该函数的最大值、最小值 分别为( 55)、( 5 )。
6
⑵又若0≤x≤3,该函数的最大值、最小 值分别为( )。 55)、( 13
-4 -2
4
2 0 2
x
求函数的最值问题, 应注意对称轴是否在自变量的取值范围内。
何时面积最大
N
A N 解: 1 由勾股定理得MN 50m, PH 24m. 40m 12 设AB bm,易得b x 24. 25 12 12 2 2 12 x 25 300. 2y xb x x 24 x 24 x 25 25 25 2 b 4ac b 或用公式 : 当x 25时, y最大值 300. 2a 4a
二次函数的应用
回顾与练习
1、求下列二次函数的最大值或最小值:
⑴ y=-x2+58x-112; ⑵ y=-x2+4x
解: ⑴配方得: y=-(x-29)2+729 又因为: -1<0,则:图像开口向下,
所以:当x=29时,y 达到最大值为729
⑵ -1<0, 则:图像开口向下,函数有最大值 所以由求最值公式可知,当x=2时, y达到最大值为4.
如图,在一个直角三角形的内部作一个矩形ABCD, 其中AB和AD分别在两直角边上. M (1) 设矩形的一边AB=xm,那么AD C 边的长度如何表示? D (2)设矩形的面积为ym2,当x取何值 ┐ 时,y的值最大?最大值是多少?
30m
A
40m
B
如图,在一个直角三角形的内部作一个矩形ABCD, 其中AB和AD分别在两直角边上. (1)设矩形的一边AB=xm,那么AD 边的长度如何表示? (2)设矩形的面积为ym2,当x取何值 时,y的值最大?最大值是多少?
2-x
x
所以:当x=1时,斜边长有最小值 2 此时两条直角边的长均为1
,
4
2 7 2 15 15 225 x x 7 . x 2 2 2 14 56
y
用48米长的竹篱笆围建一矩形养鸡场,养 鸡场一面用砖砌成,另三面用竹篱笆围成,并 且在与砖墙相对的一面开2米宽的门(不用篱 笆),问养鸡场的边长为多少米时,养鸡场占地 面积最大?最大面积是多少?
M
30m
D ┐
C
bm
3 xm B A 解 : 1设AD bm,易得b x 30. 40m 4 3 2 3 3 2y xb x x 30 x 30 x x 202 300. 4 4 4 b 4ac b 2 或用公式 : 当x 20时, y最大值 300. 2a 4a
xm
ym2
2m
xm
正方形ABCD边长5cm,等腰三角形PQR中,PQ=PR=5cm, QR=8cm,点D、C、Q、R在同一直线l上,当C、Q两 点重合时,等腰△PQR以1cm/s的速度沿直线l向 左方向开始匀速运动,ts后正方形与等腰三角形 重合部分面积为Scm2,解答下列问题: (1)当t=3s时,求S的值; B
A
(3)当5s≤t≤8s时,求S 与t的函数关系式,并求 S的最大值。
l D Q
M
C
P
R
变式与拓展
1.如图,隧道横截面的下部是矩形,上部是半圆,周长为16米。(P45,第4题)
⑴求截面积S(米2)关于底部宽x(米)的函数解析式,及自变量x 的取值范围? ⑵试问:当底部宽x为几米时,隧道的截面积S最大(结果精确到0.01米)?
如图,在一个直角三角形的内部作一个矩形ABCD, 其中点A和点D分别在两直角边上,BC在斜边上. M (1)设矩形的一边BC=xm,那么AB C H 边的长度如何表示? B (2)设矩形的面积为ym2,当x取何值 D G 时,y的值最大?最大值是多少? ┐
30m
P
何时窗户通过的光线最多
某建筑物的窗户如图所示,它的上半部是半圆,下 半部是矩形,制造窗框的材料总长(图中所有的黑线 的长度和)为15m.当x等于多少时,窗户通过的光线最 多(结果精确到0.01m)?此时,窗户的面积是多少? 15 7 x x x x 解: 1 由4 y 7 x x 15, 得y
相关文档
最新文档