多元函数微分学及应用经典例题
第9章 多元函数微分法及其应用(题库)答案
C ).
x 1 y 1 z 1 1 2 3
第 9 章 多元函数微分法及其应用(题库)答案
第 4 页
共计 10 页
C.
x 1 y 1 z 1 1 2 3
D.
x 1 y 2 z 3 1 1 1
C ).
28.(8-6)曲面 xyz 6 在点 1, 2,3 处的切平面方程是( A. 6 x 3 y 2 y 1 0 C. 6 x 3 y 2 z 18 0
t
22.(8-4)设 z uv sin t ,而 u e , v cos t ,求 解:
dz z du z dv z vet u sin t cos t et cos t sin t cos t . dt u dt v dt t
2 2
B.
x 2 y 1 == 4 2
z4 -1
D. 2 x y 4 z 6 0 C ).
31.(8-6)旋转抛物面 z x y 1 在点 2,1, 4 处法线方程为( A. 4 x 2 2 y 1 z 4 0 C. B.
第 3 页 共计 10 页
dz . dt
第 9 章 多元函数微分法及其应用(题库)答案
23.(8-5)已知方程 x y 1 0 在点 0,1 的某邻域内能唯一确定一个单值可导且 x 0
2 2
时
y 1 的隐函数 y f x ,求这函数的一阶导数在 x 0 的值
z . x
z 2x 3y x
2
z x
2
x 1 y 2
2 1 3 2 8 .
z . y
第八章 多元函数微分学及其应用测试题
多元函数微分学及其应用(时间:150分钟)一、选择题(每小题3分,共15分)1、二重极限21lim 1x x y x y a x +→∞→⎛⎫- ⎪⎝⎭之值为( ).(A ) 0; (B ) 1; (C ) 1e -; (D ) e .2、设函数),(y x f 在),(00y x 处的偏导数),(y x f x 与),(y x f y 存在,则( ).(A ) ),(y x f 在),(00y x 处可微;(B ) ),(y x f 在),(00y x 处连续;(C ) ),(y x f 在),(00y x 处沿任意方向的方向导数存在;(D ) 以上三个结论都不正确.3、已知矩形的周长为2p ,将它绕其一边旋转而形成一个旋转体,当此旋转体的体积为最大时,矩形两边长分别为( ).(A ),22p p ; (B )2,33p p ; (C ) 3,44p p ; (D ) 23,55p p . 4、假设曲线2121522y x z x =-⎧⎪⎨=-⎪⎩在点(1,-1,-2)处的切线与直线533903210,x y z x y z -+-=⎧⎨-+-=⎩的夹角ϕ=( ).(A ) 0 ; (B )4π; (C ) 3π; (D )2π. 5、设(),()f x g x 是可微函数,且满足(,)(25)(25)u x y f x y g x y =++-, (,0)sin 2u x x =,(,0)0y u x =,则(,)u x y =( ).(A )sin 2cos5x y ; (B )sin 5cos 2x y ; (C )cos5sin 2x y ; (D )cos 2sin 5x y .二、填空题(每小题3分,共15分)1、设y x e u xsin -=,则y x u ∂∂∂2在点)1,2(π处的值为 . 2、设y x y x y x z -+++=arctanln 22,则dz = . 3、函数z y x u 1⎪⎪⎭⎫ ⎝⎛=在点(1,1,1)处的梯度为 . 4、已知⎪⎭⎫ ⎝⎛=z y z x ϕ,其中ϕ为可微分函数,则=∂∂+∂∂yz y x z x . 5、已知曲面xy z =上点p 处的法线l 平行于直线2121326:1-=--=-z y x l ,则法线l 的方程为 . 三、计算题(每小题6分,共30分)1、设)sin ,2(x y y x f z -=,其中),(v u f 具有连续的二阶偏导数,求yx z ∂∂∂2. 2、已知),(),,(z y x y x f z ϕ==,其中ϕ,f 均为可微分函数,求dxdz . 3、假设函数(,,)w f x y z =,其中f 具有二阶连续偏导数,(,)z z x y =由方程5551z xy z -+=所确定,求w x ∂∂,22w x ∂∂. 4、设n 是曲面222y x z +=在P (1,2,3)处指向外侧的法向量,求函数xz y x u 22233++=在点P 处沿方向n 的方向导数.5、在曲面222316x y z ++=上求一点,使曲面在此点处的切平面平行于下列两条直线:1361:458x y z l --+==,2:l x y z ==.四、(8分) 设),,(z y x f u =有连续偏导数,且ϕϕθϕθcos ,sin sin ,cos sin r z r y r x ===, 证明:若0=∂∂+∂∂+∂∂z u z y u y x u x ,则u 与r 无关. 五、(8分)一正圆锥的半径以每分钟7厘米的速度增大,而它的高以每分钟20厘米的速度减小,求当半径45r =厘米,高100h =厘米时该正圆锥的体积的变化率,此时体积是在增大还是减小?六、(8分)设椭圆12322=+y x 的内接等腰三角形之底边平行于椭圆长轴,求其最大面积.七、(8分) 试证光滑曲面0),(=--z y x z F 的所有切平面均与一固定非零向量平行.八、(8分)已知,,x y z 为实数,且2||3x e y z ++=,证明不等式2||1x e y z ⋅⋅≤.。
(完整版)多元函数微分法及其应用习题及答案
1第八章 多元函数微分法及其应用(A)1.填空题.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,xy z ∂∂∂2,则在D 上,上, x y zy x z ∂∂∂=∂∂∂22。
(2)函数()y x f z ,=在点()00,y x 处可微的处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。
偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的处连续的 条件。
条件。
2.求下列函数的定义域.求下列函数的定义域(1)y x z -=;(2)22arccos yx zu +=3.求下列各极限.求下列各极限(1)x xyy x sin lim 00→→; (2)11lim 00-+→→xy xy y x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→ 4.设()xy x z ln =,求y x z ∂∂∂23及23yx z ∂∂∂。
5.求下列函数的偏导数.求下列函数的偏导数(1)x y arctg z =;(2)()xy z ln =;(3)32z xy e u =。
6.设u t uv z cos 2+=,te u =,t v ln =,求全导数dt dz。
7.设()z y e u x-=,t x =,t y sin =,t z cos =,求dtdu 。
8.曲线⎪⎩⎪⎨⎧=+=4422y yx z ,在点(2,4,5)处的切线对于x 轴的倾角是多少?轴的倾角是多少? 9.求方程1222222=++c z b y a x 所确定的函数z 的偏导数。
的偏导数。
10.设y x ye z x2sin 2+=,求所有二阶偏导数。
,求所有二阶偏导数。
11.设()y x f z ,=是由方程y zz x ln =确定的隐函数,求x z∂∂,yz ∂∂。
第9章多元函数微分法及其应用近年试题
0809 B一、填空题(每小题3分,共18分)2、设)ln(xy z =,则其全微分dz = . 11dx dy x y+ 3、函数xy x y u 2222-+=的所有间断点是 .2{(,)|2,,}x y y x x R y R =∈∈二、选择题(每小题3分,共15分)1、22),(y x xyy x f +=,则极限=→→),(lim 00y x f y x ( A )(A )不存在 (B )1 (C )2 (D )0A当点(,)P x y 沿曲线y kx =趋向(0,0)时,222200lim (,)lim x x y kxk x f x y x k x →→==+21kk =+显然,当k 取值不同是,极限也不相同。
所以22(,)(0,0)limx y xyx y →+不存在.2、在曲线32,,t z t y t x =-==所有切线中,与平面433=++z y x 平行的切线( A )(A )只有一条; (B ) 只有两条; (C )至少有3条; (D ) 不存在曲线的切向量2((),(),())=(12,3)T t t t t t ϕψω'''=-,,平面的法向量(1,3,3)n = 22(12,3)(1,3,3)1690t t t t -⋅=-+=,,2(31)0t -=,1.3t =得所以只有一条切线满足条件.3、点()0,0是函数xy z =的( B )(A )极值点;(B ).驻点但不是极值点;(C )是极值点但不是驻点;(D )以上都不对 分析: 令0,0x y z y z x ====,得(0,0)是驻点,但点(0,0)是xy z =的鞍点,不是极值点.四、计算题(每小题8分,共32分)1、设, , ,sin y x v xy u v e z u+===求xz∂∂和y z ∂∂ 解z f f u f vx x u x v x∂∂∂∂∂∂=+⋅+⋅∂∂∂∂∂∂e sin e cos e [sin()cos()]u u x y v y v y x y x y =⋅+=⋅+++e sin e cos u u zf f u f v v x v y y u y v y∂∂∂∂∂∂=+⋅+⋅=⋅+∂∂∂∂∂∂e [sin()cos()]x y x x y x y =⋅+++ 五、解答题(每小题分10,共20分)1、要造一个容积为定数a 的长方形无盖容器,如何设计它的尺寸才能使它的表面积最小?此时最小表面积为多少?解:设长方体的长宽高分别为,,,z y x 则问题就是在条件(,,)0x y z xyz a ϕ=-=下求函数 22S xy xz yz =++ )0,0,0(>>>z y x的最小值. 作拉格朗日函数(,,)22(),L x y z xy xz yz xyz a λ=++++-求其对,,,x y z λ的偏导数,并使之为零,得到 20,20,2()0,0.y z yz x z xz x y xy xyz a λλλ++=⎧⎪++=⎪⎨++=⎪⎪-=⎩因为z y x ,,都不等于零, 得 11,22z x y ==代入0xyz a -=,得x y z ===这是唯一可能的极值点. 由问题本身可知最小值一定存在,所以最小值就在这个可能的极值点处取得.时, 最小表面积S =0910B一、填空题(每小题2分,共10分)2、设函数),(y x f z =是由方程z z y x 4222=++给出,则全微分=dz .2d 224x x ydy zdz dz ++=,2xdx ydydz z+=-.3、曲面14222=++z y x 在点)3,2,1(P 处的切平面方程为 .切平面得法向量(1,2,3)(1,2,3)(2,2,2)n x y z =(2,4,6),=切平面方程为2(1)+4(2)6(3)0,23140.x y z x y z --+-=++-=或 二、选择题(每小题2分,共10分)1、二元函数),(y x f 在点),(00y x 处可微是两个偏导数),(',),('0000y x f y x f y x 都存在的 ( A )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件.四、计算题(每小题10分,共40分) 1、设v u z ln 2=,而y x u =、y x v 23-=,求:xz∂∂、y z ∂∂. 解:()()22223323ln 2y y x x y x y x x z -+-=∂∂,()()223223223ln 2y y x x y x yx y z ----=∂∂1011B一、填空题(每小题3分,共15分)(1) 设二元函数)1ln()1(y x xez yx +++=+,则=)0,1(|dz .(1,0)(1,0)(1,0)1|(ln(1))|()|1x y x y x y x dz e xe y dx xe dy y++++=++++++ (1,0)d 2ed (e 2)d zx y ∴=++(2) 旋转抛物面122-+=y x z 在点)4,1,2(处的法线方程是 . 法线的方向向量(2,1,4)(2,1,4)(2,2,1)s x y =-(4,2,1),=-法线方程是214421x y z ---==-. 二、单项选择题(每小题3分,共15分)(4) 设),(y x f z =的全微分为ydy xdx dz += 则点 )0,0( ( C ) .A 不是),(y x f 的连续点;.B 不是),(y x f 的极值点;.C 是),(y x f 的极小值点;.D 是),(y x f 的极大值点.分析:z ,x y x z y ==,得z 1,1,0xx yy xy z z ===,由210,10AC B A -=>=>,则点 )0,0(是),(y x f 的极小值点.三、求偏导数(每小题10分,共20分)(1)设),(3xyxy f x z =,其中f 具有二阶连续偏导数.求 y z ∂∂;22y z ∂∂;y x z ∂∂∂2.解:231223(())z yx f x yf f x x∂''=++-∂23123x f x yf xyf ''=+-3121(())z x xf f y x∂''=+∂ 4212x f x f ''=+ 242122()z x f x f y y ∂∂''=+∂∂421112212211(())(())x f x f x f x f x x ''''''''=⋅++⋅+ 531112222x f x x f xf ''''''=⋅++ y x z ∂∂∂22z y x ∂=∂∂4212()x f x f x∂''=+∂ 3421111222122224(())2(())y y x f x f y f xf x f y f x x ''''''=+⋅+⋅-+++- 3412112242.x f xf x yf yf ''''=++- (2)设),(y x z z =是方程)arc tan(z y x xyz ++=在)1,1,0(-点确定的隐函数,求xz∂∂及)1,1,0(-∂∂yz解:令)arctan(),,(z y x xyz z y x F ++-= …1分则 2)(11z y x xy F z +++-= 2)(11z y x yz F x +++-=2)(11z y x xz F y+++-= …6分 1])(1[1])(1[22-+++-+++-=-=∂∂z y x xy z y x yz F F x z z x ; …8分 11])(1[1])(1[22)1,1,0(-=-+++-+++-=-=∂∂-z y x xy z y x xz F F yz z y…10分六、应用题(本题满分10分)从斜边长为l 的一切直角三角形中,求有最大周长的直角三角形,并求出最大周长.解:设另两边长分别为y x ,,则 222l y x =+,周长 l y x C ++= …2分 设拉格朗日函数 )(),,(222l y x l y x y x F -++++=λλ …4分令 ⎪⎩⎪⎨⎧=-+==+==+=0021021222l y x F y F x F y x λλλ …6分解方程组得l y x 22==为唯一驻点,且最大周长一定存在 …8分 故当l y x 22==时,最大周长为l C )21(+= …10分1112B一、填空题(每小题2分,共10分)1. y x z 2=在点)1,1(处的._______________=dz22,dz xydx x dy =+112.x y dzdx dy ===+2. 设函数y xy ax x y x f 22),(22+++=在点)1,1(-取得极值,则常数_____=a .211(1,1)(4)0x x y f x a y ==--=++=,11(1,1)220y x y f xy ==--=+=,所以 5.a =-例36 设函数22(,)22f x y x ax xy y =+++在(1,1)-处取得极值,试求常数a ,并确定极值的类型.分析 这是二元函数求极值的反问题, 即知道(,)f x y 取得极值,只需要根据可导函数取得极值的必要条件和充分条件即可求解本题.解 因为(,)f x y 在(,)x y 处的偏导数均存在,因此点(1,1)-必为驻点, 则有 2(1,1)(1,1)(1,1)(1,1)40220fx a y x f xy y ----⎧∂=++=⎪∂⎪⎨∂⎪=+=⎪∂⎩,因此有410a ++=,即5a =-. 因为22(1,1)4f A x-∂==∂,2(1,1)(1,1)22fB y x y--∂===-∂∂, 22(1,1)(1,1)22fC x y--∂===∂,2242(2)40AC B ∆=-=⨯--=>,40A =>,所以,函数(,)f x y 在(1,1)-处取得极小值.二、选择题(每小题2分,共10分)3. 在点P 处函数),(y x f 的全微分df 存在的充分条件为 ( C ) (A) y x f f ,均存在 (B) f 连续(C) f 的全部一阶偏导数均连续 (D) f 连续且y x f f ,均存在三、计算题(每小题8分,共40分)1. 设),(y x z z =是由方程z z y x 2222=++所确定的隐函数,计算22,x z x z ∂∂∂∂的值. 解:设 222(,,)2F x y z x y z z =++-,则2x F x =,2y F y = ,22,z F z '=-2,221z x x x z z ∂=-=∂--22()1z xx x z∂∂=∂∂-21(1)x z xz z -+=-22231(1)1(1)(1)xz xz x z z z -+-+-==-- 4. 求函数zx yz xy u ++=在点)3,1,2(沿着从该点到点)15,5,5(的方向导数.解 方向(3,4,12)l = 03412{,,}.13133l =1312cos ,134cos ,133cos ===γβα3)3,1,2(,5)3,1,2(,4)3,1,2(===z y x u u u ,1368cos cos cos =++=∂∂γβαz y x u u u l z . 五、证明题(每小题7分,共7分)证明(,)(0,0)(,)0(,)(0,0)x y f x y x y ≠==⎩在)0,0(点偏导数存在,但不可微.证: (,0)0,(0,)0f x f y ==,0(0,0)(0,0)(0,0)limlim00.x x x f x f f x∆→→+∆-===∆ 00(0,0)(0,0)(0,0)limlim 00.y y y f y f f y∆→∆→+∆-===∆ (,)(0,0)f x y 所以函数在处可导....................3分2202200lim ),(lim )0,0()0,0(limy x y x yx y x f y f x f z y x ∆∆∆∆∆∆∆∆ρ∆∆∆ρρρ+=+=--→→→当点(,)P x y ∆∆沿曲线y kx =趋向(0,0)时,22222222000()lim lim lim ()()()()x x y k xx y x y k x x y x y x k x ρ→∆→→∆=∆∆∆∆∆∆==∆+∆∆+∆∆+∆21kk =+. 显然,当k 取值不同是,极限也不相同。
多元微分几何应用典型例题与课外练习
多元微分几何应用典型例题与课外练习一、典型例题例1 求曲线sin ,1cos ,4sin 2t x t t y t z =−=−=在点2t π=处的切线方程和法平面方程.解 因()1cos ,()sin ,()2cos 2t x t t y t t z t ′′′=−==,故在 2t π=处的切向量为.又在 2t π=处0001,1,2x y z π=−==11211x y π+−−==.法平面方程为1102x y z π+−+−−=,即402x y π++−−=.例2 求曲线 2221y xz x⎧=⎨=+⎩在点处的切线及法平面方程.解:因 22,21yy zz ′′==−,所以11x y y y=′==,则在点处的切向量为1(1,,24−. 故过处的切线方程为 121142x z −−==−, 法平面方程为11((2)024x y z −+−−=. 即40y +−= .注:该题也可用基本方法中的方法2做,请读者自己完成,并作比较.例3 求曲线 2223023540x y z x x y z ⎧++−=⎨−+−=⎩在点(1, 1, 1)处的切线和法平面方程.解: 设x 为参数,将曲线所给方程组的各方程两边对x 求导得222302350x yy zz y z ′′++−=⎧⎨′′−+=⎩ 解得10415649,106106x z x y y z y z y z−−+−′′==−−−−,(1,1,1)(1,1,1)91,1616y z ′′=−=.则在点(1, 1, 1)处的切向量为 91(1,,1616−. 所给曲线在(1, 1, 1)处的切线方程为 1119111616x y z −−−==−,即1111691x y z −−−==− , 法平面方程为911(1)(1)01616x y z −−−+−= ,即169240x y z +−−=. 例4 求椭球面222236x y z ++=在(1, 1, 1)处的切平面方程与法线方程.解 设222(,,)236F x y z x y z =++−,由于 2,4,6x y z F x F y F z ′′′===在全平面上处处连续,在(1, 1, 1)处 2,4,6x y z F F F ′′′===,椭球面在点(1, 1, 1)处的法向量为(2, 4, 6). 则所求切平面方程为2(1)4(1)6(1)0x y z −+−+−=,即 236x y z ++=所求法线方程为111246x y z −−−==,即111123x y z −−−==. 例5 求曲面222x z y =+平行于22z x y =+的切平面方程.解:设切点为 0000(,,)X x y z . 曲面 222x z y =+,因此,2z z x y x y ∂∂==∂∂.则曲面在 0000(,,)X x y z 处的法向量为00(,2,1)x y .曲面在点0X 处的切平面方程为00000()2()()0x x x y y y z z −+−−−=又切平面与已知平面22z x y =+平行,因此0021221x y −==−,解得切点坐标为000(,,)(2,1,3)x y z =,所求切平面方程为2(2)2(1)(3)0x y z −+−−−=, 即2230x y +−=.例 6 求曲面 sin cos ,sin sin ,cos (0,02)x a y a z a ϕθϕθθϕπθπ===<<<<在点000(,)P ϕθ处的切平面方程和法线方程.解 点000(,)P ϕθ对应曲面上的点 0000(,,)X x y z 其中00000000sin cos ,sin sin ,cos x a y a z a ϕθϕθθ===.0022000000sin 0(,)sin sin cos cos cos sin (,)P a z x a a a ϕϕθϕθϕθϕθ−∂==−∂000022000cos sin cos cos (,)sin cos sin 0(,)P a a y z a a ϕθϕθϕθϕϕθ∂==−∂0000022000000cos cos cos sin (,)sin cos cos sin sin sin (,)P a a x y a a a ϕθϕθϕϕϕθϕθϕθ−∂==−∂则曲面在点000(,)P ϕθ处的法向量为222000000(sin cos ,sin sin ,sin cos )a a a ϕθϕθϕϕ. 曲面在点0X 处的切平面方程为22000000002000sin cos (sin cos )sin sin (sin sin )sin cos (cos )0a x a a y a a z a ϕθϕθϕθϕθϕϕθ−+−+−=即00000sin cos sin sin cos x y z a ϕθϕθϕ++=所求的法线方程为00000222000000sin cos sin sin cos sin cos sin sin sin cos x a y a z a a a a ϕθϕθθϕθϕθϕϕ−−−==即0000000000sin cos sin sin cos sin cos sin sin cos x a y a z a ϕθϕθθϕθϕθϕ−−−==. 例7 求过直线3250x y z x y z −−=⎧⎨++=⎩,且与曲面2252228x y z −+=相切之切平面方程.解 过直线的平面方程可设为325()0x y z x y z λ−−−+++=,即(3)(2)(1)50x y z λλλ++−+−−=,其法向量为(3,2,1)λλλ+−−.记225(,,)2228F x y z x y z =−+−,则 4,4,2x y z F x F y F ′′′==−=设所求的切平面的切点为000(,,)x y z ,则曲面上0002(,,)x y z 处的法向量为00(4,4,2)x y −,且有0002200000(3)(2)(1)50(1)5222(2)8321(3)442x y z x y z tx y λλλλλλ⎧⎪++−+−−=⎪⎪−+=⎨⎪+−−⎪===⎪−⎩由(1)、(3)解得000222115,,248t t x y z t t t+−==−=−, 代入(2)得 2430t t −+=. 解得 121,3t t ==,故 123,7λλ==,则所求切平面方程为3253()0x y z x y z −−−+++=,或3257()0x y z x y z −−−+++=,即625x y z ++= 或 10565x y z ++=.例8 试证曲面 (yz xf x=上任一点处的切平面都过原点,其中()f u 为可微函数.2()()()()()zy y y y y y f xf f f x x x x x x x ∂′′=+⋅−=−⋅∂,1()()z y y xf f yx x x ∂′′=⋅=∂. 故曲面上点 0000(,,)X x y z 处的法向量为 (,,1)yf f f x′′−+−. 则过曲面上点 0000(,,)X x y z 的切平面方程为00000000000[()()]()()()y y y yz z f f x x f y y x x x x ′′−=−−+− 整理后得 000000000000[()()]()(y y y y yz z f f x f y x f x x x x x ′′−=−+−. 注意到0000(y z x f x =,从上述方程得切平面方程为 00000000[()()]()0y y y yf f x f y z x x x x ′′−+−=. 可知其必定过原点. 二、课外练习题1、求曲线 231,1,x t y t z t =+=−=在点(2, 1, 1)处的切线和法平面.2、求空间曲线22221010x y x z ⎧+=⎨+=⎩在点0(3,1,1)X 处的切线方程和法平面方程. 3、求曲面1xy yz zx ++=上点 (1,2,3)−−处的切平面和法线方程.4、求曲面 ,,v u x ye y ve z u v ===+在0u v ==处的切平面.5、设f 是可微函数,证明曲面 (,)0f cx az cy bz −−=上任意一点的法线与一定向量垂直.。
(完整版)多元函数微分法及其应用习题及答案
第八章 多元函数微分法及其应用(A)1.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,xy z∂∂∂2 ,则在D 上,xy zy x z ∂∂∂=∂∂∂22。
(2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。
2.求下列函数的定义域(1)y x z -=;(2)22arccos yx z u +=3.求下列各极限(1)x xy y x sin lim 00→→; (2)11lim 00-+→→xy xyy x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→4.设()xy x z ln =,求y x z ∂∂∂23及23y x z∂∂∂。
5.求下列函数的偏导数 (1)xyarctgz =;(2)()xy z ln =;(3)32z xy e u =。
6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数dt dz 。
7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dtdu。
8.曲线⎪⎩⎪⎨⎧=+=4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少?9.求方程1222222=++cz b y a x 所确定的函数z 的偏导数。
10.设y x ye z x 2sin 2+=,求所有二阶偏导数。
11.设()y x f z ,=是由方程y z z x ln =确定的隐函数,求xz∂∂,y z ∂∂。
12.设x y e e xy =+,求dxdy 。
13.设()y x f z ,=是由方程03=+-xy z e z确定的隐函数,求xz∂∂,y z ∂∂,y x z ∂∂∂2。
多元函数的微分学典型例题
多元函数的微分学典型例题例 1 设 2 2 y xy x z + - = .求它在点 ) 1 , 1 ( 处沿方向v = ) sin , cos ( a a 的方向导 数,并指出:(1) 沿哪个方向的方向导数最大? (2) 沿哪个方向的方向导数最小? (3) 沿哪个方向的方向导数为零?解 1 ) 1 , 1 ( = x z , 1 ) 1 , 1 ( = y z . ) 1 , 1 (v z¶ ¶ a a sin cos + = .因此(1) 函数 a a a j sin cos ) ( + = 在 4pa = 取最大值,即沿方向 ) 1 , 1 ( 的方向导数最大.(2) 函数 a a a j sin cos ) ( + = 在 4 pa - = 取最小值,即沿方向 ) 1 , 1 ( - - 的方向导数最小.(3) 43pa - = 是函数 a a a j sin cos ) ( + = 的零点,即沿方向 ) 1 , 1 (- 的方向导数为零.例 2 如果函数 ) , ( y x f 在点 ) 2 , 1 ( 处可微, 且从点 ) 2 , 1 ( 到点 ) 2 , 2 ( 方向的方向 导数为2,从点 ) 2 , 1 ( 到点 ) 1 , 1 ( 方向的方向导数为 2 - .求 (1) 该函数在点 ) 2 , 1 ( 处的梯度;(2) 该函数在点 ) 2 , 1 ( 处从点 ) 2 , 1 ( 到点 ) 6 , 4 ( 方向的方向导数. 解 (1) 设 x f 和 y f 分别表示函数 ) , ( y x f 在点 ) 2 , 1 ( 处关于x 和 y 的偏导 数,从点 ) 2 , 1 ( 到点 ) 2 , 2 ( 的方向为 1 l ,从点 ) 2 , 1 ( 到点 ) 1 , 1 ( 的方向为 2 l ,则 1 l 和 2 l 的方向余弦分别为 ) 0 , 1 ( 和 ) 1 , 0 ( - ,于是就有x f l f = ¶ ¶ 12 0 1 = × + × y f ,故 2 = x f ; 2 1 0 2 - = × - × = ¶ ¶ y x f f l f ,故 2 = y f . 因此 ) 2 , 2 ( ) 2 , 1 ( = gragf .(2) 在点 ) 2 , 1 ( 处从点 ) 2 , 1 ( 到点 ) 6 , 4 ( 方向的方向余弦为 ÷ ø öç è æ 5 4,5 3 ,设该方向为l ,则 l f ¶ ¶ ) 2 , 1 ( 5145 4 2 5 3 2 = ´ + ´ = .例 3 验证函数) , ( y x f ïî ï í ì = + ¹ + + = . 0 ,0 , 0 , 2 2 22 22 y x y x yx xy 在原点 ) 0 , 0 ( 连续且可偏导,但它在该点不可微.验证 注意不等式 | | 2 2 xy y x ³ + ,就有0 | | 0 2 2 22 2 2 22 ® + = + + £ + £y x y x y x y x xy , ) , ( y x ® ) 0 , 0 ( .故而 0 ) , ( lim)0 , 0 ( ) , ( = ® y x f y x f = ) 0 , 0 ( .因此, ) , ( y xf 在原点 ) 0 , 0 ( 连续. x f ) 0 , 0 ( = 0lim® x 0 )0 , 0 ( ) 0 , ( = - xf x f ,由变量对称性得 y f ) 0 , 0 ( 0 = .即该函数在原点 ) 0 , 0 ( 可偏导.假如 ) , ( y x f 在原点 ) 0 , 0 ( 可微,就应有) , ( y x f = - ) 0 , 0 ( f x f ) 0 , 0 ( + x y f ) 0 , 0 ( ) ( 2 2 y x y + +o ,即 ) , ( y x f = ) ( 2 2 y x + o .但这是不可能的,因为沿路径 ) 0 ( ¹ = k kx y ,就有= + ® 2 2 )0 , 0 ( ) , ( ), ( limyx y x f kx x = + ® 2 2 ) 0 , 0 ( ) , ( lim y x xykx x 0 1 lim 2 2 2 2 2 0 ¹ + = + ® k k x k x kx x .可见, ) , ( y x f ¹ ) ( 2 2 y x + o .因此, ) , ( y x f 在原点 ) 0 , 0 ( 不可微. 例 4 验证函数) , ( y x f ï îï íì = + ¹ + + + = . 0 , 0 , 0 , 1 sin ) ( 2 2 22 22 2 2 y x y x y x y x 的偏导函数 ) , ( y x f x 和 ) , ( y x f y 在原点 ) 0 , 0 ( 不连续,但它却在该点可微.验证x f ) 0 , 0 ( = 0lim® x 0 1sin lim ) 0 , 0 ( ) 0 , ( 2 0 = = - ® xx x f x f x ; ) , ( y x ¹ ) 0 , 0 ( 时,) , ( y x f x 22 2222222121 2sin()cos () x x x y x y x y x yæö =++- ç÷ +++ èø 2 2 2 2 2 2 1cos2 1 sin2 y x y x x y x x + + - + = .因此, ) , ( y x f x ï î ï íì= + ¹ + + + - + = . 0 , 0 , 0 , 1 cos 2 1 sin 2 2 2 2 2 22 2 2 2 2 y x y x y x y x x y x x 由变量对称,得) , ( y x f y ï îï íì= + ¹ + + + - + = . 0 , 0 , 0 , 1 cos 2 1 sin 2 2 2 2 2 22 2 2 2 2 y x y x y x y x y y x y ) , ( y x f x 在点 ) 0 , 0 ( 不连续.事实上,沿路径 x y = , ® ) , ( x x ) 0 , 0 ( 时,2 2 2 2 1 cos 2 2 2 1 sin2 ) , ( x x x x x x x f x - = 中,第一项趋于零,而第二项 22 1cos 1 x x - 的极限不存在(比如取 pk x k 2 1=, +¥ ® k 时有 0 ® k x ,而2 2 1cos 1 kk x x -¥ ® ).可见, x y x f ) 0 , 0 ( ) , ( lim ® ) , ( y x 不存在,因此 ) , ( y xf x 在点 ) 0 , 0 ( 不连续.同理可证 ) , ( y x f y 在点 ) 0 , 0 ( 不连续. 但由于0 1sin ) , ( 0 2 2 22 2 2 22 ® + £ + + =+ £y x y x y x y x y x f ,® ) , ( y x ) 0 , 0 ( ,就有 0 ) , ( 22® + yx y x f ,于是就有0 ) , ( ) 0 , 0 ( ) 0 , 0 ( ) 0 , 0 ( ) , ( 2222® + =+ - - - yx y x f yx yf x f f y x f y x , ® ) , ( y x ) 0 , 0 ( ,即 ) ( ) 0 , 0 ( ) 0 , 0 ( ) 0 , 0 ( ) , ( 2 2 y x y f x f f y x f y x + + + = - o . 可见 f 在点 ) 0 , 0 ( 可微. 例 5 证明函数) , ( y x f ï îïí ì = + ¹ + + = . 0 , 0 , 0 , 2 22 22 42 2 y x y x y x xy 在原点 ) 0 , 0 ( 处沿各个方向的方向导数都存在,但它在该点不连续,因此不可 微.证 设 ) sin , cos ( a a = l 则= - = ¶ ¶ ® tf t t f l f t )0 , 0 ( ) sin , cos ( lim 0 a a 32 2244 0 2cos sin lim ( cos sin )t t t t t a a a a ® = +3 0 , , , 22 2tan sin , , . 22p p a p p a a a ì= ï ï = íï ¹ ï î 可见在原点 ) 0 , 0 ( 处沿各个方向的方向导数都存在.但沿路径 2y x = ,有 = ® ) , ( lim )0 , 0 ( ) , ( 2y x f y y f y y y y y ¹ = + ® 1 2 lim 4 4 22 0 ) 0 , 0 ( 可见 f 在 原点 ) 0 , 0 ( 并不连续,因此不可微. 例 6 计算下列函数的高阶导数或高阶微分: (1) x yz arctan = ,求 2 2 x z ¶ ¶ , y x z ¶ ¶ ¶ 2 22 y z ¶ ¶ ;解 x z ¶ ¶ 2 2 2 2 2 1 y x y x y x y + - = + -= , y z ¶ ¶ 22 22 1 1 y x x xy x + = + =. 2 2 x z ¶ ¶ 2 2 2 ) ( 2 y x xy + = , y x z ¶ ¶ ¶ 2 2 2 2 2 2 ) ( y x x y + - = , 2 2 y z ¶ ¶ = 22 2 )( 2 y x xy+ - . (2) xyxe z = ,求 y x z ¶ ¶ ¶ 2 3 和 23 y x z¶ ¶ ¶ .解 x z ¶ ¶ = ) 1 ( xy e xye e xyxy xy + = + , 2 2 x z ¶ ¶ ) 2 ( ) 1 ( xy ye y e xy ye xy xy xy + = + + = ;yx z¶ ¶ ¶ 2 ) 2 ( ) 1 ( xy xe xe xy xe xy xy xy + = + + = . y x z ¶ ¶ ¶ 2 3 = = ¶ ¶ ¶¶ x y x z 3 = ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ ¶ y x z x 2 xyxy xy xy e xy xye xye xy e ) 2 3 ( ) 2 ( + = + + + ;2 3 y x z ¶ ¶ ¶ = ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ ¶ = y x z y 2 ( )= + + xy xy xe xy xe x ) 2 ( xye y x x x ) 3 ( 2 + . (3) ) ln(xy x z = ,求 z d 2 ; 解 x z 1 ) ln( ) ln( + = + = xy xy xy xy, xy z y xy x 1 = = , x xy y z xx 1= = ;y z y x xy x = = 2 , yy z 2 yx- = .2222222 2 12 xx xy yy d z dx dy z z dx z dxdy z dy x y x dx dxdy dy x y yæö¶¶ =+=++ ç÷ ¶¶ èø =+- .(4) ) ( sin 2 by ax z + = ,求 z d 3 .解 x z ) ( 2 sin by ax a + = , xx z ) ( 2 cos 2 2 by ax a + = , = 3x z ) ( 2 sin 4 3 by ax a + - ,) ( 2 sin 4 2 axby b a z xxy - = ; y z ) ( 2 sin by ax b + = , ) ( 2 cos 2 2 by ax b z yy + = ,= = yyx xyy z z ) ( 2 sin 4 2 by ax ab + - . = 3 y z ) ( 2 sin 4 3 by ax b + - .z d 3 = = ÷ ÷ ø ö ç ç è æ ¶ ¶ + ¶¶ z y dy x dx 33223322333 x x y xy y z dx z dx dy z dxdy z dy +++ ) ( 2 sin 12 ) ( 2 sin 4 2 3 by ax b a by ax a + - + - = ) ( 2 sin 12 2 by ax ab + - 3 4sin 2()b ax by -+ ) ( 2 sin ) ( 4 3 by ax b a + + - = .例 7 利用链式规则求偏导数 :(1) ÷ ÷ øö ç ç è æ = , y x xy f u .求 x u¶ ¶ , y u ¶ ¶ , y x u ¶ ¶ ¶ 2 和 2 2 y u ¶ ¶ .解 设 xy t = , yxs = .x u ¶ ¶ = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = x s s f x t t f s f y t f y ¶ ¶ + ¶ ¶ 1 , y u ¶ ¶ = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = y s s f y t t f sfy x t f x ¶ ¶ - ¶ ¶ 2 ;y x u ¶ ¶ ¶ 2 ÷ ø ö ç è æ ¶ ¶ ¶ ¶ = x u y ÷ ÷ øö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + ¶ ¶ = y s s t f y t t f y t f 2 2 2 22 22 11 f f t f s y s y s t y s y æö¶¶¶¶¶ -++ ç÷ ¶¶¶¶¶¶ èø = ÷ ÷ øö ç ç è æ ¶ ¶ ¶ - ¶ ¶ + ¶ ¶ s t f y x t f x y t f 2 2 2 2 22 222 11 f f x f x y s y s t y s æö¶¶¶ -+- ç÷ ¶¶¶¶ èø 2 2 t f xy ¶ ¶ = s t f y x ¶ ¶ ¶ - 2 3 s fy t f ¶ ¶ - ¶ ¶ + 2 1 .2 2 y u ¶ ¶ ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ = y u y 2 f x f x y t y s æö ¶¶¶ =- ç÷ ¶¶¶èø 23 2 2 2 2 y xs f y x y s s t f y t t f x - ¶ ¶ + ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = = ÷ ÷ øöç ç è æ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ ¶ y s s f y t t s f 2 2 2 23 2 2 2 2 2 y xs f y x s t f y x tf x x - ¶ ¶ + ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ - ¶ ¶ = = ÷ ÷ ø ö ç ç è æ ¶ ¶ - ¶ ¶ ¶ 2 2 2 2 s f y x t sf x s f y x s f y x s t f y x t f x ¶¶ +¶ ¶ + ¶ ¶ ¶ - ¶ ¶ = 3 2 2 2 2 2 2 2 2 2 22 2 . (2) ) ( 222z y x f u + + = .求 x u ¶ ¶ , y u ¶ ¶ , z u¶ ¶ , y x u ¶ ¶ ¶ 2 和 2 2 xu ¶ ¶ .解 设 2 2 2 z y x t + + = .x u ¶ ¶ ( 2 ) ( f x x tt f ¢ = ¶ ¶ ¢ = ) 2 2 2 z y x + + , y u ¶ ¶ ( 2 ) ( f y yt t f ¢ = ¶ ¶ ¢= ) 2 2 2 z y x + + , z u ¶ ¶ ( 2 ) ( f z zt t f ¢ = ¶ ¶ ¢ = ) 2 2 2 z y x + + ;y x u ¶ ¶ ¶ 2 = ÷ ø ö ç è æ ¶ ¶ ¶ ¶ = x u y ( )= + + ¢ ¶ ¶) ( 2 2 2 2 z y x f x y 4( xyf ¢¢ ) 2 2 2 z y x + + ; 22 xu ¶ ¶ = ÷ ø ö ç è æ ¶ ¶ ¶ ¶ = x u x ( ) 222 2() xf x y z x ¶¢ ++ ¶ 2( f ¢ = ) 2 2 2 z y x + + 2 4x + ( f ¢¢ ) 2 2 2 z y x + + . 例 8 设函数 ) , ( y x f z = 具有二阶连续导数.写出 2 2 x z ¶ ¶ 2 2 y z ¶ ¶ + 在坐标变换2 2 y x u - = , xy v 2 = 下的表达式.解x z ¶ ¶ = u z ¶ ¶ x u ¶ ¶ + v z ¶ ¶ x v ¶ ¶ x 2 = u z ¶ ¶ + y 2 vz¶ ¶ ,2 2 x z ¶ ¶ 2 = u z¶ ¶ ÷ ÷ øö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + x v v u z x u u z x 2 2 2 2 22 2 2 z u z v y v u x v x æö ¶¶¶¶ ++ ç÷ ¶¶¶¶¶ èø 2 2 24 u z x ¶ ¶ = v u z xy ¶ ¶ ¶ + 2 8 222 4 v z y ¶ ¶ + 2 + u z ¶ ¶ .y z ¶ ¶ = u z ¶ ¶ y u ¶ ¶ + v z ¶ ¶ y v ¶ ¶ y 2 - = u z ¶ ¶ + x 2 vz¶ ¶ ,2 2 y z ¶ ¶ 2 - = u z¶ ¶ ÷ ÷ øö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ - y v v u z y u u z y 2 2 2 2 22 2 2 z u z v x v u y v y æö ¶¶¶¶ ++ ç÷ ¶¶¶¶¶ èø u z vz x v u z xy u z y ¶ ¶ - ¶ ¶ + ¶ ¶ ¶ - ¶ ¶ = 2 4 8 4 222 2 2 2 2. 则2 2 x z ¶ ¶ 22 y z ¶ ¶ + 2 2 2 4 u z x ¶ ¶ = v u z xy ¶ ¶ ¶ + 2 8 2 22 4 v z y ¶ ¶ + 2 + u z ¶ ¶ = ¶ ¶ - ¶ ¶ + ¶ ¶ ¶ - ¶ ¶ + u z v z x v u z xy u z y 2 4 8 4 2 2 2 2 2 2 2÷ ÷ ø ö ç ç è æ ¶ ¶ + ¶¶ + 2 2 2 22 2 ) ( 4 v z u z y x . 例 9 (1)写出函数 ) , ( y x f 9 8 6 2 23 2 2 3 3 + - - - - + = y x xy y x y x 在点 ) 2 , 1 ( 的Taylor 展开式.解= ) 2 , 1 ( f 16 - , = ) 2 , 1 ( x f 13 - , = ) 2 , 1 ( y f 6 - ; = ) 2 , 1 ( xx f 10, = ) 2 , 1 ( xy f 12 - , = ) 2 , 1 ( yy f 8;= ) 2 , 1 ( 3 x f 18, = ) 2 , 1 ( xxy f 4 - , 4 ) 2 , 1 ( - = xyy f , 6 ) 2 , 1 ( 3 = y f .更高阶的导数全为零 .因此, ) , ( y x f = + ) 2 , 1 ( f + - ) 1 )( 2 , 1 ( x f x ( 1 , 2 )(2)y f y - + - + 2 ) 1 )( 2 , 1 ( x f xx + - - ) 2 )( 1 )( 2 , 1 ( 2 y x f xy 2( 1 , 2 )(2) yy f y - 3 3 ( 1 , 2 )(1) x f x +- 3 ) 2 ( ) 1 )( 2 , 1 ( 3 2 + - - + y x f xxy 2) 2 )( 1 )( 2 , 1 ( - - y x f xyy 3 3 ( 1 , 2 )(2)y f y +- 22 1613(1)6(2)5(1)12(1)(2)4(2)x y x x y y =-----+----+- 3 2 2 3 ) 2 ( ) 2 )( 1 ( 2 ) 2 ( ) 1 ( 2 ) 1 ( 3 - + - - - - - - - + y y x y x x .(2) 求函数 ) , ( y x f y x e + = 在点 ) 0 , 0 ( 的n 阶Taylor 展开式,并写出余项.解x f ¶ ¶ y x e + = , y f ¶ ¶ yx e + = ,一般地,有 k h k h yx f ¶ ¶ ¶ + y x e + = ,则 1 ) 0 , 0 ( 00 = = ¶ ¶ ¶ + + e yx f kh k h . 因此, ) , ( y x f 在点 ) 0 , 0 ( 的n 阶Taylor 展开式为) , ( y x f å = + ÷ ÷ øö ç ç è æ ¶ ¶ + ¶ ¶ = n k kf y y x x k 0 ) 0 , 0 ( ! 1 )! 1 ( 1 + n 1( , )n x y f x y x y q q + æö ¶¶ + ç÷ ¶¶ èø å = + + = nk k y x k 0 ) ( ! 1 )! 1 ( 1 + n yx n e y y x x 1q q + + ÷ ÷ øö ç ç è æ ¶ ¶ + ¶ ¶ , ) 1 0 ( < <q .例 10 求下列方程所确定的隐函数的导数或偏导数:(1) 0 arctan = - + a y a y x ,求 dx dy 和 2 2 dxy d ;解 0 1 1 2 = ¢ - ÷ øöç è æ + + ¢+ a y a y x a y ,即 a y y x a y a ¢ = + + ¢ + 2 2 ) ( ) 1 ( ,即 dx dy 22 ) ( y x a + = . 由 2 2 ) ( y x y a + ¢ = ,再求导 0 ) 1 )( ( 2 ) ( 2 = ¢ + + ¢ + + ¢ ¢ y y x y y x y ,解得 2 ) ( ) 1 )( ( 2 y x y y x y y + ¢ + + ¢ - = ¢ ¢ ,代入 = ¢ y 22)( y x a + ,得 2 2 dx y d 22 23 () () x y a a x y ++ = + . (2) 0 = -xyz e z,求 x z ¶ ¶ 、 y z ¶ ¶、 2 2 xz ¶ ¶ 和 y x z ¶ ¶ ¶ 2 ;解 方程 0 = -xyz e z 两端对x 求导,得 0 = - - x z x xyz yz e z , x z ¶ ¶ xye yzz - = ;方程 0 = -xyz e z 两端对y 求导,得 0 = - - z z y xyz xz e z , y z ¶ ¶ xye xzz - = .0 = - - x z x xyz yz e z 再对x 求导,得 0 2 = - - - - + xx x x zx z xx xyz yz xz z e z e z ,解得2 2 x z ¶ ¶ xy e e z z y x z z zx x - - + + = 2 ) ( 32 2 2 2 ) ( ) ( xy e e z y xy e z y ze zzz z - - - + = . 同理得y x z ¶ ¶ ¶ 2 32 2 2 2 )( ) ( xy e e z x xy e z x ze zzz z - - - + = . (3) 0 ) , , ( = + + + x z z y y x f ,求 x z ¶ ¶ 和 yz ¶ ¶.解 设 y x u + = , z y v + = , x z w + = ,方程 0 ) , , ( = + + + x z z y y x f 两端对x 求导,得 = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ x w w f x v v f x u u f 0 1 = ÷ ø ö ç è æ + ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + ¶ ¶ x z w f x z v f u f,解得 x z¶ ¶ w v u w f f f f + + - = ;同理得 y z ¶ ¶ wv v u f f f f + + - = .例 11 求下列方程组所确定的隐函数的导数或偏导数 :(1) ï î ï í ì = + + = - - . 4 32 ,0 22 2 2 22 a z y x y x z 求 dx dy , dx dz , 2 2 dx y d 和 2 2 dx z d ; 解 方程对x 求导,注意 y 和z 是x 的函数,就有 î íì = ¢ + ¢ + = ¢ - - ¢ . 0 6 4 2 , 0 2 2 z z y y x y yx z *) 解得 dx dy ) 3 1 ( 2 6 z y xz x + + - = , dx dzzx z y xy 3 1 ) 3 1 ( 2 2 + = + = .方程 *)在对x 求导,有 ï î ï íì = ¢ + ¢ ¢ + ¢ + ¢ ¢ + = ¢ - ¢ ¢ - - ¢ ¢ . 0 6 6 4 4 , 0 2 2 2 2 2 2 z z z y y yx y y y z 解得 2 2 dx yd ) 3 1 ( 4 12 6 ) 3 1 ( 4 2 2 z y z z z y x + + ¢ + + ¢ + - = , 2 2 dxz d ) 3 1 ( 2 6 ) 1 ( 4 4 2 2 z y z y xy y y y + ¢ - - + ¢ + = ;代入 dx dy 和 dxdz的表达式,即得2 2 dx y d 2 22 3 ) 3 1 ( 2 3 ) 3 1 ( 4 ) 6 1 ( 4 ) 3 1 ( 4 12 z y x z y z x z y z x + -+ + - + + - = , 2 2 dx z d 222 3 ) 3 1 ( 3 ) 3 1 ( 2 ) 6 )( 1 ( ) 4 (2 1 z x z y xz x y x + - + + + + - = . (2) î í ì - = + = . ) , (, ) , , ( 2y v x u g v y v x u f u 求 x u ¶ ¶ 和 y v ¶ ¶ . 解 设 y v s + = , x u t - = , y v r 2 = ,方程对x 求导,注意u 和v 是x 的函 数,就有î íì + = + + = . ) , ( ) , (, ) , , ( ) , , ( ) , , (2 x r x t x x s x x u x r r t g t y v t g v s s x u f s x u f u s x u f u 即î íì + - = + + = . 2 ) , ( ) 1 )( , (, ) , , ( ) , , ( ) , , ( x r x t x x s x x u x yvv r t g u r t g v v s x u f s x u f u s x uf u 解得x u¶ ¶ ), ( ) , , ( ] 1 ) , ( 2 ][ 1 ) , , ( [ ) , ( ) , , ( ] 1 ) , ( 2 )[ , , ( r t g s x u f r t yvg s x u f r t g s x u f r t yvg s x u f t s r u t s r x - - - + - - = ; 方程对 y 求导,注意u 和v 是x 的函数,就有ï îï í ì + + = + + = . ) 2 )( , ( ) , ( , 1) )( , , ( ) , , ( 2 v yvv r t g u r t g v v s x u f u s x u f u y r y t y y s y u y 解得y v ¶ ¶), ( ) , , ( ] 1 ) , ( 2 ][ 1 ) , , ( [ ) , ( ) , , ( ] 1 ) , ( 2 )[ , , ( 2 r t g s x u f r t yvg s x u f r t g s x u f v r t yvg s x u f t s r u r s r s - - - - - -= . 例 12 设函数 ) , ( y x f z = 具有二阶连续偏导数. 在极坐标 q cos r x = , q sin r y = 变换下,求 + ¶ ¶ 2 2 x f 2 2 yf¶ ¶ 关于极坐标的表达式.解2 2 y x r + = , xy arctan = q .所以= ¶ ¶ x f = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ x f x r r f q q 2 2 2 2 y x y f y x x r f + ¶ ¶ - + ¶ ¶ q qq q ¶ ¶ - ¶ ¶ = f r r f sin cos , = ¶ ¶ y f = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ y f y r r f q q 2 2 2 2 y x x f y x y r f + ¶ ¶ + + ¶ ¶ q q q q ¶ ¶ + ¶ ¶ = f r r f cos sin ; 2 2 x f ¶ ¶ ÷ ø ö ç è æ ¶ ¶ - ¶ ¶ ¶¶ = q q q f r r f x sin cos r ¶ ¶ = q cos sin cos f f r r q q q ¶¶ æö - ç÷ ¶¶ èø q q ¶ ¶ -r sin sin cos f f r r q q q ¶¶ æö- ç÷¶¶ èør fr f rf r r f r csos r f ¶ ¶ + ¶ ¶ + ¶ ¶ + ¶ ¶ ¶ - ¶ ¶ = q q q q q q q q q q 2 22 2 2 2 2 2 2 2sin cos sin 2 sin sin 2 cos ; 类似有22 yf ¶ ¶ r f r f r f r r f r csos r f ¶ ¶ + ¶ ¶ - ¶ ¶ + ¶ ¶ ¶ + ¶ ¶ = q q q q q q q q q q 2 2 2 2 2 2 2 2 2 2cos cos sin 2 cos sin 2 sin . 于是得 + ¶ ¶ 2 2 x f 2 2 yf ¶ ¶ = r fr f r r f ¶ ¶ + ¶ ¶ + ¶ ¶ 1 1 2 2 2 2 2 q .例 13 证明:通过线性变换 y x u l + = , y x v m + = ,可以北将方程A 2 2 x f ¶ ¶B 2 + y x f ¶ ¶ ¶ 2C + 0 2 2 = ¶ ¶ yf,( 0 2 < - B AC )化简为 0 2 = ¶ ¶ ¶ v u f.并说明此时l 和m 为一元二次方程 0 2 2 = + + Ct Bt A 的两个相异实根.证 由 y x u l + = 和 y x v m + = 得x f ¶ ¶ v f u f ¶ ¶ + ¶ ¶ = , y u ¶ ¶ vfu f ¶ ¶ + ¶ ¶ = m l . 2 2 x f ¶ ¶ + ¶ ¶ = 2 2 u f + ¶ ¶ ¶ v u f 2 2 2 v f ¶ ¶ , 2 2 y f ¶ ¶ lm l 2 2 2 2 + ¶ ¶ = u f + ¶ ¶ ¶ v u f 2 222 v f ¶ ¶ m , = ¶ ¶ ¶ v u f 2 ) ( 2 2 m l l + + ¶ ¶ u f + ¶ ¶ ¶ v u f 2 2 22 vf ¶ ¶ m . 代入A 2 2 x f ¶ ¶ B 2 + y x f ¶ ¶ ¶ 2 C + 0 2 2 = ¶ ¶ yf ,化简得) 2 ( 2l l C B A + + 2 2 u f ¶ ¶ + ) 2 ( 2 m m C B A + + 2 2 vf ¶ ¶] 2 ) ( 2 2 [ lm m l C B A + + + + 0 2 = ¶ ¶ ¶ vu f.可见,当且仅当l 和m 为一元二次方程 0 2 2 = + + Ct Bt A 的两个相异实根时,方 程就化成 0 2 = ¶ ¶ ¶ vu f.例 14 求椭球面 498 3 2 2 2 2 = + + z y x 的平行于平面 7 5 3 = + + z y x 的切平面.解 所求切平面的法向量为 ) 6 , 4 , 2 ( z y x ,应有 56 3 4 1 2 z y x = = k 令== ,就有 2 k x = , k y 4 3 = , k z 6 5 = ,代入方程 498 3 2 2 2 2 = + + z y x ,有 498 2483 2 = k ,得12 ± = k . 在点M ) 10 , 9 , 6 ( 和N ) 10 , 9 , 6 ( - - - 的切平面与平面 7 5 3 = + + z y x 平 行.在点M ) 10 , 9 , 6 ( 的法向量为 ) 60 , 36 , 12 ( ,切平面为0 ) 10 ( 60 ) 9 ( 36 ) 6 ( 12 = - + - + - z y x ,即 0 83 5 3 = - + + z y x ;在点N ) 10 , 9 , 6 ( - - - 的法向量为 ) 60 , 36 , 12 ( - - - ,切平面为0 ) 10 ( 60 ) 9 ( 36 ) 6 ( 12 = + - + - + - z y x ,即 0 83 5 3 = + + + z y x .综上,椭球面 498 3 2 2 2 2 = + + z y x 上,平行于平面 7 5 3 = + + z y x 的切平面 有两块,它们是 0 83 5 3 = ± + + z y x .例15 证明曲面 a z y x = + + ) 0 ( > a 上任一点的切平面在各坐标轴上的 截距之和等于a .证 设M ) , , ( 0 0 0 z y x 为曲面 a z y x = + + 上任的一点,曲面在该点的切面为0 2 2 2 00 00 00 = - + - + - z z z y y y x x x ,即0 ) ( 0 0 0 0 00 = + + - + + z y x z z y y x x , 亦即0 0 0 0 = - + + a z z y y x x .化为截距式即为 1 0 0 0= + + az zay y ax x . 可见在各坐标轴上的截距之和为a az ay ax = + + 0 0 0 = + + ) ( 0 0 0 z y x a .例 16 在 ] 1 , 0 [ 上用怎样的直线 b ax + = x 来代替曲线 2 x y = ,才能使它在平方 误差的积分 = ) , ( b a J ò - 10 2 ) ( dx y x 为极小意义下的最佳近似.解 = ) , ( b a J = - - ò 10 22) ( dx b ax x 51 32 23 2 2 + - - + + b a ab b a .现求其中极小值.ï ï îï ï íì- + = - + = .3 2 2 ,2 1 3 2 a b J b a J b a 解得有唯一驻点M ÷ ø ö ç èæ- 6 1 , 1 .0 3 1 1 2 3 2 | ) ( > = - ´ = - M ab bb aa J J J ,又 0 32| > = Maa J ,因此, ) , ( b a J 在点 M ÷ ø ö ç è æ- 6 1 , 1 取极小值.因为 ) , ( b a J 在R 2 中仅有唯一的极小值,可见该极小值还是最小值.因此,在 ] 1 , 0 [ 上用直线 61- = x x 来代替曲线 2 x y = ,才能使它在平方误差的积分为极小的意义下是最佳的近似.例 17 要做一圆柱形帐篷,并给它加一个圆锥形的顶.问在体积为定值时,圆柱的半径R ,高H 及圆锥的高h 满足什么关系时,所用的布料最省?解 设体积为定值V ,则 ÷ ø ö ç èæ+ = h H R V 3 1 2 p ,得 h R V H 3 1 2 - = p .帐篷的全面积为2 2 2 2 322 2 ) , ( h R R Rh R V h R R RH h R S + + - =+ + = p p p p , 0 > R , 0 > H . R S 0 3 2 2 2 2 2 22 2 = + + + + - - = hR R h R h R V p p p ,(*)0 3 2 2 2 = + + - = hR RhR S h p p .(**)由(**)式的得 h h R 232 2 = + ,代入(*)式,有R S 0 6 4 5 12 242 2 = + + - = h R R h R Vh p p ,由 0 6 2 > h R ,应有 0 12 5 4 2 2 2 = - + Vh h R R p p . 这就是驻点出应满足的关系式.由于该问题在于有最小值,这也是帐篷的全面 积 ) , ( h R S 取最小值时,圆柱的半径R 与圆锥的高h 所应满足的关系式. 例 18 抛物面 2 2 y x z + = 被平面 1 = + + z y x 截成一椭圆.求原点到这个椭圆的 最长距离与最短距离.解 这是求函数 2 2 2 ) , , ( z y x z y x d + + = 在约束条件 0 2 2 = - - y x z 与0 1= - + + z y x 之下的条件极值问题 .构造 Lagrange 函数= ) , , , , ( m l z y x L l - + + 2 2 2 z y x m + - - ) ( 2 2 y x z ) 1 ( - + + z y x .(5) . 0 1 (4) , 0 (3) , 0 2) 2 ( , 0 2 2 ) 1 ( , 0 2 2 2 2 ï ï ï î ïï ïí ì = - + + = = - + = = + - = = + + = = + + = z y x Lz y x L z L y y Lx x L z y x m l m l m l m l 由(1)和(2)有 0 ) 1 )( ( 2 = + - l y x ,由于 1 - ¹ l (否则由(1)得 0 = m ,据(3)得 2 1 - = z ,代入(4) ,导致 0 212 2 = + + y x 无解),得 y x = .把 y x = 代入(4)和(5) ,解得 2 3 1 2 , 1 ± - =x , 231 2, 1 ± - = y , 3 2 2 1 m = - = x z .即得两个 驻点A ÷ ÷ ø ö ç ç è æ - + - + - 3 2 , 2 3 1 , 2 3 1 和B ÷ ÷ øöç ç è æ + - - - - 3 2 , 2 3 1 , 2 3 1 . 而该 问题必有最大值和最小值,因此,点A 和B 就是最大和最小值点.由于d ÷ ÷ ø öç ç è æ - + - + - 3 2 , 2 3 1 , 2 3 1 3 5 9- = ; d ÷ ÷ øöç ç è æ + - - - - 3 2 , 2 3 1 , 2 3 1 3 5 9+ = . 可见点A 和B 分别是最小和最大值点.即原点到这个椭圆的最长距离为 3 5 9+ ,最短距离为 3 5 9- .例 19 求椭圆 12 3 2 2 = + y x 的内接等腰三角形,其底边平行于椭圆的长轴,而使面积最大.解 所指内接等腰三角形的一半(如图) 是 ABC D ,设C 的坐标为(,) x y ,则三角(0,2)A yx(0,)B y o(,)C x y形 ABC D 面积为 ) 2 ( y x - 之半,于是所求内接等腰三角形的面积为 ) 2 ( y x - .问题是求函数 ) 2 ( ) , ( y x y x S - = 在约束条件 12 3 2 2 = + y x 之下的条件极值. 设Lagrange 函数为) 12 3 ( ) 2 ( ) , , ( 2 2 - + + - = y x y x y x L l l ,( 0 > x , 2 2 < < - y ),则ï î ïí ì = - + = = + -= = + - = (3) . 0 12 3 (2) , 0 6 ) 1 ( , 0 22 2 2 y x L y x L x y L y x ll l 从方程(1)和(2)中消去l ,得 y y x 6 3 2 2 - = ,代入(3) ,得 0 2 2 = - - y y ,解得 231± = y . 2 = y 时, 0 ) 2 , ( = x S .因此,得唯一的驻点 ) 1 , 3 ( - .该问题有最大值,当底边右端点的坐标为 ) 1 , 3 ( - 时,所得内接等腰三角形的面 积最大.。
(完整版)多元函数微分学及其应用习题解答
(((x 2 + y 2 ≤ 1, x+ y }(1- (t + 4) 2 解:令 t=xy , lim = lim= lim 2=- t →0 t →0习题 8-11. 求下列函数的定义域:(1) z =解: x -x - y ;y ≥ 0, y ≥ 0 ⇒ D ={x, y ) y ≥ 0, x ≥ y }x(2) z = ln( y - x) +;1 - x2 - y 2解: y - x ≥ 0, x ≥ 0,1 - x 2 - y 2 ⇒ D ={ x , y ) y > x ≥ 0 且 x2+ y 2 < 1}(3) u = R 2 - x 2 - y 2- z 2 +1x 2 + y 2+ z 2 - r 2(R > r > 0) ;解: 0 ≤ R 2 - x 2 - y 2 - z 2,0 < x 2 + y 2 + z 2 - r 2 ⇒⇒ D = {x , y , z ) r 2< x 2 + y 2 + z 2 ≤ R 2}(4) u = arccoszx 2 + y 2。
解:z2 2 ≠ 0 ⇒ D = {x, y ) z ≤x 2 + y 2 且 x 2 + y 2≠ 02. 求下列多元函数的极限::(1) lim ln( x + e y )x →1 x 2 + y 2y →0;解: limx →1y →0ln( x + e y ) x 2 + y 2 = ln(1+ 1)1= ln 2(2) lim 2 - xy + 4x →0xy y →0;1- 2 - xy + 4 2 t + 4 1 x →0xy t 1 4 y →01 / 28x →0 y →0x →0lim x +y = , m 不同时,极值也不同,所以极限不存在 。
(3) lim sin xyx →0x y →5;sin xy sin xy解: lim = 5lim = 5x →0 x 5xy →5y →01 - cos( x2 + y 2 ) (4) lim( x 2 + y 2 )e x 2 y 2;x →0 y →0解:Q 1 - cos( x 2 + y 2 ) = 2(sinx 2 + y 2 2)2 ,∴ l im x →0 y →01 - cos( x2 + y 2 ) 1= 2 ⋅ ⋅ 0 = 0( x 2 + y 2 )e x 2 y 2 2(5) lim( x 2 + y 2 ) xy 。
第六章 多元函数微分法及其应用部分考研真题及解答
第六章 多元函数微分法及其应用 6.1多元函数06.34) 设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求 (Ⅰ) ()()lim ,y g x f x y →+∞=(Ⅱ) ()0lim x g x +→6.2偏导数08.3)已知(,)f x y = ( B )(A )(0,0)x f ',(0,0)y f '都存在 (B )(0,0)x f '不存在,(0,0)y f '存在 (C )(0,0)x f '不存在,(0,0)y f '不存在 (D )(0,0)x f ',(0,0)y f '都不存在6.3全微分02.1)考虑二元函数(,)f x y 的下面4条性质:①(,)f x y 在00(,)x y 处连续②(,)f x y 在00(,)x y 处两个偏导数连续③(,)f x y 在00(,)x y 处可微④(,)f x y 在00(,)x y 处两个偏导数存在.若用“P Q ⇒”表示可由性质P 推出Q ,则有 ( A )(A )②⇒③⇒①. (B )③⇒②⇒①. (C )③⇒④⇒①. (D )③⇒①⇒④. 07.2) 二元函数f (x , y )在点(0,0) 处可微的一个充分条件是 ( C ) (A )(,)(0,0)lim [(,)(0,0)]0x y f x y f →-=.(B) 0(,0)(0,0)lim0x f x f x →-=,且0(0,)(0,0)lim 0y f y f y→-=.(C)(,)lim0x y →=.(D) 0lim[(,0)(0,0)]0x x x f x f →''-=,且0lim[(0,)(0,0)]0y y y f y f →''-=.05.34) 设二元函数)1ln()1(y x xez yx +++=+,则=)0,1(dzdy e edx )2(2++ .06.34) 设函数()f u 可微,且()102f '=,则()224Z f x y =-在点(1,2)处的全微分()1,2dz=42dx dy -6.4多元复合函数求导法则05.12) 设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ具有一阶导数,则必有 [ B ](A ) 2222yu x u ∂∂-=∂∂. (B ) 2222y u x u ∂∂=∂∂. (C) 222y uy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. 01.4)设(2),x z e f x y -=--且当0y =时,2,z x =则zx ∂=∂22(2)x y x x y e e ----+ 07.1) 设f (u ,v )为二元可微函数,(,)y x z f x y =,则zx∂∂=112ln .y x f yx f y y -''⋅+⋅07.234) 设f (u ,v )是二元可微函数,(,),y x z f x y =则z z xy x y ∂∂-=∂∂1222.y x f f x y''-+ 09.1)设函数(,)f u v 具有二阶连续偏导数,z=(,)f x xy 则2zx y∂∂∂=12222xf f xyf '''''++ 09.3)设()y x z x e =+,则(1,0)zx ∂∂=2ln 21+ 09农)设(,)f u v 为二元可微函数,(sin(),)xyZ f x y e =+,则zx∂∂=12cos()xy f x y yf e ''++ 01.1)设函数(,)f x y 在点(1,1处可微,且(1,1)(1,1)(1,1)1,2,3,f ff x y ∂∂===∂∂ ()(,(,))x f x f x x ϕ=.求31()x d x dx ϕ=(符合函数求导+求值(1)ϕ) 01.34)设(,,)u f x y z =有连续的一阶偏导数,又函数()y y x =及()z z x =分别由下列两式确定:2xye xy -=和0sin ,x zxt e dt t -=⎰求dudx03.34) 设f (u ,v )具有二阶连续偏导数,且满足12222=∂∂+∂∂v fu f ,又)](21,[),(22y x xy f y x g -=,求.2222yg x g ∂∂+∂∂【详解】v f x u f y x g ∂∂+∂∂=∂∂,.vf y u f x yg ∂∂-∂∂=∂∂ 故 v f vf x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222,.2222222222v f vf y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂ 所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂=.22y x + 04.2) 设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z zx y x y∂∂∂∂∂∂∂. 【详解】122xy z x f ye f x ∂''=+∂,122xy zy f xe f y∂''=-+∂, 21112222[(2)]xy xy xy zx f y f xe e f xye f x y∂''''''=⋅-+⋅++∂∂2122[(2)]xy xy ye f y f xe ''''+⋅-+⋅ 222111222242()(1)xy xy xy xyf x y e f xye f e xy f '''''''=-+-++++. 05.34)设f (u )具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222yg y x g x ∂∂-∂∂ 【详解】 由已知条件可得)()(2y x f x y f x y x g '+'-=∂∂,)(1)()(242322y xf y y x f x y x y f x y xg ''+''+'=∂∂, )()()(1yx f y x y x f x y f x y g '-+'=∂∂, )()()()(13222222y xf yx y x f y x y x f y x x y f x y g ''+'+'-''=∂∂,所以 222222y g y x g x ∂∂-∂∂=)()()(2222y x f y x y x f x y x y f x y ''+''+')()(222y x f y x x y f x y ''-''- =).(2xyf x y ' 09.2) 设(,,)z f x y x y xy =+-,其中f 具有2阶连续偏导数,求dz 与2z x y∂∂∂【解析】123123,z zf f yf f f xf x y∂∂''''''=++=-+∂∂ 所以123123()()z zdz dx dy f f yf dx f f xf dy x y∂∂''''''=+=+++-+∂∂21112132122233313233.1.(1)..1(1).[.1.(1).]zf f f x f f f x f y f f f x x y∂'''''''''''''''''''=+-+++-++++-+∂∂ 31122331323()()f f f xyf x y f x y f '''''''''''=+-++++- 10.2)设函数(,)f x y μ=具有二阶连续偏导数,且满足等式2222241250x x y y μμμ∂∂∂++=∂∂∂∂,确定a ,b 的值,使等式在变换x ay ξ=+,x by η=+下化简为20μξη∂=∂∂.6.5隐函数的求导公式05.1) 设有三元方程1ln =+-xz e y z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程 [ D ](A )只能确定一个具有连续偏导数的隐函数z=z(x ,y ).(B)可确定两个具有连续偏导数的隐函数x =x (y ,z)和z=z(x ,y ). (C)可确定两个具有连续偏导数的隐函数y =y (x ,z)和z=z(x ,y ). (D)可确定两个具有连续偏导数的隐函数x =x (y ,z)和y =y (x ,z).(考查隐函数存在定理,只需令F (x ,y ,z)=1ln -+-xz e y z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.)10.12)设函数(,)z f x y =,由方程,0y z F x x ⎛⎫=⎪⎝⎭确定,其中F 为可微函数,且20F '≠,则z zxy x y∂∂+=∂∂ ( B ) (A )x (B )z (C )x - (D )z - 04.2) 设函数(,)z z x y =由方程232x z z e y -=+确定, 则3z zx y∂∂+=∂∂2.04.3) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则)()(22v g v g vu f'-=∂∂∂.02.34)设函数(,,)u f x y z =有连续偏导数,且(,)z z x y =由方程x y zxe ye ze -=所确定,求du .08.3) 设(,)z z x y =是由方程()22x y z x y z ϕ+-=++所确定的函数,其中ϕ具有2阶导数且1ϕ'≠-时.(1)求dz (2)记()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭,求u x ∂∂. 【详解】(I) ()()22xdx ydy dz x y z dx dy dz ϕ'+-=++⋅++()()()122dz x dx y dy ϕϕϕ'''⇒+=-++-+ ()()221x dx y dy dz ϕϕϕ''-++-+⇒='+()1ϕ'≠-(II) 由上一问可知22,11z x z yx y ϕϕϕϕ''∂-+∂-+==''∂+∂+, 所以 ()11221222,()()1111z z x y y x u x y x y x y x y x y ϕϕϕϕϕϕ''∂∂-+-+-+=-=-=⋅=''''-∂∂-++-++所以 ()()()()223322(1)2(1)2(12)2(12)11111x z u x x x x ϕϕϕϕϕϕϕϕϕϕϕϕ'-∂''+''-+'''''''∂++-++∂==-=-=-∂''''++++.6.6偏导数的应用01.1)函数(,)f x y 在点(0,0)附近有定义,且(0,0)3,(0,0)1,x y f f ''==则 ( C ) (A )(0,0)|3dz dx dy =+ (B )曲面(,)z f x y =在点(0,0,(0,0))f 的法向量为(3,1,1)(C )曲线(,)0z f x y y =⎧⎨=⎩在点(0,0,(0,0))f 的切向量为(1,0,3)(D )曲线(,)z f x y y =⎧⎨=⎩在点(0,0,(0,0))f 的切向量为(3,0,1)03.1) 已知函数f (x ,y )在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则 (A) 点(0,0)不是f (x ,y )的极值点. (B) 点(0,0)是f (x ,y )的极大值点. (C) 点(0,0)是f (x ,y )的极小值点.(D) 根据所给条件无法判断点(0,0)是否为f (x ,y )的极值点. [ A ] 解: 由1)(),(lim2220,0=+-→→y x xyy x f y x 知,分子的极限必为零,从而有f(0,0)=0, 且 222)(),(y x xy y x f +≈- y x ,(充分小时),于是 .)()0,0(),(222y x xy f y x f ++≈-可见当y=x 且x 充分小时,04)0,0(),(42>+≈-x x f y x f ;而当y= -x 且x 充分小时,04)0,0(),(42<+-≈-x x f y x f . 故点(0,0)不是f(x,y)的极值点03.34) 设可微函数f (x ,y )在点),(00y x 取得极小值,则下列结论正确的是 [ A ] (A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. 06.1234) 设(,)f x y 与(,)x y ϕ均为可微函数,且(,)0y x y ϕ'≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是 [ D ] (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.09.2) 设函数(,)z f x y =的全微分为dz xdx ydy =+,则点(0,0)( D ) (A )不是(,)f x y 的连续点 (B )不是(,)f x y 的极值点 (C )是(,)f x y 的极大值点(D )是(,)f x y 的极小值点04.1) 设z =z (x ,y )是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值.【详解】 因为 0182106222=+--+-z yz y xy x ,所以02262=∂∂-∂∂--x z z x z yy x , 0222206=∂∂-∂∂--+-yz z y z y z y x . 令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0y z xz 得⎩⎨⎧=-+-=-,0103,03z y x y x 故 ⎩⎨⎧==.,3y z y x将上式代入0182106222=+--+-z yz y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或 ⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 由于 02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx zz x z y z y x z y x z02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,所以 61)3,3,9(22=∂∂=x zA ,21)3,3,9(2-=∂∂∂=y x zB ,35)3,3,9(22=∂∂=yzC , 故03612>=-B AC ,又061>=A ,从而点(9,3)是z (x ,y )的极小值点,极小值为z (9,3)=3. 类似地,由61)3,3,9(22-=∂∂=---xzA ,21)3,3,9(2=∂∂∂=---y x zB ,35)3,3,9(22-=∂∂=---yzC ,可知03612>=-B AC ,又061<-=A ,从而点(-9, -3)是z (x ,y )的极大值点,极大值为 z (-9, -3)= -3.05.2) 已知函数z =f (x ,y ) 的全微分ydy xdx dz 22-=,并且f (1,1,)=2. 求f (x ,y )在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.【详解】 由题设,知x x f 2=∂∂,y yf 2-=∂∂, 于是 )(),(2y C x y x f +=,且 y y C 2)(-=',从而 C y y C +-=2)(,再由f (1,1)=2,得 C =2, 故 .2),(22+-=y x y x f令0,0=∂∂=∂∂y fx f 得可能极值点为x =0,y =0. 且 2)0,0(22=∂∂=xf A ,0)0,0(2=∂∂∂=y x f B ,2)0,0(22-=∂∂=yfC ,042>=-=∆AC B ,所以点(0,0) 不是极值点,从而也非最值点.再考虑其在边界曲线1422=+y x 上的情形:令拉格朗日函数为 )14(),(),,(22-++=y x y x f y x F λλ, 解 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+='=+-=+∂∂='=+=+∂∂=',014,02122,0)1(2222y x F y y y y f F x x x fF y xλλλλλ得可能极值点4,2,0===λy x ;4,2,0=-==λy x ;1,0,1-===λy x ;.1,0,1-==-=λy x 代入f (x ,y )得,2)2,0(-=±f 3)0,1(=±f ,可见z =f (x ,y )在区域}14),{(22≤+=y x y x D 内的最大值为3,最小值为-2.05.4) 求f (x ,y )=222+-y x 在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(同上) 07.1)求函数2222(,)2f x y x y x y =+-在区域22{(,)4,0}D x y x y y =+≤≥上的最大值和最小值。
多元函数微分习题
33、求函数 z = x 2 + y 2 在点(1,2)处沿从点(1,2)到点 ( 2, 2 + 3 ) 的方向的方向导数。 34、求函数 z = ln( x + y ) 在抛物线 y 2 = 4 x 上的点(1,2)处沿着这抛物线在该点处偏向 x 轴正向的切线方向的方向导数.
11、验证 y = e
− kn 2 t
sin nx 满足:
∂y ∂2 y =k 2 . ∂t ∂x
12、求下列函数的全微分: (1) z =
y x2 + y2
;(2) u =
y z x + − x y z
答案:(1) .dz =
− x ( ydx − dy ) (x 2 + y 2 )3
;
(3).df (1,1,1) = dx − dy ( 2).dz = −(
答案: ∆z = −0.119, dz = −0.125. 14、求下列复合函数的一阶偏导数或全导数: (1) 设 z = u 2 + v 2 , 而 u = x + y , v = x − y , 求 : (2) 设 z = u 2 ln v ,而 u =
∂z ∂z , ∂x ∂y
x ∂z ∂z . , v = 3 x − 2 y ,求 , y ∂x ∂y
答案:
π . 4
9、设 T=2 π
l , g
y x
求证:
l
∂T ∂T +g = 0. ∂l ∂g
∂2z ; ∂x∂y
10、(1) z = arctan , 求:
∂2z 1 − 2 xy 答案: 2 = 2 ∂x (x + y 2 )2
多元函数微分法及其应用(全例题)
162 多元函数微分法及其应用(全例题)一、内容提要多元函数微分法是一元函数微分法的推广,有许多相似之处,学习时应注意对比,搞清异同. 1.基本概念与定理设函数)(P f U =,点P 可以是n ,,3,2,1 维的.当2≥n 时,称此函数为多元函数. ① 二元函数),(y x f z =在几何上表示空间一张曲面.② 二元函数),(y x f z =在点),(000y x P 处的极限、连续、偏导数、全微分的定义及关系. 极限 A y x f yy x x =→→),(l i m 0:当,0,0>∃>∀δε 成立时,有 |),(| )()(02020εδρ<-<-+-=<A y x f y y x x注意 定义中的),(y x 是以任意方式趋于点),(00y x .连续 ),(),(lim 0000y x f y x f y y x x =→→偏导数);(,),(),(lim),(000000000y y xy x f y x x f y x f xzx x P =∆-∆+==∂∂→∆固定)(,),(),(lim),(000000000x x yy x f y y x f y x f yzy y P =∆-∆+==∂∂→∆固定高阶偏导数 一阶偏导数),(),,(y x f y x f y x 的偏导数,称为函数),(y x f 的二阶偏导数.⎪⎭⎫ ⎝⎛∂∂∂∂==∂∂x z x y x f x zxx ),(22,⎪⎭⎫⎝⎛∂∂∂∂==∂∂∂x z y y x f y x z xy),(2, ⎪⎪⎭⎫ ⎝⎛∂∂∂∂==∂∂y z y y x f y zyy ),(22,⎪⎪⎭⎫ ⎝⎛∂∂∂∂==∂∂∂y z x y x f x y z yx ),(2. 类似,可定义三阶以上的偏导数.可微 若全增量),(),(0000y x f y y x x f z -∆+∆+=∆可表示为)(ρo y B x A z +∆+∆=∆,其中22)()(y x ∆+∆=ρ,则称),(y x f z =在点),(000y x P 可微.而y B x A ∆+∆为函数),(y x f z =在点),(000y x P 的全微分,记作y B x A z d y x∆+∆=),(00定理1 若函数),(y x f z =的二阶混合偏导数),(y x f xy 及),(y x f yx 在区域D 内连续,则在该区域内),(y x f xy ),(y x f yx =.定理2 若函数),(y x f z =在点),(y x 可微, 则必在该点连续.定理3 若函数),(y x f z =在点),(y x 可微,则该函数在点),(y x 的两个一阶偏导数存在.定理4 若函数),(y x f z =在点),(y x 有一阶连续偏导数,则函数在该点可微. 且dy y x f dx y x f dz y x ),(+),(=2.多元函数的求导运算 多元复合函数求导① ).,(),,(),,(y x v y x u v u f z ψϕ===若则偏导数为:;xvv z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂.y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂163② ).(),(),,(t y t x y x f z ψϕ===若则全导数为:.dtdy y z dt dx x z dt dz ⋅∂∂+⋅∂∂= ③ ).,(),,(),,,,(y x v y x u v u y x f z ψϕ===若则偏导数为 x v v f x u u f x f x z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂=∂∂; .yvv f y u u f y f y z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂=∂∂ 注意,x f x z ∂∂∂∂与yfy z ∂∂∂∂与的区别. )],(),,(,,[ y x y x y x f z x zψϕ=∂∂是在复合函数中视 y 为常量,对x 求导. ),,,( v u y x f z x f=∂∂是在四元函数中视y,u,v 为常量,对x 求导. )],(),,(,,[ y x y x y x f z y zψϕ=∂∂是在复合函数中视 x 为常量,对y 求导. ),,,( v u y x f z yf=∂∂是在四元函数中视x,u,v 为常量,对y 求导. 隐函数求导① ),(0),,(y x z z z y x F ==确定的隐函数由方程满足隐函数定理的条件,则;z x F F x z -=∂∂ .zy F F y z-=∂∂ ② ),(),( 0),,(0),,(x y y x z z z y x G z y x F ==⎩⎨⎧==确定的隐函数由方程组则方程两边分别对x 求导,得到关于dxdzdx dy ,的方程组,解出即可. 3.应用 (1) 几何应用①空间曲线处的点在对应),,( )()()(:0000z y x M t t z t y t x ⎪⎩⎪⎨⎧===Γωψϕ的切线与法平面方程. 切向量为 )}(),(),({000t t t ωψϕ'''= 切线方程)(00t x x ϕ'-)(00t y y ψ'-=)(00t z z ω'-= 法平面方程 0))(())(())((000000=-'+-'+-'z z t y y t x x t ωψϕ ②空间曲面处上点),,(0),,(:000z y x M z y x F =∑的切平面与法线方程. 法向量为 ),,({000z y x F x =),,(,000z y x F y )},,(,000z y x F z切平面方程 0))(,,())(,,())(,,(000000000000=-+-+-z z z y x F y y z y x F x x z y x F z y x 法线方程),,(0000z y x F x x x -),,(0000z y x F y y y -=),,(0000z y x F z z z -=对于曲面0),(),,( ),,(=-==z y x f z y x F y x f z 可表示为. (2) 函数极值定理6 (必要条件) 设函数),(),(00y x M y x f z 在点=有偏导数并取得极值,则164 ,0),(00=y x f x .0),(00=y x f y定理7(充分条件)设函数),(),(00y x M y x f z 在点=某邻域内连续并有一阶及二阶连续偏导数,且,0),(00=y x f x .0),(,00=y x f y 记,),(00A y x f xx =,),(00B y x f xy =,),(00C y x f yy = 则当02>-B AC 时,有极值,且⎩⎨⎧><有极小值有极大值,0,0A A ;当02<-B AC 时,无极值;当02=-B AC 时,情况不定. 多元函数的条件极值求函数),,(z y x f u =在满足条件:0),,(,0),,(==z y x z y x ψϕ下的条件极值. 构造拉格朗日函数),,(),,(),,(),,(z y x z y x z y x f z y x F μψλϕ++= 解方程组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=====0),,(0),,(0),,(0),,(0),,(z y x z y x z y x F z y x F z y x F z y x ψϕ 得可能极值点(x,y,z ).再进一步讨论极值点的充分性.许多情况下可借助于问题的实际意义来判定.二、例题解析1. 多元函数的基本概念例8.1求下列各函数的定义域 (1) z=y x -; (2) z=ln )(x y -+221yx x --;(3) 22arccosyx z u +=分析 二元函数的定义域一般是平面区域,三元函数的定义域一般是空间区域.这些点集可用使函数有定义的自变量所应满足的不等式或不等式组表示.解 (1) 0≥y 且 0≥-y x ,即 y x ≥,得 D=(){}y x y y x ≥≥,0|,(2)⎪⎩⎪⎨⎧>--≥>-010,022y x x x y得 {}1,,0|),(22<+>≥=y x x y x y x D .(3) 022≠+y x 且22yx z +1≤得 {}0,|),,(22222≠++≤=y x y x z z y x D例8.2 设⎪⎭⎫ ⎝⎛+x y y x f ,=22y x -,求),(y x f .解(方法 一)令,u y x =+xy =v ,则有 x =v u +1,v uv y +=1165由原式 f⎪⎭⎫ ⎝⎛+x y y x ,=22y x - 知 ()v u f ,=21⎪⎭⎫ ⎝⎛+v u 21⎪⎭⎫ ⎝⎛+-v uv =v v u +-1)1(2 故 ),(y x f =yy x +-1)1(2 (y 1-≠)(方法二)因⎪⎭⎫ ⎝⎛+x y y x f ,=22y x -=))((y x y x -+=yx yx y x +-+.)(2=()x y x y y x +-+112故 ),(y x f =yyx +-⋅112. (1-≠y ) 例8.3 求下列各极限:(1) 10lim→→y x 221y x xy +- ; (2) xyxy y x 42lim0+-→→ ; (3) yxy y x sin lim 02→→ ; (4) 22)()cos(1lim 222200y x y x ey x y x ++-→→.分析 求多元函数的极限可利用多元函数的连续性及一元函数求极限的一些方法.解 (1) 用函数的连续性.10lim →→y x 221y x xy +-=1001+-=1 . (2)用一元函数求极限的方法(分子有理化).xyxy y x 42lim+-→→=)42()4(4lim0+++-→→xy xy xy y x =421lim0++-→→xy y x =41-. (3) 用一元函数的重要极限.yxy y x sin lim 02→→=221sin lim 02=⋅=⋅→→x xy xyy x .(4)()()=++-→→22222200cos 1limyxy x e y xy x 22422sin2lim 2222222200y x y x e y x y x y x +⋅⎪⎪⎭⎫ ⎝⎛++→→.0021=⋅= 例8.4 证明极限 ()222220limy x y x y x y x -+→→不存在.分析 因为二重极限A y x f y y x x =→→),(lim 00存在,是指),(y x P 以任意方式趋于),(000y x P 时,函数都无限接近某常数A .所以,证明极限不存在,只要P 以某一特殊方式趋于0P 时,函数不趋于某一确定值;或以两种不同方式趋于0P 时,函数趋于不同的值,便可断定函数的极限不存在.证(方法一) 若点),(y x P 沿直线x y =趋于()0,0,则()1limlim440222220==-+→=→xx y x y x y x x xy x ;若点),(y x P 沿直线x y 2=趋于)0,0(,则.044lim)(lim24402222220=+=-+→=→xx x y x y x y x x xy x 所以极限不存在.166 (方法二) 若点),(y x P 沿直线kx y =趋于()0,0,则22424222220)1(lim)(lim2x k x k x k y x y x y x x kxy x -+=-+→=→22220)1(lim2k x k x k x -+=→⎩⎨⎧≠==1,01,1k k 所以极限不存在. 例8.5 设=),(y x f ⎪⎩⎪⎨⎧=+≠++0,00,222222y x y x y x xy证明),(y x f 在)0,0( 处不连续,但两个一阶偏导数存在.证 0)0,0(=f , 当()y x ,沿直线kx y =趋于)0,0(时2222201lim),(lim kk xk x kx y x f x kxy x +=+=→=→当k 取不同值时,极限值不同.故),(lim 00y x f y x →→不存在.所以),(y x f 在)0,0(处不连续.但根据偏导数的定义知000lim )0,0()0,0(lim )0,0(00=∆-=∆-∆+=→∆→∆x xf x f f x x x ;000lim )0,0()0,0(lim)0,0(00=∆-=∆-∆+=→∆→∆y yf y f f y y y . 所以),(y x f 在)0,0(处两个一阶偏导数存在.本例说明,对于多元函数,偏导数存在未必连续.例8.6 证明:函数22y x z +=在)0,0(处连续,但两个一阶偏导数不存在.证 因)0,0(在),(y x f 的定义域内,所以),(y x f 在)0,0(处连续. 又因||)0,(2x x x f ==在0=x 处不可导,所以)0,0('x f 不存在; 同样||),0(2y y y f ==在0=y 处不可导,所以)0,0('y f 不存在.例8.7 设||),(xy y x f z ==,证明),(y x f 在)0,0(处一阶偏导数存在,但不可微. 分析 要证函数),(y x f 在)0,0(处是否可微,只须检验极限:[]ρρyf x f z y x ∆+∆-∆→)0,0()0,0(lim''0是否为0, 其中22)()(y x ∆+∆=ρ. 若极限为0,则函数),(y x f 在)0,0(处可微,否则不可微.证 因,0),0(,0)0,(==y f x f 由定义知0)0,0(,0)0,0(''==y x f f 但 ()()[]()()2222''||||0,00,0y x y x yx y x yf x f z y x ∆+∆∆⋅∆=∆+∆∆⋅∆=∆+∆-∆ρ当())0,0(,→∆∆y x 时,上式极限不存在.(取路径x k y ∆=∆) 因此,),(y x f 在)0,0(处不可微. 2. 多元函数微分法例8.8 求下列函数的偏导数 (1)()y xy z +=1;(2) zy x u =;(3) z y x u )arctan(-=.分析 多元函数对其中一个变量求偏导时,只需将其余变量视为常量,利用一元函数的求导公式或求导法则求导即可.解 (1) .)1(.)1(121--+=+=∂∂y y xy y y xy y xz()()⎥⎦⎤⎢⎣⎡+++=∂∂=∂∂++xy x y xy e e y y z xy y xy y 1.)1ln(1ln 1ln ⎥⎦⎤⎢⎣⎡++++=xy xy xy xy y 1)1ln()1(167(2) ,1-=∂∂z y x z y x u ,ln 11ln x x zz x x y u z yz y =⋅⋅=∂∂ .ln ln 22x x z y z y x x z u z yz y -=⎪⎭⎫⎝⎛-⋅⋅=∂∂(3) ()()z z y x y x z x u 211-+-=∂∂-; ()()zz y x y x z y u 211-+--=∂∂-; ()()()z zy x y x y x z u 21ln -+--=∂∂. 例8.9 设,arcsin)1(),(yxy x y x f -+=求).1,(x f x 分析 本题是求函数),(y x f 在点)1,(x 处关于x 的偏导数,由定义知,固定,1=y x x f =)1,(,再对x 求导即可.解 因x x f =)1,(,所以 .1)1,(=x f x例8.10 (1)设xy z =,求 22x z ∂∂;22yz∂∂;y x z∂∂∂2.(2)设ϕϕ,),()(1f y x y xy f xz ++=具有二阶连续导数,求y x z ∂∂∂2.(98年考研题)解 (1),ln y y xzx =∂∂ .1-⋅=∂∂x y x y z y y x z x x z x 222ln ⋅=⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂, ()2221--=⎪⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂x y x x y z y y z ; ().1ln 1ln 112+=⋅+=⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂--y x y y y y xy x z y y x z x x x (2) x z ∂∂),()()(12y x y xy f x y xy f x+'+'+-=ϕ⎪⎭⎫⎝⎛∂∂∂∂=∂∂∂x z y y x z 2 )()()()(1)(2y x y y x xy f x x y xy f x xy f xx +''++'+''+'+'-=ϕϕ).()()(y x y y x xy f y +''++'+''=ϕϕ例8.11 求下列函数的全微分: (1) ;22y x y z +=(2) yz x u =.解 (1) 因为()();22123222322yxxyyxxy x z +-=+⋅⋅-=∂∂168 ().2223222222222yxx y x y x y y y x yz+=++⋅-+=∂∂所以 ()()2322y x xdy ydx x dy y zdx x z dz ++-=∂∂+∂∂=. )2(因为 1-⋅=∂∂yz x yz x u ;z x x yu yz ⋅⋅=∂∂ln ;y x x z uyz ⋅⋅=∂∂ln 所以 dz zu dy yu dx xu du ∂∂+∂∂+∂∂=.ln ln 1xdz x y xdy x z dx x yz yz yz yz ⋅+⋅+⋅=-3 多元复合函数求导例8.12 求下列函数的偏导数或全导数.(1) ,ln 2v u z = ,yxu = ,23y x v -= 求 x z ∂∂;.y z ∂∂ (2) ),arcsin(y x z -= ,3t x = ,43t y =求 .dt dz分析 多元复合函数求导时,先画出复合线路图,再按图写出求导公式.这种方法对复杂的复合情形尤为有利.解(1)x vv z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ 31ln 22⋅+⋅=v u y v u)23ln(22y x y x -=)2(ln 222-⋅+⎪⎪⎭⎫ ⎝⎛-⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂v u y x v u y vv z y u u z y z 3ln(232x y x --= ()2dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x ⋅---+⋅--=.)43(1)41(3232t t t ---=例8.13 设f 具有一阶连续偏导,),,(22xy e y x f u -=求xu∂∂;.y u ∂∂ 说明 抽象函数求偏导时一定要设中间变量.解 令.,22xy e t y x s =-=则),(t s f u =y e tf x s fx t t f x s s f x u xy ⋅⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2 .2'2'1f ye xf xy += x e tf y s f y t t f y s s f y u xy ⋅⋅∂∂+-⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂)2( .2'2'1f xe yf xy +-= 例8.14 设f 具有二阶连续偏导数,,,⎪⎪⎭⎫ ⎝⎛=y x xy f z 求.,,22222y z y x z x z ∂∂∂∂∂∂∂分析 求多元函数的高阶偏导数,关键在于牢记多元复合函数的各阶偏导数仍是与原来函数同类型的函数,即以原中间变量为中间变量,原自变量为自变量的多元复合函数.高阶偏导数可采用简便记法,如'2'1,f f 分别表示f 对第一、第二中间变量的偏导数,"12f 表示f 先对第一、再对第二中间变量的二阶混合偏导数.当高阶偏导数连续时,应将混合偏导数并项.解 令 ,,yxv xy u ==则).,(v u f z =.1'2'1yf y f x v v f x u u f x z ⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂169.2'2'1⎪⎪⎭⎫ ⎝⎛-⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂y x f x f yv v f y u u f y z x f y x f y f y f y x x z∂∂⋅+∂∂=⎪⎪⎭⎫ ⎝⎛⋅+⋅∂∂=∂∂'2'1'2'12211 ⎪⎪⎭⎫⎝⎛∂∂⋅∂∂+∂∂⋅∂∂⋅+⎪⎪⎭⎫ ⎝⎛∂∂⋅∂∂+∂∂⋅∂∂⋅=x v v f x u u f y x v v f x u u f y '2'2'1'11⎪⎪⎭⎫ ⎝⎛⋅+⋅⋅+⎪⎪⎭⎫ ⎝⎛⋅+⋅⋅=y f y f y y f y f y 111"22"21"12"11 .12"222"12"112f y f f y ++= y f y f y y f y f f y f y y y x z ∂∂+-∂∂⋅+=⎪⎪⎭⎫ ⎝⎛⋅+⋅∂∂=∂∂∂'2'22'1'1'2'12111 ⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂⋅∂∂+⋅-⎪⎪⎭⎫ ⎝⎛∂∂⋅∂∂+∂∂⋅∂∂⋅+=y v v f y u u f y f y y v v f y u u f y f '2'2'22'1'1'111 ⎪⎪⎭⎫ ⎝⎛⋅-⋅+⋅-⎪⎪⎭⎫ ⎝⎛⋅-⋅⋅+=2"22"21'222"12"11'111y x f x f y f y y x f x f y f .1"223"11'22'1f y x xyf f y f -+-= y f y x f y x y f x f y x f x y y z∂∂⋅-⋅+∂∂⋅=⎪⎪⎭⎫ ⎝⎛⋅-⋅∂∂=∂∂'22'23'1'22'1222 ⎪⎪⎭⎫ ⎝⎛∂∂⋅∂∂+∂∂⋅∂∂⋅-⋅+⎪⎪⎭⎫ ⎝⎛∂∂⋅∂∂+∂∂⋅∂∂⋅=y v v f y u u f y x f y x y v v f y u u f x '2'22'23'1'12⎪⎪⎭⎫ ⎝⎛⋅-⋅-+⎪⎪⎭⎫ ⎝⎛-⋅⋅="222"212'23"122"112f y x x f y x f y x f y x x f x .22'23"2242"1222"112f y x f y x f y x f x ⋅+⋅+⋅-⋅= 常见错解 ,01'2'122=⎪⎪⎭⎫ ⎝⎛⋅+⋅∂∂=∂∂f y f y x x z.11'22'1'2'12f y f f y f y y y x z -=⎪⎪⎭⎫ ⎝⎛⋅+⋅∂∂=∂∂∂ .2'23'22'122f y x f y x f x y y z ⋅=⎪⎪⎭⎫ ⎝⎛⋅-⋅∂∂=∂∂ 错误的原因是把'2'1,f f 误认为常量. 例8.15 设,),,,(yxe u y x u f z ==其中f具有二阶连续偏导,求.2yx z∂∂∂ 分析 对抽象的多元复合函数求二阶偏导,首先要搞清楚函数的结构.解 '2'1f e f xf x u u f x z y +⋅=∂∂+∂∂⋅∂∂=∂∂)('2'12f e f yy x z y +⋅∂∂=∂∂∂y f y f e f e y y ∂∂+∂∂⋅+⋅='2'1'1)()("23"21"13"11'1f xe f f xe f e f e y y y y +⋅++⋅⋅+⋅=."23"21"13"112'1f f xe f e f xe f e y y y y +⋅+⋅+⋅+⋅=4 隐函数求导对隐函数求导时,首先要根据题目中要求对哪些变量求导,确定哪些是自变量,哪些变量函数.例8.16 设),cos(2yz x x +=求.zy∂∂分析 由题目要求知,方程确定隐函数),(z x y y =,即y 是z x ,的函数. 解(方法一)(两边求导法) 方程两边对z 求偏导,得170 ⎪⎭⎫ ⎝⎛∂∂⋅+⋅+-=z y z y yz x )sin(02 所以 .zy z y -=∂∂ (方法二)(公式法) 设F 0)cos(),,(2=-+=x yz x z y x . .)sin( ,)sin(22y yz x F z yz x F z y ⋅+-=⋅+-= 所以.zyF F z y y z -=-=∂∂ 例8.17 设,ln y z z x =求.,yzx z ∂∂∂∂ 解(方法一) 设.ln ),,(yzz x z y x F -=则 ,1 ,12yy z z y F z F y x =⎪⎪⎭⎫ ⎝⎛-⋅-== .122z z x z z x F z +-=--=所以 .12z x z zz x z F F x z zx +=+--=-=∂∂ .)(122z x y z z z x y F F y z z y +=+--=-=∂∂ (方法二)等式两边对x 求偏导,得,2y x zz y z x z x z ∂∂⋅=∂∂⋅- 得 ,z x z x z +=∂∂等式两边对y 求偏导,得,22yzy yzz y y z z x -⋅∂∂⋅=∂∂⋅-得.)(2z x y z y z +=∂∂ (方法三) 原方程化为)ln (y nz z x -=,令 )ln (ln ),,(y z z x z y x F --=. 则.11ln 111ln 1z x zz x y z y z F F x zzx +=+=+=---=-=∂∂ .)(ln11ln 2z x y z y z y zy z y z F F y z z y +=+=---=-=∂∂注 用隐函数求导公式求x F 时,要视z y ,为常数,同样求z y F F ,时,要分别把z x ,及y x ,看成常数.而在等式两边对x 或y 求偏导时(方法二),应视z 为y x ,的函数,不能把z 看成常数.例8.18 设333a xyz z =-,求yx z ∂∂∂2.分析 求隐函数的高阶偏数,一般都用隐函数求导公式求一阶偏导数,再用复合函数求导法求二阶及二阶以上的偏导数.解 设(),3,,33a xyz z z y x F --=则有 ,3yz F x -= xz F y 3-=, xy z F z 332-=.xy z yz xy z yz F F x z z x -=---=-=∂∂22333 .2xy z xzF F y z zy -=-=∂∂171()22222)(2xy z x y z z yz xy z y z y z xy z yz y y x z -⎪⎪⎭⎫ ⎝⎛-∂∂⋅--⎪⎪⎭⎫ ⎝⎛∂∂⋅+=⎪⎪⎭⎫ ⎝⎛-∂∂=∂∂∂ ()22222)(2xy z x xy z xz z yz xy z xy z xz y z -⎪⎪⎭⎫⎝⎛--⋅--⎪⎪⎭⎫ ⎝⎛-⋅+= 322224)()2(xy z y x xyz z z ---=. 例8.19 设),(),,(),,(y x z z z x y y z y x x ===都是由方程0),,(=z y x F 所确定的具有连续偏导数的函数,证明:.1-=∂∂⋅∂∂⋅∂∂xz z y y x 证 因,x y F F y x -=∂∂ ,y z F F z y -=∂∂ .z x F F x z -=∂∂所以 1-=⎪⎪⎭⎫ ⎝⎛-⋅⎪⎪⎭⎫ ⎝⎛-⋅⎪⎪⎭⎫ ⎝⎛-=∂∂⋅∂∂⋅∂∂z x y z x y F F F F F F x z z y y x 注 偏导数yxz y x z ∂∂∂∂∂∂,,均是一个整体记号,不能看作分子与分母之商.例8.20 设),(v u Φ具有连续偏导数,证明由方程0),(=--Φbz cy az cx 所确定的函数),(y x f z =满足方程.c yzb x z a=∂∂+∂∂ 分析 将Φ看成以z y x ,,为自变量的复合函数,中间变量为,,bz cy v az cx u -=-=由复合函数求导法则求出;,,z y x ΦΦΦ再由隐函数求导公式求出.,yzx z ∂∂∂∂解 . , ,0),(bz cy v az cx u v u -=-==Φ;;'2'1Φ⋅=∂∂⋅∂Φ∂=ΦΦ⋅=∂∂⋅∂Φ∂=Φc y v v c xu u y x'2'1Φ-Φ-=∂∂⋅∂Φ∂+∂∂⋅∂Φ∂=Φb a zv v z u u z'2'1'1'2'1'1Φ+ΦΦ=Φ-Φ-Φ-=ΦΦ-=∂∂b a c b a c x zz x .'2'1'2Φ+ΦΦ=ΦΦ-=∂∂b a c y zz y 所以 .'2'1'2'1c b a bc ac y z b x z a =Φ+ΦΦ+Φ=∂∂+∂∂ 例8.21 求由下列方程组所确定的函数的导数或偏导数.(1) 设⎪⎩⎪⎨⎧=+++=203222222z y x yx z 求 .,dx dz dx dy(2) 设⎩⎨⎧=+=0),,()(z y x F y x xf z ,其中F f ,分别具有一阶连续导数和一阶连续偏导数,求 .dx dz(3)设⎪⎩⎪⎨⎧-=+=),(),(2y v x u g v y v ux f u 其中g f ,具有一阶连续偏导数,172 求.,xv x u ∂∂∂∂ 分析 由三个变量两个方程所构成的方程组,一般确定两个一元函数,即其中两个变量是第三个变量的一元函数,如(1)、(2), dx dz dx dy ,可通过解关于dxdzdx dy ,的线性方程组完成. 由四个变量两个方程所构成的方程组,一般确定两个二元函数,即其中两个变量确定为另两个变量的二元函数,如(3), x v x u ∂∂∂∂,可通过解关于xvx u ∂∂∂∂,的线性方程组完成. 解(1)此方程组可确定两个一元隐函数),(x y y =)(x z z =.方程两边对x 求导,得⎪⎪⎩⎪⎪⎨⎧=⋅+⋅+⋅+=064222dx dz z dx dy y x dxdy y x dx dz 即 ⎪⎪⎩⎪⎪⎨⎧-=+-=-x dx dz z dx dy y x dx dzdx dy y 3222 在0263212≠+=-=y yz zy y J 条件下,有()();132162663121++-=+--=---=z y z x y yz x xz z x x J dx dy .132622221+=+=--=z xy yz xy x y x y J dx dz (2)方程两边对x 求导,z y ,为x 的一元函数,得⎪⎪⎩⎪⎪⎨⎧=++'++=0)1(dx dz F dx dy F F f dxdy x f dx dzz y x 整理得 ⎪⎪⎩⎪⎪⎨⎧-=+'+=+'-x z y F dxdzF dxdy F f x f dxdzf dx dy x解得 )0(,)(≠'+'+'-'+=z y z y x y F f x F Ff x F Ff x F f x f dx dz (3)此方程组确定两个二元函数:),,(y x u u = ).,(y x v v = 方程两边对x 求偏导,得⎪⎪⎩⎪⎪⎨⎧∂∂⋅⋅+⎪⎭⎫ ⎝⎛-∂∂=∂∂∂∂⋅+⎪⎭⎫ ⎝⎛∂∂⋅+=∂∂.21'2'1'2'1x v vy g x u g x v x v f x u x u f x u 即 ⎪⎪⎩⎪⎪⎨⎧=∂∂-+∂∂⋅-=∂∂⋅+∂∂-'1'2'1'1'2'1)12()1(g x v vyg x u g uf xv f x u xf 在 0)12)(1(121'1'2'2'1'2'1'2'1≠⋅---=--=g f yvg xf yvg g f xf J 条件下, ;)12)(1()12(121'1'2'2'1'1'2'2'1'2'1'2'1g f yvg xf g f yvg uf yvg g f uf J x u ⋅---⋅---=--=∂∂ ()()()'1'2'2'1'1'1'1'1'1'1'1121111g f yvg xf uf xf g g g uf xf J x v ⋅----+=--=∂∂ 5 微分法的应用例8.22 求曲线2sin 4,cos 1,sin t z t y t t x =-=-=在点⎪⎭⎫⎝⎛-22,1,12π处的切线及法平面方程.173解 该点对应参数,20π=t切向量为 {}{}2,1,1)(),(),(0'0'0'==→t z t y t x T 所求切线方程为 22211112-=-=+-z y x π法平面方程为 0)22(2)1(12=-+-+⎪⎭⎫⎝⎛+-z y x π即 .422+=++πz y x 例8.23 求曲线32,,t z t y t x ===上的点,使在该点的切线平行于平面 .42=++z y x解 曲线的切向量为 {},3,2,12t t T =→平面42=++z y x 的法向量为 {}.1,2,1=→n 由题意知→→⊥n T ,即.0=⋅→→n T 亦即,03412=++t t 得 ,31,121-=-=t t 则所求点坐标为 )1,1,1(--和.271,91,31⎪⎭⎫⎝⎛--例8.24(1)求曲面2132222=++z y x 在点)2,2,1(-的法线方程; (2)求椭球面12222=++z y x 上平行于平面02=+-z y x 的切平面方程.(1)解 设,02132),,(222=-++=z y x z y x F 则,2)2,2,1(=-x F ,8)2,2,1(-=-y F ,12)2,2,1(=-z F 故所求的法线方程为624211-=-+=-z y x (2)分析 根据已知条件,先求出切点坐标.解 设,012),,(222=-++=z y x z y x F 法向量为 {}z y x n 2,4,2=→已知平面的法向量为{},2,1,11-=→n 由已知条件知 221412zy x =-= 即z y z x 41,21-==,将其代入椭球面方程.01422222=-+⎪⎭⎫⎝⎛-⋅+⎪⎭⎫ ⎝⎛z z z 得,1122±=z 于是切点为 ⎪⎪⎭⎫ ⎝⎛-1122,11221,1121M ,,,,⎪⎪⎭⎫ ⎝⎛--1122112211122M 切平面方程为 02112=-+-z y x 和.02112=++-z y x 例8.25 在曲面xy z =上求一点,使这点处的法线垂直于平面093=+++z y x ,并写出这法线的方程.解 令().0,,=-=z xy z y x F 法向量为{}.1,,-=→x y n 已知平面法向量为{},1,3,11=→n 由题意知,→n ∥→1n ,即 1131-==x y .3,1,3=-=-=∴z y x 即所求点为)3,1,3(--,法线方程为 .133113-=+=+z y x 例8.26 试证曲面 a z y x =++ (0>a )上任何点处的切平面在各坐标轴上的截距之和等于a .证 ,0),,(=-++=a z y x z y x F 则法向量为 .21,21,21⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=→z y x n曲面上任一点),,(000z y x M 处的切平面方程为0)(1)(1)(1000000=-+-+-z z z y y y x x x174 即a z y x z z y y x x =++=++0000,化为截距式得,10=++az z ay y ax x所以,截距之和为.000a a a az ay ax =⋅=++例8.27求函数xyz u =在点)2,1,5(处沿从点()2,1,5到点)14,4,9(的方向的方向导数. 解 {}{},12,3,4214,14,59=---=→l .131691234||222==++=→l1312cos ,133cos ,134cos ===γβα1312133134cos cos cos xy xz yz z u y u x u l u +⋅+⋅=∂∂+∂∂+∂∂=∂∂γβα 所以. ()1398513121013321342,1,5=⨯+⨯+⨯=∂∂l u . 例8.29 求函数())4)(6(,22y y x x y x f --=的极值.解 解方程组⎪⎩⎪⎨⎧=--==--=0)24)(6(0)4)(26(2'2'y x x f y y x f yx ,得驻点(0,0),(6,0),(0,4),(6,4),(3,2). 又 )24)(26(),4(2""y x f B y y f A xy xx --==--==,),6(2"x x f C yy --==列表常见错解 求得驻点()()()()().2,3,4,6,4,0,0,6,0,0后直接断定在这些点处取得极值.实际上,驻点未必是极值点.例8.30 在xoy 面上求一点,使它到0,0==y x 及0162=-+y x 三直线的距离平方之和为最小.分析 本题是无条件极值问题.解 设所求点的坐标为),(y x ,则此点到0,0==y x 及0162=-+y x 的距离分别为 |||,|y x 及,21|162|2+-+y x而距离平方和为 5)162(222-+++=y x y x z由 ()()⎪⎪⎩⎪⎪⎨⎧=-++=∂∂=-++=∂∂01625420162522y x y yz y x x x z , 即⎩⎨⎧=-+=-+03292083y x y x 得 ⎪⎪⎩⎪⎪⎨⎧==51658y x ,得唯一驻点⎪⎭⎫ ⎝⎛516,58, 由由题意知,到三直线距离平方和最小的点一定存在,故⎪⎭⎫⎝⎛516,58即是.例8.31 抛物面22y x z +=被平面1=++z y x 截成一椭圆,求原点到这椭圆的最长与最短距离.分析 本题是条件极值问题.175解 设椭圆上点的坐标为),,(z y x ,则原点到椭圆上这一点的距离平方为 ,2222z y x d ++=其中z y x ,,要同时满足.1,22=+++=z y x y x z 令拉格朗日函数: )1()(),,(2221222-+++--+++=z y x y x z z y x z y x F λλ由方程组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++==+-==+-=10202202222212121z y x zy x z F y y F x x F z y x λλλλλλ 解得 32,231 =±-==z y x由题意可知这种距离的最大值和最小值一定存在,而恰好找到两个可能极值点,所以距离最大值和最小值在这两点处取得.因 .359)32(2312222222 =+⎪⎪⎭⎫⎝⎛±-⋅=++=z y x d 所以 3591+=d 为最长距离,3592-=d 为最短距离.6 综合题例8.32 求 2222lim y x y x y x xy⎪⎪⎭⎫⎝⎛++∞→+∞→解 因为x xy y x ,222≥+>0,y >0.所以 0<,2122≤+y x xy 0<22222122y x y x y x xy ⎪⎭⎫⎝⎛≤⎪⎪⎭⎫⎝⎛+又因 02122=⎪⎭⎫ ⎝⎛+∞→+∞→y x y x lim ,所以 2222y x y x y x xy⎪⎪⎭⎫⎝⎛++∞→+∞→lim 0=.例8.33 设⎪⎩⎪⎨⎧=+≠++=0,00,),(2222222y x y x y x yx y x f ,求).,(),,(y x f y x f y x解 当022≠+y x 时,()22222222222222223222222)()()(2)(,)(2)(2)(2),(y x y x x y x yy x y x x y x f y x xy y x xy x y x xy y x f y x +-=+⋅-+=+=+⋅-+=当022=+y x 时,0lim )0,0(),0(lim )0,0(00lim )0,0()0,(lim)0,0(0000=∆-=∆-∆==∆-=∆-∆=→∆→∆→∆→∆y y f y f f x xf x f f y y y x x x则 ⎪⎩⎪⎨⎧=+≠++=0,00,)(2),(22222223y x y x y x xy y x f x176 ⎪⎩⎪⎨⎧=+≠++-=0,00,)()(),(2222222222y x y x y x y x x y x f y例8.34 函数,)0,(,1)0,(,2),,('22x x f x f yf y x f z y ===∂∂=求).,(y x f解 ,222=∂∂y f两边对y 积分得+=∂∂y yf2).(x ϕ 由条件x x f y =)0,('得.)(x x =ϕ即 x y y x f y +=2),(' 两边再对y 积分,得 )(),(2x xy y y x f ψ++=. 由条件1)0,(=x f 知,1)(=x ψ所以.1),(2++=xy x y x f例8.35 设,⎪⎭⎫⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛⋅=x y g x y x f y u 其中g f ,均有二阶连续导数,求 .222y x u y x u x ∂∂∂+∂∂ 分析 ⎪⎪⎭⎫ ⎝⎛y x f 可视为由y xt t f =),(复合而成的复合函数, f 对t 的一阶、二阶导数可分别简记为.,"'f f 即 .1'''y f x t f f x ⋅=∂∂⋅=对⎪⎭⎫⎝⎛x y g 也类似. 解x g x g x f y x u ∂∂⋅++∂∂⋅=∂∂⎪⎭⎫⎝⎛-⋅⋅++⋅⋅=2''1x y g x g y f y .''g x y g f ⋅-+= ⎪⎭⎫ ⎝⎛⋅-+∂∂=∂∂''22g x y g f x x u⎪⎭⎫ ⎝⎛-⋅''⋅-'⋅+⎪⎭⎫ ⎝⎛-⋅'+⋅''=2221x y g x y g x y x y g y f g x y f y''⋅+''⋅=321 x g x g x y g x y x f y x u 111'"'2"2⋅-⋅⋅-⋅+⎪⎪⎭⎫ ⎝⎛-⋅=∂∂∂"2"2g x y f y x ⋅-⋅-= 所以 .01"2"2"32"222=⎪⎪⎭⎫ ⎝⎛⋅-⋅-+⎪⎪⎭⎫ ⎝⎛⋅+⋅=∂∂∂+∂∂g x yf y x yg x y f y x y x uy x ux 例8.36 设z 是由方程ze z y x =-+所确定的y x ,的函数,求.2yx z∂∂∂ 解 令z z y x z e F F F e z y x z y x F --===--+=1,1,1,),,(.)1()1(11.11,1111322z zz z z zz y zz z x e e e y z e e y y x z e F F y z e e F F x z +-=+∂∂⋅-=⎪⎭⎫ ⎝⎛+∂∂=∂∂∂+=-=∂∂+=---=-=∂∂ 例8.37 设),(y x z z =由方程0,=⎪⎪⎭⎫⎝⎛++x z y y zx F 所确定,且()v F u,具有连续偏导数 ,则.yzy x z x xy z ∂∂⋅+∂∂⋅+=177证明 ⎪⎭⎫ ⎝⎛-⋅+=2'2'1x z F F F x ='1F -'22F xz⋅; .1111;'2'1'2'1'12'2'22'1F xF y x F y F F F y z F F y z F F z y ⋅+⋅=⋅+⋅=⋅-=+⎪⎪⎭⎫⎝⎛-⋅= .11,11'2'1'22'1'2'1'12'2'2'1'1'2'2'1'22'1yxyF xF F y zF F xF y F y z F F F y z yF xF xyF F x yz F xF y F x z F F F x z z y z x ⋅+-=⋅+⋅⋅--=-=∂∂+-=⋅+⋅⋅--=-=∂∂ 所以 ''''''''2122121122yF xF F xy xzF yF xF yF x yzF xy y zy x z x xy +-++-+=∂∂+∂∂+()().'2'1'2'1'2'1z xy z xy yF xF yF xF xy yF xF z xy =-+=++-++=例8.38 设函数),(u f z =方程dt t p u u x y⎰+=)()(ϕ确定u 是y x ,的函数,其中)(),(u u f ϕ连续且可微,1)('≠u ϕ求.)()(yz x p x z y p ∂∂+∂∂ 解 yuu f y z x u u f x z u f z ∂∂⋅=∂∂∂∂⋅=∂∂=)( ,)(),('', 方程两边对x 求偏导,得)()('x p x u u x u +∂∂=∂∂ϕ,即 .)(1)('u x p x u ϕ-=∂∂ 所以.)()()(''u x p u f x z ϕ-⋅=∂∂1 方程两边对y 求偏导,得)()('y p y u u y u -∂∂⋅=∂∂ϕ,即 .)(1)('u y p y u ϕ--=∂∂ 所以).()()(''u f u y p y z ⋅--=∂∂ϕ1 故 y z x p x z y p ∂∂+∂∂)()(.0)()(1)()()()(1)()(''''=⋅--⋅+⋅-⋅=u f u y p x p u f u x p y p ϕϕ 例8.39求抛物面22y x z +=的一个切平面,使切平面与直线⎩⎨⎧=+=+2212z y z x 垂直.解 已知直线方向向量 {}.1,2,2210201--==→→→→kj ia 抛物面在点()z y x ,,处切平面的法向量为: {}1,2,2-=→y x n .由题意知,→a ∥.→n 即 112222-=-=-y x 得211===z y x ,, 切点为 ).2,1,1( 所求切平面方程为 ,0)2()1(2)1(2=-+----z y x即 .0222=++--z y x例8.40 求球面6222=++z y x 与抛物面22y x z +=的交线在点()2,1,1处的切线方程.178 分析 本题主要是求切向量.因方程组⎪⎩⎪⎨⎧+==++222226y x z z y x 确定了交线⎪⎩⎪⎨⎧===)()(x z x y x x ψϕ .所以可用方程两边对x 求导的方法,解含有dxdzdx dy ,的方程组.从而得切向量 ()(){}.,,10'0'x x T ψϕ=→解 在方程22222,6y x z z y x +==++两边分别对x 求导,得⎪⎪⎩⎪⎪⎨⎧+==++dx dy y x dx dz dx dz z dx dy y x 220222 即⎪⎪⎩⎪⎪⎨⎧-=--=+xdxdz dx dy y x dx dz z dx dy y 22 解得 ,0 ,22=--+=dx dz yz y xz x dx dy所以 ()().0 ,12,1,12,1,1=-=dxdzdx dy 切向量{}0,1,1-=→T , 所求切线方程为⎪⎩⎪⎨⎧=---=-021111z y x , 即⎩⎨⎧==-+202z y x .三、自测试题(时间:120分钟,满分:100分)(一) 填空题(每小题3分,共15分) 1. 函数)1ln()arccos(22y x y x z --++= 的定义域是 .2. 设y xu arctan =, 则=du .3. 曲线⎪⎩⎪⎨⎧+==4422y x z y 在点M )5,4,2(处的切线方程是 .4. =++→→2201)ln(lim y x e x y y x .5. 函数22324y xy x x z -+-=的驻点为 ;极值点为 . (二) 选择题(每小题3分,共15分)1.函数),(y x f 在点),(00y x 处可微,是),(y x f 在),(00y x 可导的() ()A 充要条件;()B 充分条件;()C 必要条件;()D 以上都不对.2. 函数22y xy x z +-=在点()1,1处沿⎭⎬⎫⎩⎨⎧=→41,41l 的方向导数().()A 最大;()B 最小;()C 1; ()D 0.3. 设()⎪⎩⎪⎨⎧=≠++=)0,0(),(,0)0,0(),(,1sin )(,2222y x y x yx y x y x f 则()=0,0'y f()A 0 ;()B 1 ;()C 2;()D .1-4. 椭球面163222=++z y x 上点()3,2,1--处的切平面与平面1=z 的夹角为( ).()A 4π;()B 167arccos ;()C 227arccos ;()D 223arccos .1795. 设,23z xy u -=点M )1,2,1(-,则). (=M gradu()A {}2,4,2;()B {}3,4,2--;()C 62;()D 63.(三) 计算下列各题(每小题12分,共48分)1 设z y x u =,求.,,z uy u x u ∂∂∂∂∂∂2. 设)sin()arctan(z x e y x u xy z +⋅+-=求.du3.设方程1=++zx yz xy 确定隐函数),(y x z z =,求.22y z ∂∂4.设),(22xye y xf z -=,求.22xz ∂∂ (f 具有二阶连续偏导).(四) 求曲面3=+-xy z e z 在点()0,1,2处的切平面与法线方程.(10分)(五) 设一矩形的周长为2.现让它绕其一边旋转,求所得圆柱体体积为最大时矩形的面积及圆柱体体积.(12分)参考答案(一) }111|),.{(122<+≤+≤-y x y x y x 且;).0,0();2,2(),0,0.(5 ;2ln .4 ;403.3 ;.222⎩⎨⎧==+-+-y z x y x xdyydx (二) ..5 ;.4 ;.3 ;.2 ;.1B D A A B(三) ;.11-=∂∂z y z x y x u ;ln 1x z x y y uz y z -=∂∂.ln ln y x x y z u z y z =∂∂ dx z x e z x y e y x y x z du xyxy zz ⎥⎥⎦⎤⎢⎢⎣⎡++++-+-=-)(cos )sin()(1)(.221 dy z x x e y x y x z xy z z ⎥⎥⎦⎤⎢⎢⎣⎡++-+--+-)sin()(1)(21 .)cos()(1)ln()(2dz z x e y x y x y x xyzz ⎥⎥⎦⎤⎢⎢⎣⎡++-+--+ .)()(2.3222y x z x yz ++=∂∂.442.422221211222122f e y f xye f x f e y f xz xy xy xy ''+''+''+'+'=∂∂ (四) 切平面方程为:.04-2=+y x 法线方程为: ⎩⎨⎧==--0032z y x(五) 矩形面积为:;92=s 最大体积为:.274π=V。
多元函数微分法及其应用典型例题
y x2
)]
2
xf
2
x
2[
f
21
y
f22(
y x2
)]
4x3
f1
2
xf
2
x4
yf11
yf
22
.
例4 设 u f ( x, y, z), ( x2 ,e y , z) 0, y sin x,
( f , 具有一阶连续偏导数),且 0, 求 du .
z
dx
解 du f f dy f dz , dx x y dx z dx
2 x0 i 2 y0 j 2z0 k,
a2
b2
c2
x2 y2 z2
gradu 2 0 0 0 ,
M
a4 b4 c4
当 a b c 时,
2
gradu
a M
2
x2 y2 z2,
0
0
0
u r0
M
2 (x2 y2 z2)
a2
0
0
0
x2 0
y2 0
z2 0
2 a2
x2 0
y2 0
故 lim ( y x)x 0.
x y x0
2
2
y0
例2 设z f ( x,y)满足:
f ( x, y) f (0,0) =2 x 3( y)2 +o( ) ( 0) 其中 = ( x)2 ( y)2 。
(1)问 f ( x,y)在(0,0)点是否连续?
(2)问 fx (0,0)=2,f y(0,0)=3是否成立? (3)问 f ( x,y)在(0,0)点是否可微?
求 z , 2z , 2z . y y2 xy
解
(完整版)多元函数微分学及其应用习题解答
1 / 28习题8-11. 求下列函数的定义域: (1) y x z -= ;解:0,0x y D ≥≥⇒=(){,0,x y y x ≥≥(2) 221)ln(yx xx y z --+-=;解:220,0,1y x x x y D -≥≥--⇒=(){}22,01x y y x xy >≥+<且(3) )0(122222222>>-+++---=r R rz y x z y x R u ;解:222222220R x y z x y z r ≤---<++-⇒,0D ⇒=(){}22222,,x y z rx y z R <++≤(4) 22arccosyx z u +=。
221,0x y D ≤+≠⇒=(){}22,0x y z x y ≤+≠2. 求下列多元函数的极限:: (1) 22y 01)e ln(limyx x y x ++→→;解:y 1ln 2x y →→== (2) xy xy y x 42lim0+-→→;解:令t=xy,1200001(4)12lim 14x t t y t -→→→→-+===-2 / 28(3) x xyy x sin lim50→→;解:0050sin sin lim5lim 55x x y y xy xyx x →→→→==(4) 22x 222200e)()cos(1limy y x y x y x ++-→→;解:22222222222x 001cos()11cos()2(sin ),lim 20022()ey x y x y x y x y x y →→+-+-+=∴=⋅⋅=+Q (5) xyy x y x )(lim 220+→→。
解:0,xy >设22ln()xy x y +两边取对数,由夹逼定理2200222222lim ln()2222000ln()()ln()0lim ln()0,lim()1x y xy x y xyx x y y xy x y x y x y xy xy x y x y e→→+→→→→≤+≤++<+=∴+==xylnxy 当时同理可得,3. 证明下列极限不存在: (1) y x yx y x -+→→00lim;证明:(1)(,)(,)(,)(1)m x x y y mx f x y f x mx m x+===-当沿直线趋于原点(0,0)时.001lim,1x y x y mm x y m →→++=--不同时,极值也不同,所以极限不存在。
吴第8章多元函数微分学-习题课
【解】 lim f(x,y)0f(0,0)所以f 在(0,0)点连续,故否B .
x 0
y 0
f( x ,0 ) f( 0 ,0 ) x 2 s1 ix n 2 ) (
f x ( 0 ,0 ) l x 0 im x
lim 0 x 0 x
fy (0 ,0 ) ly 0 ifm (y ,0 ) yf(0 ,0 ) ly 0 iy m 2 sy i 1y n 2 ) ( 0 偏导数存在, 否A .
第八章 习题课
多元函数微分法及其应用
一、关于多元函数极限的题类 二、关于多元函数连续、偏导数存在、可微的题类 三、关于复合函数求导、隐函数求导,全微分计算题类 四、关于多元函数极(最)值的题类
一、关于多元函数极限的题类
【例1】 求
lim
x0
xy x2 y2
y0
【解】
xy
lim
x 0
x2
【例8】 设x2z2y(fz)其 , f中 可微z, . 求
y
y
【解Ⅰ】公式法
抽象函数隐函数求导
令F(x,y,z)x2z2y(fz), y
则
Fz
2zf(z), y
Fyf(zy)zyf(zy),
z y
Fy Fz
yf( z) zf ( z)
y
y
2yz yf(z)
.
y
【例8】 设x2z2y(fz)其 , f中 可微z, . 求
y
y
抽象函数隐函数求导
【解Ⅱ】(求导直接法) z是x,y的函数
zyz 两边同时对y求导 2zyzf(zy)yf(zy)yy2 ,
yf(z) zf (z)
解得
多元函数微分学及应用经典例题
. 解方程组
.
解得
,
,
.
当
任意一个成立时, 都有
. 所以, 当边长为
有最大体积
.
十七. 求原点到曲面
的最短距离.
解. 设曲面上达到最短距离的点为(x , y , z ), 则
达到最小值.
令
, 由(3) 若 = 1
代入(1), (2) 得 得到
, 解得
. 代入曲面方程
,
,
由(3) 若
由(3) 解得
. 由(1), (2) 得到
. 代入曲面方程
, 得到
,
,
,
所以所求的最短距离为
.
十八. 当
时, 求函数 上的最大值, 并证明对任意的成立不等式
在球面
解. 构造函数
,
解得
因为在球面上当
.
所以当
时, u 达到最大值.
对于任意正实数
,令
. 原题条件极值问题转化为
注意到
. 于是
即
.
五. 设
, 其中 f 具有二阶连续偏导数, 求
.
解.
=
六. 已知
.
解.
=
=
=
七. 设
确定, 求
.
解. 以上两式对 x 求导, 得到关于
的方程组
由克莱姆法则解得
,
八. 设
解.
=
于是
=
= 0
九. 设
, 其中 f ( u , v ) 具有二阶连续偏导数,
二阶可导, 求
.
解.
=
十. 已知
,
,
p ( t ) 连续, 试求
.
解.
多元函数微分法及其应用习题
dx dx
组求导, 解方程组, 求出切向量, 即可得切线及法平面方程。
解: 将所给方程的两边同时对 x 求导得
2 x
2
y
dy dx
2z
dz dx
0
2 x
2
y
dy dx
2z
dz dx
21
解得
dy x dx y
dz 0 dx
方程组
F ( x, y,u,v) 0 G( x, y,u,v) 0
确定隐函数两个二元函数 u u( x, y),v v( x, y).
求 u , u , v , v .
x y x y
5
4、多元函数微分学在几何上的应用
4.1 空间曲线的切线与法平面
x (t)
(1)
L:
y
(t
)
z (t)
n ( f x , f y , 1) |(2,1,4) (2x,
2 y,
1) (4, 2, 1) ( 2 ,1,4 )
故切平面方程为
4( x 2) 2( y 1) (z 5) 0
即
4x 2y z 5 0
法线方程为
x2 y1 z5
4
2 1
23
例8、问函数 u xy2z在点P(1, -1, 2) 处沿什么方向的方向 导数最大?并求此方向导数的最大值。
y0
x) y
f ( x0 , y0 )
求函数 z f (x, y)的偏导数 z 时,只要把 y暂时看作常量
x
而对 x求导数;类似地,可求函数z
f (x,
y)的偏导数
z y
。
经济数学(多元函数的微分法及其应用习题及答案)
第八章 多元函数的微分法及其应用习题 8-11. 指出下列平面位置的特殊性质:(1)23200x y -+= (2)320x -=(3)470y z -= (4)0x y z ++= 解 (1)因为方程中缺变量z , 所以该平面平行于z 轴.(2)因为方程中缺变量y 、z , 所以该平面平行于yz 平面即垂直于x 轴.(3)因为方程中缺变量x 且不含常数项, 所以该平面平行于x 轴且经过原点(0,0,0). (4)因为方程中缺常数, 所以该平面通过原点(0,0,0).2. 求下列轨迹的方程:(1)与点(3,0,2)-的距离为4个单位的点的轨迹;(2)与两定点)0,0,(c P 和)0,0,(c Q -的距离之和等于2(0)a a >的点的轨迹; (3)与z 轴和点(1,3,1)-等距离的点之轨迹;(4)与yz 平面的距离为4,且与点)1,2,5(-的距离为3的点之轨迹.。
解 设动点为),,(z y x M ,则(1)点(,,)M x y z 与点(3,0,2)-的距离为4 整理得动点),,(z y x M 的轨迹为2226430x y z x z ++-+-=.(2)动点),,(z y x M 与两定点)0,0,(c P 和)0,0,(c Q -的距离之和等于a 2,即2a整理得动点),,(z y x M 的轨迹为2222222222()()0a c x a y a z a a c -++--=.(3) 动点),,(z y x M 与z 轴和点)1,3,1(-等距离为整理得动点),,(z y x M 的轨迹为2262110z x y z --++=.(4) 由动点),,(z y x M 与yz 平面的距离为4,得4||=x , 由动点),,(z y x M 与点)1,2,5(-的距离为3, 得3=故),,(z y x M 点的轨迹为⎩⎨⎧=++-=8)1()2(422z y x . 3. 求下列各曲面的方程:(1) 中心在点)2,3,1(--且通过点)1,1,1(-的球面方程;(2) 过点)1,1,2(-而在x 轴和y 轴上的截距分别为2和1的平面方程; (3) 平行于xz 平面并过点(2,-5,3)的平面方程;(4) 一动点与点)0,0,1(的距离是与平面4=x 的距离之一半,求该动点之方程.解 (1)设),,(z y x 为所求球面上的任意一点且球面半径为R ,则 2222(1)(3)(2)x y z R ++++-=将点)1,1,1(-代入上式,得3=R . 故所求球面方程为 9)2()3()1(222=-++++z y x .(2)设所求的平面方程为0=+++D Cz By Ax (*)将点)0,0,2(,)0,1,0(,)1,1,2(-代入上式,得20020A D B D A B C D +=⎧⎪+=⎨⎪+-+=⎩解得0.5,,A D B D C D =-=-=-. 代入方程(*)整理得平面方程为2220x y z ++-=.(3)设所求平面方程为0By D += (**)将点)3,5,2(-代入上式,得B D 5=.代入方程(**)整理得平面方程为 50y +=.(4) (4) 设动点为),,(z y x ,则0.5|4|x =-22234412x y z ++=.4.作出下列方程之图形:(1)01=-+-z y x (2)03=-z y(3)02=x (4)12=y(5)1222=++z y x (6)022=-y x(7)223049y x z +-= (8)22149y x +=解 (1) (2)(图8-1) (图8-2)(3) (4)4)(图8-3) (图8-4)(5) (6)(图8-5) (图8-6)(7) (8)习题 8-21. 已知y xxy y x y x f tan),(22-+=,求),(ty tx f .解2222(,)()()tantx f tx ty t x t y tx ty ty =+-2222(tan )(,)xt x y xy t f x y y =+-=.2.已知vu wwu w v u f ++=),,(,求),,(xy y x y x f -+.解 ),,(xy y x y x f -+=yx y x xy xy y x -++++)()(=xxy xy y x 2)()(++.3. 已知2332),(y xy x y x f +-=,求),(xy y x f .解 32(()x x f y y =-+333x xyy =-+.4*.设)(y x f y z --=且1=y 时x z =,试求)(x f 和z .解 由1=y 时x z =,得 )1(1--=x f x令1-=x t ,则)(1)1(2t f t -=+,即22()1(1)2f t t t t =-+=--所以 2()(2)f x x x =-+222)[))] 22 )).z f y y y x y yy y ==---=+-=+-5 .(1)2ln(21)z y x =-+ (2)z =+(3)ln(1)z x y =-- (4)z =解 (1)当2210y x -+>时, 函数有意义, 故函数的定义域(如图8-9所示)为2{(,)|210}D x y y x =-+>.(2)当0,0x y x y +>->时, 函数有意义,故函数的定义域(如图8-10所示)为 图8-9 {(,)|00}D x y x y x y =+>->且(3)当240x y -≥和0122>--y x 且2211x y --≠时, 函数有意义, 故函数的定义域(如图8-11所示)为222{(,)|401}D x y y x x y =≤<+<,(4)当0,0y x ≥,即0,0x y ≥≥且2x y ≥时, 函数有意义, 故函数的定义域(如图8-12所示)为 图8-10|),{(y x D =0≥x ,0≥y ,y x ≥2}.图8-11图8-126. 求下列各极限:(,)limy x y →(1)22(,)(0,1)1limx y xyx y →-+ (2)(3)(,)limx y → (4)(,)(2,0)sin limx y xyy →解(1))1,0(),(lim→y x 221y x xy +-=1.(2))0,1(),(lim→y x 22)ln(y x e x y ++=2ln . (3))0,0(),(lim→y x 11-+xy xy=)0,0(),(lim →y x xy xy xy )11(++=2.(4) )0,2(),(lim→y x y xy sin =)0,2(),(lim→y x xy xyx sin =2.7. 证明下列极限不存在:(1))0,0(),(lim →y x y x yx -+ (2))0,0(),(lim →y x 222)(y x y x - 证 (1)因为当点(,)x y 沿直线x y 2=趋向)0,0(点,得020lim →=→x y x y x yx -+=0lim→x x x x x 22-+=3- 当点(,)x y 沿直线y x 2=趋向)0,0(点,得020limy x y x y x y →=→+-=0lim →y yy3=3所以 )0,0(),(lim→y x y x yx -+不存在.(2)因为当点(,)x y 沿直线kx y =)1(≠k 趋向)0,0(点,得00lim→=→kx y x 222)(y x y x -=00lim →=→kx y x 222)()(kx x kx x -=0lim →x 22)1()(k kx -=0当点(,)x y 沿曲线x x y +=2趋向)0,0(点,得x x y x +=→20l i m222)(y x y x -=x x y x +=→20lim 22222)()(x x x x x x --+=0lim →x 2)1(x +=1所以)0,0(),(lim →y x 222)(y x y x -不存在. 8. 求下列函数的不连续点:(1)221y x z +=(2)y x xy z +=(3)xy z 1sin = 解 (1)因为在)0,0(点处, 函数无意义, 所以函数不连续点为)0,0(.(2)因为当0x y +=时, 函数无意义, 所以函数不连续点为直线0x y +=上的一切点.(3)因为当00x y ==或时, 函数无意义, 所以函数不连续点为坐标轴上的一切点. 9.求函数(,)ln(1)f x y x y =--的定义域及1(,)(,0)2lim (,)x y f x y →.解 要使该函数有意义,则恒有22222401011x y x y x y ⎧-≥⎪⎪-->⎨⎪--≠⎪⎩成立, 则函数的定义域为222{(,)|4001}D x y x y x y =-≥<+<,又因为函数),(y x f 是初等函数且在1(,0)2点处有定义, 所以函数),(y x f 在点1(,0)2处连续.故1(,)(,0)21lim(,)(,0)2x y f x y f →==.习题 8-31. 求下列函数的偏导数:(1)33xy y x z -= (2))ln(xy z =(3))(cos )arcsin(2xy xy z += (4)yxy z )1(+=解 (1)23323, 3z z x y y x xy x y ∂∂=-=-∂∂.(2)z x x ∂∂==∂∂同理z y ∂=∂(3)sin(2)z y xy x ∂=-∂同理sin(2)z x xy y ∂-∂.(4) 21(1)y zy xy x -∂=+∂设在已知函数两端取对数,有 l n l n (1)z y x y =+ 两边对y 求导,得11ln(1)1z xy y x z y xy ∂⋅=++⋅⋅∂+故 =∂∂y zyxy )1(+]1)1[ln(xy xy xy +++. 2.设ln x y y u x y x -=+,验证0u ux y x y ∂∂+=∂∂.证 因为221ln ()y y x y u x x x x y x y -∂=-⋅∂++221ln ()y x y u x y x y x y x y -∂=-+⋅∂++所以0u u xy x y ∂∂+=∂∂.3.设)11(yx ez +-=,验证+∂∂x z x 2z y z y 22=∂∂.证 因为 1111()()22, x y x y z z e x e y x y -+-+--∂∂==∂∂所以+∂∂xz x 2=∂∂y z y 2)11(y x e +-+)11(y x e +-=)11(2y x e +-z 2=. 4. 设=),(y x f y xy x arcsin)1(-+,求'(,1)x f x .解 因为=),('y x fx 11y +=所以 '(,1)1x f x =.5.设=),(y x f 22y x y x +-+,求)4,3('x f . 解 因为'(,)x f x y ==-所以'2(3,4)5x f =. 6.求下列函数的二阶偏导: (1)x yz arctan= (2)xy z =解 (1)22221()1()y y z y xx x y x ∂=⋅-=-∂++22211()1()z x y y x x y x ∂=⋅=∂++22222222222()2()()y y xy z x x x x y x y x y -∂∂=-=-⋅=∂∂+++22222222()()xy z xy y x y x y ∂∂==-∂∂++22222222()()y x z xx y y x y x y -∂∂==∂∂∂++.(2) ''1ln , x x x y z y y z xy -== ''2''2(ln ), (1)x x xx yy z y y z x x y -==-=''xy z 1-x xy y ln +y y x1= 1-x y )1ln (+y x .7. 设=),,(z y x f z x yz xy 222++,求)1,0,0('x f ,)0,1,0('y f , ''(0,0,1)x x f ,''(1,0,2)x z f ,''(0,1,0)y z f -和'''(2,0,1)z z x f .解 因为'2'2'22,2,2x y zf y x z fx yzf y z x=+=+=+'''''''''''2,2,2,2,0xx xz yz zz zzx f z f x f z f y f ===== 所以 ''''(0,0,1)0,(0,1,0)0,(0,0,1)2x y x x f f f === '''''''(1,0,2)2,(0,1,0)0,(2,0,1)x z y z z z xf f f=-==. 8. 设)ln(xy x z =,求32z x y ∂∂∂与32zx y ∂∂∂.解 因为 1l n ()l n ()1z x y x y x y x x y ∂=+⋅⋅=+∂22211(ln 1)11(ln 1)z xy y x xy xx z xy x x y yxy y ∂∂=+=⋅=∂∂∂∂=+=⋅=∂∂∂ 所以 3322210,z z x yx y y ∂∂==-∂∂∂∂. 9. 验证2sin kn ty e nx -=满足22x yk t y ∂∂=∂∂. 证 因为=∂∂t y2222sin ()sin kn t kn t e nx kn kn e nx ---=- 22222cos , sin kn t kn t y y ne nx n e nxx x --∂∂==-∂∂=∂∂22xy k 22sin kn t kn e nx --=t y∂∂ 所以22x y k t y ∂∂=∂∂. 10. 设),(y x u 有一阶连续偏导数,且x x u=∂∂, 2(,)(,)|1x x u x y =, 求y u ∂∂.解 由x x u =∂∂,两边对x 积分,得21(,)()2u x y x g y =+?? 由 2(,)(,)|1x x u x y =,得 =),(2x x u 1)(2122=+x g x即=)(2x g 2211x - 于是 ),(y x u =+221x y211-故 12u y∂=-∂. 11. 设33222222,0(,)0, 0x y x y f x y x yx y ⎧-+≠⎪=+⎨⎪+=⎩,求)0,0('xf )0,0('y f . 解 由在一点的偏导数定义,得'00(0,0)(0,0)(0,0)lim lim 1x x x f x f xf x x ∆→∆→+∆-∆===∆∆'00(0,0)(0,0)(0,0)lim lim 1y y y f y f yf y y ∆→∆→+∆--∆===-∆∆. 12 .设1()()y z f xy xf y x =+,f 具有连续二阶偏导数,求''x y z .解 设,y u xy v x ==, 则1()()z f u xf v y =+于是'''21()()()()x u v y z f u y f v xf v y x =⋅⋅++⋅-''()()()u v y f u f v f v x =+=-故''''''''111()()()()xy y z f u x f v f v f v x x x x =+⋅-⋅-⋅⋅''''2()()y yf xy x f x x =⋅-⋅.习题 8-41. 求下列函数的全微分:(1)xz xy y =+(2)y x e z 2-= (3)z (4)y z u x =(5)2ln()z x xy = (6)221z x y =- 解 (1)因为 21, z z x y x xy y y ∂∂=+=-∂∂ 所以 21d ()d ()d xz y x x yy y =++-.(2)因为 =∂∂x z yx e 2-,=∂∂y z y x e 22--所以 222d d 2d (d 2d ).x yx y x y z ex e y e x y ---=-=- (3)因为223222()y xy zx x y x y ∂=-=-∂++23222()z x y x y ∂==∂+ 所以233222222d d d ()()xy x z x yx y x y =-+++3222(d d ).()x y x x y x y =--+(4)因为=∂∂x u 1y z yzx -, =∂∂y u ln y z zx x , =∂∂zu ln y z yx x 所以 1d d ln d ln d y z y z y z u yzxx zx x y yx x z -=++. (5)因为 22l n ()2l n ()y zx x y x x x y x x x y ∂=+=+∂22z x x x y xy y ∂=⋅=∂ 所以 2d [2ln()]d d x z x xy x x yy =++.(6) 因为 22222222, ()()y z x zxy x y x y ∂∂=-=∂∂--所以22222222d d d ()()y x z x yx y x y =-+--2222(d d ).()x x y y x y =---2 .求函数)1ln(22y x z ++=在1,2x y ==的全微分.解 因为 2221z x x x y ∂=∂++, 2221y zy x y ∂=∂++所以 1213x y z x==∂=∂, 1223x y z y==∂=∂故1212d d d 33x y z x y ===+.3. 求函数x yz =, 当2,1x y ==、0.1x ∆=、0.2y ∆=-的全增量z ∆和全微分d z . 解 因为 x y x x y y z -∆+∆+=∆, 21d y z x y x x =-∆+∆所以, 当2,2x y ==、0.1x ∆=、0.2y ∆=-时1(0.2)10.11920.12z +-∆=-=-+ 11d 0.1(0.2)0.12542z =-⨯+⨯-=-.*4. 已知(cos )d (sin )d ay by x x x x y +++是函数(,)u x y 的全微分,求,a b 及(,)u x y .解 因为 d u =(c o s )d a y b y x x +(s i n )d x x y ++所以 x by ay u x cos '+=, ='y u x x sin +则 =''xy u x b a cos +, =''yx u x c o s 1+ 而''xy u 与''yx u 均为连续函数,则必有≡+x b a cos x cos 1+ 解得 1,1==b a .故 ),(y x u =d ux x ∂∂⎰=(cos )d y y x x +⎰=c x y xy ++sin (c 为任意常数).5.在例3的条件下, 求产品B 的边际成本,并阐明其经济意义.解 因为 30.010.04Cx y y ∂=++∂所以 (100,50)30.011000.04506Cy ∂=+⨯+⨯=∂其经济意义为:当产品A 的产量x = 100不变时, 产品B 的产量在y = 50的基础上, 再增加一个单位, 成本C 将增加6个单位.6.已知某商品的需求量Q 是该商品的价格p 1、另一相关商品的价格p 2及消费者收入y的函数, 且325852121200Q p p y--=,试求需求量分别关于自身价格p 1、、相关价格p 2及消费者收入y 的弹性, 并阐明其经济意义.解1112511852121133()20088p p p Q p p y Q p Q η--∂=⋅=⋅⋅-=-∂375228522122122()20055p p p Q p p y Q p Q η--∂=⋅=⋅⋅-=-∂32385212155()20022y y Q y p p y Q y Q η--∂=⋅=⋅⋅=∂其经济意义分别为:在相关商品的价格p 2及消费者收入y 不变时, 该商品的价格p 1上涨(或下降)1%,需求量下降(或上升)37.5%; 在某商品的价格p 1及消费者收入y 不变时, 相关商品的价格p 2上涨(或下降)1%,需求量下降(或上升)40%; 在某商品的价格p 1及相关商品的价格p 2不变时, 消费者收入y 上涨(或下降)1%, 需求量上升 (或下降)250%.7*. 在边长为6,8x m y m ==的矩形中,若x 增加5cm ,y 减少10cm ,试求该矩形的对角线和面积变化的近似值.解 设对角线长为l ,面积为s ,则有22y x l +=, xy s = 于是d )z z l l x y x x y y x y ∂∂∆≈=∆+∆=∆+∆∂∂d ()s s y x x y ∆≈=∆+∆当6,8,0.05,0.1x m y m x m y m ==∆=∆=-时,有680.05(0.1)0.051010l m ∆≈⨯+-=-280.056(0.01)0.2s m ∆≈⨯+⨯-=- .8*. 设有一无盖圆柱形容器, 其壁与底厚均为0.1cm, 内高为20cm, 内半径为4cm, 求该容器外壳体积的近似值.解 设容器的内半径为r ,高为h ,体积为V , 则圆柱体的体积为 2V r h π=因为圆柱形容器的外壳就是圆柱体积的增量V ∆,所以2d 2V V rh r r h ππ∆≈=∆+∆ 于是当4,20,0.1r h r h ==∆=∆=,时, 有2324200.140.155.3()V cm πππ∆≈⨯⨯⨯⨯+⨯⨯≈.故该容器外壳体积大约为355.3().cm π9*. 求下列各式的近似值:(2) 1.05(1.07)(ln 20.693)=(3) 00sin 29tan 46解 (1)设(,)f x y =2f x ∂=∂,2f y ∂=∂于是(,)f x x y y +∆+∆f fx yx y ∂∂≈+∆+∆∂∂22=+当1,2,x y x ==∆=时, 有(1.02,1.97)f =2 2.95≈=.(2) 设(,)f x y =yx ,则'1y x f yx -=, 'ln y yf x x =于是 (,)f x x y y +∆+∆()y y x x +∆=+∆≈y x ''x y f x f y +∆+∆=yx 1ln y y yx x x x y -+∆+∆当1,1,0.07,0.05x y x y ==∆=∆=时, 有(1.07,1.05)10.07 1.07f =+=. (3) 设(,)f x y =sin tan x y ,则'cos tan x f x y =,'2sin sec y f x y = 于是00sin 29tan 46sin()tan()61804180ππππ=-+ 当,,,64180180x y x y ππππ==∆=-∆=时, 有00''(29,46)(,)(,)(,)646464x y f f f x f y ππππππ=+∆+∆2sintancostan()sinsec646418064180ππππππππ=+-+ = 0.50235.10*. 设222232222,0(,)()0,0x y x y f x y x y x y ⎧+≠⎪⎪=⎨+⎪⎪+=⎩ 求证:(,)f x y 在点(0,0)处连续且偏导数存在,但不可微分.证 设cos sin x r y r θθ=⎧⎨=⎩, 则43(,)(0,0)cos sin lim (,)lim0(0,0)x y r r f x y f r θθ→→===故(,)f x y 在点(0,0)处连续. 而'0(0,0)(0,0)(0,0)limx x f x f f x →+-==同理 '(0,0)0y f =故(,)f x y 在点(0,0)处偏导数存在.由函数可微的定义和性质可知:f 可微的充要条件是''()x y f f x f y o ρ∆-∆-∆=其中ρ=而''0(0,0)(0,0)limx y f f x f yρρ→∆-∆-∆''0(,)(0,0)(0,0)(0,0)limx y f x y f f x f yρρ→∆∆--∆-∆=2222222222000()limlim[][()]x x y y k x x y x k x x y x k x ∆→∆→∆→∆=∆→∆∆∆∆==∆+∆∆+∆222lim0(0)(1)x y k x k k k ∆→∆=∆→=≠≠+故(,)f x y 在点(0,0)处不可微.习题 8-51. 设2ln ,32x z u v u v x y y ===-而求,.z z x y ∂∂∂∂ 解 212l n 3z z u z v u u v x u x v x y v ∂∂∂∂∂=⋅+⋅=⋅+⋅∂∂∂∂∂22223ln(32)(32)x x x y yx y y =⋅-+- 222ln ()(2)z z u z v x u u v y u y v y v y ∂∂∂∂∂=⋅+⋅=⋅-+⋅-∂∂∂∂∂223222ln(32)(32)x x x y y x y y =-⋅---. 2.设2x yz e -=,而sin x t =, 3y t =,求d z .解 因为 3sin 2t t z e-=所以 3sin 23d d(sin 2)t tz et t -=- 32sin 2(cos 6)d t t t t et -=-.3. 设arctan()z xy =,而xy e =, 求d d zx .解d d d d d d d d y y z z z x z z x y x x x x y x ∂∂∂∂=⋅+⋅=+⋅∂∂∂∂22222222111(1).11xx x x xy x e x y x y x e xe e x yx e=+⋅++++==++4.设2()1ax e y z u a -=+, 而sin ,cos y a x z x ==, 求d d u x . 解 d d d d d d d d u u x u y u z x x x y x z x ∂∂∂=⋅+⋅+⋅∂∂∂=222()cos (sin )111ax ax ax ae y z e e a x x a a a -=+⋅-⋅-+++=22(sin cos cos sin )1axe a x a x a x x a -+++=sin axe x .5.设arctanxz y =,而x u v =+,y u v =-,求证:z z u v ∂∂+=∂∂22u v u v -+.证 因为''22222221()()11x y xy x x xy y u y uy y x z ux x y x yy ∂∂-⋅+⋅∂∂-∂===∂+++''22222221()(1)()()11x y xy x x xy y v y vyy x z vx x y x y y ∂∂+-⋅-⋅+⋅∂∂+∂===∂+++所以 2222222y xy x y z zu v y xy x y x -+∂∂+=+=∂∂+++ 22222()()()u v u v u v u v u v --==++-+.6. 设f 具有一阶连续偏导数, 求下列函数的一阶偏导数: (1)222()u f x y z =++ (2) 22(,)xyu f x y e =-(3) (,)x y u f y z = (4) (,,)u f x xy xyz = 解 (1)'''2',2',,2'.x y z u xf u yf u zf === (2) ''22'''1212()()2xy xy x u f x y f e xf ye f x x ∂∂=⋅-+⋅=+∂∂ ''22'''1212()()2.xy xy y u f x y f e yf xe f y y ∂∂=⋅-+⋅=-+∂∂'''11'''''12122'''2221(3)()1()() ().x y z x u f f x y y x x x u f f f f y y y y z yyy u f f z z z∂==∂∂∂=+=-+∂∂∂==-∂, ,.'''''''123123'''''2323'''33(4)1 .x y z u f f y f yz f yf yzf u f x f xz xf xzf u f xy xyf =⋅+⋅+⋅=++=⋅+⋅=+=⋅= .7. 设f 具有二阶连续偏导数, 求下列函数的二阶偏导数:(1)(,)z f xy y = (2) (,)xz f x y =解 (1) '''11(),x z f xy yf x ∂=⋅=∂'''''1212d ()()d y y z f xy f xy xf f y y ∂=⋅+⋅=+∂ '''''2''11111()()xx z yf yf xy y f x x ∂∂==⋅=∂∂''''''''111112'''''11112d ()[()]d xy y z yf f y f xy f y x yf xyf yf ∂∂==+⋅+⋅∂∂=++''''12''''''''11122122''''''''''''2''211122122111222()d d [()][()]d d 2.yy z xf f yy y x f xy f f xy f y y y y x f xf xf f x f xf f ∂=+∂∂∂=⋅+⋅+⋅+⋅∂∂=+++=++(2)'''''1212d 1()d x x x z f f f f x x y y ∂=⋅+⋅=+∂, '''222()y x x z f f y y y ∂=⋅=-∂ ''''12''''''''11122122''''''''''''''11122122111222221[]d 1d ()[()]d d 11121 .xx z f f x yx x x x f f f f x x y y x x y f f f f f f f y y y y y ∂=+∂∂∂=⋅+⋅+⋅+⋅∂∂=+++=++ ''''12'''''''''2111221222'''''21222222'''''212222231[]11 ()()[()()]11 ()1xy z f f y yx x f x f f f x f y y y y y y y y x x f f f y y yy x xf f f y y y ∂=+∂∂∂∂∂=⋅+⋅-+⋅+⋅∂∂∂∂=--+-=---''''''''2221222322''''''222222322342()[()()]22 ().yyx x x x z f f f x f y y y y y y y x x x x x f f f f y y y y y ∂∂∂=-=⋅-⋅+⋅∂∂∂=⋅+⋅=⋅+⋅8 .设()z xy xF u =+,而()F u 为可导函数且yu x =, 求证:z z x y z xy x y ∂∂+=+∂∂.证 因为 ''2()()()u u y y zy F u x F y F u F xx x ∂=++⋅-⋅=+-∂''1u u z x x F x F y x ∂=+⋅⋅=+∂ 所以''()u u z zxy xy x F u y F xy y F x y ∂∂+=+⋅-⋅++⋅∂∂=2().xy xF u z xy =+=+9. 设2()3y z xy x ϕ=+, 验证:220z z x xy y x y ∂∂-+=∂∂.证 因为 2''22, 33y yz z y x x y x x ϕϕ∂∂=-+⋅=+⋅∂∂所以 2222''222()()33y y z z x xy y x y xy x yx y x x ϕϕ∂∂⋅-+=⋅-+-⋅++∂∂22'22'2233y x y y x y y ϕϕ=-+--+=10. 设sin()(,)xz xy x y ϕ=+,(,)u v ϕ有二阶偏导数, 求''xy z .解'''121cos()()x z y xy y ϕϕ=++⋅'''''''2122222211cos()sin()()()x y x xz xy xy xy y yy y ϕϕϕ=-+⋅--⋅+⋅-'''''222122231cos()sin().x x xy xy xy y y y ϕϕϕ=--⋅-⋅-⋅11. 设(,)()y xz f xy y x ϕ=+,且f 与ϕ具有二阶连续偏导数, 求''xy z .解 ''''1221x y z yf f y x ϕ=+⋅-⋅'''''''''''11211212222''2222'''''''''12112223321()()111 "11 .xy x x z f y f x f f x f y y yyf x y x xy x f xy f f f y y x x ϕϕϕϕ=+⋅-+⋅---⋅⋅-=+⋅-⋅-⋅-⋅-⋅习题 8-61 .设下列方程所确定的函数为()y f x =,求d d yx .(1)ln 0xy y -= (2)2sin 0x y e xy +-= (3)ln ln 0xy x y ++=解 (1)设(,)ln F x y xy y =-, 则'x F y =,'1y F x y =-故'2'd .1d 1x yF yyy x xy F x y =-=-=--(2) 设2(,)sin xF x y y e xy =+-, 则'2',cos 2x x y F e y F y xy =-=-故'22'd d cos 2cos 2x xx yF y e y y e x y xy y xy F --=-=-=--.(3) 设(,)ln ln F x y xy x y =++, 则''11, x y F y F x x y =+=+故 ''1d .1d x yy F y y x x x F x y +=-=-=-+2. 对下列隐函数, 求,,z z x x y y ∂∂∂∂∂∂及d z .(1)20x y z ++-= (2)0ze xyz -= (3)lnx z zy = 解 (1)设(,)2F x y x y z =++-, 则'121x F =-='222y F =-=-'zF=1-于是''x z F zx F∂=-=∂''y z F zy F ∂=-=∂''y x F xy F ∂=-=∂ 故d d d z z z x yx y ∂∂=+∂∂(2) 设(,)zF x y e xyz =-, 则'x F yz =-, 'y F xz =-, 'z F =z e xy -于是 ''x zz F z yz xF e xy ∂=-=∂- ''y z z F z xz y F e xy ∂=-=∂-''y x F x xz y yz F ∂=-=-∂ 故(d d )d d d zz z z y x x y z x y x y e xy ∂∂+=+=∂∂-. (3) 设(,)ln x zF x y z y =-, 则'''2111, , x y z x F F F z y z z===--, 于是 ''x z F z z xx z F ∂=-=∂+, '2'()y z F z z y y x z F ∂=-=∂+ ''y xF x z y y F ∂=-=-∂ 故 2d d d ()z z z x yx z y x z =+++.3 .设333z xyz a -=, 求2z x y ∂∂∂.解 设33(,,)3F x y z z xyz a =--, 则'''23,3,33x y z F yz F xz F z xy =-=-=-于是 ''22333x z F yz yz zxF z xy z xy -∂=-=-=∂-- ''22333y z F z xz xz y F z xy z xy ∂-=-=-=∂--故 22()()z z yzx y y x y z xy ∂∂∂∂==∂∂∂∂∂-222()()(2)()z zz y z xy yz z x y yz xy ∂∂+---∂∂=-2222222()()()()xyz xz z z xy yz x z xyz xyz xy +-----=-422223(2)()z z xyz x y z xy --=-.4.设0x e xyz -=, 求22zx ∂∂.解 设(,,)xF x y z e xyz =-, 则 'x x F e yz =-, 'y F xz =-, 'z F =xy -于是 z x ∂∂=''x z F F -=x e yz xy ---=xe yzxy - 故 222()()()()x x ze yxy e yz y zz xx xxxy ∂---∂∂∂∂==∂∂∂22()()(2)2()x xx x e yze y xy e yz yxyx e yzxy x y-----+==.5.设2sin(23)23x y z x y z +-=+-, 求证:1z z x y ∂∂+=∂∂. 证 设(,,)2sin(23)23F x y z x y z x y z =+---+, 则'2cos(23)1x F x y z =+--, '4cos(23)2y F x y z =+--'6cos(23)3z F x y z =-+-+于是''2cos(23)116cos(23)33x z F x y z zx x y z F +--∂=-=-=∂-+-+ ''4cos(23)226cos(23)33y zF x y z zy x y z F +--∂=-=-=∂-+-+ 故 1z z x y ∂∂+=∂∂.6 .设(,)x x y z =, (,)y y x z =, (,)z z x y =,都是由方程(,,)0F x y z =所确定的具有连续偏导数的函数, 求证:1y x zy z x ∂∂∂⋅⋅=-∂∂∂.证 因为 ''y x F x y F ∂=-∂, ''z y F y z F ∂=-∂,''x z F z x F ∂=-∂ 所以''''''()()()1y x z x y zF F F y x zy z x F F F ∂∂∂⋅⋅=-⋅-⋅-=-∂∂∂.7. 设(,)u v ϕ具有连续偏导数,证明由方程(,)0cx az cy bz ϕ--=所确定的函数(,)z f x y =满足 z z a b cx y ∂∂+=∂∂.证 设(,,)(,)F x y z cx az cy bz ϕ=--, 则''1x F c ϕ=, ''2y F c ϕ=, '''12z F a b ϕϕ=--于是 z x ∂∂=''1'''12x z F c F a b ϕϕϕ-=---='1''12c a b ϕϕϕ+zy ∂∂=''y z F F -='2''12c a b ϕϕϕ---='2''12c a b ϕϕϕ+ 故 ''12''''1212c c z za b a b c x y a b a b ϕϕϕϕϕϕ∂∂+=+=∂∂++.习题 8-71.在点(1,2)-的邻域内, 根据泰勒公式, 展开函数22(,)2635f x y x xy y x y =----+解 因为''(1,2) 5 , 46, 23x y f f x y f x y -==--=--- ''''''4, 1, 2xx xy yy f f f ==-=-则(,)f x y 的3阶及3阶以上的各偏导数均为0, 且''(1,2)0 , (1,2)0x y f f -=-= 故函数(,)f x y 在点(1,2)-的邻域内的泰勒公式为(,)[1(1),2(2)]f x y f x y =+--++''2''''2''2222(1,2)(1)(1,2)(2)(1,2)1[(1)(1,2)2(1)(2)(1,2)2!(2)(1,2)]15[4(1)2(1)(2)2(2)]2!52(1)(1)(2)(2).x y xx xy yy f x f y f x f x y f y f x x y y x x y y =-+--++-+--+-+-++-=+---+-+=+---+-+2 .当自变量从5,6x y ==,变到115,6x h y k =+=+时,求函数32(,)639184f x y x y xy x y =+--++的增量.解 因为 (5,6)(5,6f f h k f ∆=++- 23639, 2618f f x y y x x y ∂∂=--=-+∂∂22232236, 6, 2, 6ff f fx x y x y x ∂∂∂∂==-==∂∂∂∂∂3332230, 0, 0f f fx y x y y ∂∂∂===∂∂∂∂∂则(,)f x y 的4阶及4阶以上的各阶偏导数均为0, 且225556660,8,30x x x y y y fff xyx======∂∂∂===∂∂∂故223110(8)[302(6)2]62!3!f h k h hk k h∆=⋅+-+⋅+-++⋅223156h hk k h=-++.3.设||x与||y均很小,求coscosxy的准确到二次项的近似表达式. 解设cos(,)cosxf x yy=, 则22sin cos,cos cosf fx xx y yx∂∂=-=-∂∂22cos sin1cos()(sin)cos cosf x yx yy y y∂=-⋅-=∂222sin sin1sin()(sin)cos cosf x yx yx y y y∂=--⋅-=-∂∂222423cos cos sin2cos(sin)coscoscos(cos2sin)cosf y y y y yxy yx y yy∂-⋅-=⋅∂+=于是()(0,0)(0,0)(0,0)0f fx y f x yx y x y∂∂∂∂+=+=∂∂∂∂2()(0,0)x y fx y∂∂+∂∂222222222(0,0)(0,0)(0,0)2f f fx xy yx yx yy x∂∂∂=++∂∂∂∂=-故2(,)(0,0)()(0,0)()(0,0)f x y f x y f x y fx y x y∂∂∂∂≈++++∂∂∂∂2222110()12!2y xy x-=++-=+.4. 按1x-和2yπ-的正整数幂, 展开函数(,)sinf x y xy=, 到二次项为止. 解因为c o s,c o sf fy xy x xyx y∂∂==∂∂2222222sin,cos sin,sinf f fy xy xy xy xy x xyx yx y∂∂∂=-=-=-∂∂∂∂于是[(1)()](1,)22x y fx yππ∂∂-+-∂∂(1,)(1,)22(1)()02f fx yx yπππ∂∂=-+-=∂∂2[(1)()](1,)22x y f x y ππ∂∂-+-∂∂2222(1,)(1,)22(1)2(1)()2f f x x y x y x πππ∂∂=-+--∂∂∂ 222(1,)2()2f y y ππ∂+-∂ 222(1)2(1)()()()(1)4222x x y y ππππ=--+---+--故将(,)sin f x y xy =在(1,)2π处展开成含有2次幂的泰勒多项式为2222(,)(1,)[(1)()](1,)2221 [(1)()](1,)2!221 1[(1)(1)()()]2422f x y f x y f x y x y f x y x x y y πππππππππ∂∂=+-+-∂∂∂∂+-+-∂∂=+------- 22211 1(1)(1)()().82222x x y y ππππ=-------5.按x 和y 的乘幂展开函数(,)ln(1)xf x y e y =+到三次项为止.解 因为l n (1), 1x xf f e e y x y y ∂∂=+=∂∂+ 222222ln(1), , 1(1)x x xff f e e e y x y y x y y ∂∂∂=+==-∂∂+∂∂+3333222ln(1), , 1(1)x x xf f f e e e y y x x y x y y ∂∂∂=+==-+∂∂∂∂∂+3332(1)xf e y y ∂=∂+于是 (0,0)(0,0)[](0,0)f f x y f x y y x y x y ∂∂∂∂+=+=∂∂∂∂ 2222222223333332233223223[](0,0)(0,0)(0,0)(0,0) 22[](0,0)(0,0)(0,0)(0,0)(0,0) 33 332x y f x yf f f x xy y xy y x y x yxy f x y f f f f xx yxyyxx yx yy x y xy y ∂∂+∂∂∂∂∂=++=-∂∂∂∂∂∂+∂∂∂∂∂∂=+++∂∂∂∂∂∂=-+故 2223311(,)(2)(332)()2!3!f x y y xy y x y xy y R θ=+-+-++(01)θ<<.综合习题八1.选择题:(1) 设(,)ln ,(,)ln ln ,f x y xy g x y x y ==+则(,)f x y ( )(,).g x y ① > ② < ③ = ④ ≠ (2) 设00(,)(,)f x y x y 在点的偏导数存在,则00(,)( ).x f x y '=① 00000(,)(,)limx f x x y y f x y x ∆→+∆+∆-∆② 00000(,)(,)limx f x x y f x y x ∆→+∆-∆③ 0000(,)(,)limx x f x y f x y x x →--④ 00000(,)(,)limx x f x y f x y x x →--(3) 设0000(,)(,)0,x y f x y f x y ''==则( ).① 00(,)x y 为极值点 ② 00(,)x y 为驻点 ③ (,)f x y 在00(,)x y 有定义 ④ 00(,)x y 为连续点(4) 在空间中,下列方程( )为球面, ( )为抛物面, ( )为柱面.① 2425x y z -+= ② 2221444y x z ++=③ 2y x = ④ 221x y +=⑤ 2z y = ⑥ 22222x y y x z ++=-(5) 设(,)f x y 在00(,)x y 处偏导数存在,则(,)f x y 在该点( ).① 极限存在 ② 连续③ 可微 ④ 以上结论均不成立 解 (1) ④; (2) ②④; (3) ②③; (4) ②⑥、①③⑤、④; (5) ④.2.设(,)f x y 的定义域为1,1,x y <<试求(,)xf x y y 的定义域并在xy 平面上画出该定义域的图形.解 因(,)f x y 的定义域为11x y <<且所以(,)x f x y y 中的,x y 必须满足||1||1xy xy ⎧<⎪⎨⎪<⎩则函数(,)xf x y y 的定义域为(,)11,11xD x y xy y ⎧⎫=-<<-<<⎨⎬⎩⎭且D 在xy 平面上的图形如图8-13. 图8-133.计算下列极限:222(,)(0,0)22(,)(0,1)ln(2)(1) lim 1cos sin cos (2) limx y x y x y x y e y xyxy xy x x y x +→→+-+-解 222222(,)(0,0)(,)(0,0)2ln(2)ln(2)(1)lim lim 11cos ()2x y x y x y x y x y e y x y e y xyxy ++→→++=-2(,)(0,0)lim2ln(2)2ln 2.xyx y e y +→=+=22(,)(0,1)2(,)(0,1)(,)(0,1)(,)(0,1)(,)(0,1)sin cos (2) limsin lim lim cos lim sin lim 1 2.x y x y x y x y x y xy xy x x y xxyy x xy xxyy xy →→→→→+-=+-=⋅+= 4.已知()(),()()0,(,x y x f z y g z x f z y g z z z x y ''=++≠=且x y 是和 的函数.求证:())(()).z zx g z y f z x y ∂∂-=-∂∂(证 (,,)()(),F x y z xy xf z yg z =--令则(), (), ()()x y z F y f z F x g z F xf z yg z '''''=-=-=--于是 ()()()()()()x z F y f z y f z zxF xf z yg z xf z yg z '--∂=-=-='''''∂--+ ()()()()()()y z F x g z x g z z yF xf z yg z xf z yg z '--∂=-=-='''''∂--+ 故()[()][()]()()y f z zx g z x g z x xf z yg z -∂-=-''∂+ ()[()]()()[()].x g z y f z xf z yg z zy f z y -=-''+∂=-∂ 125. ,)0F x z y z F F z ''+++-≠设(可微且,求方程 2221,)()22F x z y z x y z ++-++=((,)d .z z x y z =所确定的函数的微分解 2221(,,),)()2,2G x y z F x z y z x y z =++-++-令(则。
多元函数微分法及其应用(习题和详细解答)
多元函数微分法及其应用(习题)(A)1.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,x y z∂∂∂2 ,则在D 上,xy zy x z ∂∂∂=∂∂∂22。
(2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。
2.求下列函数的定义域(1)y x z -=;(2)22arccos yx z u +=3.求下列各极限(1)x xy y x sin lim 00→→; (2)11lim 00-+→→xy xyy x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→4.设()xy x z ln =,求y x z ∂∂∂23及23y x z∂∂∂。
5.求下列函数的偏导数 (1)xyarctgz =;(2)()xy z ln =;(3)32z xy e u =。
6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数dt dz 。
7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dtdu。
8.曲线⎪⎩⎪⎨⎧=+=4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少? 9.求方程1222222=++cz b y a x 所确定的函数z 的偏导数。
10.设y x ye z x 2sin 2+=,求所有二阶偏导数。
11.设()y x f z ,=是由方程y z z x ln =确定的隐函数,求x z ∂∂,yz∂∂。
12.设x y e e xy =+,求dxdy。
13.设()y x f z ,=是由方程03=+-xy z e z确定的隐函数,求x z ∂∂,y z ∂∂,yx z∂∂∂2。
多元函数微分学例题
2、求级数和的一般方法
1)
利用
S
=
lim
n→∞
Sn;
2) 利用级数的性质;
3) 利用等比级数求和公式;
4) 利用逐项求导或逐项积分;
5) 利用常用的麦克劳林级数;
≠ 0,
证明: 对任意常数C, f (x, y) = C为一直线的充要条件是
( f y )2 f xx − 2 f x f y f xy + f yy ( f x )2 = 0.
f xx
+
f xy
dy dx
+
f yx
dy dx
+
f yy
⎛⎜⎝
dy dx
⎞⎟⎠2 +
fy
d2 y dx 2
=
0,
将 dy = − fx dx f y
6) 利用傅立叶级数的和函数; 7) 利用方程或常微分方程; 8) 利用定积分定义.
二、典型例题
∑∑ 例1. 求 lim m→+∞ n→+∞
解 因为 0
∫−1
m
i =1
xi
n (−1)i+ j j=1 i + j
+ j−1dx = −
.
( −1)i + i+ j
j
,
所以部分和
∑∑ ∑∑ ∫ Sm,n
=
m i =1
n (−1)i+ j j=1 i + j
m
=−
i =1
n j =1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. 解方程组
.
解得
,
,
.
当
任意一个成立时, 都有
. 所以, 当边长为
有最大体积
.
十七. 求原点到曲面
的最短距离.
解. 设曲面上达到最短距离的点为(x , y , z ), 则
达到最小值.
令
, 由(3) 若 = 1
代入(1), (2) 得 得到
, 解得
. 代入曲面方程
,
,
由(3) 若
由(3) 解得
一. 设 f , g 为连续可微函数,
, 求
.
解. ,
.
所以
二. 设 解. 原式两边对 y 求导.
, 其中 为可微函数, 求
.
. 所以
三. 设 解. 由上述表达式可知 x, z 为自变量, 所以
.
四. 求下列方程所确定函数的全微分:
1.
;ห้องสมุดไป่ตู้
2.
.
解. 1.
, 所以
, 所以
所以
2.
, 所以
, 所以
所以
.
解.
,
,
= 0
十一. 设
, 试确定常数 , 使
.
解.
=
所以
=
+
= 于是 = 1.
= 0
十二. 若
满足
, 其中 f ( u )有连续的二阶导数, 求 z .
解.
,
同理
所以
.
令
, 得常微分方程
于是
.
,
,
即
十三. 求曲面
的平行于平面
的切平面方程.
解. 设切点为
,
,
. 所求切面的法矢量为
. 所以
解得
为最大
为最小
当 y = 0 时,
[ -3, 0],
解得
为最大
为最小
当
时
[0, -3]
当
时 z 有最小值
. 即
当
时 z 有最大值
.即
当
时 z 有最大值
.即
综上所述:
=
为最大值,
为最小值.
十六. 在椭球面
内作内接直角平行六面体, 求其最大体积.
解. 设直角平行六面体在第一卦限的顶点为
. 该题为
下的最大住值. 令
五. 设
, 其中 f 具有二阶连续偏导数, 求
.
解.
=
六. 已知
.
解.
=
=
=
七. 设
确定, 求
.
解. 以上两式对 x 求导, 得到关于
的方程组
由克莱姆法则解得
,
八. 设
解.
=
于是
=
= 0
九. 设
, 其中 f ( u , v ) 具有二阶连续偏导数,
二阶可导, 求
.
解.
=
十. 已知
,
,
p ( t ) 连续, 试求
. 由(1), (2) 得到
. 代入曲面方程
, 得到
,
,
,
所以所求的最短距离为
.
十八. 当
时, 求函数 上的最大值, 并证明对任意的成立不等式
在球面
解. 构造函数
,
解得
因为在球面上当
.
所以当
时, u 达到最大值.
对于任意正实数
,令
. 原题条件极值问题转化为
注意到
. 于是
即
.
,
代入曲面方程得:
,
所以
当
解得
所求切面方程为
,
即
;
当
解得
所求切面方程为
,
即
.
十四. 求圆周 方程.
处的切线与法平面
解. 圆周
在
处
,
,
.
所以在
处圆周的方向矢量为{16, 9, -1}.
所求切线:
,
所求法平面:
, 即
.
十五. 试求 最小值.
上的最大值与
解.
,
解得
,
.
当 x = 0 时,
[ -3, 0],