二次函数动点面积最值问题
二次函数中动点图形的面积最值

(-3,3)
图2 O
(0,2.5)
(0,2) (4,2) X轴
图1:铅垂高CD为:6-2.5=3.5
图2:铅垂高CD为:2-(-1.5)=3.5
(-3,-1)
(0,-1.5) (0,-2)
(4,-2) 图3:铅垂高CD为:-2-(-5.5)=3.5
2
三、自我检测
4.抛物线
y 4 2 24 x x 4 在平面直角坐标系中的位置如图,直线 5 5
4 y x4 5
与y轴交于点B.在抛物线上是否 与x轴交于点A(-5,0),
存在一点P, 使得△PAB的面积最小?若存在, 求△PAB面积的最小值;
若不存在,请说明理由.
则△ , ABC的面积为
1 3 x 与x轴交于A、B两点,顶点为C, 2 2
.
则△ABC的面积为
三、自我检测
3. 已知抛物线 y x 2 x 3 与x轴交于A(-3,0),B(1,0)两点, 与y轴交于点C,直线y=x+1与抛物线交于E,F两点.点P是直线EF 下方抛物线上的动点,求△PEF 面积的最大值及点P的坐标.
变式3 如图,抛物线中的点A、B、C与例题中的点A、B、C一样, 点P是直线AC上方抛物线上的动点,是否存在点P,使 S PAC 2S ABC ,若存在,求出点P的坐标.
二、试题解析
变式4 若B、C是抛物线与x轴的交点,A是抛物线与y轴的交 点,点D是线段AC上的动点,过点D作x轴的垂线与抛 物线相交于点E,当点D运动到什么位置时,四边形 ABCE的面积最大?求四边形ABCD面积的最大值及此 时点D的坐标.
图3 (-3,-5)
二次函数动点及最值问题

一、二次函数中的最值问题:例1:在平面直角坐标系中,全等的两个三角形Rt⊿AOB与Rt A’OC’如图放置,点B、C’的坐标分别为(1,3),(0,1),BO 与A’ C’相交于D,若⊿A’OC’绕点O旋转90°至⊿AOC,如图所示(1)若抛物线过C、A、A’,求此抛物线的解析式及对称轴;∴y=-x2+2x+3(2)、若点P是第一象限内抛物线线上的一动点,问P在何处时△AP A’的面积最大?最大面积是多少?并求出此时的点P的坐标。
(3)、设抛物线的顶点为N,在抛物线上是否存在点P,使△A’AN与△A’AP的面积相等?,若存在,请求出此时点P的坐标,若不存在,请说明理由。
例2、(2012攀枝花)如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A.C.D均在坐标轴上,且AB=5,sinB=.(1)求过A.C.D三点的抛物线的解析式;(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A.E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.解答:解:(1)∵四边形ABCD是菱形,∴AB=AD=CD=BC=5,sinB=sinD=;Rt△OCD中,OC=CD•sinD=4,OD=3;OA=AD﹣OD=2,即:A(﹣2,0)、B(﹣5,4)、C(0,4)、D(3,0);设抛物线的解析式为:y=a(x+2)(x﹣3),得:2×(﹣3)a=4,a=﹣;∴抛物线:y=﹣x2+x+4.(2)由A(﹣2,0)、B(﹣5,4)得直线AB:y1=﹣x﹣;由(1)得:y2=﹣x2+x+4,则:,解得:,;由图可知:当y1<y2时,﹣2<x<5.(3)∵S△APE=AE•h,∴当P到直线AB的距离最远时,S△ABC最大;若设直线L∥AB,则直线L与抛物线有且只有一个交点时,该交点为点P;设直线L:y=﹣x+b,当直线L与抛物线有且只有一个交点时,﹣x+b=﹣x2+x+4,且△=0;求得:b=,即直线L:y=﹣x+;可得点P(,).由(2)得:E(5,﹣),则直线PE:y=﹣x+9;新课标第一网则点F(,0),AF=OA+OF=;∴△PAE的最大值:S△PAE=S△PAF+S△AEF=××(+)=.综上所述,当P(,)时,△PAE的面积最大,为.针对训练:1、(2013宜宾)如图,抛物线y1=x2﹣1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.(1)请直接写出抛物线y2的解析式;(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由.解答:解:(1)抛物线y1=x﹣1向右平移4个单位的顶点坐标为(4,﹣1),所以,抛物线y2的解析式为y2=(x﹣4)2﹣1;(2)x=0时,y=﹣1,y=0时,x2﹣1=0,解得x1=1,x2=﹣1,所以,点A(1,0),B(0,﹣1),∴∠OBA=45°,联立,解得,∴点C的坐标为(2,3),∵∠CPA=∠OBA,∴点P在点A的左边时,坐标为(﹣1,0),在点A的右边时,坐标为(5,0),所以,点P的坐标为(﹣1,0)或(5,0);(3)存在.∵点C(2,3),∴直线OC的解析式为y=x,设与OC平行的直线y=x+b,联立,消掉y得,2x2﹣19x+30﹣2b=0,当△=0,方程有两个相等的实数根时,△QOC中OC边上的高h有最大值,此时x1=x2=×(﹣)=,此时y=(﹣4)2﹣1=﹣,∴存在第四象限的点Q(,﹣),使得△QOC中OC边上的高h有最大值,此时△=192﹣4×2×(30﹣2b)=0,解得b=﹣,∴过点Q与OC平行的直线解析式为y=x﹣,令y=0,则x﹣=0,解得x=,设直线与x轴的交点为E,则E(,0),过点C作CD⊥x轴于D,根据勾股定理,OC==,则sin ∠COD==, 解得h 最大=×=.2、如图,抛物线)0(2232≠--=a x ax y 的图象与x 轴交于A 、B 两点,与y 轴交于C 点,已知B 点坐标为()0,4.(1)求抛物线的解析式;(2)试探究ABC ∆的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 下方的抛物线上一点,求MBC ∆的面积的最大值,并类型一、最值问题:类型一、最值问题:(2013•泸州)如图,在直角坐标系中,点A 的坐标为(﹣2,0),点B 的坐标为(1,﹣),已知抛物线y=ax 2+bx+c (a ≠0)经过三点A 、B 、O (O 为原点).(1)求抛物线的解析式;(2)在该抛物线的对称轴上,是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由;(3)如果点P 是该抛物线上x 轴上方的一个动点,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)),﹣﹣(+,解得:﹣,﹣,﹣﹣x(PE(+y)﹣y)﹣((y+(﹣x+x x+()﹣的面积最大,最大值为××,,类型二、探索三角形的存在性。
二次函数动点的面积最值问题课件

个分支的理解和掌握。
02
掌握解题方法
解决二次函数动点面积最值问题需要掌握一定的解题技巧和方法,包括
数形结合、参数分离、极值法等。通过对这些方法的运用,可以有效地
解决各种复杂的问题。
03
理解问题本质
二次函数动点面积最值问题的本质是寻找函数在某个区间上的最大值或
最小值,以及对应的自变量取值。通过对问题本质的深入理解,可以更
矩形面积的最值
在矩形中找一点,使得该点与矩形顶点的连线将矩形划分为四个面积相等的部分 ,也可以利用二次函数动点面积最值问题求解。
在实际生活中的应用
土地规划
在土地规划中,经常需要确定土地的 分割方式以及各部分的面积,利用二 次函数动点面积最值问题可以找到最 优的分割方案,使得土地的利用率达 到最高。
局。
城市绿化
在城市绿化规划中,通过求解二 次函数动点面积最值问题,可以 确定最佳的绿化区域和分布方式 ,提高城市绿化覆盖率和环境质
量。
06
总结和展望
对二次函数动点面积最值问题的理解和总结
01
理解问题背景
二次函数动点面积最值问题是一个经典的数学问题,涉及到几何、代数
和微积分等多个领域的知识。通过对该问题的研究,可以加深对数学各
要点二
代数解法
通过几何方法(如相似三角形、勾股定理等)来求解动点 面积的最值。
利用代数公式和不等式,通过代数运算求解动点面积的最 值。
二次函数动点面积最值问题的实际应用案例
建筑规划
在建筑规划中,需要考虑土地利 用效率与美观性,动点面积最值 问题可以帮助规划者找到最佳的
建筑布局方案。
农业种植
农业种植中,为了最大化土地利 用率和产量,可以利用二次函数 动点面积最值问题来优化种植布
二次函数双动点面积最值

二次函数双动点面积最值引言二次函数是高中数学中的一个重要内容,涉及到很多有趣的性质和应用。
本文将讨论二次函数中的一个特殊问题:如何确定二次函数的两个动点,使得其面积最值。
我们将从理论和实际问题两个方面进行探讨。
二次函数的基本性质在讨论如何确定二次函数的两个动点面积最值之前,我们先来回顾一下二次函数的基本性质。
1. 二次函数的一般形式二次函数的一般形式可以表示为:y=ax2+bx+c,其中a、b、c为常系数。
2. 二次函数的图像二次函数的图像通常为抛物线,其开口的方向由a的正负决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 二次函数的顶点二次函数的顶点对应着抛物线的最值点。
对于一般形式的二次函数y=ax2+bx+c,顶点的横坐标为x=−b2a ,纵坐标为y=−b2−4ac4a。
利用动点确定二次函数在确定二次函数的两个动点面积最值之前,我们需要先明确什么是动点。
在二次函数中,动点指的是抛物线上的一点,其坐标可以随着抛物线的变化而变化。
1. 动点的坐标表示假设我们的二次函数为y=ax2+bx+c,动点的坐标为(x1,y1)和(x2,y2),其中x1、x2为动点的横坐标,y1、y2为动点的纵坐标。
2. 动点的面积表示由于动点位于抛物线上,我们可以通过计算动点形成的三角形的面积来表示动点的面积。
假设动点为(x1,y1)和(x2,y2),则动点形成的三角形的面积为S=12(x1−x2)(y1+y2)。
寻找面积最值的方法接下来,我们将讨论如何确定二次函数的两个动点,使得其面积最大或最小。
1. 面积最大值的情况要确定二次函数的两个动点,使得其面积最大,我们需要寻找抛物线的顶点。
由于顶点对应着抛物线的最值点,我们可以利用二次函数的顶点公式来确定动点的横坐标。
设顶点的横坐标为x v,则可知x1=x v和x2=x v。
将这些坐标代入动点面积的公式中,可以得到动点面积的表达式S=12(x v−x v)(y1+y2)。
二次函数综合(动点)问题——四边形面积最值存在问题培优教案(横版)

教学过程一、课堂导入在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C(3,3),D(2,4),问题:这是在平面直角坐标系那章我们经常遇到的求四边形面积的题目,这类问题相信大家都有不同的解题方法,在二次函数这一章,我们依然要研究四边形的面积,如果我们将二次函数容纳其中,在抛物线(直线、坐标轴等)上求作一点,使得四边形面积最大并求出该点坐标时,又该如何解答呢?二、复习预习(一)二次函数y=ax2+bx+c的图像和性质:(二)相似三角形的性质:(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
(三)相似三角形模型探究与解题技巧:1、课堂导入题解如图,在平面直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为_________________时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).解:∵点C在x轴上,∴点C的纵坐标是0,且当∠BOC=90°时,由点B、O、C组成的三角形与△AOB 相似,即∠BOC应该与∠BOA=90°对应,①当△AOB∽△COB,即OC与OA相对应时,则OC=OA=4,C(-4,0);②当△AOB∽△BOC,即OC与OB对应,则OC=1,C(-1,0)或者(1,0).故答案可以是:(-1,0);(1,0).解析:分类讨论:①当△AOB∽△COB时,求点C的坐标;②当△AOB∽△BOC时,求点C的坐标;如果非直角三角形也要分类讨论,对应边不一样就得到不同的结果。
2、几种常见的相似三角形模型①直角三角形相似的几种常见模型②非直角三角形相似的几种常见模型3、解题技巧函数中因动点产生的相似三角形问题一般有三个解题途径。
二次函数中动点图形的面积最值

求解动点图形面积最值的步骤
1
步骤1
确定最值问题的区间。
2
步骤2
通过求导或综合判断确定极值点或临界点。
3
ቤተ መጻሕፍቲ ባይዱ
步骤3
计算极值点或临界点对应的面积。
案例分析:计算动点图形面积 最大值和最小值
假设二次函数为y = -x^2 + 3x + 2,动点轨迹为一条垂直于x轴的直线,探索动 点图形的面积变化。通过计算可以得到动点图形的最大面积和最小面积。
二次函数中动点图形的面 积最值
二次函数是数学中的一个重要概念,它描述了一种用抛物线表示的函数关系。 本节将探讨如何通过动点图形的面积来寻找二次函数中的最值。
二次函数简介
二次函数是一种具有二次项的代数函数,它的一般形式为y = ax^2 + bx + c。二次函数在数学和物理学中有广泛 的应用,可以用来描述各种实际问题。
问题讨论与思考
除了计算动点图形面积的最值,我们还可以思考以下问题:如何改变函数的系数以改变图形的面积范围?是否 存在其他方法来求解动点图形的最值?这些问题可以帮助我们深入理解二次函数和面积最值概念的应用。
结论和总结
通过寻找二次函数中动点图形的面积最值,我们可以进一步理解函数的性质 和图像的变化规律。这一概念在数学和实际问题中都具有重要的应用价值。
最值的概念和意义
最值是指函数在给定区间内取得的最大值或最小值。在二次函数中,最值的 位置和数值可以提供关于函数图像的重要信息,帮助我们解决实际问题。
动点图形面积的计算方法
步骤1
确定二次函数的表达式,并 绘制函数图像。
步骤2
确定动点的轨迹,通常是垂 直于x轴的直线或水平于y轴 的直线。
步骤3
计算动点图形的面积。
“二次函数”面积最值问题的几种解法

“二次函数”面积最值问题的几种解法以微课堂公益课堂,奥数国家级教练与四位特级教师联手执教。
二次函数是初中数学的一个重点、难点,也是中考数学必考的一个知识点。
特别是在压轴题中,二次函数和几何综合出现的题型,才是最大的区分度。
而求三角形面积的最值问题,更是常见。
今天介绍二次函数考试题型种,面积最值问题的4种常用解法。
同学们只要熟练运用一两种解法,炉火纯青,在考试答题的时候,能够轻松答题,就好。
原题:在(1)中的抛物线上的第二象限是否存在一点P,使△PBC的面积最大?若存在,求出P点的坐标及△PBC的面积最大值,若没有,请说明理由。
考试题型,大多类似于此。
求面积最大值的动点坐标,并求出面积最大值。
一般解题思路和步骤是,设动点P的坐标,然后用代数式表达各线段的长。
通过公式计算,得出二次函数顶点式,则坐标和最值,即出。
解法一:补形,割形法。
方法要点是,把所求图像的面积适当的割补,转化成有利于面积表达的常规几何图形。
请看解题步骤。
解法二:铅锤定理,面积=铅锤高度×水平宽度÷2。
这是三角形面积表达方法的一种非常重要的定理。
铅锤定理,在教材上没有,但是大多数数学老师都会作为重点,在课堂上讲解。
因为,铅锤定理,在很多地方都用的到。
这里,也有铅锤定理的简单推导,建议大家认真体会。
解法二:铅锤定理,在求二次函数三角形面积最值问题,运用非常多。
设动点P的坐标,然后用代数式分别表达出铅锤高度和水平宽度,然后利用铅锤定理的计算公式,得出二次函数,必有最大值。
解法三:切线法。
这其实属于高中内容。
但是,基础好的同学也很容易理解,可以看看,提前了解一下。
解法四:三角函数法。
请大家认真看上面的解题步骤。
总之,从以上的四种解法可以得出一个规律。
过点P做辅助线,然后利用相关性质,找出各元素之间的关系。
设动点P的坐标,然后找出各线段的代数式,再通过面积计算公式,得出二次函数顶点式,求出三角形面积的最大值。
对于同学们中考数学来说,只要你熟练掌握解法一和解法二,那么二次函数几何综合题中,求三角形面积最大值问题,就非常简单了。
二次函数双动点面积最值

二次函数双动点面积最值一、问题描述在平面直角坐标系内,给定二次函数 $y=ax^2+bx+c$,且 $a<0$。
定义该二次函数的双动点为其图像上两个不同的点 $(x_1,y_1)$ 和$(x_2,y_2)$,满足 $y=ax^2+bx+c$ 在区间 $(x_1,x_2)$ 内单调递减或单调递增。
现在要求求出所有可能的双动点,并计算出其对应的面积最大值。
二、解题思路本题需要分别考虑二次函数的凸性和双动点的性质。
具体来说,我们可以通过求导数来判断二次函数的凸性,并通过判别式来计算二次方程的根以确定双动点。
然后,我们可以利用双动点的性质,结合微积分知识求出面积最大值。
三、解题步骤1. 求解二次函数的凸性由于$a<0$,因此该二次函数开口向下。
此时,当且仅当$a>0$ 时,该二次函数在整个定义域内为凸函数;当且仅当 $a<0$ 时,该二次函数在整个定义域内为下凸函数。
因此,在本题中,我们可以通过判断 $a$ 的符号来确定该二次函数的凸性。
2. 计算二次方程的根由于$a<0$,因此该二次函数的图像是一个开口向下的抛物线。
此时,该二次函数的双动点必然是两个不同的零点,即 $ax^2+bx+c=0$ 的两个根。
根据二次方程求根公式可得:$$x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$由于 $a<0$,因此 $\sqrt{b^2-4ac}$ 为实数。
因此,当 $b^2-4ac>0$ 时,该二次方程有两个不同的实根;当 $b^2-4ac=0$ 时,该二次方程有一个重根;当$b^2-4ac<0$ 时,该二次方程无实数解。
在本题中,我们需要计算出所有可能的双动点。
因此,在计算完根之后,我们需要对其进行判断:若两个根均在定义域内,则它们为一个双动点;若其中一个根在定义域内而另一个不在,则不存在双动点;若两个根均不在定义域内,则也不存在双动点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数最大面积
例1如图所示,等边△ ABC中,BC=10cm,点R, P?分别从B,A同时岀发,以1cm/s的速度沿线段BA,AC 移动,当移动时间
练习
1如图,在矩形ABCD中,AB=6cm , BC=12cm,点P从点A岀发沿AB边向点B以1cm/s的速度移动,同时点Q从点B岀发沿BC边向C以2cm/s的速度移动,如果P,Q同时岀发,分别到达B、C两点就停止移动。
_ ___________________________________________ 2
(1 )设运动开始后第t秒,五边形APQCD的面积是Scm ,写岀S与t函数关系式,并指岀
t的取值范围。
(2) t为何值时,S最小?并求岀这个最小值。
A开始沿
Q
B
B边向点B以
A
2 如图,在△ ABC 中,/ B=9 0°, AB=22CM,BC=20CM ,点P 从点
2cm/S的速度移动,点Q从点B开始沿着BC边向点C以1cm/S的速度移动,P,Q分别从A,B 同时岀发。
2
求四边形APQC的面积y ( cm )与PQ移动时间x (s)的函数关系式, 以及自变
量x的取值范围。
C
3如图正方形ABCD的边长为4cm,点P是BC边上不与B,C重合的任意一点点P作PQ丄AP交DC于点Q,设BP的长为x cm,CQ的长为y cm。
(1)求点P在BC上的运动的过程中y的最大值。
1
(2 )当y= cm时,求x的值。
4
4如图所示,边长为
在线段
记CD
(1)
过A
D
P
B
B
1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,动点点E,
连接O BC上移动(不与B,C重合),连接OD,过点D作DE丄OD, 的长为
t o
1
当t=丄时,求线段DE
3
如果梯形CDEB的面积为所在直线的函数表达式
S,那么S是否
以及此时
(2) 存在最大值?若存在,请求出最大值,t的值;
若不存在,请说明理由。
2 2
(3)当OD DE的算术平方根取最小值时,
(4)求点E的坐标。
二次函数最大面积交AB
D B
E
能力提高
例题如图所示,在梯形ABCD中,AD// BC,AB=AD=DC=2CM,BC=4C在等腰△ PQR中,/ QPR=120 ,底边QR=6CM点B,C,Q,R在同一直线
1cm/s的速度沿直线I向左匀速移动,
(1)
(2) t秒时梯形
I上,且C,Q两点重合,如果等腰△ PQR以
2 ABCD与等腰△ PQF重合部分的面积记为Scm
当t=4时,求S的值。
当4< t < 10时,求S与t的函数关系式,
A
并求岀S的最大值。
D
1 / 2
l 一
R
如图所示,有一边长为
一直线I上,当C,Q两点
重合时,等腰△ PQR以1cm/s的速度沿直线I向左匀速移动,t s后正
方形ABCD与等腰三角形PQR重合部分的面积为Scm2,解答下列问题
(1)当t=3s时,求S的值。
(2)当t=5s时,求S的值
(3)当5< t < 8时,求S与t的函数关系式,并求岀S的最大值。
A D
5cm 的正方形ABCD 和等腰△ PQR PQ=RP=5CM,QR=8C点B,C,Q,R 在同
2 / 2。