材料现代分析测试方法知识总结

合集下载

现代材料测试技术测试方法1精选全文

现代材料测试技术测试方法1精选全文

4.1差热分析
4.1.1差热分析的基本原理
2、差热分析的基本理论
ΔH=KS
差热曲线的峰谷面积S和 反应热效应△H成正比, 反应热效应越大,峰谷 面积越大。
具有相同热效应的反应, 传热系数K越小,峰谷面 积越大,灵敏度越高。
4.1差热分析
4.1.2差热分析曲线
1、DTA曲线的特征 DTA曲线是将试样和参比物置于
2、DTA曲线的温度测定及标定:外推法(反应起点、转变点、 终点) 外延起始温度——表示反应的起始温度
3、DTA曲线的影响因素 差热分析是一种热动态技术,在测试过程中体系的温度不断变 化,引起物质热性能变化。因此,许多因素都可影响DTA曲 线的基线、峰形和温度。归纳起来,影响DTA曲线的主要因 素有下列几方面:
用相同质量的试样和升温速度对不同粒度的胆矾进 行研究(如图)。说明颗粒大小影响反应产物的扩散 速度,过大的颗粒和过小的颗粒都可能导致反应温 度改变,相邻峰谷合并,分辨率下降。
4.1差热分析
4.1.2差热分析曲线
试样用量的多少与颗粒大 小对DTA曲线有着类似的 影响,试样用量多,放热 效应大,峰顶温度滞后, 容易掩盖邻近小峰谷,特 别是对在反应过程中有气 体放出的热分解反应。
(1)仪器方面的因素:包括加热炉的形状和尺寸,坩埚材料及大 小,热电偶的位置等。
(2)试样因素:包括试样的热容量、热导率和试样的纯度、结晶 度或离子取代以及试样的颗粒度、用量及装填密度等。
(3)实验条件:包括加热速度、气氛、压力和量程、纸速等。
4.1差热分析
4.1.2差热分析曲线
(1)热容和热导率的变化: 试样的热容和热导率的变化会引起 差热曲线的基线变化,一台性能良 好的差热仪的基线应是一条水平直 线,但试样差热曲线的基线在反应 的前后往往不会停留在同一水平上, 这是由于试样在反应前后热容或热 导率变化的缘故。

材料现代分析测试方法知识总结

材料现代分析测试方法知识总结

材料现代分析测试方法知识总结名词解释:分子振动:分子中原子(或原子团)以平衡位置为中心的相对(往复)运动。

伸缩振动:原子沿键轴方向的周期性(往复)运动;振动时键长变化而键角不变。

(双原子振动即为伸缩振动)变形振动又称变角振动或弯曲振动:基团键角发生周期性变化而键长不变的振动。

晶带:晶体中,与某一晶向[uvw]平行的所有(HKL)晶面属于同一晶带,称为[uvw]晶带。

辐射的吸收:辐射通过物质时,其中某些频率的辐射被组成物质的粒子(原子、离子或分子等)选择性地吸收,从而使辐射强度减弱的现象。

辐射被吸收程度对ν或λ的分布称为吸收光谱。

辐射的发射:物质吸收能量后产生电磁辐射的现象。

作为激发源的辐射光子称一次光子,而物质微粒受激后辐射跃迁发射的光子(二次光子)称为荧光或磷光。

吸收一次光子与发射二次光子之间延误时间很短(10-8~10-4s)则称为荧光;延误时间较长(10-4~10s)则称为磷光。

发射光谱:物质粒子发射辐射的强度对ν或λ的分布称为发射光谱。

光致发光者,则称为荧光或磷光光谱辐射的散射:电磁辐射与物质发生相互作用,部分偏离原入射方向而分散传播的现象散射基元:物质中与入射的辐射相互作用而致其散射的基本单元瑞利散射(弹性散射):入射线光子与分子发生弹性碰撞作用,仅光子运动方向改变而没有能量变化的散射。

拉曼散射(非弹性散射):入射线(单色光)光子与分子发生非弹性碰撞作用,在光子运动方向改变的同时有能量增加或损失的散射。

拉曼散射线与入射线波长稍有不同,波长短于入射线者称为反斯托克斯线,反之则称为斯托克斯线光电离:入射光子能量(hν)足够大时,使原子或分子产生电离的现象。

光电效应:物质在光照射下释放电子(称光电子)的现象又称(外)光电效应。

光电子能谱:光电子产额随入射光子能量的变化关系称为物质的光电子能谱分子光谱:由分子能级跃迁而产生的光谱。

紫外可见光谱(电子光谱):物质在紫外、可见辐射作用下分子外层电子在电子能级间跃迁而产生的吸收光谱。

材料现代分析测试方法1-1

材料现代分析测试方法1-1

L-S耦合
称总自旋量子数,表征 的大小。 称总自旋量子数,表征PS的大小。 称总(轨道)角量子数,表征P 的大小。 称总(轨道)角量子数,表征 L的大小。 称内量子数(或总量子数),表征P 的大小, ),表征 称内量子数(或总量子数),表征 J的大小, 为正整数或半整数,取值为: 为正整数或半整数,取值为:L+S,L+S-1, , , L+S-2,…,│L-S│, , , , 个值; 若L≥S,则J有2S+1个值; , 有 个值 个值。 若L<S,则J有2L+1个值。 < , 有 个值 MJ 称总磁量子数,表征 J沿外磁场方向分量大小, 称总磁量子数,表征P 沿外磁场方向分量大小, MJ 取值为:0,±1,±2,…,±J(当J为整数时) 取值为: , 为整数时) , , , ( 为整数时 或±1/2,±3/2,…,±J(当J为半整数时)。 , , , ( 为半整数时)。 为半整数时 S L J J
L-S耦合可记为: 耦合可记为:
)(l )=(S, )= )=J (s1,s2, …)( 1,l2, …)=( ,L)= )( )=( 将各电子自旋角动量( 将各电子自旋角动量(Ps1,Ps2,…)与各电 ) 子轨道角动量( 子轨道角动量 ( Pl1 , Pl1 , …) 分别加和 ( 矢量 ) 分别加和( 获得原子的总自旋角动量 和),获得原子的总自旋角动量PS和总轨道角动量 PL,然后再由PS与PL合成总(自旋-轨道)角动量PJ 合成总 自旋-轨道) (即P J=P S+P L)。 耦合, 按L-S耦合,得到S、L、J、MJ等表征原子运动 状态的原子量子数。 状态的原子量子数。
或任意正整数; 1)主量子数变化Δn=0或任意正整数; 主量子数变化Δ 2)总角量子数变化ΔL=±1; 总角量子数变化Δ 3)内量子数变化ΔJ=0,±1(但J=0时,ΔJ=0的跃 内量子数变化Δ 迁是禁阻的); 迁是禁阻的); 4)总自旋量子数的变化ΔS=0。 总自旋量子数的变化Δ

材料现代分析测试方法复习

材料现代分析测试方法复习

XRD X 射线衍射 TEM 透射电镜—ED 电子衍射 SEM 扫描电子显微镜—EPMA 电子探针(EDS能谱仪 WPS 波谱仪) XPS X 射线光电子能谱分析 AES 原子发射光谱或俄歇电子能谱IR —FT —IR 傅里叶变换红外光谱 RAMAN 拉曼光谱 DTA 差热分析法 DSC 差示扫描量热法 TG 热重分析 STM 扫描隧道显微镜 AFM 原子力显微镜测微观形貌:TEM 、SEM 、EPMA 、STM 、AFM 化学元素分析:EPMA 、XPS 、AES (原子和俄歇)物质结构:远程结构(XRD 、ED )、近程结构(RAMAN 、IR )分子结构:RAMAN官能团:IR 表面结构:AES (俄歇)、XPS 、STM 、AFMX 射线的产生:高速运动着额电子突然受阻时,随着电子能量的消失和转化,就会产生X 射线。

产生条件:1.产生并发射自由电子;2.在真空中迫使电子朝一定方向加速运动,以获得尽可能高的速度;3.在高速电子流的运动路线上设置一障碍物(阳极靶),使高速运动的电子突然受阻而停止下来。

X 射线荧光:入射的X 射线光量子的能量足够大将原子内层电子击出,外层电子向内层跃迁,辐射出波长严格一定的X 射线俄歇电子产生:原子K 层电子被击出,L 层电子如L2电子像K 层跃迁能量差不是以产生一个K 系X 射线光量子的形式释放,而是被临近的电子所吸收,使这个电子受激发而成为自由电子,即俄歇电子14种布拉菲格子特征:立方晶系(等轴)a=b=c α=β=γ=90°;正方晶系(四方)a=b ≠cα=β=γ=90°;斜方晶系(正交)a ≠b ≠c α=β=γ=90°;菱方晶系(三方)a=b=c α=β=γ≠90°;六方晶系a=b ≠c α=β=90°γ=120°;单斜晶系a ≠b ≠c α=β=90°≠γ;三斜晶系a ≠b ≠c α≠β≠γ≠90°布拉格方程的推导 含义:线照射晶体时,只有相邻面网之间散射的X 射线光程差为波长的整数倍时,才能产生干涉加强,形成衍射线,反之不能形成衍射线。

材料现代分析方法

材料现代分析方法

1000 1
100
10
0.1 0.01
整理课件
1 0.001
0.1 nm 0.0001 μm
13
OM
Ni-Cr合金的铸造组织
整理课件
14
SEM
整理课件
15
人类血细胞SEM照片
酵母
人类精子
整理课件
16
图为IBM公司的Eigler博士用扫描探针显微镜(SPM)搬动 35个氙原子绘制的“IBM”字样。如果这种原子搬动技术 被巧妙使用的话,就完全可以绘制成美妙的原子艺术画。
结构层次 物体尺寸
研究对象
研究方法
宏观结构 > 100 m 大晶粒、颗粒集 团
显微结构 0.2-100m 多晶集团
肉眼、放大 镜
显微镜
亚显微结 构
微观结构
10-200 nm
< 10 nm
微晶集团 晶格点阵
整理课件
扫描电镜
扫描隧道电 镜
8
2.材料分析的内容
表面和内部组织形貌。包括材料的外观形貌(如纳米 线、断口、裂纹等)、晶粒大小与形态、各种相的尺 寸与形态、含量与分布、界面(表面、相界、晶界)、 位向关系(新相与母相、孪生相)、晶体缺陷(点缺 陷、位错、层错)、夹杂物、内应力。
通过电磁性质变化研究分子运动——介电松弛与核磁共 振;
通过体积变化研究分子运动——热膨胀计
整理课件
34
课程说明
教材与参考书 《材料研究方法》——王培铭,许乾慰主编,科学出版社 《材料现代分析方法》——左演声,陈文哲,梁伟主编,北京工业大学
出版社 《聚合物材料表征与测试》 》——杨万泰主编,中国轻工业出版社
基于其它物理性质或电化学性质与材料的特征 关系建立的色谱分析、质谱分析、电化学分析 及热分析等方法也是材料现代分析的重要方法。 相对而言,上述四大类方法在材料研究中应用 得更加频繁。

材料现代分析测试方法

材料现代分析测试方法

材料现代分析方法深圳大学材料学院主讲:李均钦材料现代分析方法主要参考书:1. 周玉主编,材料分析方法,哈工大出版社2007年版。

2. 黄新民、解挺编,材料分析测试方法,国防工业出版社2006年版。

3. 王富耻主编材料现代分析测试方法,北京理工大学出版社2006年版。

4. 梁敬魁编,粉末衍射法测定晶体结构,科学出版社2003年版。

绪论能源人类文明的三大支柱{{信息材料结构材料功能材料材料:用以制造有用构件、器件或其它物品的物质结构材料: 耐高温、耐高压、高强度材料等功能材料: 磁性材料、半导体材料、超导体材料化学成分材料的性能主要取决于{结构组织形态为了了解所获材料的化学组成、物相组成、结构、组织形态及各种研究技术对材料性能的影响,需要采用相应的分析表征方法。

材料现代分析方法是一门技术性实验方法性的课程。

绪论材料现代分析测试方法的含义:广义:技术路线、实验技术、数据分析狭义:测试组成和结构的仪器方法如:X射线衍射分析电子显微分析表面分析热分析光谱分析(光谱和色谱-高分子方向单独开)绪论化学成分材料的性能主要取决于{结构组织形态本课程主要介绍研究材料化学组成、物相组成、结构、组织形态的现代分析方法。

本课程的内容主要有:1、X射线粉末衍射分析(XRD:X-ray diffraction)主要用于物相分析和晶体结构的测定。

它所获取的所有信息都基于材料的结构。

绪论本课程的内容主要有:1、X射线粉末衍射分析(XRD:X-ray diffraction)主要用于物相分析和晶体结构的测定。

它所获取的所有信息都基于材料的结构。

绪论本课程的内容主要有:2、透射电子显微镜(TEM)(transition electron microscope)电子束透过薄膜样品,用于观察样品的形态,通过电子衍射测定材料的结构,从而确定材料的物相。

分辨率:0.34nm● 加速电压:75kV-200kV;放大倍数:25万倍● 能谱仪:EDAX -9100;扫描附件:S7010 透射电镜绪论本课程的内容主要有:3)扫描电子显微镜(SEM)电子束在样品表面扫描,用于观察样品的形貌(具有立体感);通过电子束激发样品的特征X射线获取样品的成分信息。

材料现代分析与测试技术-各种原理及应用

材料现代分析与测试技术-各种原理及应用

XRD :1.X 射线产生机理:(1)连续X 射线的产生:任何高速运动的带电粒子突然减速时,都会产生电磁辐射。

①在X 射线管中,从阴极发出的带负电荷的电子在高电压的作用下以极大的速度向阳极运动,当撞到阳极突然减速,其大部分动能变为热能都损耗掉了,而一部分动能以电磁辐射—X 射线的形式放射出来。

②由于撞到阳极上的电子极多,碰撞的时间、次数及其他条件各不相同,导致产生的X 射线具有不同波长,即构成连续X 射线谱。

(2)特征X 射线:根本原因是原子内层电子的跃迁。

①阴极发出的热电子在高电压作用下高速撞击阳极;②若管电压超过某一临界值V k ,电子的动能(eV k )就大到足以将阳极物质原子中的K 层电子撞击出来,于是在K 层形成一个空位,这一过程称为激发。

V k 称为K 系激发电压。

③按照能量最低原理,电子具有尽量往低能级跑的趋势。

当K 层出现空位后,L 、M 、N……外层电子就会跃入此空位,同时将它们多余的能量以X 射线光子的形式释放出来。

④K 系:L, M, N, ...─→K ,产生K α、K β、 K r ... 标识X 射线L 系:M, N, O,...─→L ,产生L α、L β... 标识X 射线 特征X 射线谱 M 系: N, O, ....─→M ,产生M α... 标识X 射线 特征谱Moseley 定律 2)(1αλ-•=Z a Z:原子序数,a 、α:常数2.X 射线与物质相互作用的三个效应(1)光电效应•当 X 射线的波长足够短时,X 射线光子的能量就足够大,以至能把原子中处于某一能级上的电子打出来,•X 射线光子本身被吸收,它的能量传给该电子,使之成为具有一定能量的光电子,并使原子处于高能的激发态。

(2)荧光效应①外层电子填补空位将多余能量ΔE 辐射次级特征X 射线,由X 射线激发出的X 射线称为荧光X 射线。

②衍射工作中,荧光X 射线增加衍射花样背影,是有害因素③荧光X 射线的波长只取决于物质中原子的种类(由Moseley 定律决定),利用荧光X 射线的波长和强度,可确定物质元素的组分及含量,这是X 射线荧光分析的基本原理。

材料分析测试方法(04)

材料分析测试方法(04)

第四章 材料现代分析测试方法概述一、填空1、常见的衍射分析主要有3种,即( )、( )和( )。

2、常见的3种电子显微分析是( )、( )和( )。

3、依据入射电子的能量大小,电子衍射分为( )和( );依据电子束是否穿透样品,电子衍射分为( )和( )。

二、选择1、下列分析方法中,( )可用于区别FeO 、Fe 2O 3和Fe 3O 4。

A 、原子发射光谱;B 、扫描电镜;C 、原子吸收光谱;D 、穆斯堡尔谱2、下列分析方法中,( )可用于测定Ag 的点阵常数。

A 、X 射线衍射分析;B 、红外光谱;C 、原子吸收光谱;D 、紫外光电子能谱3、下列分析方法中,( )可用于测定高纯Y 2O 3中稀土杂质元素的质量分数。

A 、X 射线衍射分析;B 、透射电镜;C 、原子吸收光谱;D 、紫外可见吸收光谱4、砂金中含金量的检测,可选用下列方法中的( )。

A 、X 射线荧光光谱;B 、原子力显微镜;C 、红外吸收光谱;D 、电子衍射5、黄金制品中含金量的无损检测,可选用下列方法中的( )。

A 、电子探针;B 、X 射线衍射分析;C 、俄歇电子能谱;D 、热重法6、几种高聚物组成之混合物的定性分析与定量分析,可选用下列方法中的( )。

A 、描隧道显微镜;B 、透射电镜;C 、红外吸收光谱;D 、X 射线光电子能谱7、某薄膜样品中极小弥散颗粒(直径远小于1μm )的物相鉴定,可以选择下列方法中的( )。

A 、X 射线衍射分析;B 、原子吸收光谱;C 、差示扫描量热法;D 、分析电子显微镜8、验证奥氏体(γ)转变为马氏体(α)的取向关系(即西山关系):γα)111//()011(,γα]110//[]001[,可选用下列方法中的( )。

A 、X 射线衍射;B 、红外光谱;C 、透射电镜;D 、俄歇电子能谱9、淬火钢中残留奥氏体质量分数的测定,可选用下列方法中的( )。

A 、X 射线衍射;B 、红外光谱;C 、透射电镜;D 、俄歇电子能谱10、镍-铬合金钢回火脆断口晶界上微量元素锑的分布(偏聚)的研究,可以选择下列方法中的( )。

材料现代分析测试方法-rietveld

材料现代分析测试方法-rietveld

进行Rietveld精修的前提
衍射数据: 一套步进的衍射数据:2=10-120˚ 或更宽,步长 2 = 0.02˚,扫描时间1-50s (由仪器决定); 大致精确的初始结构模型 正确的空间群 大致的晶胞参数 大致的原子参数 熟悉的Rietveld精修软件 Fullprof; GSAS; Rietaca; Topas……
– /srd/nist3.h tm – Inorganic & Organic
•Over 230000 entries
A new structural database(2003): aimed at freely retrieving data
18000 Patterns already!
Cobalt Antimonide (1/3)
H 0 0
结构文件(CIF)主要信息
Structured Co Sb3 Unit Cell 9.0347(6) 9.0347(6) 9.0347(6) 90. 90. 90. Vol 737.46 ; Z 8 Space Group I m -3; SG Number 204 Cryst Sys cubic Atom # OX SITE x y z SOF Co 1 +0 8 c 0.25 0.25 0.25 1. Sb 1 +0 24 g 0 0.3351(10) 0.1602(10) 1.
•ICSD (Minerals and Inorganics) •ICDD diffraction data
– http://www.fizkarlsruhe.de/
– Minerals and Inorganic
– Over 60000 entries
•Cambridge Structure Data Bank)

SEM和EDS的现代分析测试方法

SEM和EDS的现代分析测试方法

X射线能谱仪的基本组成
精品课件
三. 波谱仪与能谱仪比较
与波谱仪相比,能谱仪的优点: 1. 分析速度快. 2. 分析灵敏度高. 3. 结构紧凑、稳定性好.
精品课件
三. 波谱仪与能谱仪比较
与波谱仪相比,能谱仪的缺点: 1. 能量分辨率低. 2. 峰背比差、检测极限高, 定量 分析精度差. 3. Be窗. 4. LN2冷却.精品课件
二. 非金属材料试样制备
1. 在试样表面上蒸涂或沉积一 层导电膜。碳、金、银、铬、 铂和金钯合金等均可做导电膜 材料。
2. 导电膜应均匀、连续,厚度 为200~300Å 。
精品课件
三. 生物医学材料试样制备
清洗、固定 脱水、干燥 导电处理等
精品课件
第七节 SEM的应用
一. 在金属材料方面的应用 二. 在高分子材料方面的应用 三. 在石油、地质、矿物方面的应
材料的现代分析测试方法
精品课件
材料的现代分析测试方法
第一章 扫描电子显微镜(SEM) 第一节 概述
精品课件
第二节 电子束与固体样品 相互作用
精品课件
一.背散射电子 二.二次电子 三.吸收电子 四.透射电子
五.特征X射线 六.俄歇电子 七.阴极荧光 八.电子束感生电效应
1.电子束感生电导信号 2.电子束感生电压信号
作用:检测样品在入射电子束作
号,然
用下产生的物理信
为显象
后经视频放大,作
系统的调制信号。
精品课件
检测器类型
1. 电子检测器:由闪烁体、光导 管和光电倍增器组成。
2. 阴极荧光检测器:由光导管、 光电倍增器组成。
3. X射线检测系统:由谱仪和检 测器两部分组成。
精品课件

《现代分析报告测试技术》复习知识点问题详解

《现代分析报告测试技术》复习知识点问题详解

实用标准一、名词解释1. 原子吸收灵敏度:也称特征浓度,在原子吸收法中,将能产生1%吸收率即得到0.0044的吸光度的某元素的浓度称为特征浓度。

计算公式: S=0.0044×C/A (ug/mL/1%)S——1%吸收灵敏度 C——标准溶液浓度 0.0044——为1%吸收的吸光度A——3次测得的吸光度读数均值2. 原子吸收检出限:是指能产生一个确证在试样中存在被测定组分的分析信号所需要的该组分的最小浓度或最小含量。

通常以产生空白溶液信号的标准偏差2~3倍时的测量讯号的浓度表示。

只有待测元素的存在量达到这一最低浓度或更高时,才有可能将有效分析信号和噪声信号可靠地区分开。

计算公式: D=c Kδ/A mD——元素的检出限ug/mL c——试液的浓度δ——空白溶液吸光度的标准偏差 A m——试液的平均吸光度 K——置信度常数,通常取2~3 3.荧光激发光谱:将激发光的光源分光,测定不同波长的激发光照射下所发射的荧光强度的变化,以I F—λ激发作图,便可得到荧光物质的激发光谱4.紫外可见分光光度法:紫外—可见分光光度法是利用某些物质分子能够吸收200 ~ 800 nm光谱区的辐射来进行分析测定的方法。

这种分子吸收光谱源于价电子或分子轨道上电子的电子能级间跃迁,广泛用于无机和有机物质的定量测定,辅助定性分析(如配合IR)。

5.热重法:热重法(TG)是在程序控制温度下,测量物质质量与温度关系的一种技术。

TG基本原理:许多物质在加热过程中常伴随质量的变化,这种变化过程有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。

热重分析通常可分为两类:动态(升温)和静态(恒温)。

检测质量的变化最常用的办法就是用热天平(图1),测量的原理有两种:变位法和零位法。

6.差热分析;差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。

材料分析测试方法

材料分析测试方法

材料现代分析方法:(基于电磁辐射及运动粒子束与物质相互作用的各类性质建立)光谱分析、衍射分析、电子能谱分析、电子显微分析;(基于物理性质、电化学性质与材料的特征关系)色谱分析、质谱分析、电化学分析、热分析。

X射线产生的条件:1.以某种方式得到一定量的自由电子2.在高真空中,在高压电场作用下迫使这些电子作定向高速运动3.在电子运动路径上设障碍物,以急剧改变电子的运动速度连续谱的变化规律的产生机理:当X射线管两级间加高压时,大量电子在高压电场的作用下,以极高的速度向阳极轰击,由于阳极的阻碍作用,电子将产生极大的负加速度。

根据经典物理学的理论,一个带负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电磁波,或至少一个电磁脉冲。

由于极大数量的电子射到阳极上的时间和条件不可能相同,因而得到的电磁波将具有连续的各种波长,形成连续Ⅹ射线谱。

量子理论认为,当能量为eV的电子与阳极靶的原子碰撞时,电子损失自已的能量,其动能的一部份以x射线光子的形式辐射出来,其余部份转变为热能。

在与阳极把相碰的众多电子中,有的辐射一个光子,有的则多次碰撞辐射多个能量各异的光子,它们的总和就构成连续谱。

激发电压:当管电压超过某临界值时,特征谱才会出现,该临界电压称激发电压。

特征X射线谱的频率只与阳极靶物质的原子结构有关,而与其他外界因素无关,是物质的固有特性。

1913-1914年莫塞莱发现物质发出的特征波长与它本身的原子序数存在下列关系:1/λ=K(Z−σ),式中,K和σ为常数。

该式称莫塞莱定律,它是X射线光谱分析的基本依据,是X射线光谱学的重要公式。

根据莫塞莱定律,将实验结果所得到的未知元素的特征X射线谱线波长,与已知的元素波长相比较,可以确定它是何种元素。

X射线与物质的相互作用:一束X射线通过物体后,其强度将被衰减,它是被散射和吸收的结果,并且吸收是造成强度衰减的主要原因。

X射线的散射(相干散射、不相干散射),X射线的吸收(光电效应、俄歇效应)俄歇效应:俄歇在1925年发现,原子中K层的一个电子被打出后,它就处于K激发状态,其能量为E K。

材料现代分析测试技术-光谱分析

材料现代分析测试技术-光谱分析
弧焰中心a的温度最高,边缘b的温度较低。由弧焰中心 发射出来的辐射光,必须通过整个弧焰才能射出,由于
弧层边缘的温度较低,因而这里处于基态的同类原子较多。 这些低能态的同类原子能吸收高能态原子发射出来的光而 产生吸收光谱。原子在高温时被激发,发射某一波长的谱 线,而处于低温状态的同类原子又能吸收这一波长的辐射, 这种现象称为自吸现象。
光电直读光谱仪
在原子发射光谱法中, 一般多采用摄谱法(spectrography)。
摄谱法是用感光板记录光谱。将光谱感光板置于摄谱仪 焦面上,接受被分析试样的光谱作用而感光,再经过 显影、定影等过程后,制得光谱底片,其上有许多黑 度不同的光谱线。然后用影谱仪观察谱线位置及大致 强度,进行光谱定性及半定量分析。
(6)谱线的自吸与自蚀
三、谱线的自吸与自蚀(self-absorption and selfreversal of spectral lines)
在实际工作中,发射光谱是通过物质的蒸发、激发、 迁移和射出弧层而得到的。首先,物质在光源中蒸发形成 气体,由于运动粒子发生相互碰撞和激发,使气体中产生
大量的分子、原子、离子、电子等粒子,这种电离的气 体在宏观上是中性的,称为等离子体。在一般光源中, 是在弧焰中产生的,弧焰具有一定的厚度,如下图:
4. Atomic fluorimetry
气态自由原子吸收特征波长的辐射后,原子的外层 电子 从基态或低能态跃迁到较高能态,约经10-8 s,又跃
迁至基态或低能态,同时发射出与原激发波长相同(共 振荧光)或不同的辐射(非共振荧光—直跃线荧光、阶 跃线荧光、阶跃激发荧光、敏化荧光等),称为原子荧 光。波长在紫外和可见光区。在与激发光源成一定角度 (通常为90)的方向测量荧光的强度,可以进行定量分 析。

现代测试分析技术SEM、TEM、表面分析技术、热分析技术

现代测试分析技术SEM、TEM、表面分析技术、热分析技术

现代测试分析技术SEM、TEM、表⾯分析技术、热分析技术重庆⼤学材料现代测试分析技术总结(材料学院研究⽣⽤)电⼦衍射部分1、电⼦衍射与X射线衍射相⽐:相同点:电镜中的电⼦衍射,其衍射⼏何与X射线完全相同,都遵循布拉格⽅程所规定的衍射条件和⼏何关系. 衍射⽅向可以由厄⽡尔德球(反射球)作图求出.因此,许多问题可⽤与X射线衍射相类似的⽅法处理.电⼦衍射优点:电⼦衍射能在同⼀试样上将形貌观察与结构分析结合起来。

电⼦波长短,单晶的电⼦衍射花样婉如晶体的倒易点阵的⼀个⼆维截⾯在底⽚上放⼤投影,从底⽚上的电⼦衍射花样可以直观地辨认出⼀些晶体的结构和有关取向关系,使晶体结构的研究⽐X射线简单。

物质对电⼦散射主要是核散射,因此散射强,约为X射线⼀万倍,曝光时间短。

电⼦衍射缺点:电⼦衍射强度有时⼏乎与透射束相当,以致两者产⽣交互作⽤,使电⼦衍射花样,特别是强度分析变得复杂,不能象X射线那样从测量衍射强度来⼴泛的测定结构。

此外,散射强度⾼导致电⼦透射能⼒有限,要求试样薄,这就使试样制备⼯作较X射线复杂;在精度⽅⾯也远⽐X射线低。

2、电⼦衍射花样的分类:1)斑点花样:平⾏⼊射束与单晶作⽤产⽣斑点状花样;主要⽤于确定第⼆相、孪晶、有序化、调幅结构、取向关系、成象衍射条件;2)菊池线花样:平⾏⼊射束经单晶⾮弹性散射失去很少能量,随之⼜遭到弹性散射⽽产⽣线状花样;主要⽤于衬度分析、结构分析、相变分析以及晶体的精确取向、布拉格位置偏移⽮量、电⼦波长的测定等;3)会聚束花样:会聚束与单晶作⽤产⽣盘、线状花样;可以⽤来确定晶体试样的厚度、强度分布、取向、点群、空间群以及晶体缺陷等。

扫描电⼦显微镜1、透射电镜的成像——电⼦束穿过样品后获得样品衬度的信号(电⼦束强度),利⽤电磁透镜(三级)放⼤成像。

扫描电镜成像原理——利⽤细聚焦电⼦束在样品表⾯扫描时激发出来的各种物理信号来调制成像的。

2、扫描电镜的特点分辨本领较⾼。

⼆次电⼦像分辨本领可达1.0nm(场发射), 3.0nm (钨灯丝);放⼤倍数变化范围⼤(从⼏⼗倍到⼏⼗万倍),且连续可调;图像景深⼤,富有⽴体感。

SEM和EDS的现代分析测试方法

SEM和EDS的现代分析测试方法

二. 放大倍数
显微镜的放大倍数: 象与物大小之比 TEM和OM: M总=M1M2……Mn 式中: M1……Mn——各个透镜的放大倍数 n ——透镜数目
a
21
SEM中透镜的作用:
缩小电子束交叉斑
总的缩小倍数:
M 缩小=(1/ M1)·(1/ M2)…… (1/ Mn) SEM图象放大倍数:Βιβλιοθήκη 显象管荧光屏边长.
电子束在试样上(相同方向)扫描宽度
a
22
三. 景深
a
23
第六节 SEM的样品制备
SEM对样品的最重要的要求是 样品要导电.
一. 导电材料试样制备 二. 非金属材料试样制备 三. 生物医学材料试样制备
a
24
一. 导电材料试样制备
1. 试样尺寸尽可能小些,以减轻 仪器污染和保持良好真空。
2. 切取试样时,要避免因受热引 起试样塑性变形,或在观察面 生成氧化层;要防止机械损伤 或引进水、油污及尘埃等污物。
a
29
一. 在金属材料方面的应用
断口分析:解理断口、准解理断 口、韧性断裂、沿晶断裂等.
铸铁研究:铸铁中的石墨形态、 铸铁中化学成分的微区分析.
事故、故障分析
a
30
第二章 电子探针显微分析仪 (EPMA)
第一节 概述
a
31
第二节 特征X射线检测
一. 波谱法(WDS)
1. 原理
布拉格方程: 2dsinθ=nλ
a
13
三. 信号检测放大系统
作用:检测样品在入射电子束作 用下产生的物理信号,然 后经视频放大,作为显象 系统的调制信号。
a
14
检测器类型
1. 电子检测器:由闪烁体、光导 管和光电倍增器组成。

材料现代分析测试方法知识总结

材料现代分析测试方法知识总结

材料现代分析测试方法知识总结现代分析测试方法是指在材料研究和应用过程中,通过各种仪器和设备对材料进行精确分析和测试的方法。

这些方法包括物理测试方法、化学测试方法和电子显微镜技术等。

以下是对现代分析测试方法的一些知识的总结。

一、物理测试方法:1.X射线衍射:通过X射线的衍射绘制出材料的结晶结构,确定材料的晶格常数、晶胞参数和晶体的相位等。

2.热重分析:通过加热材料并测量其重量的变化,判断其热稳定性、热分解性和可能的热分解产物。

3.红外光谱:通过测量材料在红外波段的吸收光谱,推断材料的分子结构、官能团以及物质的存在状态和纯度。

4.核磁共振:通过测量核磁共振信号,确定物质的结构、官能团和化学环境。

二、化学测试方法:1.光谱分析:包括紫外可见光谱、原子吸收光谱和发射光谱等,通过测量材料吸收或发射的光的波长和强度,确定材料的化学成分和浓度。

2.色谱分析:包括气相色谱、液相色谱和超高效液相色谱等,通过物质在固定相和流动相之间的相互作用,分离并测定材料中的组分。

3.原子力显微镜:通过测量微米和亚微米级尺寸范围内的力的作用,观察材料表面的形貌和物理特性。

4.微量元素分析:通过原子吸收光谱、荧光光谱和电感耦合等离子体发射光谱等方法,测量材料中的微量元素浓度。

三、电子显微镜技术:1.扫描电子显微镜:通过扫描电子束和样品表面之间的相互作用,观察材料表面的形貌、组成和结构。

2.透射电子显微镜:通过电子束穿透样品并与样品内部的原子发生相互作用,观察材料的晶格结构、晶格缺陷和界面等微观结构。

以上是现代材料分析测试方法的一些知识总结。

通过这些方法,我们可以准确地了解材料的组成、结构和性能,为材料的研究、设计和应用提供有力的支持。

现代分析测试知识点2

现代分析测试知识点2

1. 电镜的分辨率 典型值: 100KV 波长 0.0037nm200KV 0.00251nm300KV 0.00197nm综上所述:提高加速电压,缩短电子波长,提高电镜分辨率;加速电压越高,对试样的穿透能力越大,可放宽对样品的减薄要求。

如用更厚样品,更接近样品实际情况。

电子波长与可见光相比,相差105量级2电磁透镜透射电子显微镜中用磁场来使电子波聚焦成像的装置是电磁透镜,磁透镜:能产生旋转对称非均匀磁场的磁极装置3像差♦球差球差即球面像差,是磁透镜中心区和边沿区对电子的折射能力不同引起的,其中离开透镜主轴较远的电子比主轴附近的电子折射程度更大。

球差最小散焦斑的半径在原物面上的折算值如下:λγ210≈∆⎪⎩⎪⎨⎧⎩⎨⎧色差像散球差几何像差341αγs s C =∆由于电磁透镜的周向磁场不非旋转对称引起像散。

使用消像散器极靴内孔不园;上下极靴不同轴;极靴物质磁性不均匀;极靴污染透镜磁场的这种非旋转性对称使它在不同方向上的聚焦能力出现差别,物点P 通过透镜后不能在像平面上聚焦成一点,而是形成一散焦斑,其最小散焦斑在原物面的折算半径值如下 ♦ 色差电子波的波长或能量发生一定幅度的改变而造成的。

若入射电子的能量出现一定的差别,能量大的电子在距透镜光心比较远的地方聚焦,而能量低的电子在距光心近的地方聚焦,由此产生焦距差。

像平面在远焦点和近焦点间移动时存在一最小散焦斑RC稳定电源把散焦斑的半折算到原物面的半径 电磁透镜的分辨率主要由衍射效应和像差来决定. 像差决定的分辨率主要是由球差决定的4. 景深D f 焦长D L ,取 Δr0=1 nm, α=10-2~10-3rad则 D f = 200~2000nmαγ.A A f ∆=∆E E C UU C c c c ∆=⎪⎭⎫ ⎝⎛I ∆I -∆=∆ααγαα002tan 2r r D f ∆≈∆=取Δr0=1 nm, α=10-2rad ;为此,需进一步会聚成近似平行的照明来,这个任务由聚光镜实现, 。

材料现代分析测试方法

材料现代分析测试方法

主要内容
信号发生器使样品产生(原始)分析信号; 检测器则将原始分析信号转换为更易于测量的信 号(如光电管将光信号转换为电信号)并加以检 测; 被检测信号经信号处理器放大、运算、比较等后 由读出装置转变为可被人读出的信号被记录或显 示出来。 依据检测信号与材料的特征关系,分析、处理读 出信号,即可实现材料分析的目的。
3
主要内容


材料现代分析测试方法涉及的分析测试技术和方法种类繁多,内容 极其广泛。 对于传统方法、近代方法和现代方法的划分问题,不同的专家学者 认识不同,且随科学技术的发展而变化。 因此,相近内容的教材或专著的名称多种多样,比如,“材料分析 测试方法”、“材料现代分析方法”、“材料近代分析测试方法”、 “材料分析测试技术”、“现代分析技术”、“现代仪器分析原理 与技术”等等。 材料分析是通过对表征材料的物理性质或物理化学性质参数及其变 化(称为测量信号或特征信息)的检测实现的。 换言之,材料分析的基本原理(或称技术基础)是指测量信号与材 料成分、结构等的特征关系。 采用各种不同的测量信号(相应地具有与材料的不同特征关系)形 成了各种不同的材料分析方法。
4
主要内容




基于电磁辐射及运动粒子束与物质相互作用的各种性质建 立的各种分析方法已成为材料现代分析方法的重要组成部 分,大体可分为光谱分析、电子能谱分析、衍射分析与电 子显微分析等四大类方法。 此外,基于其它物理性质或电化学性质与材料的特征关系 建立的色谱分析、质谱分析及热分析等方法也是材料现代 分析的重要方法。 尽管不同方法的分析原理(检测信号及其与材料的特征关 系)不同及具体的检测操作过程和相应的检测分析仪器不 同,但各种方法的分析、检测过程均可大体分为信号发生、 信号检测、信号处理及信号读出等几个步骤。 相应的分析仪器则由信号发生器、检测器、信号处理器与 5 读出装置等几部分组成。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名词解释:分子振动:分子中原子(或原子团)以平衡位置为中心的相对(往复)运动。

伸缩振动:原子沿键轴方向的周期性(往复)运动;振动时键长变化而键角不变。

(双原子振动即为伸缩振动)变形振动又称变角振动或弯曲振动:基团键角发生周期性变化而键长不变的振动。

晶带:晶体中,与某一晶向[uvw]平行的所有(HKL)晶面属于同一晶带,称为[uvw]晶带。

辐射的吸收:辐射通过物质时,其中某些频率的辐射被组成物质的粒子(原子、离子或分子等)选择性地吸收,从而使辐射强度减弱的现象。

辐射被吸收程度对ν或λ的分布称为吸收光谱。

辐射的发射:物质吸收能量后产生电磁辐射的现象。

作为激发源的辐射光子称一次光子,而物质微粒受激后辐射跃迁发射的光子(二次光子)称为荧光或磷光。

吸收一次光子与发射二次光子之间延误时间很短(10-8~10-4s)则称为荧光;延误时间较长(10-4~10s)则称为磷光。

发射光谱:物质粒子发射辐射的强度对ν或λ的分布称为发射光谱。

光致发光者,则称为荧光或磷光光谱辐射的散射:电磁辐射与物质发生相互作用,部分偏离原入射方向而分散传播的现象散射基元:物质中与入射的辐射相互作用而致其散射的基本单元瑞利散射(弹性散射):入射线光子与分子发生弹性碰撞作用,仅光子运动方向改变而没有能量变化的散射。

拉曼散射(非弹性散射):入射线(单色光)光子与分子发生非弹性碰撞作用,在光子运动方向改变的同时有能量增加或损失的散射。

拉曼散射线与入射线波长稍有不同,波长短于入射线者称为反斯托克斯线,反之则称为斯托克斯线光电离:入射光子能量(hν)足够大时,使原子或分子产生电离的现象。

光电效应:物质在光照射下释放电子(称光电子)的现象又称(外)光电效应。

光电子能谱:光电子产额随入射光子能量的变化关系称为物质的光电子能谱分子光谱:由分子能级跃迁而产生的光谱。

紫外可见光谱(电子光谱):物质在紫外、可见辐射作用下分子外层电子在电子能级间跃迁而产生的吸收光谱。

红外吸收谱:物质在红外辐射作用下,分子振动能级(和/或转动能级)跃迁而产生的吸收光谱。

红外活性与红外非活性:只有发生偶极矩变化的分子振动,才能引起可观测到的红外吸收光谱带,称这种分子振动为红外活性的,反之则称为非红外活性的散射角(2θ)散射电子运动方向与入射方向之间的夹角。

电子吸收:由于电子能量衰减而引起的强度(电子数)衰减。

点阵消光:因晶胞中原子(阵点)位置而导致的|F|2=0的现象系统消光:晶体衍射实验数据中出现某类衍射系统消失的现象。

结构消光:在点阵消光的基础上,因结构基元内原子位置不同而进一步产生的附加消光现象,称为结构消光。

衍射花样指数化:确定衍射花样中各线条(弧对)相应晶面(即产生该衍射线条的晶面)的干涉指数,并以之标识衍射线条,又称衍射花样指数化(或指标化)。

电子透镜:能使电子束聚焦的装置称为电子透镜质量厚度衬度(简称质厚衬度):由于样品不同微区间存在原子序数或厚度的差异而形成的衬度衍射衬度:由于晶体对电子的衍射效应而形成的衬度。

d-d跃迁:在配位体的影响下,处于低能态d轨道上的电子吸收光能后可以跃迁至高能态的d轨道,这种跃迁,称之为d-d跃迁。

f-f跃迁:处于f轨道上的f电子,在配位体的影响下,f电子吸收光能后可以由低能态的f轨道跃迁至高能态的f轨道,从而产生相应的吸收光谱。

这种跃迁称为f-f跃迁。

生色团:在紫外及可见光范围内产生吸收的原子团(或原子、电子、空穴等)。

蓝移:当物质的结构或存在的环境发生变化时,其吸收带的最大吸收波长(λ最大)向短波方向移动,这种现象称为紫移或蓝移(或向蓝)。

红移:当物质的结构或存在的环境发生变化时,其吸收带的最大吸收峰波长(λ最大)向长波长方向移动,这种现象称为红移(或称为“向红”)。

助色团:有些含n电子的官能团,本身并不在紫外可见区产生吸收,但它们具有能使生色团的光谱峰移向长波区并使其强度增加的作用,这种官能团叫做助色团。

电荷转移光谱,就是在光能激发下,某一化合物中的电荷发生重新分布,导致电荷可从化合物的一部分转移至另一部分而产生的吸收光谱。

倍频峰(或称泛音峰):出现在强峰基频约二倍处的吸收峰,一般都是弱峰。

组频峰:也是弱峰,它出现在两个或多个基频之和或差附近特征振动频率:某一键或基团的振动频率有其特定值,它虽然受周围环境的影响,但不随分子构型作过大的改变,这一频率称为某一键或基团的特征振动频率。

而其吸收带称为特征振动吸收带。

热分析:在程序控制温度条件下,测量物质的物理性质随温度或时间变化的函数关系的技术。

差热分析(DTA):在程序控制温度条件下,测量样品与参比物之间的温度差与温度(或时间)关系的一种热分析方法。

差示扫描量热法(DSC):在程序控制温度条件下,测量输入给样品与参比物的功率差与温度(或时间)关系的一种热分析方法。

振动自由度:分子简单正振动数目。

简并:在多原子分子的简正振动中,有时两个或三个振动模式不同的简正振动具有相同的频率,此时在红外光谱上成为一个吸收峰出现,这种现象就是简并。

分裂:某些基团处于某些机构中,因其对称性降低,简并的吸收带分裂开来。

中心暗场像:将入射电子束反向倾斜一个相应的散射角度,而使散射电子沿光轴传播。

二次离子:固体表面原子以离子态发射叫做二次离子。

透射离子:当样品的厚度小于入射电子的平均穿入深度时,有一部分入射电子穿过样品,在样品背面被接收检测到的电子。

吸收电流(电子):入射电子在固体中传播时,能量逐渐减小,最后失去全部动能的电子流。

背散射电子:入射电子与固体作用后又离开固体的总电子流。

特征X射线:射线管电压增至某一临界值,使撞击靶材的电子具有足够能量时,可使靶原子内层产生空位,此时较外层电子将向内层跃迁产生辐射即是特征X 射线。

俄歇电子:由于原子中的电子被激发而产生的次级电子,在原子壳层中产生电子空穴后,处于高能级的电子可以跃迁到这一层,同时释放能量。

当释放的能量传递到另一层的一个电子,这个电子就可以脱离原子发射,被称为俄歇电子。

二次电子:入射电子从固体中直接击出的的原子的核外电子和激发态原子退回基态时产生的电子发射,前者叫二次电子,后者叫特征二次电子。

波数:2∏长度上出现的全波数目;在波传播的方向上单位长度内的波长的数目。

分子散射:入射线与线度即尺寸大小远远小于其波长的分子或分子聚集体相互作用产生的散射。

X射线相干散射:入射光子与原子内受核束缚较紧的电子发生弹性碰撞作用,仅其运动方向改变没有能量改变的散射。

X射线非相干散射:入射光子与原子内受到较弱的电子或者晶体中自由电子发生非弹性碰撞作用,在光子运动方向改变的同时有能量损失的散射。

K系特征辐射:原子K层出现空位,较外的L层电子向内的K层辐射跃迁,发射的辐射。

L系特征辐射:原子的L层出现空位,其外M,N层电子跃迁产生的谱线统称为L 系特征辐射。

吸收限:X射线照射固体物质产生光子效应时能量阀值对应的波长称为物质的吸收限。

X射线散射:X射线与物质作用(主要是电子)时,传播方向发生改变的现象。

X射线衍射:散射X射线干涉一致加强的结果,即衍射。

X射线反射:与可见光的反射不同,是“选择反射”,实质是晶体中各原子面产生的反射方向上的相干散射线。

简答题1.量子数n、l与m如何表征原子能级?在什么情况下此种表征失去意义?答:原子中核外电子的运动状态由主量子数n、角量子数l、磁量子数m、自旋量子数s和自旋磁量子数m s表征。

n、l、m共同表征了电子的轨道运动,而s与m则是电子自旋运动的表征。

n决定电子运动状态的主要能量(主能级能量,E),sn值越大,则电子离核越远,能量越高。

l取值为0~n-1的正整数,对应于l=0,1,2,3,…的电子亚层或原子轨道形状分别称为s、p、d、f等层或(原子)轨道。

磁量子数m取值为0,±1,±2,…,±l。

当无外磁场存在时,同一亚层伸展方向不同的轨道具有相同的能量。

当有外磁场时,只用量子数n、l与m表征的原子能级失去意义。

2.下列各光子能量(eV)各在何种电磁波谱域内?各与何种跃迁所需能量相适应?1.2×106~1.2×102、6.2~1.7、0.5~0.02、2×10-2~4×10-7。

答:1.2×106~1.2×102 X射线谱域,与原子内层电子跃迁所需能量相对应。

6.2~1.7 紫外-可见谱域,与原子(或分子)外层电子跃迁所需能量相对应。

0.5~0.02 红外谱域,与分子振动能级跃迁所需能量相对应。

2×10-2~4×10-7微波谱域,与分子转动能级和电子自旋能级跃迁所需能量相对应。

10.分子能级跃迁有哪些类型?紫外、可见光谱与红外光谱相比,各有何特点?答:分子能级跃迁主要有电子能级跃迁、振动能级跃迁和转动能级跃迁。

紫外、可见光谱是由于分子的电子能级跃迁引起的吸收光谱。

由于电子的能级比较大,在产生电子能级跃的同时也会引起分子的振动和转动能级跃,因此其光谱上叠加了振动和转动能级跃的吸收光谱,所以是带状光谱。

红外光谱是由于分子振动能级和转动能级跃迁引起的吸收光谱。

对于一般的中红外光谱,其振动光谱上叠加了转动光谱,因此是带状光谱。

纯转动能级跃引起的远红外光谱,则是线状光谱。

14.俄歇电子能谱图与光电子能谱图的表示方法有何不同?为什么?答:俄歇电子能谱图用微分谱表示,因为俄歇电子产率很低,一次谱不好确定俄歇电子的能量位置,用微分谱可以表现得很清楚。

光电子能谱图用一次谱表示,因为光电子的产率较高,用一次谱就能很清楚表示出来。

15.简述X射线与固体物质相互作用产生的主要信息及据此建立的主要分析方法。

答:X射线与固体物质相互作用产生的主要信息有:弹性散射X射线,非弹性散射X射线,光电子,俄歇电子,荧光X射线,反冲电子,透射X射线,电离,热能等,据此建立的主要分析方法有:X射线衍射分析(XRD),X射线光电子能谱(XPS),X射线激发俄歇电子能谱(XAES),X射线荧光光谱(XRF)。

16.电子与固体作用产生多种粒子信号(如下图),哪些对应入射电子?哪些是由电子激发产生的?答:图中背散射电子流IR 、吸收电流IA和透射电子流IT对应入射电子;二次电子流IS 、X射线辐射强度IX、表面元素发射总强度IE是由电子激发产生的。

17.电子“吸收”与光子吸收有何不同?答:电子吸收是指由于电子能量衰减而引起的强度(电子数)衰减的现象。

电子吸收只是能量衰减到不能逸出样品,而不是真的被吸收了。

光子的吸收是因光子的能量与物质中某两个能级差相等而被吸收,光子被真吸收了,转化成了另外的能量。

18.入射X射线比同样能量的入射电子在固体中穿入深度大得多,而俄歇电子与X光电子的逸出深度相当,这是为什么?答:因为俄歇电子与X光电子的能量差不多,都比较小,在内部经多次散射后能量衰减,难以逸出固体表面,只有表面几个原子层产生的俄歇电子和X光电子才能逸出表面,从而被电子能谱仪检测到。

相关文档
最新文档