七年级数学一元一次方程单元教师版拓展提升教学设计
七年级《一元一次方程》教学设计(最终5篇)
七年级《一元一次方程》教学设计(最终5篇)第一篇:七年级《一元一次方程》教学设计七年级《一元一次方程》教学设计作为一位杰出的教职工,总不可避免地需要编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。
怎样写教学设计才更能起到其作用呢?下面是小编收集整理的七年级《一元一次方程》教学设计,欢迎阅读,希望大家能够喜欢。
教学目标:进一步认识方程,理解一元一次方程的概念,会根据题意列简单的一元一次方程。
认识方程的解的概念。
掌握验根的方法。
体验用尝试法解一元一次方程的思想方法。
重点:一元一次方程的概念难点:尝试检验法教学过程:1、温故方程是含有xx的xx.归纳:判断方程的两要素:①有未知数②是等式(通过填空让学生简单回顾方程概念,并总结方程两要素)2、知新根据题意列方程:(1)一件衣服按8折销售的售价为72元,这件衣服的原价是多少元?设这件衣服的原价为x元,8折后售价为xx可列出方程、(2)有一棵树,刚移栽时,树高为2m,假设以后平均每年长0.3m,几年后树高为5m?设x年后树高为5m,可列出方程_______(3)物体在水下,水深每增加10.33米承受的压力就会增加1个大气压、当“蛟龙”号下潜至3500米时,它承受的压力约为340个大气压、问当它承受压力增加到500个大气压时,它又继续下潜了多少米?设它又继续下潜了x米,x米增加大气压个。
可列出方程、(教师引导学生列出方程)80%x=72观察比较方程:(学生根据方程特点填空)等式的两边的代数式都是xx___;每个方程都只含有___个未知数;且未知数的指数是_____(教师总结)这样的方程叫做一元一次方程.(教师提问:需满足几个特点,学生回答后总结一元一次方程概念)1、两边都是整式2、只含有一个未知数3、未知数的指数是一次、(教师引出课题——5.1一元一次方程)3、(接下来一起将前面所学新知与旧知融会贯通)1、下列各式中,哪些是方程?哪些是一元一次方程?(1)5x=0(2)1+3x(3)y2=4+y(4)x+y=5(5)(6)3m+2=1–m(这里需要让学生较快的先找出方程(1)、(3)、(4)、(5)、(6),并说说为什么剩下的不是方程。
2024年人教版七年级上册教学设计 第五章 一元一次方程第五章 一元一次方程
一、单元学习主题本单元是“数与代数”领域“方程与不等式”主题中的“一元一次方程”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、建立数学模型的基石,可以帮助学生从数量的角度清晰准确地认识、理解和表达现实世界.数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.方程与不等式的教学应当让学生经历对现实问题中量的分析,借助用字母表达的未知数,建立两个量之间关系的过程,知道方程或不等式是现实问题中含有未知数的等量关系或不等关系的数学表达,引导学生关注既含有已知数,又含有未知数的方程,感悟用字母表示数的意义,体会算术与代数的差异.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律;经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题、提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.2.本单元教学内容分析人教版教材七年级上册第五章“一元一次方程”,本章包括三个小节:5.1方程;5.2解一元一次方程;5.3实际问题与一元一次方程.“方程与不等式”是义务教育阶段数学课程中数与代数领域的一个重要内容,它揭示了数学中最基本的数量关系(相等关系和不等关系),是一类应用广泛的数学工具.从数学学科本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展;从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础;从应用数学的角度看,方程是一个既方便又强大的数学工具,它能够有效地刻画现实世界中的数量关系,将实际问题转化为数学模型加以解决.本单元主要内容包括:一元一次方程及其相关概念、一元一次方程的解法和利用一元一次方程解决实际问题.其中,以方程为工具分析问题、解决问题,即根据问题中的相等关系建立方程模型是本单元的重点之一,同时也是主要难点.分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于本单元的主线.对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的,它们在本单元前两节中占重要地位.解方程中蕴含的“化归思想”和列方程中蕴含的“数学建模思想”,是本单元中包含的主要数学思想,对于它们的体悟与内化,不仅对学生今后研究问题、解决问题以及终身的发展非常有益,而且也是深入贯彻实施《标准2022》的素养理念的渠道,与提高学生自身的数学素养有非常密切且直接的关系,更是促进学生思考、激发学生思维探究、教会学生学习方法、挖掘学生的学习潜力、有效提高初中数学教学质量和学生学业质量的重要保障.三、单元学情分析本单元内容是人教版教材数学七年级上册第五章一元一次方程,从学生的认知基础上看,学生在前面学段中已经学过有关于简单方程的内容,对方程有了初步的认识,会用方程表示简单情境中的数量关系,会解简单的方程,同时通过对整式的学习,学生能够进行合并同类项,去括号等整式的加减运算,即对方程的认识已经历了入门阶段,又具备了一定的基础.这些基本的、朴素的认识为进一步学习方程奠定了基础.本单元的内容是在前面对方程学习的基础之上的进一步发展,是更系统、更深入、更复杂的讨论,更强调数学思想、数学模型的渗透,结合七年级学生的思维习惯,他们虽然已经具备了一定的学习能力,但仍处于感性认识向理性认识过渡的时期,抽象思维能力还有待提高,因此教学中对问题情境的选取要符合学生的认知水平,在学生的最近发展区创设情境,给他们创造自主学习、合作探究的机会,让学生在主动参与中体验到探索成功的喜悦,在经历数学知识的形成过程中逐步体会、感悟和理解这些数学内容的内涵.四、单元学习目标1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,通过了解一元一次方程及其相关概念,完成从算式数学到方程式数学的进步,从而发展学生的抽象能力,培养学生的模型意识.2.掌握等式的性质,能利用它们探究一元一次方程的解法,进一步夯实学生的理论基础,培养学生的应用意识.3.了解解方程的基本目标,理解并掌握解一元一次方程的一般步骤和解法,培养学生的运算能力,进一步体会解法中蕴含的化归思想.4.能够通过“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的相等关系”来体会数学建模的思想,培养学生的模型观念.5.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决实际问题的基本过程,感受数学的应用价值,提高学生分析问题、解决问题的能力.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
七年级数学上册第三章一元一次方程《数学活动》
教学设计:2024秋季七年级数学上册第三章一元一次方程《数学活动》教学目标(核心素养)1.知识与技能:通过数学活动,巩固学生对一元一次方程的理解和应用能力,提升解题技巧。
2.数学思维:培养学生的探究精神、创新思维和问题解决能力,鼓励从不同角度思考问题。
3.合作交流:增强学生之间的合作交流能力,通过小组讨论、合作解题等方式,促进相互学习和帮助。
4.情感态度:激发学生对数学学习的兴趣,培养积极参与数学活动的态度和团队合作精神。
教学重点•巩固一元一次方程的解法,提高解题速度和准确率。
•引导学生通过数学活动,探索一元一次方程在实际问题中的应用。
教学难点•设计富有挑战性和趣味性的数学活动,激发学生的学习兴趣和探究欲望。
•引导学生将所学知识灵活运用到实际问题的解决中,培养创新思维。
教学资源•多媒体课件(包含活动介绍、示例题目、解题步骤等)•实物教具(如卡片、拼图等,用于辅助活动)•小组合作学习任务单•教材及配套习题册教学方法•探究式学习:鼓励学生自主探究,通过活动发现规律,解决问题。
•合作学习:分组进行活动,促进学生之间的交流和合作。
•讲解与示范:对活动中的难点和关键点进行必要的讲解和示范。
•实践操作:通过动手操作,加深学生对一元一次方程的理解和应用。
教学过程要点导入新课•情境引入:通过一个有趣的数学谜题或游戏,激发学生兴趣,引出数学活动的主题。
•明确目标:简要介绍本次数学活动的目的和要求,让学生明确学习任务。
新课教学1.活动介绍:详细讲解数学活动的规则和步骤,确保每位学生都能理解并参与其中。
2.分组活动:学生按照小组进行活动,教师巡回指导,鼓励学生积极思考和交流。
3.探究发现:引导学生通过活动发现一元一次方程的规律和特点,尝试解决相关问题。
4.分享展示:各小组展示活动成果,分享解题思路和经验,教师点评并总结。
课堂小结•总结本次数学活动的主要内容和收获,强调一元一次方程的重要性和应用价值。
•引导学生反思活动中的不足和改进方向,为今后的学习提供参考。
七年级《一元一次方程》教学设计(通用6篇)
七年级《一元一次方程》教学设计七年级《一元一次方程》教学设计(通用6篇)作为一名教师,时常需要用到教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。
教学设计应该怎么写才好呢?以下是小编整理的七年级《一元一次方程》教学设计,欢迎大家分享。
七年级《一元一次方程》教学设计篇1一、教学目标1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;3、培养学生获取信息,分析问题,处理问题的能力。
二、教学难点、知识重点1、重点:建立一元一次方程的概念。
2、难点:理解用方程来描述和刻画事物间的相等关系。
三、教学方法讲练结合、注重师生互动。
四、教学准备课件五、教学过程(师生活动)(一)情境引入教师提出教科收第79页的问题,并用多媒体直观演示。
问题1:从视频中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。
)教师可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:问题3:能否用方程的知识来解决这个问题呢?(二)学习新知1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米.2、教师引导学生寻找相等关系,列出方程.问题1:题目中的“汽车匀速行驶”是什么意思?问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?问题3:根据车速相等,你能列出方程吗?教师根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.4、归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数(通常用x,y,z等字母);(2)根据问题中的相等关系,列出方程.(三)举一反三讨论交流1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.列算式:只用已知数,表示计算程序,依据是间题中的数量关系;列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
初中七年级上册数学《一元一次方程》教案
第五章 第三节 求解一元一次方程(3)课 型:新授课教学目标:1.会用较简单的方法解含分数系数的一元一次方程,并归纳解一元一次方程的步骤.(重点)2.掌握一元一次方程的解法、步骤,并灵活运用解答相关题目,体验把复杂转化为简单,把“陌生”转化为“熟知”基本思想(难点)3.提倡学生自主地选择合理的方法解题,关注学生个性的发展.教法和学法指导:本课利用了滕南中学“一案三环节”课堂教学模式,教师以引导法为主,辅之以直观演示法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程。
本课让学生通过具体的实例(系数带有分母)的方程,使学生感受到解这类方程的繁琐,并尝试用新的方法去解决,同时也感受到用方程解决实际问题的魅力.让学生自己动手去解有分母的方程,让学生自己归纳解一元一次方程的步骤,这样做可以加深学生的印象,激发学生的学习动机,从而感受学习的快乐.教学手段:采用多媒体辅助教学,提高课堂教学效率.教学过程:一、情景导入 明确目标:(一)情景导入活动内容:老师用多媒体出示:马思源同学今年的年龄为六岁,他的祖父是72岁.几年后马思源的年龄是他祖父年龄的14? 生:解设x 年后马思源的年龄是他祖父的14。
很快列出方程得:()16724x x +=+ 师: 对于这个方程我们怎么求解呢?男生张聪:板书师:还有没有别的方法来求这个方程的解呢?(教师注意留给学生充足的时间去发现不同的解法,更不能越俎代庖急于讲解) 生:成绩较好的张川同学上黑板板书()167241618416x x x x x +=++=+=()()()167241464724424723722416x x x x x x x x +=+⨯+=⨯++=+=-=师:请同学们观察这位同学板书的方法,他对原方程首先进行了什么运算?生:去分母,两边同时乘以4.师:很好,对于带有分母的一元一次方程,这是一种很好的方法,本节课我们将针对这类方程的解法进行深入的探究.教师板书: 5.2求解一元一次方程(3)设计意图:复习前两课时学过移项、去括号等知识.创设解带分数的一元一次方程的情景,调动学生的好奇心和积极性. 能够水倒渠成的引出本课的内容,且极大的调动学生的好奇心和积极性.二、自主学习 合作探究探究活动一 解带分母的系数的一元一次方程师:同学们思考一下,用板书的这种方法解方程需要哪些步骤?生1:其实就多了一步去分母.生2:去掉分母后就回到了以前的内容了.师:那怎么样才能去分母呢?生:乘以所有分母的最小公倍数.师:同学们说的很好,通过刚才的思考、探索、交流,同学们对解决带分数系数的方程的解法有了初步的认识,大家来尝试解决下列方程:生: 解方程: ()()11142074x x +=+ 去分母,得 ()()44720x x +=+去括号,得 4567140x x +=+移项、合并同类项得 384x -=方程两边同除以3-,得 28x =-师:点拨过程,规范步骤。
七年级数学一元一次方程的教案推荐7篇
七年级数学一元一次方程的教案推荐7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级数学一元一次方程的教案推荐7篇本文将为大家推荐七年级数学一元一次方程的教案,共计7篇。
2024年人教版七年级上册教学设计 第五章 一元一次方程方程
5.1.1从算式到方程课时目标1.通过引入实际问题情境,让学生在算式、代数两种方式下解决问题,体会由算术到代数是数学的一大进步,从而培养学生分析、归纳和抽象概括的思维能力,初步认识建立数学模型的思想.2.经历用含有未知数的等式表示实际问题中的相等关系,感悟方程的现实意义,理解方程的概念,培养学生获取信息、分析问题、处理问题的能力,提升方程模型的应用意识.3.通过数学背景材料,让学生理解并掌握方程、一元一次方程及其相关概念的内涵,培养学生的阅读理解、拓展探究的能力,增强学生的数学应用意识,调动学生学习数学的主动性.学习重点寻找相等关系列出方程,方程、一元一次方程及其相关概念.学习难点寻找相等关系列出方程的意识和过程.课时活动设计情境引入问题:甲、乙两支登山队沿同一条路线同时向一山峰进发.甲队从距大本营1 km的一号营地出发,每小时行进1.2km;乙队从距大本营3km的二号营地出发,每小时行进0.8km.多长时间后,甲队在途中追上乙队?学生先独立思考、作答,然后小组交流合作,最后选派学生代表板演展示,教师巡视指导.解:甲队追上乙队所用的时间为3−11.2−0.8=20.4=5(小时).教师适时追问:(1)这是算术解法,同学们,你们知道这样做的根据吗?(2)你还有其它的解决方法吗?教师引导学生尝试通过列方程的方法来解决这个问题.解:设x小时后,甲队在途中追上乙队.当甲队追上乙队时,甲队距大本营的路程为(1.2x+1)km,乙队距大本营的路程为(0.8x+3)km.因为甲队在途中追上乙队,即甲队距大本营的路程=乙队距大本营的路程,于是1.2x+1=0.8x+3.设计意图:通过设置这个学生熟悉的行程问题,让学生尝试用自身拥有的数学知识(算术方法)解决,然后逐步引导学生用含有未知数的式子表示有关的量,并进一步依据相等关系列出含有未知数的等式——方程,目的在于突出方程的根本特征,为引出方程的概念作铺垫.探究新知探究1方程的概念和列方程教师请同学们按照教学活动1中的方法,先设出未知数,再根据问题中的相等关系列出含有未知数的等式.学习先独立思考解答下列两个问题,然后再进行小组谈论,最后选派代表板演展示.问题1:用买3个大水杯的钱,可以买4个小水杯,大水杯的单价比小水杯的单价多5元,两种水杯的单价各是多少元?分析:根据题意,可知3个大水杯的总价=4个小水杯的总价,大水杯的单价-小水杯的单价=5,总价=数量×单价.因此,只要设出大水杯的单价或小水杯的单价,就可以列出方程了.解:设大水杯的单价为x元,那么小水杯的单价为(x-5)元.因为用买3个大水杯的钱,可以买4个小水杯,所以3x=4(x-5).由这个含有未知数x的等式可以求出大水杯的单价,进而可以求出小水杯的单价.问题2:如图是一枚长方形的庆祝中国共产党成立100周年纪念币,其面积是4 000mm2,长和宽的比为85(即宽是长的58).这枚纪念币的长和宽分别是多少毫米?分析:根据题意,可知这个长方形的宽=58×长方形的长,长方形的面积=长×宽,因此,只要设出长方形的长或宽,就可以列出方程了.解:设这枚纪念币的长为x mm,则纪念币的宽可以表示为58x mm,面积可以表58x2mm2.已知纪念币的面积为4000mm2,所以58x2=4000.由这个含有未知数x的等式可以求出这枚纪念币的长,进而可以求出纪念币的宽.教师引导学生归纳:像这样,先设出字母表示未知数,然后根据问题中的相等关系,列出一个含有未知数的等式,这样的等式叫作方程.教师适时追问:(1)你能解释这些方程的左边、右边各表示什么意思吗?(2)对于根据问题中的相等关系列方程,说说你的体会?学生思考,小组讨论交流.教师引导学生归纳:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.这个过程可以表示如下:教师进一步指出:用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只含有已知数,不含未知数;而方程是根据问题中的相等关系列出的等式,其中既含有已知数,也含有用字母表示的未知数,这为解决许多问题带来了方便.探究2解方程和方程的解问题3:请同学们尝试解方程1.2x+1=0.8x+3.学生先独立解答,然后再小组交流,教师巡视指导.解:可以发现,当x=5时,左边=1.2×5+1=7,右边=0.8×5+3=7,这时方程左右两边的值相等.教师引导学生归纳:一般地,使方程左、右两边的值相等的未知数的值,叫作方程的解.例如,x=5就是方程1.2x+1=0.8x+3的解.求方程的解的过程,叫作解方程.判断未知数是否为方程的解的具体步骤:(1)把未知数的值分别代入方程的左、右两边进行计算;(2)若左边=右边,则这个未知数是方程的解;反之,则不是.探究3一元一次方程的概念问题4:观察下列方程,你有什么发现.1.2x+1=0.8x+3;3x=4(x-5).先让学生独立思考,自主探索,然后将分析结果在小组内进行交流,形成共识,最后由学生代表回答问题,教师巡视指导学生的学习情况.解:这些方程中只有1个未知数x,且未知数x的次数都是1.引导学生归纳出一元一次方程的概念:一般地,如果方程中只含有一个未知数(元),且含有未知数的式子都是整式,未知数的次数都是1,这样的方程叫作一元一次方程.设计意图:通过设置一系列问题,突出方程的根本特征,使学生认识到从算式到方程是更有力、更方便的数学工具,从算术方法到代数方法是数学的一大进步.初步培养了学生由实际问题抽象出方程模型的能力.典例精讲例1根据下列问题,设未知数并列出方程:(1)某校女生占全体学生数的52%,比男生多80人,这所学校有多少名学生?(2)如图,一块正方形绿地沿某一方向加宽5m,扩大后的绿地面积是500m2,求正方形绿地的边长.分析:(1)根据题意,可知女生人数-男生人数=80,并且女生人数=全体学生数×52%,因此,只需设出全体学生数就可以列出方程了;(2)由题意,可知扩大后的绿地的长=正方形绿地的长+5,扩大后的绿地面积=500,所以只需设出原来绿地的长就可以列出方程了.解:(1)设这所学校的学生数为x,那么女生数为0.52x,男生数为(1-0.52)x,根据“女生比男生多80人”,列得方程0.52x-(1-0.52)x=80.(2)设正方形绿地的边长为x m,那么扩大后的绿地面积为(x2+5x)m2,根据“扩大后的绿地面积是500m2”,列得方程x2+5x=500.例2(1)x=2,x=32是方程2x=3的解吗?(2)x=10,x=20是方程3x=4(x-5)的解吗?解:(1)当x=2时,方程2x=3的左边=2×2=4,右边=3,方程左、右两边的值不相等,所以x=2不是方程2x=3的解;当x=32时,方程2x=3的左边=2×32=3,右边=3,方程左、右两边的值相等,所以x=32是方程2x=3的解.(2)当x=10时,方程3x=4(x-5)的左边=3×10=30,右边=4×(10-5)=20,方程左、右两边的值不相等,所以x=10不是方程3x=4(x-5)的解;当x=20时,方程3x=4(x-5)的左边=3×20=60,右边=4×(20-5)=60,方程左、右两边的值相等,所以x=20是方程3x=4(x-5)的解.例32x+1=0.8x+3,3x=4(x-5),0.52x-(1-0.52)x=80,它们有什么共同特征?解:(1)只含有一个未知数x;(2)未知数x的次数都是1;(3)整式方程.设计意图:将列方程解决实际问题这一本章的教学难点分散在本章教学的每一节课中是设置这一系列教学活动的目的,化整为零地培养学生由实际问题抽象出方程模型的能力,持续渗透建模思想.教学中,通过先让学生独立思考、然后再进行小组合作的学习活动,既能培养学生的阅读理解能力、分析问题、解决问题的能力,又能提高学生的抽象思维能力.巩固训练1.x=3是下列哪个方程的解(B)A.2x+7=11B.5x-8=2x+1C.3x=1D.-x=32.小芬买了15份礼物,共花了900元,已知每份礼物内都有1包饼干及每支售价20元的棒棒糖2支,若每包饼干的售价为x元,则依题意可列出下列哪一个一元一次方程(C)A.15(2x+20)=900B.15x+20×2=900C.15(x+20×2)=900D.15×x×2+20=9003.当m=3或1时,关于x的方程x|2-m|+1=0是一元一次方程.4.下列式子中,哪些是方程,哪些是一元一次方程?并说明理由.①2x+1;②2m+15=3;③3x-5=5x+4;④x2+2x-6=0;⑤-3x+1.8=3y;⑥3a+9>15.解:上述式子是方程的有②③④⑤,其中②③是一元一次方程.理由:①是含有未知数的式子,不是等式;⑥是不等式;而②③④⑤是含有未知数的等式,符合方程的定义,其中④未知数的次数是2,⑤含有两个未知数,只有②③符合一元一次方程的定义,因此它们是一元一次方程.5.根据下列问题,设未知数并列出方程:(1)某长方形足球场的周长为310米,长和宽之差为25米,求这个足球场的宽;(2)《数学学习方法报》每份0.6元,《数学周报》每份0.5元,小明用10元钱买了两种报纸共18份,他买的两种报纸各多少份?解:(1)设这个足球场的宽为x米,则长为(x+25)米,依题意,得2x+2(x+25)=310.(2)设《数学学习方法报》买了x份,则《数学周报》买了(18-x)份,则有0.6x+0.5(18-x)=10.设计意图:通过练习,巩固方程及一元一次方程的概念,促进学生对知识的理解,使学生更加深刻地把握概念的内涵和外延,持续体会数学建模思想.课堂小结1.这节课你学到了哪些知识?2.在探寻方程的有关概念的学习过程中,你学到了哪些数学方法?积累了哪些活动经验?3.在利用列方程解实际问题的过程中,对你有哪些启示?设计意图:通过课堂小结的形式,让学生回顾知识点,形成知识体系,有利于学生养成回顾梳理知识的习惯.课堂8分钟.1.教材第118页习题5.1第1,2,3,5,6题.2.七彩作业.5.1.1从算式到方程1.解决数学实际问题的方式:(1)算式方法.(2)用含有未知数的等式表示问题中的相等关系.2.方程:含有未知数的等式叫作方程.3.用方程的方法解决实际问题是更方便的数学工具.4.方程的解、解方程的概念.5.一元一次方程的概念.教学反思5.1.2等式的性质课时目标1.通过使学生亲身经历运用所学知识探索等式的性质的过程,激发学生的数学学习兴趣,增强学生学好数学的信心,进而培养学生自主探究和实践能力.2.通过让学生从事自主学习、合作交流等数学活动,理解并掌握等式的性质,在实际操作中学习知识,在解决问题中深化认知,发展和提高学生的应用意识.3.通过使学生经历利用等式的性质解方程的过程,逐步培养学生观察、分析、概括的逻辑思维能力,从而渗透“化归”的思想.学习重点等式的性质和运用.学习难点应用等式的性质把简单的一元一次方程化成“x=m”的形式.课时活动设计情境引入用观察的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1)3x-5=22;(2)0.28-0.13y=0.27y+1.学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.解:对于(1),通过观察,可以看出x=9是方程的解;但是(2)不容易直接看出来.追问:既然不容易直接看出来,那么我们还能借助哪些知识来解这个方程呢?设计意图:设置悬念,引出等式的性质的讨论,为后面逐步过渡到用等式的性质讨论方程的解法作铺垫.探究新知探究1等式的性质问题1:请同学们填空,使式子成立.(1)如果m=n,那么n=m;(2)如果x+2x=3x,那么3x=x+2x;(3)如果a=3,b=3,那么a= b.(填“>”“=”或“<”)学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.教师归纳:诸如m+n=n+m,x+2x=3x,3×3+1=5×2,3x+1=5y这样的式子,都是等式.我们可以用a=b表示一般的等式.首先,给出关于等式的两个基本事实:(1)等式两边可以交换.如果a=b,那么b=a;(2)相等关系可以传递.如果a=b,b=c,那么a=c.思考:在小学,我们已经知道:等式两边同时加(或减)同一个正数,同时乘同一个正数,或同时除以同一个不为0的正数,结果仍相等.引入负数后,这些性质还成立吗?完成下列题目,试试你的猜想是否成立.问题2:用适当的数或整式填空,使所得结果仍是等式.(1)如果3x=-2x-1,那么3x+2x=-1,两边同时加2x;(2)如果12x=5,那么x=10,两边同时乘2;(3)如果13x-2=x-12,那么13x-x=-12+2,两边同时加2-x.学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.教师根据学生回答情况作出评价,适时进行追问:(1)在运用等式的性质时,等式的两边要做怎样的变化?(2)在等式两边同除以一个数时,应注意什么?师生共同归纳:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.用符号语言描述:如果a=b,那么a±c=b±c.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用符号语言描述:如果a=b,那么ac=bc;如果a=b,c≠0,那么=.探究2利用等式的性质解方程问题3:利用等式的性质解下列方程:(1)x+3=5;(2)3x+2=8.学生独立思考,小组交流讨论,并派学生代表上台板演.解:(1)方程两边减3,得x+3-3=5-3.于是x=2.(2)方程两边减2,得3x+2-2=8-2.化简,得3x=6.方程两边除以3,得x=2.教师引导学生归纳:一般地,从方程解出未知数的值从后,通常需要代入原方程检验,看这个值能否使方程左、右两边的值相等.例如,将x=2代入方程3x+2=8的左边,得3×2+2=8.方程左、右两边的值相等,所以x=2是方程3x+2=8的解.解以x为未知数的方程,就是把方程逐步转化为x=m(常数)的形式,等式的性质是转化的重要依据.设计意图:设置上述教学环节,让学生借助具体的式子来验证等式的两条性质,加深对等式的性质的认知,同时又用文字语言和符号语言两种形式来描述这些性质,目的在于让学生切实理解等式的性质,体会如何用数学的符号语言抽象概括地表示它们.典例精讲例1根据等式的性质填空,并说明依据:(1)如果2x=5-x,那么2x+=5;(2)如果m+2n=5+2n,那么m=;(3)如果x=-4,那么·x=28;(4)如果3m=4n,那么32m=·n.解:(1)2x+x=5;根据等式的性质1,等式两边加x,结果仍相等.(2)m=5;根据等式的性质1,等式两边减2n,结果仍相等.(3)-7·x=28;根据等式的性质2,等式两边乘-7,结果仍相等.(4)32m=2·n;根据等式的性质2,等式两边除以2,结果仍相等.例2利用等式的性质解下列方程:(1)x+7=26;(2)-5x=20;(3)-13x-5=4.分析:要使方程x+7=26转化为x=m(常数)的形式,需要去掉方程左边的7,利用等式的性质1,方程两边减7就得出x的值.类似地,利用等式的性质,可以将另外两个方程转化为x=m的形式.解:(1)方程两边减7,得x+7-7=26-7.于是x=19.(2)方程两边除以-5,得-5-5=20-5.于是x=-4.(3)方程两边加5,得-13x-5+5=4+5.化简,得-13x=9.方程两边乘-3,得x=-27.设计意图:通过例题,让学生在观察等式的两边的变化情况后运用等式的性质做题,进一步加深学生对等式性质的准确把握,同时有助于引导学生利用等式的性质研究方程的解法,对于需要运用两次等式的性质来解方程的题目,需要学生有一定的思维顺序,能够锻炼学生的思维能力.巩固训练1.如果mx=my,那么下列等式中不一定成立的是(D)A.mx+1=my+1B.mx-3=my-3C.-12mx=-12myD.x=y2.下列方程的变形,符合等式的性质的是(D)A.由2x-3=7得2x=7-3B.由-3x=5得x=5+3C.由2x-3=x-1得2x-x=-1-3D.由-14x=1得x=-43.用适当的数或整式填空,使所得的式子仍是等式,并注明根据.(1)如果x+2=3,那么x=3+-2,根据是等式的性质1;(2)如果4x=3x-7,那么4x-3x=-7,根据是等式的性质1;(3)如果-2x=6,那么x=-3,根据是等式的性质2;(4)如果12x=-4,那么x=-8,根据是等式的性质2.4.利用等式的性质解方程:(1)x-4=1;(2)3x+5=0.解:(1)方程两边加4,得x-4+4=1+4.于是x=5.(2)方程两边减5,得3x+5-5=0-5.整理,得3x=-5.方程两边除以3,33=-53.于是x=-53.设计意图:通过巩固训练,进一步巩固学生对等式的性质的认识,让学生充分认识到如何应用等式的性质去解题.课堂小结1.本节课你学到了什么知识?2.在运用等式的性质解题时,应该注意什么?3.在运用等式的性质解方程时,你获得了哪些宝贵的经验?设计意图:通过课堂小结的形式,让学生回顾知识点,形成知识体系,有利于学生养成回顾梳理知识的习惯,让学生在对课堂所学有系统认知的基础上,深化对知识的理解程度.课堂8分钟.1.教材第118页习题5.1第4,7,8,10,11题.2.七彩作业.5.1.2等式的性质1.关于等式的两个基本事实:等式两边可以交换.如果a=b,那么b=a.相等关系可以传递.如果a=b,b=c,那么a=c.2.等式的基本性质:等式的性质1等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.教学反思。
七年级数学上册《解一元一次方程》教案、教学设计
二、学情分析
七年级的学生正处于从小学到初中的过渡阶段,他们在数学学习上已经具备了一定的运算能力和基本的代数知识。然而,对于一元一次方程这一概念,学生可能还比较陌生。在此背景下,学情分析如下:
1.学生在小学阶段已经接触过一些简单的方程,但对于一元一次方程的解法和应用,大部分学生还缺乏系统的认识和掌握。
因此,在本章节的教学过程中,教师应关注学生的个体差异,结合学生的认知特点,采用启发式教学方法,引导学生逐步掌握一元一次方程的解法和应用。同时,注重培养学生的合作学习能力,使学生在互动交流中共同进步。
三、教学重难点和教学设想
(一)教学重难点
1.重点:一元一次方程的解法及其在实际问题中的应用。
难点:理解并运用移项、合并同类项等方法解一元一次方程;构建方程模型解决实际问题。
2.重点:使学生掌握方程的解的概念,并能够判断方程解的个数。
难点:让学生从具体问题中抽象出一元一次方程,并运用所学知识解决问题。
(二)教学设想
1.针对教学重点和难点,设计以下教学环节:
(1)导入:以生活中的实际问题为例,引导学生从问题中发现方程,激发学生的学习兴趣。
(2)新知传授:采用讲练结合的方式,逐步引导学生掌握解一元一次方程的方法,并解释其中的原理。
2.结合生活实际,自编两道一元一次方程的应用题,要求学生独立构建方程模型,并求解。
目的:培养学生的应用意识,让学生体会数学在生活中的重要性,提高解决实际问题的能力。
3.小组合作完成一道拓展题,要求学生共同讨论、分析问题,并给出解题过程。
目的:加强学生之间的合作与交流,培养学生团队协作的能力,提高学生分析问题和解决问题的能力。
人教版七年级数学上册《 第三章 一元一次方程 》教学设计
人教版七年级数学上册《第三章一元一次方程》教学设计一. 教材分析人教版七年级数学上册第三章《一元一次方程》是学生继初中代数初步知识学习之后,进一步深化对数学概念的理解和运用的关键章节。
本章通过引入一元一次方程,让学生掌握方程的解法,提高解决实际问题的能力。
教材内容主要包括一元一次方程的概念、解法以及应用。
二. 学情分析学生在学习本章内容前,已经掌握了整数、分数、有理数等基础知识,具备了一定的逻辑思维能力。
但对于一元一次方程这一概念,可能还存在一定的难度,需要通过实例和练习来逐渐理解和掌握。
三. 教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。
2.能够应用一元一次方程解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.一元一次方程的概念。
2.一元一次方程的解法。
3.一元一次方程在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索;通过案例分析,让学生理解和掌握一元一次方程的解法;通过小组合作学习,培养学生的团队协作能力。
六. 教学准备1.教材、教案、课件。
2.练习题、测试题。
3.教学工具(如黑板、粉笔、多媒体设备等)。
七. 教学过程1.导入(5分钟)利用实例引入一元一次方程的概念,让学生思考和讨论,引导学生发现一元一次方程的特点。
2.呈现(10分钟)讲解一元一次方程的定义,通过示例演示一元一次方程的解法。
让学生跟随老师一起解方程,确保学生能够掌握解法。
3.操练(10分钟)让学生独立完成练习题,老师巡回指导。
针对学生出现的问题进行讲解和解答。
4.巩固(10分钟)通过案例分析,让学生应用一元一次方程解决实际问题。
让学生分组讨论,分享解题过程和心得。
5.拓展(10分钟)引导学生思考:如何判断一个方程是否是一元一次方程?如何求解一元一次方程?让学生进行小组讨论,老师点评并总结。
6.小结(5分钟)对本节课的内容进行总结,强调一元一次方程的概念和解法。
七年级数学上册《认识一元一次方程》教案、教学设计
4.学生的情感态度。初中生对新鲜事物充满好奇,但也可能因为遇到困难而产生挫败感。在教学过程中,应注重激发学生的学习兴趣,及时给予鼓励和支持,帮助他们建立自信心,形成积极向上的学习态度。
1.学生对方程概念的理解程度。大部分学生可能对方程的认识仅限于等式的平衡性,对于一元一次方程的解法和应用还不够熟悉,需要通过具体例子的引导和解释来帮助他们理解。
2.学生的数学思维能力。七年级学生正处于抽象逻辑思维的发展阶段,他们需要通过具体操作和形象思维来辅助理解和解决问题,因此在教学中应注重形象与抽象的结合,逐步引导学生向更高层次的数学思维过渡。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握一元一次方程的概念及其解法是本章节的重点。学生需要从具体的实例中抽象出一元一次方程的一般形式,并学会运用基本的解法步骤进行求解。
-重难点突破设想:通过生活实例引入一元一次方程,如购物找零、年龄问题等,让学生在实际问题中发现方程的模型,进而理解方程的含义。在教学过程中,逐步引导学生从特殊到一般,从直观到抽象,最终掌握一元一次方程的解法。
-设想实施:利用交互式白板、教学软件等现代教学工具,设计互动性强、形象直观的课件,让学生在视觉和操作上更好地理解一元一次方程的解法。
3.实施分层次教学,关注学生的个体差异。针对不同学生的学习能力和学习风格,设计不同难度的问题和练习,使每个学生都能在原有基础上得到提高。
-设想实施:准备基础、提高、拓展三个层次的问题和练习,让学生自主选择适合自己水平的任务,同时提供个别辅导,帮助学习有困难的学生克服困难。
初中数学初一数学上册《一元一次方程》教案、教学设计
3.结合学生的生活实际,设计具有趣味性、挑战性的教学活动,激发学生的学习兴趣,提高学生的参与度。
4.针对不同学生的学习需求,提供个性化的辅导和指导,帮助学生克服学习难点,提高学习效果。
四、教学内容与过程
(一)导入新课
1.创设情境:以一个与学生生活密切相关的实际问题为例,如“小明的年龄问题”,引导学生思考如何用数学方法解决这个问题。
-小明今年比妈妈小28岁,4年后,小明比妈妈小多少岁?
-通过讨论,引导学生发现,这个问题可以通过列方程来解决。
2.提出问题:根据小明年龄问题的讨论,引导学生思考,什么是方程?一元一次方程的定义是什么?
初中数学初一数学上册《一元一次方程》教案、教学设计
一、教学目标
(一)知识与技能
1.理解一元一次方程的定义,了解方程中的未知数、常数项、系数等基本概念。
2.学会使用等式性质、移项、合并同类项等方法解一元一次方程,掌握求解过程。
3.能够根据实际问题列出相应的一元一次方程,并运用所学的解法求解。
4.掌握一元一次方程的解的判定方法,了解方程有唯一解、无解和多解的情况。
五、作业布置
为了巩固本节课所学的一元一次方程知识,培养学生的应用意识和问题解决能力,特布置以下作业:
1.基础练习题:完成课本第23页的练习题1、2、3,旨在让学生熟练掌握一元一次方程的求解方法。
2.提高题:根据以下实际问题,列出相应的一元一次方程并求解。
-问题1:小华今年12岁,他的哥哥比他大6岁,请问5年后,小华的哥哥是多少岁?
(三)情感态度与价值观
1.培养学生对待数学问题的积极态度,增强学习数学的自信心,克服对一元一次方程的恐惧感。
人教版七年级数学上册第三章《一元一次方程》教学设计
人教版七年级数学上册第三章《一元一次方程》教学设计一. 教材分析人教版七年级数学上册第三章《一元一次方程》是学生学习方程的入门内容,主要介绍一元一次方程的概念、解法及其应用。
这一章节的内容是后续学习更复杂方程的基础,因此在本章节中,让学生掌握一元一次方程的基本概念、解法和应用是非常重要的。
二. 学情分析学生在进入七年级之前,已经学习了代数知识,对代数式、函数等概念有一定的了解。
但大部分学生对这些知识的掌握程度有限,因此,在教学过程中需要从基础入手,让学生逐步理解和掌握一元一次方程的知识。
三. 教学目标1.让学生了解一元一次方程的概念,理解一元一次方程的解法;2.培养学生解决实际问题的能力,能够运用一元一次方程解决生活中的问题;3.培养学生合作学习、积极思考的能力。
四. 教学重难点1.一元一次方程的概念;2.一元一次方程的解法;3.一元一次方程在实际问题中的应用。
五. 教学方法1.采用问题驱动法,让学生在解决问题的过程中,自然地引入一元一次方程的知识;2.使用案例教学法,让学生通过具体案例,理解一元一次方程的应用;3.采用小组合作学习,培养学生合作学习的能力。
六. 教学准备1.准备相关案例,用于讲解一元一次方程的应用;2.准备练习题,用于巩固所学知识;3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)利用生活中的实例,引出一元一次方程的概念,激发学生的学习兴趣。
2.呈现(15分钟)讲解一元一次方程的基本概念,如解、解集等,并通过示例让学生理解这些概念。
3.操练(15分钟)让学生分组讨论,尝试解一些简单的一元一次方程,引导学生发现解一元一次方程的方法。
4.巩固(10分钟)讲解一元一次方程的解法,并通过练习题让学生巩固所学知识。
5.拓展(10分钟)让学生运用一元一次方程解决实际问题,培养学生的应用能力。
6.小结(5分钟)总结本节课所学内容,让学生明确一元一次方程的概念、解法及应用。
7.家庭作业(5分钟)布置一些练习题,让学生课后巩固所学知识。
七年级《一元一次方程》教学设计
七年级《一元一次方程》教学设计七年级《一元一次方程》教学设计1一、学生起点分析:通过前几节解方程的学习,学生已经掌握了解方程的基本方法.在此过程中也初步掌握了运用方程解决实际问题的一般过程,基本会通过分析简单问题中已知量与未知量的关系列出方程解应用题,但学生在列方程解应用题时常常会遇到一下困难,就是从题设条件中找不到所依据的等量关系,或虽能找到等量关系但不能列出方程.二、教学任务分析:本课以“等积变形”为例引入课题,通过学生自主探究、协作交流,教师点拨相结合的方式,引导学生动手操作的方法分析问题,体会用图形语言分析复杂问题的优点,从而抓住等量关系“锻压前的体积=锻压后的体积”展开教学活动,让学生经历图形变换的应用等活动,展现运用方程解决实际问题的一般过程.因此,本节教材的处理策略是:展现问题情境——提出问题——分析数量关系和等量关系——列出方程,解方程——检验解的合理性.三、教学目标:知识与技能:1、借助立体及平面图形学会分析复杂问题中的数量关系和等量关系,体会直接与间接设未知数的解题思路,从而建立方程,解决实际问题.2、通过解决实际问题,使学生进一步明确必须检验方程的解是否符合题意.过程与方法:通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力.情感态度与价值观:通过对“我变胖了”中的数学问题的探讨,使学生在动手、独立思考、的过程中,进一步体会方程模型的作用,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望.四、教学过程设计:环节一创设情景,引入新课内容:同学们自己预习的基础上,用已经备好的橡皮泥,自制“瘦长”与“矮胖”的圆柱,观察分析个中现象.考虑几个问题:1、手里的橡皮泥在手压前和手压后有何变化?2、在你操作的过程中,圆柱由“瘦”变“胖”,圆柱的底面直径变了没有?圆柱的高呢?3、在这个变化过程中,是否有不变的量?是什么没变?目的:让学生在玩中体会等体积变化的现象中蕴涵的不变量.同时分析出不变量与变量间的等量关系.学生能够认识到: 手里的橡皮泥在手压前和手压后形状发生了变化,变胖了,变矮了.即高度和底面半径发生了改变.手压前后体积不变,重量不变.环节二:运用情景,解决问题内容: 例1、将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?目的:将上述环节中体会到的形之间的变与不变的关系、量之间的等量关系抽象成数学问题,利用前几节的解方程方法解决实际问题.实际效果:学生解答过程布列方程很顺利,有的学生还使用了下面的表格来帮助分析.锻压前锻压后底面半径 5cm 10cm高 36cm xcm体积π×25×36 π×100?x由实验操作环节知“锻压前的.体积=锻压后的体积”,从而得出方程.解:设锻压后的圆柱的高为xcm,由题意得π×25×36=π×100?x.解之得 x=9.此时有学生将π的值取3.14,代入方程,教师应在此时给予指导,不要早说,现在恰到好处!(1) 此类题目中的π值由等式的基本性质就已约去,无须带具体值;(2) 若是题目中的π值约不掉,也要看题目中对近似数有什么要求,再确定π值取到什么精确程度.过程感悟:本节内容通过一幅几何图形展示题目中的一些数量关系,而实际操作的过程有同学将圆柱体变成了长方体,需要教师把握教育机会,引导学生作出相关的解释.分析:锻压前锻压后底面半径 5cm 长acm, 宽bcm高 36cm xcm体积π×25×36 abx环节三:操作实践,发现规律内容:学生用预先准备好的40厘米长的铁丝,以小组作出不同形状的长方形,通过测量边长,近似求出长方形的面积,比较小组内六个同学的计算结果,你发现了什么?目的:我们知道, 感知到的东西往往没有自己亲手经历操作后的感受来得实在.所以设置此环节,让学生手、眼、脑几个感官并用,在操作中体会,在计算中验证,在变化中发现.这样能培养学生观察、分析,归纳、总结等数学学习中不备数学思想与数学方法,也同时让学生感悟最复杂的问题中的道理,就在我们玩的过程,就在我们的生活中.实际效果:长(cm) 宽(cm) 面积(cm2)长方形1 15 5 75长方形2 13.6 6.4 86.4长方形3 12.8 7.3 93.44长方形4 11.6 8.4 97.44长方形5 11 9 99长方形6 10 10 100由学生的实际操作得到的近似值已反映出来一个很好的规律.学生:由操作的过程,同学们作出的长方形形状有“胖”有“瘦”, 反映到表中数据为, 当长方形的周长一定,它的长逐渐变短,宽随之逐渐变长,面积在逐渐变大.当长与宽一样长时面积最大.过程感悟:不要把学生逼太紧,不要怕完不成进度,这个过程进行完后,学生对课本设置相关内容就剩下规范解题过程了.学生的理解远比直接先讲教材的例题效果要好的多.环节四:练一练,体验数学模型内容:课本例题目的:体验“数学化”过程,进一步理性地感受上一个环节中得出的结论,培养学生数学思考的严谨性,判断推理的科学性,语言表述的准确性.例2、一根长为10米的铁丝围成一个长方形.若该长方形的长比宽多1.4米.(1)此时长方形的长和宽各为多少米?(2)若该长方形的长比宽多0.8米,此时长方形的长和宽各为多少米?它围成的长方形的面积与(1)相比,有什么变化?(3)若该长方形的长与宽相等,即围成一个正方形,那么正方形的边长是多少?它围成的长方形的面积与(2)相比,有什么变化?实际效果:学生掌握很好.课本已有完整的解题过程,留做课后作业.环节五:课堂小结1.通过对“我变胖了”的了解,我们知道“锻压前体积=锻压后体积”,“变形前周长等于变形后周长”是解决此类问题的关键.其中也蕴涵了许多变与不变的辨证的思想.2.遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验.3.学习中要善于将复杂问题简单化、生活化,再由实际背景抽象出数学模型,从而解决实际问题.环节六:布置作业七年级《一元一次方程》教学设计2教学目标:进一步认识方程,理解一元一次方程的概念,会根据题意列简单的一元一次方程。
七年级数学上册《一元一次方程》教案、教学设计
四、教学内容与过程
(一)导入新课,500字
1.教师以生活中的实际问题为例,如:“小华买了3本书和2支笔,一共花了50元。如果一支笔5元,那么一本书多少钱?”引导学生思考如何解决这个问题。
2.学生尝试用算术方法解答,教师给予肯定,并引导学生思考是否有其他方法可以解决这个问题。
4.学生之间的个体差异较大,需要因材施教,关注每个学生的学习需求;
5.学生在小学阶段养成的学习习惯和思维方式可能对初中数学学习产生影响。
针对以上学情,教师在教学过程中应关注以下几点:
1.注重启发式教学,引导学生深入理解方程的概念,培养他们的数学思维;
2.精心设计教学活动,让学生在实践中掌握解方程的方法,提高解题技巧;
(1)完成课本第46页的提高题1、2;
(2)尝试解决课本第47页的思考题,并简要说明解题思路。
3.探究题:
(1)查阅资料,了解一元一次方程在其他学科领域的应用;
(2)与同学分享你在探究过程中的发现,讨论一元一次方程的广泛应用。
作业要求:
1.学生需独立完成作业,家长可协助检查,但不要直接给出答案;
2.解题过程要求书写规范,步骤清晰,体现数学思维的严谨性;
5.学会运用一元一次方程解决简单的实际问题,提高解决问题的能力。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法引导学生学习:
1.通过实际问题导入,激发学生探究一元一次方程的兴趣;
2.利用数形结合的方法,让学生直观地理解一元一次方程的解法;
3.采用启发式教学,引导学生主动探究解一元一次方程的方法,培养学生的逻辑思维能力;
五、作业布置
初中七年级上册数学解一元一次方程教案优质(优秀5篇)
初中七年级上册数学解一元一次方程教案优质(优秀5篇)元一次方程篇一教学目标1.使学生正确认识含有字母系数的一元一次方程。
2.使学生掌握含有字母系数的一元一次方程的解法。
3.使学生会进行简单的公式变形。
4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力。
5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣。
教学重点:(1)含有字母系数的一元一次方程的解法。
(2)公式变形。
教学难点:(1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系。
(2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形。
教学方法启发式教学和讨论式教学相结合教学手段多媒体教学过程(一)复习提问提出问题:1.什么是一元一次方程?在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1.2.解一元一次方程的步骤是什么?答:(1)去分母、去括号。
(2)移项——未知项移到等号一边常数项移到等号另一边。
注意:移项要变号。
(3)合并同类项——提未知数。
(4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程。
(二)引入新课提出问题:一个数的a倍(a≠0)等于b,求这个数。
引导学生列出方程:ax=b(a≠0).让学生讨论:(1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数)(2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程。
)强调指出:ax=b(a≠0)这个一元一次方程与我们以前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项。
(三)新课1.含有字母系数的一元一次方程的定义ax=b(a≠0)中对于未知数x来说a是x的系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程。
七年级数学一元一次方程的教案8篇
管理饭堂工作总结
饭堂是学校或企业中不可或缺的重要部分,它不仅提供员工和学生们日常所需
的营养餐饮,更是一个重要的社交场所。
因此,对于饭堂的管理工作尤为重要。
在过去的一段时间里,我们对饭堂的管理工作进行了总结和反思,希望能够为未来的工作提供更好的参考和指导。
首先,我们对饭堂的食品安全和卫生进行了严格的管理。
我们加强了对食品供
应商的审核和监督,确保食品的质量和安全。
同时,我们对饭堂的卫生情况进行了全面的检查和整改,加强了员工的卫生意识和培训,确保饭堂的卫生状况达到了标准。
其次,我们对饭堂的用餐环境进行了改善。
我们重新布置了饭堂的桌椅和装饰,使得整个用餐环境更加舒适和温馨。
我们还加强了对饭堂的清洁和维护工作,确保饭堂的整洁和卫生。
另外,我们还对饭堂的服务质量进行了提升。
我们加强了员工的培训和管理,
提高了他们的服务意识和专业水平。
我们还加强了与顾客的沟通和反馈,及时了解顾客的需求和意见,不断改进和提升服务质量。
通过这段时间的总结和反思,我们对饭堂的管理工作有了更深入的理解和认识。
我们将继续努力,不断改进和提升饭堂的管理工作,为员工和学生们提供更好的餐饮服务和用餐环境。
我们相信,在全体员工的共同努力下,饭堂的管理工作一定会取得更好的成绩和效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学一元一次方程单元教师版拓展提升教学设计方程的意义——知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2. 正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3. 理解并掌握等式的两个基本性质.【要点梳理】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么 (c为一个数或一个式子) .等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.【典型例题】类型一、方程的概念1.下列各式哪些是方程?①3x-2=7;②4+8=12;③3x-6;④2m-3n=0;⑤3x2-2x-1=0;⑥x+2≠3;⑦251x=+;⑧28553x x-=.【答案与解析】解:②虽是等式,但不含未知数;③不是等式;⑥表示不等关系,故②、③、⑥均不符合方程的概念.①、④、⑤、⑦、⑧符合方程的定义,所以方程有:①、④、⑤、⑦、⑧.【总结升华】方程的判断必须看两点,一个是等式,二是含有未知数.当然未知数的个数可以是一个,也可以是多个.举一反三:【变式】下列四个式子中,是方程的是()A. 3+2=5B. x=1C. 2x﹣3<0D. a2+2ab+b2 【答案】B.2.(2015春•孟津县期中)下列方程中,以x=2为解的方程是()A. 4x﹣1=3x+2B. 4x+8=3(x+1)+1C. 5(x+1)=4(x+2)﹣1D. x+4=3(2x﹣1)【答案】C.【总结升华】检验一个数是不是方程的解,根据方程解的概念,只需将所给字母的值分别代入方程的左右两边,若两边的值相等,则这个数就是此方程的解,否则不是.举一反三:【变式】下列方程中,解是x=3的是( )A.x+1=4 B.2x+1=3 C.2x-1=2 D.217 3x+=类型二、一元一次方程的相关概念3.(2016春•南江县期末)在下列方程中①x2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有()个.A.1 B.2 C.3 D.4【思路点拨】根据一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1次的整式方程,可以逐一判断.【答案】B.【解析】解:①x 2+2x=1,是一元二次方程;②﹣3x=9,是分式方程;③x=0,是一元一次方程;④3﹣=2,是等式,不是方程;⑤=y+是一元一次方程;一元一次方程的有2个,故选:B . 【总结升华】本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.举一反三:【变式】下列方程中是一元一次方程的是__________(只填序号). ①2x-1=4;②x =0;③ax =b ;④151x-=-. 【答案】①②.类型三、等式的性质4.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪一条性质,以及怎样变形得到的. (1)如果41153x -=,那么453x =+________; (2)如果ax+by =-c ,那么ax =-c +________; (3)如果4334t -=,那么t =________. 【答案与解析】解: (1). 11;根据等式的性质1,等式两边都加上11; (2).(-by ); 根据等式的性质1,等式两边都加上-by ; (3).916-; 根据等式的性质2,等式两边都乘以34-. 【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.举一反三:【变式】下列说法正确的是( ).A .在等式ab =ac 两边都除以a ,可得b =c.B .在等式a =b 两边除以c 2+1,可得2211a bc c =++. C .在等式b ca a=两边都除以a ,可得b =c. D .在等式2x =2a-b 两边都除以2,可得x =a-b. 【答案】B.类型四、设未知数列方程5.根据问题设未知数并列出方程:一次考试共有25道选择题,做对一道得4分,做错或不做一道倒扣1分.若小明想考80分,他要做对多少道题? 【答案与解析】解:设小明要做对x 道题,则有(25-x)道做错或没做的题,依题意有:4x-(25-x)×1=80.可以采用列表法探究其解显然,当x=21时,4x-(25-x)×1=80.所以小明要做对21道题.【总结升华】根据题意设出合适的未知量,并根据等量关系列出含有未知量的等式.举一反三:【变式】根据下列条件列出方程.(l)x的5倍比x的相反数大10;(2)某数的34比它的倒数小4;(3)甲、乙两人从学校到公园,走这段路甲用20分钟,乙用30分钟,如果乙比甲早5分钟出发,问甲用多少时间追上乙?【答案】(1)5x-(-x)=10;(2)设某数为x,则1344xx-=;(3)设甲用x分钟追上乙,由题意得11(5)3020x x+=.一元一次方程的解法——知识讲解【学习目标】1. 熟悉解一元一次方程的一般步骤,理解每步变形的依据;2. 掌握一元一次方程的解法,体会解法中蕴涵的化归思想;3. 进一步熟练掌握在列方程时确定等量关系的方法. 【要点梳理】要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行. (3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点二、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论:(1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-. 2.含字母的一元一次方程此类方程一般先化为最简形式ax =b ,再分三种情况分类讨论: (1)当a ≠0时,b x a=;(2)当a =0,b =0时,x 为任意有理数;(3)当a =0,b ≠0时,方程无解.【典型例题】类型一、解较简单的一元一次方程1.(2015•广州)解方程:5x=3(x ﹣4) 【答案与解析】解:方程去括号得:5x=3x ﹣12, 移项合并得:2x=﹣12, 解得:x=﹣6.【总结升华】方法规律:解较简单的一元一次方程的一般步骤:(1)移项:即通过移项把含有未知数的项放在等式的左边,把不含未知数的项(常数项)放在等式的右边.(2)合并:即通过合并将方程化为ax =b(a ≠0)的形式.(3)系数化为1:即根据等式性质2:方程两边都除以未知数系数a ,即得方程的解b x a=. 举一反三:【变式】下列方程变形正确的是( ). A .由2x-3=-x-4,得2x+x =-4-3 B .由x+3=2-4x ,得5x =5 C .由2332x -=,得x =-1 D .由3=x-2,得-x =-2-3【答案】D类型二、去括号解一元一次方程2.解方程:【思路点拨】方程中含有括号,应先去括号再移项、合并、系数化为1,从而解出方程. 【答案与解析】(1)去括号得:42107x x +=+ 移项合并得:65x -= 解得:56x =-(2)去括号得:32226x x --=- 移项合并得:47x -=-解得:74x =【总结升华】去括号时,要注意括号前面的符号,括号前面是“+”号,不变号;括号前面是“-”,各项均变号. 举一反三:【变式】解方程: 5(x-5)+2x =-4. 【答案】解: 去括号得:5x-25+2x =-4. 移项合并得: 7x =21.解得: x =3.()()1221107x x +=+()()()232123x x -+=-类型三、解含分母的一元一次方程3.(2016春•新乡期末)解方程﹣2=.【思路点拨】方程按照去分母,去括号,移项合并同类项,把x系数化为1的步骤,即可求出解.【答案与解析】解:去分母得:2(2x﹣1)﹣12=3(3x+2),去括号得:4x﹣2﹣12=9x+6,移项合并得:5x=﹣20,解得:x=﹣4.【总结升华】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.举一反三:【变式】(2015•岳池县模拟)解方程:x+=﹣.【答案】解:去分母得:12x+30=24x﹣8﹣3x+24,移项合并得:﹣9x=﹣14,解得:x=.类型四、解较复杂的一元一次方程4.解方程:0.170.21 0.70.03x x--=【思路点拨】先将方程中的小数化成整数,再去分母,这样可避免小数运算带来的失误.【答案与解析】原方程可以化成:1017201 73x x--=.去分母,得:30x-7(17-20x)=21.去括号、移项、合并同类项,得:170x=140.系数化成1,得:1417x=.【总结升华】解此题的第一步是利用分数基本性质把分母、分子同时扩大相同的倍数,以使分母化整,与去分母方程两边都乘以分母的最小公倍数要区分开.5. 解方程:112 [(1)](1) 223x x x--=-【答案与解析】解法1:先去小括号得:11122()22233x x x-+=-再去中括号得:1112224433x x x-+=-移项,合并得:5111212x-=-系数化为1,得:115 x=解法2:两边均乘以2,去中括号得:14(1)(1)23x x x--=-去小括号,并移项合并得:51166x-=-,解得:115x=解法3:原方程可化为:112 [(1)1(1)](1) 223x x x-+--=-去中括号,得1112 (1)(1)(1) 2243x x x-+--=-移项、合并,得51(1)122x--=-解得115 x=【总结升华】解含有括号的一元一次方程时,一般方法是由里到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x-1),因此将方程左边括号内的一项x变为(x-1)后,把(x-1)视为一个整体运算.举一反三:【变式】32[(1)2]2 234xx---=【答案】解:去中括号得:3(1)22 42xx--⨯-=去小括号,移项合并得:364x-=,解得x=-8类型五、解含绝对值的方程6.解方程|x|-2=0【答案与解析】解:原方程可化为:2x=当x≥0时,得x=2,当x<0时,得-x=2,即,x=-2.所以原方程的解是x=2或x=-2.【总结升华】此类问题一般先把方程化为ax b=的形式,再根据ax的正负分类讨论,注意不要漏解.【巩固练习】 一、选择题1.方程|2x ﹣1|=2的解是( )A. x=B. x=﹣C. x=或x=﹣D. x=﹣2.下列解方程的过程中,移项错误的是( ). A .方程2x+6=-3变形为2x =-3+6 B .方程2x-6=-3变形为2x =-3+6 C .方程3x =4-x 变形为3x+x =4 D .方程4-x =3x 变形为x+3x =43. 方程1143x =的解是 ( ). A .12x = B .112x = C .43x = D .34x =4.对方程2(2x-1)-(x-3)=1,去括号正确的是( ).A .4x-1-x-3=1B .4x-1-x+3=1C .4x-2-x-3=1D .4x-2-x+3=1 5.方程1302x --=可变形为( ). A .3-x-1=0 B .6-x-1=0 C .6-x+1=0 D .6-x+1=2 6.3x-12的值与13-互为倒数,则x 的值为( ). A .3 B .-3 C .5 D .-5 7.(2016•株洲)在解方程时,方程两边同时乘以6,去分母后,正确的是( )A .2x ﹣1+6x=3(3x+1)B .2(x ﹣1)+6x=3(3x+1)C .2(x ﹣1)+x=3(3x+1)D .(x ﹣1)+x=3(x+1)8.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( ). A .54盏 B .55盏 C .56盏 D .57盏二、填空题9.(1)方程2x+3=3x-2,利用________可变形为2x-3x =-2-3,这种变形叫________. (2)方程-3x =5,利用________,把方程两边都_______,把x 的系数化为1,得x =________.10.方程2x-kx+1=5x-2的解是x =-1,k 的值是_______. 11.如果|a+3|=1,那么a= . 12.(2016春•南江县校级月考)在解方程﹣=2时,去分母得 .13.在有理数范围内定义一种运算“※”,其规则为a ※b =a-b .根据这个规则,求方程(x-2)※1=0的解为________.14.一列长为150m 的火车,以15m/s 的速度通过600m 的隧道,则这列火车完全通过此隧道所需时间是________s .三、解答题15.解下列方程:(1)4(2x-1)-3(5x+2)=3(2-x); (2)12323x xx---=-;(3)0.10.213 0.020.5x x-+-=.16.(2015春•宜阳县期中)当k取何值时,关于x的方程2(2x﹣3)=1﹣2x和8﹣k=2(x+)的解相同?17.小明的练习册上有一道方程题,其中一个数字被墨汁污染了,成为31155x x++•=-,他翻看了书后的答案,知道了这个方程的解是14,于是他把被污染了的数字求出来了,请你把小明的计算过程写出来.实际问题与一元一次方程(一)——知识讲解【学习目标】1.熟练掌握分析解决实际问题的一般方法及步骤;2.熟悉行程,工程,配套及和差倍分问题的解题思路.【要点梳理】知识点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚. 知识点二、常见列方程解应用题的几种类型(待续)1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题1.(2016•黄冈)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?【思路点拨】设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇.结合七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,即可列出关于x的一元一次方程,解方程即可得出结论.【答案与解析】解:设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇,依题意得:(x+2)×2=118﹣x,解得:x=38.答:七年级收到的征文有38篇.【总结升华】本题考查了一元一次方程的应用,解题的关键是列出方程(x+2)×2=118﹣x.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.举一反三:【变式】(2015•南充)学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是()A. 25台B. 50台C. 75台D. 100台【答案】C.解:设今年购置计算机的数量是x台,去年购置计算机的数量是(100﹣x)台,根据题意可得:x=3(100﹣x),解得:x=75.类型二、行程问题1.一般问题2.小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米?【答案与解析】解:设小山娃预订的时间为x小时,由题意得:4x+0.5=5(x-0.5),解得x=3.所以4x+0.5=4×3+0.5=12.5(千米).答:学校到县城的距离是12.5千米.【总结升华】当直接设未知数有困难时,可采用间接设的方法.即所设的不是最后所求的,而是通过求其它的数量间接地求最后的未知量.举一反三: 【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度.【答案】解:设这段坡路长为a 千米,汽车的平均速度为x 千米/时,则上坡行驶的时间为10a 小时,下坡行驶的时间为20a 小时.依题意,得:21020a a x a ⎛⎫+= ⎪⎝⎭, 化简得: 340ax a =.显然a ≠0,解得1133x =.答:汽车的平均速度为1133千米/时. 2.相遇问题(相向问题)3. A 、B 两地相距100km ,甲、乙两人骑自行车分别从A 、B 两地出发相向而行,甲的速度是23km/h ,乙的速度是21km/h ,甲骑了1h 后,乙从B 地出发,问甲经过多少时间与乙相遇?【答案与解析】解:设甲经过x 小时与乙相遇.由题意得:()2312321(1)100x ⨯++-=.解得,x=2.75.答:甲经过2.75小时与乙相遇.【总结升华】等量关系:甲走的路程+乙走的路程=100km举一反三:【变式】甲、乙两人骑自行车,同时从相距45km 的两地相向而行,2小时相遇,每小时甲比乙多走2.5km ,求甲、乙每小时各行驶多少千米?【答案】解:设乙每小时行驶x 千米,则甲每小时行驶(x +2.5)千米,根据题意,得:2( 2.5)245x x ++=.解得:10x =.2.510 2.512.5x +=+=(千米)答:甲每小时行驶12.5千米,乙每小时行驶10千米3.追及问题(同向问题)4.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟时,学校要将一紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍?【答案与解析】解:设通讯员x 小时可以追上学生队伍,则根据题意,得18145560x x =⨯+. 得:16x =, 16小时=10分钟. 答:通讯员用10分钟可以追上学生队伍. 【总结升华】追及问题:路程差=速度差×时间,此外注意:方程中x 表示小时,18表示分钟,两边单位不一致,应先统一单位.4.航行问题(顺逆流问题)5.一艘船航行于A 、B 两个码头之间,轮船顺水航行需3小时,逆水航行需5小时,已知水流速度是4千米/时,求这两个码头之间的距离.【答案与解析】解法1:设船在静水中速度为x 千米/时,则船顺水航行的速度为(x+4)千米/时,逆水航行的速度为(x-4)千米/时,由两码头的距离不变得方程:3(x+4)=5(x-4),解得:x=16,(16+4)×3=60(千米).答:两码头之间的距离为60千米.解法2:设A 、B 两码头之间的距离为x 千米,则船顺水航行时速度为3x 千米/时,逆水航行时速度为5x 千米/时,由船在静水中的速度不变得方程:4435x x -=+,解得:60x =. 答:两码头之间的距离为60千米.【总结升华】顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程.类似地,当物体在空中飞翔时,常会遇到顺风逆风问题,解题思路类似顺逆流问题.类型三、工程问题6.一个水池有两个注水管,两个水管同时注水,10小时可以注满水池;甲管单独开15小时可以注满水池,现两管同时注水7小时,关掉甲管,单独开乙管注水,还需要几小时能注满水池?【思路点拨】视水管的蓄水量为“1”,设乙管还需x 小时可以注满水池;那么甲乙合注1小时注水池的110,甲管单独注水每小时注水池的115,合注7小时注水池的710,乙管每小时注水池的111015⎛⎫- ⎪⎝⎭. 【答案与解析】解:设乙管还需x 小时才能注满水池.由题意得方程:1171101510x ⎛⎫-=- ⎪⎝⎭. 解此方程得:x =9.答:单独开乙管,还需9小时可以注满水池.【总结升华】工作效率×工作时间=工作量,如果没有具体的工作量,一般视总的工作量为“1” .举一反三:【变式】修建某处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合作,但乙中途离开了一段时间,后两天由乙、丙合作完成问乙中途离开了几天?【答案】解:设乙中途离开x 天,由题意得:1117(72)21141812x ⨯+-++⨯=. 解得:3x =.答:乙中途离开了3天.类型四、调配问题(比例问题、劳动力调配问题)7.(2015春•衡阳校级月考)某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x 人,则可列方程( )A . 22+x=2×26B . 22+x=2(26﹣x )C . 2(22+x )=26﹣xD . 22=2(26﹣x )【思路点拨】设抽调x 人,则调后一组有(22+x )人,第二组有(26﹣x )人,根据关键语句:使第一组的人数是第二组的2倍列出方程即可.【答案】B .【解析】解:设抽调x 人,由题意得:(22+x )=2(26﹣x ),【总结升华】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,表示出调后两个组的人数.举一反三:【变式】甲队有72人,乙队有68人,需要从甲队调出多少人到乙队,才能使甲队恰好是乙队人数的34. 解:设从甲队调出x 人到乙队.由题意得, ()372684x x -=+. 解得,x=12. 答:需要从甲队调出 12人到乙队,才能使甲队恰好是乙队人数的34 .【巩固练习】一、选择题1. 一个长方形的周长为26 cm, 这个长方形的长减少1 cm, 宽增加2 cm, 就可成为一个正方形, 设长方形的长为 x cm, 则可列方程 ( ) .A. ()2261+-=-x xB. ()2131+-=-x xC. ()2261--=+x xD. 2)13(1--=+x x2.飞机逆风时速度为x 千米/小时,风速为y 千米/小时,则飞机顺风时速度为 ( ) .A .()x y +千米/小时B .()x y -千米/小时C .(2)x y +千米/小时D .(2)x y +千米/小时3.(2016•聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .724. 甲能在11天内独立完成某项工作, 乙的工作效率比甲高10%, 那么乙独立完成这项工作的天数为 ( ) .A .10天B . 12.1天C .9.9天D .9天.5.甲列车从A 地以50千米/时的速度开往B 地,1小时后,乙列车从B 地以70千米/时的速度开往A 地,如果A ,B 两地相距200千米,则两车相遇点距A 地( )千米.A. 100B. 112C. 112.5D. 114.56.(2015春•宁波期中)某班同学去划船,若每船坐7人,则余下5人没有座位;若每船坐8人,则又空出2个座位.这个班参加划船的同学人数和船数分别是( )A . 47,6B . 46,6C . 54,7D . 61,8二、填空题7.湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个湘莲,付50元,找回38元,设每个湘莲的价格为x 元,根据题意,列出方程为______________.8.某校用56m 长的篱笆围成一个长方形的生物园,要使长为16 m ,则宽为________m .9.小明和他父亲的年龄之和为54,又知父亲年龄是小明年龄的3倍少2岁,则他父亲的年龄为____岁.10.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.(1)当两人同时同地背向而行时,经过________秒钟两人首次相遇;(2)两人同时同地同向而行时,经过________秒钟两人首次相遇.11.(2016春•原阳县校级月考)某水池有甲进水管和乙出水管,已知单开甲注满水池需6h,单开乙管放完全池水需要9h,当同时开放甲、乙两管时需要h水池水量达全池的.12.王会计在结账时发现现金少了153.9元,查账时得知是一笔支出款的小数点看错了一位.王会计查出这笔看错了的支出款实际是________元.三、解答题13. A、B两地相距216千米,甲、乙分别在A、B两地,若甲骑车的速度为15千米/时,乙骑车的速度为12千米/时。