纳米微粒制备实验

纳米微粒制备实验
纳米微粒制备实验

HT-218型纳米微粒制备实验仪

使用说明书

一.基本原理

纳米科学技术是20世纪80年代末期刚刚诞生并正在迅速发展的新科技。它是研究由尺寸在0.1~100纳米之间的物质组成体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术,也是一个融前沿科学和高技术于一体的完整体系。

在整个纳米科技的发展中,纳米颗粒的制备和微粒性质的研究是最早开展的。

微粒制备的方法很多,按制备方法可分为物理方法和化学方法。按制备路径分,或分为粉碎法和聚集法。

本实验仪采用电阻加热,气体冷凝法制备纳米微粒。

图中显示蒸汽冷凝法制备纳米微粒的过程。首先利用抽气泵(真空泵)对系统进行真空抽吸,并利用隋性气体进行置换。惰性气体为高纯Ar,He等,有些情形也可以考虑用N2气。经过几次置换后,将真空反应室内保护气的气压控制至所需的参数范围,通常约为0.1kPa 至10kPa范围,与所需粒子路径有关。当原材料被加热至蒸发温度时蒸发为气相。气相的原材料原子与惰性气体的原子(或分子)碰撞,迅速降低能量而骤然冷却。骤冷使得原材料的确蒸气中形成很高的局域过饱和,非常有利于成核。成核与生长过程都是在极短的时间内发生的,首先形成原子簇,然后继续生长成纳米微晶,最终在收集器上收集到纳米粒子。

二.仪器组成

如图所示

纳米微粒制备实验仪外型图

仪器照片

实验仪器

玻璃真空罩G置于食品顶部真空橡皮圈的上方。平时真空罩内保持一定程度的低气压,以维护系统的清洁。当需要制备微粒时,打开阀门V2让空气进入真空室,使得真空室内外气压相近即可掀开真空罩。真空罩下方真空室底盘P的上部倒置了一只玻璃烧杯F,用作纳料微粒的收集器。两个铜电极I之间可以接上随机附带的螺旋状钨丝H。铜电极接至蒸发速率控制单元,若在真空状态下或低气压惰性气体状态下启动该单元,钨丝上即通过电流并可获得1000oC以上的高温。真空底盘P开有四个孔,孔的下方分别接有气体压力传感器E,以及连接阀门V1,V2和电磁阀门Ve的管道。气体压力传感器E连结至真空度量单元,并在数字显示表M1上直接显示实验过程中真空室内的气体压力。阀门V1通过管道与仪器后侧惰性气体接口连接,实验时可利用V1调整气体压力,亦可借助Ve调整压力。阀门V2的另一端直通大气,主要为打开钟罩而设立。电磁阀Ve的另一端接至抽气单元并由该单元实行抽气的自动控制,以保证抽气的顺利进行并排除真空泵油倒灌进入真空室。蒸发控制单元的加热功率控制钮置于仪器面板上。调节加热器时数字显示表M2直接显示加热功率。

三.主要技术指标

真空度<0.01kPa

气体压力测量范围0.01kPa~120kPa 四位半数字显示

加热功率0~200w

功率测量三位半数字显示

电源220V 50Hz

四.操作步骤

①准备工作

②⑴检查仪器系统的电源接线,惰性气体连结管道是否正常。惰性气体最好用高纯

Ar气,亦可考虑使用化学性质不活泼的高纯N2气。

③⑵利用脱脂白绸布,分析纯酒精,仔细擦净真空罩以及罩内的底盘,电极和烧杯。

④⑶将螺旋状钨丝接至铜电极。

⑤⑷从样品盒中取出铜片(用于纳米铜粉制备),在钨丝的每一圈上挂一片,罩上烧

杯。

⑥⑸罩上真空罩,关闭阀门V1,V2,将加热功率旋钮沿逆时针方向旋至最小,合上

电源总开关S1。此时真空度显示器显示出与大气压相当的数值,而加热功率显示为零。由于HT-218预置了不当操作报警,如果回执功率钮示调节到最小,蜂鸣器将持续发出信号直至纠正为止。

⑦⑹合上开关S2,此时抽气单元开始工作,电磁阀Ve自动接通,真空室内压力下降。

下降至一定值时关闭S2,观察真空度是否稳定在该值附近,如果真空度持续变差,表明存在漏气因素,检查V1,V2是否关闭。正常情况下不应漏气。

⑧⑺打开阀门V1,此时惰性气体进入真空室,气压随之变大。

⑨⑻熟练上述抽气与供气的操作过程,直至可以按实验的要求调节气体压力为止。

⑩⑼准备好备用的干净毛刷和收集纳米微粉的容器。

②制备铜纳米微粒

⑴关闭V1,V2阀门,对真空室抽气至0.05kPa附近。

⑵利用氩气(或氮气)冲洗真空室。打开阀门V1使氩气进入真空室,边抽气边进

气(氩气或氮气)约5分钟。

⑶关闭阀门V1,观察真空度至0.13kPa附近时关闭S2,停止抽气。此时真空度应

基本稳定在0.13kPa附近。

⑷沿顺时针方向缓慢旋转功率旋钮,观察加热功率显示器,同时关注钨丝。随着

加热功率的逐渐增大,钨丝逐渐发红进而变亮。当温度达到铜片(或其它材料)的熔点时铜片熔化,并由于表面张力的原因,浸润至钨丝上。

⑸继续加大加热功率时可以见到用作收集器的烧杯表面变黑,表明蒸发已经开始。

随着蒸发过程的进展,钨丝表面的铜液越来越少,最终全部蒸发掉,此时应立即将加热功率调到最小。

⑹打开阀门V2使空气进入真空室,当压力与大气压相近时,小心移开真空罩,取

下作为收集罩的烧杯。用刷子轻轻地将一层黑色粉末刷至烧杯底部再倒入备好的容器,贴上标签。收集到的细粉既是纳米铜粉。

⑺在2×0.13kPa,5×0.13kPa,10×0.13kPa,及30×0.13kPa处重复上述实验制备,

并记录每次蒸发时的加热功率,观察每次制备时蒸发情况有何差异。

注:可将微粒粒径作如下检测

⑴利用X线衍射仪进行物相分析,确定晶格常数并与大晶粒的同种材料进行对比。

⑵比较纳米粉与大晶粒同种材料的衍射线半高峰宽,判断不同气压下制备的材料的晶粒平均尺寸。给出气压与晶粒尺寸之间的关系。

⑶有条件的可进行TEM观察,选取有代表性的电镜照片作出微粒尺寸与颗粒娄分布图。

也可用超声波清洗机进行乳化,进行观察和比较。

既可制备金属如金,银,铜,铝,镍等材料,也可制备氧化物,塑料及高分子材料等。

制备粒度在10nm至200nm不等,每次约10~100mg

蒸汽冷凝法制备纳米微粒

引言

20世纪80年代末以来,一项令世人瞩目的纳米科学技术正在迅速发展。纳米科技将在21世纪促使许多产业领域发生革命性变化。关注纳米技术并尽快投入到与纳米科技有关的研究,是本世纪许多科技工作者的三中三中历史使命。

在物理学发展的历史上,人类对宏观领域和微观领域已经进行了长期的,不断深入的研究。然而介于宏观和微观之间的所谓介观领域却是一块长期以来未引起人们足够重视的领域。这一领域的特征是以相干量子输运现象为主,包括团簇,纳米体系和亚微米体系,尺寸范围为1~1000nm 。

但习惯上人们将100-1000nm范围内有关现象的研究,特别是电输运现象的研究领域称为介观领域。因而1-100nm的范围就是指纳米尺度,在此范围的研究领域称为纳米体系(图

8.4-1)。纳米科技正是指在纳米尺度上研究物质的特性和相互作用以及利用这些特性的科学技术。经过几十年的急速发展,纳米科技已经形成纳米物理学,纳米化学,纳米生物学,纳米电子学,纳米材料学,纳米力学和纳米加工学等学科领域。

纳米材料与宏观材料相比具有以下的一些特殊效应。

⒈小尺寸效应

纳米材料的尺寸与光波波长,德布罗意波长以及超导态的相干长度或透射尝试等物理特征尺寸相当或更小,宏观晶体的周期性边界条件不再成立,导致材料的声,光,电,磁,热,力学等特性呈现小尺寸效应。例如各种金属纳米颗粒几乎都显现黑色,表明光吸收显著增加:许多材料存在磁有序向无序转变,导致磁学性质异常的现象;声子谱发生改变,导致热学,电学性质显著改变。曾有人人利用高分辨率电子显微镜追踪拍摄超细微粒,观察到微粒的外形,结晶态不停的变化,特定界面的原子不断地脱离平衡位置又不停地返回平衡位置,呈现出与常规材料不同的特性,被称为living particle。纳米微粒之间甚至在室温下就可以合二而一,它们的熔点降低自然是意料之中的结果。

图8.4-2为金属微粒熔点与尺寸的关系

图8.4-2

⒉表面效应

以球形颗粒为例,单位质量材料的表面积(称为比表面积)反比于该颗粒的半径。因此当半径减小时比表面积增大。例如将一颗直径1μm的颗粒分散成直径10nm的颗粒,颗粒数变为100万颗,总比表面积增大100倍。表面原子数比例,表面能等也相应地增大,从而

表面的活性增高。潜逃的金属纳料颗粒往往会在室温环境的空气中燃烧(表面有薄层氧化物时相对稳定),这是必须面对的问题,但是反过来也为优良的催化剂提供了可能。

⒊量子尺寸效应

传统的电子能带理论表明,金属费米能级附近电子能级是连续的。但是按照著名的久保理论,低温下纳米微粒的能级不连续。相邻电子能级间距δ与微粒直径相关。 N

E F 34=δ (8.4-1) 式中N 为一个微粒所含的导电电子数,F E 为费米能 ()32232n m E F π = (8.4-2)

式中 为普朗克常数,m 为电子质量,n 为电子密度。若将微粒简单地看作球形的,则近似地

31d ∝δ (8.4-3)

D 为直径。由此可见随着微粒直径变小,电子能级间距变大。

久保理论中提及的低温效应应按如下标准判断,即只在B K >δ时才会产生能级分裂,式中K B 为玻尔兹曼常数,T 为绝对温度。这种当大块材料变为纳米微粒时金属费米能级附近的电子能级由准连续变为离散能级的现象称为量子尺寸效应。当能级间距大于热能,磁能,静磁能,静电能,光子能量或超导态凝聚能时,微粒的磁电光热以及超导电性均会与大块材料有显著不同。以Cu 纳米微粒为例,其导电性能即使在室温下也明显下降。对于半导体微粒,如果存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽现象等亦称为量子尺寸效应。

⒋宏观量子隧道效应

微观粒子具有穿透势垒的几率,称为隧道效应。近年来,人们发现一些宏观量,例如小颗粒的磁化强度,量子相干器件中的磁通量等亦具有隧道效应,称为宏观量子隧道效应。宏观量子隧道效应对纳米科技有着重要的价值,它是纳米电子学发展的重要依据。

此外,近十年来,尚有“库仑堵塞与量子隧穿”,“介电限域效应”等新效应被发现。上述各种效应使得纳米材料呈现出与宏观材料显著不同的特性,甚至出现一些反常的现象,更加吸引着人们开拓和探索这一引人入胜的学科领域。

在整个纳米科技的发展过程中,纳米微粒的制备和微粒性质的研究是最早开展的。时至今日,纳米科技的领域已经迅速地扩大和深入,但要进入纳米领域,最好还是从纳米微粒的制备与测量起步。

一.实验目的

⒈学习和掌握利用蒸汽冷凝法制备金属纳米微粒的基本原理和实验方法,研究微粒尺寸与惰性气体气压之间的关系。

⒉学习利用电子成像法,X 射线衍射峰宽法或其它方法测量微粒的粒径。

二.实验仪器(参见HT-218型纳米微粒制备实验仪使用说明书)

纳米微粒制备实验利用南京大学恒通公司研制的HT-218型纳米微粒制备实验仪进行,该仪器的原理图示于图8.4-7。

玻璃真空罩G置于食品顶部真空橡皮圈的上方。平时真空罩内保持一定程度的低气压,以维护系统的清洁。当需要制备微粒时,打开阀门V2让空气进入真空室,使得真空室内外气压相近即可掀开真空罩。真空罩下方真空室底盘P的上部倒置了一只玻璃烧杯F,用作纳料微粒的收集器。两个铜电极I之间可以接上随机附带的螺旋状钨丝H。铜电极接至蒸发速率控制单元,若在真空状态下或低气压惰性气体状态下启动该单元,钨丝上即通过电流并可获得1000oC以上的高温。真空底盘P开有四个孔,孔的下方分别接有气体压力传感器E,以及连接阀门V1,V2和电磁阀门Ve的管道。气体压力传感器E连结至真空度量单元,并在数字显示表M1上直接显示实验过程中真空室内的气体压力。阀门V1通过管道与仪器后侧惰性气体接口连接,实验时可利用V1调整气体压力,亦可借助Ve调整压力。阀门V2的另一端直通大气,主要为打开钟罩而设立。电磁阀Ve的另一端接至抽气单元并由该单元实行抽气的自动控制,以保证抽气的顺利进行并排除真空泵油倒灌进入真空室。蒸发控制单元的加热功率控制钮置于仪器面板上。调节加热器时数字显示表M2直接显示加热功率。

三.实验原理

一.微粒制备

利用宏观材料制备微粒,通常有两条路径。一种是由大变小,即所谓粉碎法;一种是由小变大,即由原子气通过冷凝,成核,生长过程,形成原子簇进而长大为微粒,称为聚集法。由于各种化学反应过程的介入,实际上已发展发多种制备。

(一)粉碎法

图8.4-3示意几种最常见的粉碎法。实验室使用的最多的是球磨粉碎法。球磨粉碎一开始粒径下降很快,但粉碎到一定程度时,由冷焊或冷烧结引起的颗粒重新聚集过程与粉碎过程之间达到动态平衡,粒径不再变小。进一步细化的关键是阻止微晶的冷焊,这往往通过添加助剂完成。1988年,Shingu等利用高能球磨法成功地制备了Al-Fe纳米晶。发展至今,对于bcc结构的材料(如Cr,Fe,W等)和hcp结构的材料(如Zr,Ru等)的纳米微粒较易制备,但具有fcc的材料(如Cu)难以形成纳米微晶。球球粉碎法的缺点是微粒尺寸的均匀性不够,同时可能会引入杂质万分但相对而言工艺较简单,产率较高,而且还能制备一些其它方法无法制备的合金材料。

(二)化学液相法

化学液相法制备纳米微粒获得很大的进展,目前已发展成共沉淀法,水热法,冻结干燥法,溶胶—凝胶法等。利用化学液相法已制备出许多种类的纳米金属,非金属单晶微粒及各种氧化物,非氧化物以及合金(如CoFeO1,BaTiO3),固溶体(如Al2O3,TiO2)。(三)气相法(聚集法)

气相法制备微晶可以追溯到古代,我们的祖先就曾利用蜡烛火焰收集炭黑制墨。文献记录表明,1930年代,Rufud为了研究红外吸收,在空气中制备了Ni等11种金属的纳米微粒。1962年,由于日本物理学家Kubo(久保)提出量子尺寸效应,引起了物理学工作者的极大兴趣,促进了纳米微粒的制备及检测。1963年kimoto等在稀薄氩气氛的保护下利用金属加热蒸发再冷凝,成功地制备了20多种金属材料的纳米微粒。时至今日,除了在加热方法上已发展了电阻加热法,等离子喷射法,溅射法,电弧法,激光法,高频感应法及爆炸法等各种方法,在制备原理上亦已发展了CVD法,热解法及活性氢—熔融金属反应法等。它们为不同的用途,提供各自适宜的制备方法。

在种类制备方法中,最早被采用并进行较细致实验研究的是蒸汽冷凝法。图8.4-4显示蒸汽冷凝法制备纳米微粒的过程。首先利用抽气泵对系统进行真空抽吸,并利用惰性气体进行置换。惰性气体为高纯Ar,He等,有些情形也可以考虑用N2气。经过几次置换后,将真空反应室内保护气的气压调节控制至所需的参数范围,通常约为0.1kPa 至10kPa范围,与所需粒子路径有关。当原材料被加热到蒸发温度时(此温度与惰性气体压力有关,可以从材料的蒸汽压温度相图查得)蒸发成气相。气相的原材料分子与惰性气体的原子(或分子)碰撞,迅速降低能量而骤然冷却。骤冷使得原材料蒸汽中形成很高的局域过饱和,非常有利于成核。图8.4-6给出总自由能随核增长的变化,一开始自由能随着核生长的半径增大而变大,但是一旦核的尺寸超过临界半径,它将迅速长大。首先形成原子簇,然后继续生长成纳米微晶,最终在收集器具上收集到纳米粒子。为理解均匀成核过程,可以设想另一种情形,即抽掉惰性气体使系统处于高真空状态。如果此时对原材料加热蒸发,则材料蒸汽迅速在真空中扩散并与器壁碰撞而冷却,此过程既是典型的非均匀成核,它主要由容器壁的作用促进成核,生长并淀积成膜。而在制备纳米微粒的过程由于成核与生长过程几乎是同时进行的,微粒的大小与饱和度P/Pe有密切的关系,这导致如下几项因素与微粒尺寸有关。(1)惰性气体的压力,压力越小碰撞几率越低,原材料原子的能量损失越小,Pe值降低较慢。(2)惰性气体的原子量越小,一次碰撞的能量损失越小。(3)蒸发速率越快,P/Pe越大。(4)收集器离蒸发源越远,微粒生长时间越长。实际操作时可根据上述几方面的因素调剂P/Pe值,从而控制生微

粒的分布尺寸。

二.微粒尺寸检测

有许多物理测量方法可以用于检测微粒的尺寸分布或平均粒径(8.4-1)。在表中所列的各种方法中,最常用的是TEM法和X射线衍射峰宽法。但是随着STM技术的发展,STM有可能成为更常用的测量手段。这里只介绍TEM法和X射线峰宽法。

表8.4-1微粒尺寸的检测方法

(一)TEM法

TEM法提供直接观测粒子尺寸的方法。

为了进行TEM观察,需要利用有碳膜的铜网取样。有两种取样方法。

⒈在制备纳米微粒的真空室内预置有碳膜的电镜用铜网,铜网与蒸发源之间设一挡

板。蒸发时让挡板瞬间移开后即行复位,铜网上将收集到适量的纳米粒子。

⒉将少量制备好的纳米粉放入装有纯净乙醇(或其它纯净易挥发液体)的小试管中,进行超声处理以形成悬浮液。取一小滴液体滴在有碳铜网上,待其挥发后使用。

将此有纳米微粒的铜网置入透射电子显微镜内进行观察,并尽可能多拍一些有代表性的照片。然后由这些照片来测量粒径,并给出粒子数与粒径的分布图。

TEM法的最大优点是能够直接观察粒子的形貌及尺寸。但是TEM法观测的仅是少量的粒子,而且用第1种取样方式得到的是铜网包在处的粒子,用第2种取样方式时,粒子尺寸沿高度方向可能有梯度,所取液滴内的微粒也不一定能完全代表全部微粒的粒径。另外TEM法测量到的是微粒的颗粒度而不是晶粒度。

(一)X射线衍射峰宽法

X射线衍射峰宽法适用于微粒晶粒度的测量,对纳米微粉,测得的是平均晶粒度。

但是按照Scherrer关系,有两方面的因素可以引起峰线变宽。一方面晶粒细小引

致衍射线峰线宽化,而另一方面晶格应变,位错,杂质以及其它缺陷都可以导致峰

线宽化。所以尽管理论上这种衍射线宽化可以适用到500nm以下的晶粒范围,但实

际上只当晶粒小于约20nm,因晶粒细小引起的宽化效应才能压倒其它因素引起的

宽化效应。也有文献指出,当晶粒小于50nm时,测量值已与实际值相近。

衍射线半高强度处的衍射线增宽度B与晶粒尺寸d之间的关系为

θ

λcos

K

d=(8.4-4)

/B

式中λ为X射线波长,θ为布拉格角,K为形状因子。已有文献给出K约为0.95-1.15。具

μ1的同种材料作对比,将待测纳米微粒样品挑动射线半高峰宽值体测量时用一晶粒大于m

减去对比样品的峰宽值,即得到(8.4-4)式中的B值。

四.实验内容及步骤

⒈准备工作

⑴检查仪器系统的电源接线,惰性气体连结管道是否正常。惰性气体最好用高纯

Ar气,亦可考虑使用化学性质不活泼的高纯N2气。

⑵利用脱脂白绸布,分析纯酒精,仔细擦净真空罩以及罩内的底盘,电极和烧杯。

⑶将螺旋状钨丝接至铜电极。

⑷从样品盒中取出铜片(用于纳米铜粉制备),在钨丝的每一圈上挂一片,罩上烧

杯。

⑸罩上真空罩,关闭阀门V1,V2,将加热功率旋钮沿逆时针方向旋至最小,合上

电源总开关S1。此时真空度显示器显示出与大气压相当的数值,而加热功率显示为零。

由于HT-218预置了不当操作报警,如果回执功率钮示调节到最小,蜂鸣器将持续发出信号直至纠正为止。

⑹合上开关S2,此时抽气单元开始工作,电磁阀Ve自动接通,真空室内压力下降。

下降至一定值时关闭S2,观察真空度是否稳定在该值附近,如果真空度持续变差,表明存在漏气因素,检查V1,V2是否关闭。正常情况下不应漏气。

⑺打开阀门V1,此时惰性气体进入真空室,气压随之变大。

⑻熟练上述抽气与供气的操作过程,直至可以按实验的要求调节气体压力为止。

⑼准备好备用的干净毛刷和收集纳米微粉的容器。

⒉制备铜纳米微粒

⑴关闭V1,V2阀门,对真空室抽气至0.05kPa附近。

⑵利用氩气(或氮气)冲洗真空室。打开阀门V1使氩气进入真空室,边抽气边进

气(氩气或氮气)约5分钟。

⑶关闭阀门V1,观察真空度至0.13kPa附近时关闭S2,停止抽气。此时真空度应

基本稳定在0.13kPa附近。

⑷沿顺时针方向缓慢旋转功率旋钮,观察加热功率显示器,同时关注钨丝。随着

加热功率的逐渐增大,钨丝逐渐发红进而变亮。当温度达到铜片(或其它材料)的熔点时铜片熔化,并由于表面张力的原因,浸润至钨丝上。

⑸继续加大加热功率时可以见到用作收集器的烧杯表面变黑,表明蒸发已经开始。

随着蒸发过程的进展,钨丝表面的铜液越来越少,最终全部蒸发掉,此时应立即将加热功率调到最小。

⑹打开阀门V2使空气进入真空室,当压力与大气压相近时,小心移开真空罩,取

下作为收集罩的烧杯。用刷子轻轻地将一层黑色粉末刷至烧杯底部再倒入备好的容器,贴上标签。收集到的细粉既是纳米铜粉。

⑺在2×0.13kPa,5×0.13kPa,10×0.13kPa,及30×0.13kPa处重复上述实验制备,

并记录每次蒸发时的加热功率,观察每次制备时蒸发情况有何差异。

⒊纳米微粒粒径检测

⑴利用X线衍射仪进行物相分析,确定晶格常数并与大晶粒的同种材料进行对比。

⑵比较纳米粉与大晶粒同种材料的衍射线半高峰宽,判断不同气压下制备的材料的晶粒平均尺寸。给出气压与晶粒尺寸之间的关系。

⑶有条件的可进行TEM观察,选取有代表性的电镜照片作出微粒尺寸与颗粒数分布图。

五.注意事项

⒈为便于教学上的直观观察,真空钟罩为玻璃制品,移动钟罩时应轻拿轻放。

⒉使用阀门V1,V2时力量应适中,不要用暴力猛拧,但也不要过分谨慎不敢用力以至阀门不能完全关闭。通过实验的实际操作过程,提高基本的实验能力。

⒊蒸发材料时,钨丝将发出强烈耀眼的光。其中的紫外部分已基本被下班吸收,在较短的蒸

发时间内未见对眼睛的不良影响。但为安全起见,请尽量戴上保护眼镜。

⒋制成的纳米微粉极易弥散到空气中,收集时要尽量保持动作的轻慢。

⒌若需要制备其它材料的纳米微粒,可参照铜微粒的制备。但熔点太高的金属难以蒸发,而铁,镍与钨丝在高温下易发生合金化反应,只宜闪蒸,即快速完成蒸发。

⒍亦可利用低气压空气中的氧或低气压氧,使钨丝表面在高温下局部氧化并升华制得氧化钨微晶。

六.预习思考题

⒈真空系统为什么应保持清洁?

⒉为什么对真空系统的密封性有严格要求?如果漏气,会对实验有什么影响?

⒊为什么使用的氩气或氮气纯度要求很高?

⒋为什么要利用纯净氩气或氮气对系统进行置换,清洗?

⒌从成核和生长的机理出发,分析不同保护气压对微粒尺寸有何影响?

七.实验问答题

⒈为什么实验制得的铜微粒呈现出黑色?

⒉实验制得的铜微粒的尺寸与气体压力之间呈何关系?为什么?

⒊实验中在不同气压下蒸发时,加热功率与气压之间呈何关系?为什么?

⒋不同气压下蒸发时,观察到微粒“黑烟”的形成过程有何不同?为什么?

一种纳米金颗粒的制备方法

说明书摘要 本发明公开了一种纳米金颗粒的制备方法,其步骤如下:(1)在去离子水中加入氯金酸溶液、CTAC、硼氢化钠溶液,得到老化的种子溶液;(2)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液1;(3)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液2;(4)取(1)中的老化好的种子溶液加入到(2)中的生长溶液1,反应完全后得一次生长的Au纳米颗粒分散溶液;(5)取(4)中的溶液加入到(3)中的生长溶液2,反应完全后得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。本发明以水为基液,具有经济性好、操作简单、分散性好的优点,所获得的产品粒径大小比较均匀,且可控,从10 nm到100 nm均可获得。

权利要求书 1、一种纳米金颗粒的制备方法,其特征在于所述方法步骤如下: (1)在5~20 ml去离子水中加入0.001 ~ 0.2 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,与氯金酸溶液混合后均匀后,再加入0.01 ~ 1 mL硼氢化钠溶液,摇晃10 ~ 20 s将溶液混合均匀,静置30 ~ 60 min 后得到老化的种子溶液; (2)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0 .001~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.01 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液1; (3)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0.001 ~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.001 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液2; (4)取(1)中的老化好的种子溶液1 ~ 100 μL加入到(2)中配置好的生长溶液1,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置5 ~ 30 min使其反应完全,得一次生长的Au纳米颗粒分散溶液; (5)取(4)中的溶液1 ~ 100 μL加入到(3)中配置好的生长溶液2,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置10 ~60 min使其反应完全,得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。 2、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述Au纳米颗粒的粒径为10 nm到100 nm。 3、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.01 mol/L。 4、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.00025 mol/L。 5、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于

纳米粒子制备方法

一、纳米粒子的物理制备方法 1.1 机械粉碎法 机械粉碎就是在粉碎力的作用下,固体料块或粒子发生变形进而破裂,产生更微细的颗粒。物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。一般的粉碎作用力都是这几种力的组合,如球磨机和振动磨是磨碎与冲击粉碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。理论上,固体粉碎的最小粒径可达0.01~0.05 μ m。然而,用目前的机械粉碎设备与工艺很难达到这一理想值。粉碎极限取决于物料种类、机械应力施加方式、粉碎方法、粉碎工艺条件、粉碎环境等因素。比较典型的纳米粉碎技术有:球磨、振动磨、搅拌磨、气流磨和胶体磨等。其中,气流磨是利用高速气流(300~500m/s)或热蒸气(300~450℃)的能量使粒子相互产生冲击、碰撞、摩擦而被较快粉碎。气流磨技术发展较快,20世纪80年代德国Alpine公司开发的流化床逆向气流磨可粉碎较高硬度的物料粒子,产品粒度达到了1~5μm。降低入磨物粒度后,可得平均粒度1μm的产品,也就是说,产品的粒径下限可达到0.1μm以下。除了产品粒度微细以外,气流粉碎的产品还具有粒度分布窄、粒子表面光滑、形状规则、纯度高、活性大、分散性好等优点。因此,气流磨引起了人们的普遍重视,其在陶瓷、磁性材料、医药、化工颜料等领域有广阔的应用前景。 1.2 蒸发凝聚法 蒸发凝聚法是将纳米粒子的原料加热、蒸发,使之成为原子或分子;再使许多原子或分子凝聚,生成极微细的纳米粒子。利用这种方法得到的粒子一般在5~100nm之间。蒸发法制备纳米粒子大体上可分为:金属烟粒子结晶法、真空蒸发法、气体蒸发法等几类。而按原料加热技术手段不同,又可分为电极蒸发、高频感应蒸发、电子束蒸发、等离子体蒸发、激光束蒸发等几类。 1.3 离子溅射法 用两块金属板分别作为阴极和阳极,阴极为蒸发用材料,在两电极间充入Ar(40~250Pa),两极间施加的电压范围为0.3~1.5kV。由于两极间的辉光放电使Ar粒子形成,在电场作用下Ar离子冲击阳极靶材表面,使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来。离子的大小及尺寸分布主要取决于两极间的电压、电流、气体压力。靶材的表面积愈大,原子的蒸发速度愈高,超微粒的获得量愈大。溅射法制备纳米微粒材料的优点是:(1)可以制备多种纳米金属,包括高熔点和低熔点金属。常规的热蒸发法只能适用于低熔点金属;(2)能制备出多组元的化合物纳米微粒,如AlS2,Tl48,Cu91,Mn9,ZrO2等;通过加大被溅射阴极表面可加大纳米微粒的获得量。采用磁控溅射与液氮冷凝方法可在表面沉积有方案膜的电镜载网上支撑制备纳米铜颗粒。 1.4 冷冻干燥法 先使干燥的溶液喷雾在冷冻剂中冷冻,然后在低温低压下真空干燥,将溶剂升华除去,就可以得到相应物质的纳米粒子。如果从水溶液出发制备纳米粒子,冻结后将冰升华除去,直接可获得纳米粒子。如果从熔融盐出发,冻结后需要进行热分解,最后得到相应纳米粒子。冷冻干燥法用途比较广泛,特别是以大规模成套设备来生产微细粉末时,其相应成本较低,具有实用性。此外,还有火花放电法,是将电极插入金属粒子的堆积层,利用电极放电在金属粒子之间发生电火花,从而制备出相应的微粉。爆炸烧结法,是利用炸药爆炸产生的巨大能量,以极强的载荷作用于金属套,使得套内的粉末得到压实烧结,通过爆炸法可以得到1μm以下的纳米粒子。活化氢熔融金属反应法的主要特征是将氢气混入等离子体中,这种混合等离子体再加热,待加热物料蒸发,制得相应的纳米粒子。 二、制备纳米粒子的化学方法

纳米微粒的制备实验

蒸汽冷凝法制备纳米微粒 摘要:本文简述了冷凝法制备纳米颗粒铜的原理,方法,同时介绍了实验中的一些主要步骤,并对结果做了一些讨论分析,给出了不同压力下颗粒大小和色泽的解释。 关键字:纳米颗粒铜蒸汽冷凝法 引言:20世纪80年代末以来,一项令世人瞩目的纳米科学技术正在迅速发展。纳米科技将在21世纪促使许多产业领域发生革命性变化。关注纳米技术并尽快投入到与纳米科技有关的研究,是本世纪许多科技工作者的历史使命。 在物理学发展的历史上,人类对宏观领域和微观领域已经进行了长期的、不断深入的研究。然而介于宏观和微观之间的所谓介观领域,却是一块长期以来未引起人们足够重视的领域。这一领域的特征是以相干量子输运现象为主,包括团簇、纳米体系和亚微米体系,尺寸范围约为1~1000nm。 但习惯上人们将100~1000nm范围内有关现象的研究,特别是电输运现象的研究领域称为介观领域。因而1~100nm的范围就特指为纳米尺度,在此尺度范围的研究领域称为纳米体系。纳米科技正是指在纳米尺度上研究物质的特性和相互作用以及利用这些特性的科学技术。经过近十几年的急速发展,纳米科技已经形成纳米物理学、纳米化学、纳米生物学、纳米电子学、纳米材料学、纳米力学和纳米加工学等学科领域。 实验目的 学习和掌握利用蒸汽冷凝法制备金属纳米微粒的基本原理和实验方法,研究微粒尺寸与惰性气体气压之间的关系。 纳米材料特殊效应 1.小尺寸效应

纳米材料的尺度与光波波长、德布罗 意波长以及超导态的相干长度或透射深度 等物理特征尺寸相当或更小,宏观晶体的 周期性边界条件不再成立,导致材料的声、 光、电、磁、热、力学等特性呈现小尺寸 效应。例如各种金属纳米颗粒几乎都显现 黑色,表明光吸收显著增加;许多材料存 在磁有序向无序转变,导致磁学性质异常 的现象;声子谱发生改变,导致热学、电学性质显著变化。曾有人利用高分辨率电子显微镜追踪拍摄超细金微粒,观察到微粒的外形、结晶态不停地变化,特定界面的原子不断地脱离平衡位置又不停地返回平衡位置,呈现出与常规材料不同的特性,被称为living particle 。纳米微粒之间甚至在室温下就可以合二为一,它们的熔点降低自然是意料中的结果。上图为金微粒熔点与尺寸的关系。 2.表面效应 以球形颗粒为例,单位质量材料的表面积(称为比表面积)反比于该颗粒的半径。因此当半径减小时比表面积增大。例如将一颗直径1μm 的颗粒分散成直径10nm 的颗粒,颗粒数变为100万颗,总比表面积增大100倍。表面原子数比例。表面能等也相应地增大,从而表面的活性增高。洁净的金属纳米微粒往往会在室温环境的空气中燃烧(表面有薄层氧化物时相对稳定),这是必须面对的问题,但是反过来也为优良的催化剂提供了现实可能。 3.量子尺寸效应 传统的电子能带理论表明,金属费米能级附近电子能级是连续的。但是按照著名的久保(kubo )理论,低温下纳米微粒的能级不连续。相邻电子能级间距δ与微粒直径相关 N E F 34=δ (1) 式中N为一个微粒所包含的导电电子数,EF 为费米能 3 /22)3(2n m E F π = (2)

金纳米粒子的制备方法

金纳米粒子的制备方法 由于不同状态的纳米粒子的性质有较大的差异,故人们已经尝试很多方法用简单和多样的合成方法制备特定形貌和大小的金纳米粒子,如纳米线、纳米棒、纳米球纳米片和纳米立方。下面将介绍下目前合成金纳米粒子最常用的方法。 1梓檬酸盐还原法 目前在众多的合成金纳米粒子方法中,最方便的方法是还原Au的衍生物。很长的一段时间最流行的方法是在1951年Turkevitch提出的水溶液中用梓檬酸盐还原HAuCl4的方法,可得到20mn左右的金纳米粒子。金纳米粒子在水溶液中合成的方法主要分为三个步骤:第一,金的盐溶液在适当的溶液中分解;第二,在某种还原剂中还原金的盐溶液;最后,在稳定剂中合成稳定的金纳米粒子。目前,最流行的制备金纳米粒子的方法是在加热的条件下,在水溶液中用梓檬酸盐还原HAuCl4。对于这个方法,通过改变金的浓度和梓檬酸盐的浓度,可以制备出大量的平均粒度的金纳米粒子。 2 Brust-Schiffrin法:两相合成并通过硫醇稳定 人们于1994年提出了合成金纳米粒子的Brust-Schiffrin方法。由于热稳定合成方法简单易行,在不到十年的时间内,此方法在所有领域都有重要的影响。金纳米粒子在有机溶剂中能分散和再溶解,并且没有不可逆的团聚或分解。作为有机分子化合物,它们能很容易的控制和功能化。Faraday的两相合成体系给予合成技术一定的启发,由于Au和S的软性质,这种方法便利用硫醇配体强烈绑住金。四正辛基溴化按作为相转移试剂将AuCV转移到甲苯溶液中,并用NaBH4在正十二硫醇中还原AuCLT。在NaBH4还原过程中,橙色相在几秒内向

深棕色转变(图1): 图1 Au化合物在硫醇溶液中被还原,其Au纳米粒子表面被有机外壳所覆盖 其反应机理如下: 3其它含硫配体 其它含硫配体已经用于稳定金纳米粒子,如黄酸盐和二硫化物等。二硫化物不如硫醇的稳定,但是在催化方面有明显的效果。同样,硫醚不能很好的约束金纳米粒子,但是Rheinhout 团队利用聚硫醚就能很好的解决这个问题。另外,利用碘氧化以硫醇为包覆剂的金纳米粒子,使其分解为金的碘化物和二硫化物。Crook等人利用这一现象制备了以金纳米粒子为模版的环胡精的空心球。 4微乳液,反向胶束,表面活性剂,细胞膜和聚合电解质类 在有或是没有硫醇溶液的情况下,使用微乳液,共聚物胶束,反相胶束,表面活性剂,细胞膜和其它两亲物都是合成稳定的金纳米粒子重要探究领域。用表面活性剂合成的两相系统会引起微乳液或是胶束的形成,将金属离子从水相抽离到有机相,从而维持良好的微环境。表面活性剂的双重角色和硫醇与金纳米粒子的相互作用可以控制金纳米粒子或是纳米晶体的稳定和生长。聚合电解质也广泛用于金纳米粒子的合成。酸衍生的金纳米粒子的聚合电解质包覆剂己经通过带电的聚合电解质静电自组装 得到了。

纳米粒的制备

纳米粒的制备 摘要:近些年纳米技术发展很快,应用于各个领域。纳米材料是纳米科技的基础,而纳米粒的制备又是纳米材料研究领域的最基本的工作。载药纳米微粒是一种新型的药物缓释制剂,可增强药物的稳定性,延长药物的作用时间,从而提高药物疗效[1]。纳米粒的制备方法很多,本文就近些年来的常用方法做一综述。 关键词:纳米粒制备 纳米药物主要是将药物的微粒或将药物吸附包裹在载体中, 制成纳米尺寸 范围的微粒, 再以其为基础制成不同种类的剂型。聚(乳酸-羟基乙酸)( PLGA)和聚乙二醇( PEG)具有良好的生物相容性, 由两者形成的嵌段共聚物目前已被广泛用作药物载体材料[2,3]。 目前,纳米粒的制备方法主要分3大类:机械粉碎法、物理分散法、化学合成法[4]。 1 机械粉碎法 机械粉碎法利用机械将物质粉碎成纳米级的粒子。除改进传统的机械粉碎设备(如振动球磨、气流粉碎机等)外,还开发了新机械粉碎技术, 如高压均质法- 气穴爆破法、超临界流体- 液膜超声技术等。 机械球磨法以粉碎与研磨为主体实现粉末纳米化,可制备纳米纯元素和合金。1970年,美国INCO公司的Benjamin为制备Ni基氧化物粒子弥散强化合金而研制成机械合金化法。该法工艺简单,制备效率高,能制备出常规方法难以获得的高熔点金属合金纳米材料。近年来,发展出助磨剂物理粉碎法及超声波粉碎法,可制得粒径小于100nm的微粒。鞠宝玲等[5]利用球磨机研磨, 制得粒径为50 nm 左右的四君子汤纳米制剂。 高压均质法- 气穴爆破法是在高压下,将微粉化药物与表面活性剂溶液挤出孔隙。被挤流体在孔隙中的动压瞬间极大地增加, 在挤出孔隙时,静压迅速减小, 产生气穴现象和爆裂,而这种气穴现象和爆裂,足以使药物微粉进一步崩碎。 2 物理分散法 目前, 常用的物理分散法有: 双乳化剂蒸发法、乳化- 溶剂挥发法、溶剂扩散法、高压乳匀法、逆向蒸发法、熔融分散法和溶剂蒸发法等。

3.7 金纳米粒子的合成方法

1 金纳米粒子的合成方法 1.1 物理法 物理法即采用高能消耗的方式将块体金细化成为纳米级小颗粒,主要包括块状固体粉碎法(又称为磨球法或机械研磨法)、气相法、电弧法、金属蒸汽溶剂化法、辐照分解和热分解等。辐照分解包括近红外辐照和紫外辐照。近红外辐照通过使硫醇包裹的纳米粒子的粒径变大,从而可以获得粒径较大的金纳米粒子;紫外辐照通过影响种子和胶束的协同作用,从而控制金纳米粒子的合成。另外,激光消融通过对温度、反应器位置、异丙醇用量、超声场等实验条件的控制,可以合成形貌,粒径不同的金纳米粒子。总之,金纳米粒子合成的关键在于同时精确地控制其尺寸和形貌。通过物理法制备的金纳米粒子虽然纯度较高,但其产量低下,设备成本极高。 1.2 化学法 化学法主要是以金盐为原料,利用还原反应生成金纳米粒子,在形成过程中通过控制粒子的生长从而控制其尺寸。化学法主要包括水相氧化还原法、相转移法(主要为Brust法)、晶种生长法(又称种金生长法)、模板法、反相胶束法、湿化学合成法、电化学法、光化学法。相对物理法而言,化学法制备金纳米粒子所得到的产物粒径均匀、稳定性高,并且易于控制形貌,是最为方便和经济的方法。 1.2.1 水相氧化还原法 水相氧化还原法合成金纳米粒子主要是指在含有Au3+的溶液中,利用适当的还原剂(例如鞣酸,柠檬酸等,还原剂的选择根据所要合成的金纳米粒子的粒径而定),将Au3+还原成零价,从而聚集成粒径为纳米级的金纳米粒子。常见的方法有AA还原法、白磷还原法、柠檬酸钠还原法和鞣酸-柠檬酸钠还原法。制备粒径在5~12nm的金纳米粒子,一般采用AA还原或白磷还原HAuCl4溶液;制备粒径在大于12nm的金纳米粒子,则采用柠檬酸钠还原HAuCl4溶液。柠檬酸钠法还原Au3+合成金纳米粒子是最早且应用最为广泛的方法。 1951年,Turkevitch首次报道了柠檬酸钠还原HAuCl4溶液的方法制备金纳米粒子,其粒径分布在20nm左右。基于此,Frens发现,通过控制柠檬酸钠和金的比率来控制金纳米粒子的形成,从而可以得到特定尺寸(粒径可以控制在16~147 nm)的金纳米粒子。经典的Frens法至今仍得到了广泛的使用,用于保护和稳定金纳米粒子的柠檬酸根与金纳米粒子的结合能力较弱,易于被其他稳定剂所取代,因此可用于分析DNA,从而扩大了金纳米粒子的应用领域。

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

纳米粒子的制备方法综述

纳米粒子的制备方法综述 摘要: 纳米材料是近期发展起来的一种多功能材料。在纳米材料的当前研究中,其制备方法占有极其重要的地位,新的制备工艺过程的研究与控制对纳米材料的微观结构和性能具有重要的影响。本文主要概述了纳米材料传统的及最新的制备方法。纳米材料制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 [1] Abstract : Nanometer material is a kind of multi-functional material which was developed in recend . In the current study of it , its produce-methods occupy the important occupation . New methods’ reseach and control have an important influence on Nanometer materials’microstructure and property .This title mainly introduces nanometer materials’traditional and new method of producing . The key of the nanometer material s’ producing Is how to control the grain size and get the narrow and uniform size distribution . 关键词: 纳米材料制备方法 Key words : Nanometer material produce-methods 正文: 纳米材料的制备方法主要包括物理法,化学法和物理化学法等三大类。下面分别从三个方面介绍纳米材料的制备方法。 物理制备方法 早期的物理制备方法是将较粗的物质粉碎,其最常见的物理制备方法有以下三种: 1.真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 1.物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。

纳米微粒制备实验

HT-218型纳米微粒制备实验仪 使用说明书 一.基本原理 纳米科学技术是20世纪80年代末期刚刚诞生并正在迅速发展的新科技。它是研究由尺寸在0.1~100纳米之间的物质组成体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术,也是一个融前沿科学和高技术于一体的完整体系。 在整个纳米科技的发展中,纳米颗粒的制备和微粒性质的研究是最早开展的。 微粒制备的方法很多,按制备方法可分为物理方法和化学方法。按制备路径分,或分为粉碎法和聚集法。 本实验仪采用电阻加热,气体冷凝法制备纳米微粒。 图中显示蒸汽冷凝法制备纳米微粒的过程。首先利用抽气泵(真空泵)对系统进行真空抽吸,并利用隋性气体进行置换。惰性气体为高纯Ar,He等,有些情形也可以考虑用N2气。经过几次置换后,将真空反应室内保护气的气压控制至所需的参数范围,通常约为0.1kPa 至10kPa范围,与所需粒子路径有关。当原材料被加热至蒸发温度时蒸发为气相。气相的原材料原子与惰性气体的原子(或分子)碰撞,迅速降低能量而骤然冷却。骤冷使得原材料的确蒸气中形成很高的局域过饱和,非常有利于成核。成核与生长过程都是在极短的时间内发生的,首先形成原子簇,然后继续生长成纳米微晶,最终在收集器上收集到纳米粒子。 二.仪器组成 如图所示 纳米微粒制备实验仪外型图

仪器照片 实验仪器 玻璃真空罩G置于食品顶部真空橡皮圈的上方。平时真空罩内保持一定程度的低气压,以维护系统的清洁。当需要制备微粒时,打开阀门V2让空气进入真空室,使得真空室内外气压相近即可掀开真空罩。真空罩下方真空室底盘P的上部倒置了一只玻璃烧杯F,用作纳料微粒的收集器。两个铜电极I之间可以接上随机附带的螺旋状钨丝H。铜电极接至蒸发速率控制单元,若在真空状态下或低气压惰性气体状态下启动该单元,钨丝上即通过电流并可获得1000oC以上的高温。真空底盘P开有四个孔,孔的下方分别接有气体压力传感器E,以及连接阀门V1,V2和电磁阀门Ve的管道。气体压力传感器E连结至真空度量单元,并在数字显示表M1上直接显示实验过程中真空室内的气体压力。阀门V1通过管道与仪器后侧惰性气体接口连接,实验时可利用V1调整气体压力,亦可借助Ve调整压力。阀门V2的另一端直通大气,主要为打开钟罩而设立。电磁阀Ve的另一端接至抽气单元并由该单元实行抽气的自动控制,以保证抽气的顺利进行并排除真空泵油倒灌进入真空室。蒸发控制单元的加热功率控制钮置于仪器面板上。调节加热器时数字显示表M2直接显示加热功率。

纳米金的制备

氯金酸(HAuC14)是主要还原材料,常用还原剂有柠檬酸钠、鞣酸、抗坏血酸、白磷、硼氢化钠等。根据还原剂类型以及还原作用的强弱,可以制备0.8 nm~150 nm不等的胶体金。最常用的制备方法为柠檬酸盐还原法。具体操作方法如下: (1)将HAuC14先配制成0.01%水溶液,取100 mL加热至沸。 (2)搅动下准确加入一定量的1%柠檬酸三钠(Na3C6H5O7·2H2O)水溶液。 (3)继续加热煮沸15 min。此时可观察到淡黄色的氯金酸水溶液在柠檬酸钠加入后很快变灰色,续而转成黑色,随后逐渐稳定成红色。全过程约2~3 min。 (4)冷却至室温后用蒸馏水恢复至原体积。 用此法可制备16~147 nm粒径的胶体金。金颗粒的大小取决于制备时加入的柠檬酸三钠的量。 表19-1 四种粒径胶体金的制备及特性 胶体金粒径/ nm 1%柠檬酸三钠加入量/mL 胶体金特性呈色λmax/nm 16 2.00 橙色518 24.5 1.50 橙红522 41 1.00 红色525 71.5 0.70 紫色535 *还原100mL 0.01%HAuC14所需量 2.注意事项 ● 氯金酸易潮解,应干燥、避光保存。 ● 氯金酸对金属有强烈的腐蚀性,因此在配制氯金酸水溶液时,不应使用金属药匙称量氯金酸。 ● 用于制备胶体金的蒸馏水应是双蒸馏水或三蒸馏水,或者是高质量的去离子水。 ● 是以制备胶体金的玻璃容器必须是绝对清洁的,用前应先经酸洗并用蒸馏水冲净。最好是经硅化处理的,硅化方法可用5%二氯甲硅烷的氯仿溶液浸泡数分钟,用蒸馏水冲净后干燥备用。 ● 胶体金的鉴定和保存:胶体金的制备并不难,但要制好高质量的胶体金却也并非易事。因此对每次制好的胶体金应加以检定,主要检查指标有颗粒大小,粒径的均一程度及有无凝集颗粒等。 肉眼观察是最基本也是最简单和方便的检定方法,但需要一定的经验。良好的胶体金应该是清亮透明的,若制备的胶体金混浊或液体表面有漂浮物,提示此次制备的胶体金有较多的凝集颗粒。在日光下仔细观察比较胶体金的颜色,可以粗略估计制得的金颗粒的大小。当然也可用分光光度计扫描λmax来估计金颗粒的粒径。结制备的胶体金最好作电镜观察,并选一些代表性的作显微摄影,可以比较精确地测定胶体金的平均粒径。 胶体金在洁净的玻璃器皿中可较长时间保存,加入少许防腐剂(如0.02%NaN3)可有利于保存。保存不当时会有细菌生长或有凝集颗粒形成。少量凝集颗粒并不影响以后胶体金的标记,使用时为提高标记效率可先低速离心去除凝集颗粒。

金纳米颗粒的合成方法

金纳米颗粒的盐酸羟胺种子合成法 摘要:本文描述了粒径在30nm到100nm的金纳米颗粒合成方法。通过种子生长法盐酸羟胺作为还原剂合成不同大小的金纳米颗粒。其大小由种子和氯金酸的浓度决定。此方法合成的金纳米颗粒单分散性优于柠檬酸钠作还原剂的一步合成法。重要的是,表面被修饰过的金纳米颗粒也可通过上述方法长大。 许多科学家和工程师都在关注金纳米颗粒的特殊的物理性质。在颗粒组装和膜的形成方面,单分散的金纳米颗粒有着很重要的地位。厚度为45-60nm的金膜表现出角度相关的等离子体共振。柠檬酸钠合成的10-20nm金纳米颗粒单分散性很好。但是此方法合成的更大的金纳米颗粒(粒径在40nm到120nm)单分散性变差,其颗粒浓度小,而且颗粒的真实粒径与预测的粒径相差比较大。 我们所提供的方法是通过种子生长发盐酸羟胺还原氯金酸合成金纳米颗粒。在热力学上,盐酸羟胺是能够还原氯金酸为金单质,金纳米颗粒表面可以加速这个反应的发生。这样,实现了成核和生长两个阶段分离,如图1。此方法的优势在于:ⅰ此方法合成的金纳米颗粒单分散性优于Frens的柠檬酸钠合成法合成的;ⅱ能很好的预测金纳米颗粒的粒径;ⅲ能很好的应用到表面修饰的金纳米颗粒。 图1 金纳米颗粒的生长过程 紫外吸收光谱可以很好监测金纳米颗粒合成的整个过程。图2表明加入 17nM,12nm的种子后,盐酸羟胺与氯金酸反应的过程。上面的吸收光谱是以10s 的间隔记录的,金纳米颗粒的等离子体共振峰的强度增长很明显。这些改变可能是颗粒增长或者新的金纳米颗粒的形成引起的。下面的吸收光谱是氯金酸和盐酸羟胺混合物30min前后的紫外吸收光谱。没有出现金纳米颗粒的紫外吸收峰,说明没有新的金纳米颗粒核生成。因此,在520nm金纳米颗粒的吸收峰增强是由于

纳米金的制备方法

胶体金溶液的制备有许多种方法,其中最常用的是化学还原法,基本的原理是向一定浓度的金溶液内加入一定量的还原剂使金离子变成金原子。目前常用的还原剂有:白磷、乙醇、过氧化氢、硼氢化钠、抗坏血酸、枸橼酸钠、鞣酸等,下面分别介绍制备不同大小颗粒的胶体金溶液。 一、制备胶体金的准备 (一)玻璃器皿的清洁 制备胶体金的成功与失败除试剂因素以外玻璃器皿清洁是非常关键的一步。如果玻璃器皿内不干净或者有灰尘落入就会干扰胶体金颗粒的生成,形成的颗粒大小不一,颜色微红、无色或混浊不透明。我们的经验是制备胶体金的所有玻璃器皿先用自来水把玻璃器皿上的灰尘流水冲洗干净,加入清洁液(重铬酸钾1000g,加入浓硫酸2500ml,加蒸馏水至10000ml)浸泡24h,自来水洗净清洁液,然后每个玻璃器皿用洗洁剂洗3~4次,自来水冲洗掉洗洁剂,用蒸馏水洗3~4次,再用双蒸水把每个器皿洗3~4次,烤箱干燥后备用。通过此方法的处理玻璃器皿不需要硅化处理,而直接制备胶体金。也可用已经制备的胶体金溶液,用同等大不颗粒的金溶液去包被所用的玻璃器皿的表面,然后弃去,再用双蒸水洗净,即可使用,这样效果更好,因为减少了金颗粒的吸附作用。 (二)试剂的配制要求 (1)所有配制试剂的容器均按以上要求酸处理洗净,配制试剂用双蒸馏水或三蒸馏水。 (2)氯化金(HauCl4水溶液的配制:将lg的氯化金一次溶解于双蒸水中配成1%的水溶液。放在4”c冰箱内保存长达几个月至1年左右,仍保持稳定。 (3)白磷或黄磷乙醚溶液的配制:白磷在空气中易燃烧,要格外小心操作。把白磷在双蒸水中切成小块,放在滤纸上吸于水份后,迅速放入已准备好的乙醚中去,轻轻摇动,等完全溶解后即得饱和溶液。储藏于棕色密闭瓶内,放在阴凉处保存。 二、制备胶体金的方法和步骤 (一)白磷还原法 1.白磷还原法(z Sigmondy 1905年) (1)取1%的HAuCl4水溶液1ml,加双蒸水99ml配成0.01%的HAuCl4水溶液。 (2)用0.2mol/l K2CO3调pH至7.2。 (3)加热煮沸腾,迅速加入0.5ml 20%白磷的饱和乙醚溶液,振荡数分钟至溶液呈现橙红色时即成。胶体金的颗粒直径为3nm左右,大小较均匀。

纳米微粒的制备

纳米铜的制备及其物理性能分析 引言 20世纪80年代以来,一项令世人瞩目的纳米科学技术正在迅速发展。纳米科技将在21世纪促使许多产业领域发生革命性的变化,纳米技术是研究尺寸范围在1~100nm之间的物质组成,是单个原子,分子层次上对物质的种类数量和结构形态进行精确的观测,识别和控 制技术,是在纳米的尺度内研究物质的特征和相互作用,并利用这些物性制造具有特定功能产品的高新技术。纳米尺度空间所涉及的物质层次,从通常的关于微观和宏观的观点看,这样的系统既非典型的宏观系统亦非典型的微观系统,是一种相对独立的中间领域,即典型的介观系统,在这样的尺度空间,由于量子效应,物质局域性,及巨大的表面和介面效应使物 质的很多性能发生质变[]1。 纳米技术是以许多现代先进科学技术为基础的科学技术,是现代科学(混沌物理,量子力学,介观物理,分子生物学)和现代技术(计算机技术,微电子和扫描电子显微镜技术核 分析技术)结合的产物[]2。纳米科技在材料,信息,能源,环境,生命,军事,制造等方面显示广泛的应用潜力,是21世纪高新技术和发展的源头将给人类生活带来巨大的变化,成为21世纪世界各国抢占高科技和全球经济制高点和重点战略领域。用纳米材料制成的用品具有很多奇特的性质,纳米材料称为超微颗粒材料,由纳米粒子组成。纳米微粒由于其表面原子占有的比例大,表面键态和电子态不同,原子配位不全等,可以使表面活性增大从而 优异的催化性能。这为廉价的金属催化剂提供了可能[]3。纳米金属微粒,如Ag、Cu等具有优异的杀菌性能。德国曾将CuS涂附于织物表面制成抗菌面料[]3。纳米微粒的尺寸比一般生物体内的细胞红血球小得多,这就为生物学研究提供了一个新的途径[]4。 1实验目的 1.学习和掌握利用蒸汽冷凝法制备金属纳米微粒的基本原理和实验方法,研究微粒尺寸 与惰性气体气压之间的关系。 2实验原理 纳米微粒的制原理 2.1 微粒制备[]7 利用宏观材料制备微粒,通常有两条路径。一种是由大变小,即所谓粉碎法;一种是由小变大,即由原子气通过冷凝、成核、生长过程,形成原子簇进而长大为微粒,称为聚集法。由于各种化学反应过程的介入,实际上已发展了多种制备方法。试验室中我们采用蒸汽法制备纳米铜微粒。 1 粉碎法 图1示意几种最常见的粉碎法。实验室使用得Array最多的是球磨粉碎。球磨粉碎一开始粒径下降很 快,但粉碎到一定程度时,由冷焊或冷烧结引起的 颗粒重新聚集过程与粉碎过程之间达到动态平衡, 粒径不再变小。球磨粉碎法的缺点是微粒尺寸的均 匀性不够,同时可能会引入杂质成分。但相对而言

纳米粒子的制备方法及应用

纳米粒子的制备方法及应用,当粒子尺寸达到纳米量级时,粒子将具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应,综述了纳米粒子的制备方法,按研究纳米粒子的学科分类,可将其分为物理方法、化学方法和物理化学方法,关键词:纳米粒子,物理化学方法中图法分类号,TF123纳米粒子指的是粒径比光波短(100nm以下)而性质处于本体和原子之间的,纳米制备技术是20世纪80年代末诞生并崛起的新技术,其基本 纳米粒子的制备方法及应用 当粒子尺寸达到纳米量级时,粒子将具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应,因而表现出许多特有的性质,在催化、滤光、光吸收、医学、磁介质及新材料方面有广阔的应用前景。综述了纳米粒子的制备方法,按研究纳米粒子的学科分类,可将其分为物理方法、化学方法和物理化学方法。 关键词:纳米粒子;制备方法;物理方法;化学方法;物理化学方法中图法分类号 TF123纳米粒子指的是粒径比光波短(100nm以下)而性质处于本体和原子之间的物质。纳米制备技术是20世纪80年代末诞生并崛起的新技术,其基本涵义是:纳米尺寸范围(10-9~10-7m)内认识和改造自然,通过直接操作和安排原子、分子创造新物质[1] 。由于纳米材料具有奇特的力学、电学、磁学、热学、化学性能等,目前正受到世界各国科学家的高度重视[2] 。 1 制备纳米粒子的物理方法 1.1 机械粉碎法 机械粉碎就是在粉碎力的作用下,固体料 块或粒子发生变形进而破裂,产生更微细的颗粒。物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。一般的粉碎作用力都是这几种力的组合,如球磨机和振动磨是磨碎与冲击

粉碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。理论上,固体粉碎的最小粒径可达0.01~0.05 μ m。然而,用目前的机械粉碎设备与工艺很难达到这一理想值。粉碎极限取决于物料种类、机械应力施加方式、粉碎方法、粉碎工艺条件、粉碎环境等因素。比较典型的纳米粉碎技术有:球磨、振动磨、搅拌磨、气流磨和胶体磨等。其中,气流磨是利用高速气流(300~500m/s)或热蒸气(300~450℃)的能量使粒子相互产 生冲击、碰撞、摩擦而被较快粉碎。气流磨技术发展较快,20世纪80年代德国Alpine 公司开发 的流化床逆向气流磨可粉碎较高硬度的物料粒子,产品粒度达到了1~5μm。降低入磨物粒度后,可得平均粒度1μm的产品,也就是说,产品的粒径下限可达到0.1μm以下。除了产品粒度微细以外,气流粉碎的产品还具有粒度分布窄、粒子表面光滑、形状规则、纯度高、活性大、分散性好等优点。因此,气流磨引起了人们的普遍重视,其在陶瓷、磁性材料、医药、化工颜料等领域有广阔的应用前景。1.2 蒸发凝聚法 蒸发凝聚法是将纳米粒子的原料加热、蒸发,使之成为原子或分子;再使许多原子或分子凝聚,生成极微细的纳米粒子。利用这种方法得到的粒子一般在5~100nm之间。蒸发法制备纳米粒子大体上可分为:金属烟粒子结晶法、真空蒸发法、气体蒸发法等几类。而按原料加热技术手段不同,又可分为电极蒸发、高频感应蒸发、电子束蒸发、等离子体蒸发、激光束蒸发等几类。1.3 离子溅射法 用两块金属板分别作为阴极和阳极,阴极为蒸发用材料,在两电极间充入Ar(40~250Pa),两极间施加的电压范围为0.3~1.5kV。由于两极间的辉光放电使Ar粒子形成,在电场作用下Ar离子冲击阳极靶材表面,使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来。离子的大小及尺寸分布主要取决于两极间的电压、电流、气体压力。靶材的表 面积愈大,原子的蒸发速度愈高,超微粒的获得量愈大。溅射法制备纳米微粒材料的优点是: (1)可以制备多种纳米金属,包括高熔点和低熔点金属。常规的热蒸发法只能适用于低熔点金属;(2)能制备出多组元的化合物纳米微粒,如AlS2,Tl48,Cu91,Mn9,ZrO2等;通过加大被溅射阴极表面可加大纳米微粒的获得量。采用磁控溅射与液氮冷凝方法可在表面沉积有方案膜的电镜载网上支撑制备纳米铜颗粒。1.4

纳米微粒的基本理论及制备方法

纳米微粒的基本理论 1.电子能级的不连续性 久保(kubo)理论 电子能级的统计学和热力学 2.量子尺寸效应 3.小尺寸效应 4.表面效应 5.宏观量子隧道效应 6.库仑堵塞与量子隧穿 7.介电限域效应 量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽现象均称为量子尺寸效应。 小尺寸效应:当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面层附近原子密度减小,导致声、光、电、磁、热、力学等特性呈现新的小尺寸效应。 例如,光吸收显著增加并产生吸收峰的等离子共振频移;磁有序态向磁无序态、超导相向正常相的转变,声子谱发生改变。 实例: 1. 人们曾用高倍率电子显微镜对超细金颗粒(2nm)的结构非稳定性进行观察,实时地记录颗粒形态在观察中的变化,发现颗粒形态可以在单晶与多晶、孪晶之间进行连续地转变。这与通常的熔化相变不同,并提出了准熔化相的概念。 2. 纳米尺度的强磁性颗粒(Fe-Co合金,氧化铁等),当颗粒尺寸为单磁畴临界尺寸时,具有甚高的矫顽力,可制成磁性信用卡、磁性钥匙、磁性车票等,还可以制成磁性液体,广泛地用于电声器件、阻尼器件、旋转密封、润滑、选矿等领域。 3. 纳米微粒的熔点可远低于块状金属。例如2nm的金颗粒熔点为600K,随粒径增加,熔点迅速上升,块状金为1337K;纳米银粉熔点可降低到373K、此特性为粉末冶金工业提供了新工艺。 4. 利用等离子共振频率随颗粒尺寸变化的性质,可以改变颗粒尺寸,控制吸收边的位移,制造具有一定频宽的微波吸收纳米材料,可用于电磁波屏蔽、隐形飞机等。 表面效应:纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。粒子直径减小到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加,这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很大的化学活性,例如金属的纳米粒子在空气中会燃烧,无机的纳米粒子暴露在空气中会吸附气体,并与气体进行反应。这种表面原子的活性不但引起纳米粒子表面原子输运和构型变化,同时也引起表面电子自旋构象和电子能谱的变化。 宏观量子隧道效应:微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦具有隧道效应,称为宏观的量子隧道效应。宏观量子隧道效应的研究对基础研究及实用都有着重要意义。它限定于磁带、磁盘进行信息贮存的时间极限。量子尺寸效应、隧道效应将会是未来微电子器件的基础,或者它确立了现存微电子器件进一步微型化的极限。当微电子器

纳米材料制备方法

纳米微粒制备方法研究进展 刘伟 (湘潭大学材料科学与工程学院,13材料二班,2013701025) 摘要:纳米微粒一般是指粒径在1nm到100nm之间,处在原子簇和宏观物体交接区域内的粒子,或聚集数从十到几百范围的物质。纳米材料具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等特点,因而有许多与传统的晶体和非晶体不同的独特性质,也与组成它们的分子或原子差异很大,在材料学、物理学、化学、催化、环境保护、生物医学等领域具有十分广阔的应用前景。本文综述目前纳米微粒的主要的制备方法, 比较和评述了每种方法的特点,以期这一新材料能得以更为深入地研究和更广泛地应用。 关键词:纳米微粒;制备;方法 1.引言 纳米微粒的制备方法从物料的状态来分,可归纳为固相法、液相法、气相法3大类;从物料是否发生化学反应而分为物理法、化学法及近年迅速发展的模板合成法、仿生法等;随着科技的不断发展及对不同物理、化学特性超微粒子的需求,又派生出许多新的技术,下面就着重介绍固相法、液相法和气相法。 2.固相法 固相法是一种传统的粉化工艺,具有成本低、产量高、制备工艺简单的优点。固相法分为固相机械粉碎法和固相反应法。固相机械粉碎法借用诸如搅拌磨、球磨机、气流磨、塔式粉碎机等多种粉碎机,利用介质和物料之间的相互研磨和冲击的原理,使物料粉碎,常用来制备微米级粒径的粉体颗粒。此法存在能耗大、颗粒粒径分布不均匀、易混入杂质、颗粒外貌不规则等缺点,因而较少用以制备纳米微粒。固相反应法是将固体反应物研细后直接混合,在研磨等机械作用下发生化学反应,然后通过后处理得到需要的纳米微粒。该方法一般要加入适量表面活性剂,所以有时也称湿固相反应。该方法具有工艺简单、产率高、颗粒粒子稳定化好、易操作等优点,尤其是可减少或避免液相中易团聚的现象。[4] 3.液相法 液相法是目前实验室和工业生产中较为广泛采用的方法。通常是让溶液中的不同分子或离子进行反应,产生固体产物。产物可以是单组分的沉淀,也可以是多组分的共沉淀。其涉及的反应也是多种多样的,常见的有:复分散反应、水解反应、还原反应、络合反应、聚合反应等。适当控制反应物的浓度、反应温度和搅拌速度,就能使固体产物的颗粒尺寸达到纳米级。液相法具有设备简单、原料易得、产物纯度高、化学组成可准确控制等优点。下面主要介绍其中的沉淀法和微乳液法。 3.1 沉淀法 沉淀法是液相法制备金属氧化物纳米微粒最早采用的方法。沉淀法基本过程是:可溶性化合物经沉淀或水解作用形成不溶性氢氧化物、水合氧化物或盐类而析出,经过滤、洗涤、煅烧得到纳米微粒粉末。沉淀法又分为均相沉淀法和共沉淀法。沉淀法工艺简单、成本低、反应时间短、反应温度低,易于实现工业化生产。但是,沉淀物通常为胶状物,水洗、过滤较困难;所制备的纳米微粒易发生团聚,难于制备粒径小的纳米微粒。沉淀剂容易作为杂质混入产物之中。此外,还由于大量金属不容易发生沉淀反应,因而这种方法适用面较窄。[3]

纳米材料的制备及应用.

本科毕业论文(设计) 题目:纳米材料的制备及应用 学院:物理与电子科学学院 班级: XX级XX班 姓名: XXX 指导教师: XXX 职称: 完成日期: 20XX 年 X 月 XX 日

纳米材料的制备及应用 摘要:近几年来,由于纳米材料有众多特殊性质,人们越来越关注纳米材料。科技的迅猛发展使纳米材料的制备变得更加成熟。本论文讲述纳米材料的制备,以及纳米技术在将来的应用。 关键词:纳米材料物理方法化学方法应用前景

目录 引言 (1) 1.纳米材料的物理制备方法 (1) 1.1物理粉碎法 (1) 1.2球磨法 (2) 1.3.蒸发—冷凝法 (2) 1.3.1.激光加热蒸发法 (2) 1.3.2.真空蒸发—冷凝法 (4) 1.3.3.电子束照射法 (4) 1.3.4.等离子体法 (5) 1.3.5.高频感应加热法 (5) 1.4.溅射法 (6) 2.纳米材料的化学制备方法 (7) 2.1化学沉淀法 (8) 2.2化学气相沉积法 (8) 2.3化学气相冷凝法 (10) 2.4溶胶--凝胶法 (10) 2.5水热法 (11) 3.纳米材料的其他制备方法 (12) 3.1分子束外延法 (12) 3.2静电纺丝法 (13) 4.纳米材料的应用前景 (14) 5.总结 (14) 参考文献 (15) 致谢 (16)

引言 纳米材料是指任一维空间尺度处于1—100nm之间的材料。它有着不同寻常的性质,如小尺寸效应可引起物理性质的突变,从而具有独特的性能;量子尺寸效应和表面与界面效应使其具有了一般大颗粒物不具备的性质,如对红外线、紫外线有很强的反射作用,应用到纺织品中有抗紫外线,隔热保温作用。纳米材料的这些特性使其在化工、物理、生物、医学方面都有非常重要的价值]1[。多年以来,通过科学家们的潜心研究,使纳米材料在其制备及其应用中得到了很大的发展。纳米材料将逐渐进入人们的日常生活,并将成为未来新工业革命的必备材料。 1.纳米材料的物理制备方法 1.1物理粉碎法 物理粉碎法就是用机械粉碎和电火花爆炸等方法得到纳米微粒]2[。此方法操作简单,成本较低,但得到的纳米微粒纯度不高,分布也不均匀。 图1. 机械粉碎法仪器图

相关文档
最新文档