测量误差与不确定度评定

合集下载

测量误差及不确定度评定

测量误差及不确定度评定

测量误差与不确定度评定一、测量误差1、测量误差和相对误差(1)、测量误差测量结果减去被测量的真值所得的差,称为测量误差,简称误差。

这个定义从20世纪70年代以来没有发生过变化,以公式可表示为:测量误差=测量结果-真值。

测量结果是由测量所得到的赋予被测量的值,是客观存在的量的实验表现,仅是对测量所得被测量之值的近似或估计,显然它是人们认识的结果,不仅与量的本身有关,而且与测量程序、测量仪器、测量环境以及测量人员等有关。

真值是量的定义的完整体现,是与给定的特定量的定义完全一致的值,它是通过完善的或完美无缺的测量,才能获得的值。

所以,真值反映了人们力求接近的理想目标或客观真理,本质上是不能确定的,量子效应排除了唯一真值的存在,实际上用的是约定真值,须以测量不确定度来表征其所处的围。

因而,作为测量结果与真值之差的测量误差,也是无法准确得到或确切获知的。

过去人们有时会误用误差一词,即通过误差分析给出的往往是被测量值不能确定的围,而不是真正的误差值。

误差与测量结果有关,即不同的测量结果有不同的误差,合理赋予的被测量之值各有其误差并不存在一个共同的误差。

一个测量结果的误差,若不是正值(正误差)就是负值(负误差),它取决于这个结果是大于还是小于真值。

实际上,误差可表示为:误差=测量结果-真值=(测量结果-总体均值)+(总体均值-真值)=随机误差+系统误差(2)、相对误差测量误差除以被测量的真值所得的商,称为相对误差。

2、随机误差和系统误差(1)、随机误差测量结果与重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差,称为随机误差。

随机误差=测量结果-多次测量的算术平均值(总体均值)重复性条件是指在尽量相同的条件下,包括测量程序、人员、仪器、环境等,以及尽量短的时间间隔完成重复测量任务。

此前,随机误差曾被定义为:在同一量的多次测量过程中,以不可预知方式变化的测量误差的分量。

随机误差的统计规律性:○1对称性:绝对值相等而符号相反的误差,出现的次数大致相等,也即测得值是以它们的算术平均值为中心而对称分布的。

电测仪表测量误差分析与不确定度评定方法

电测仪表测量误差分析与不确定度评定方法

电测仪表测量误差分析与不确定度评定方法发布时间:2022-07-18T06:01:48.886Z 来源:《中国科技信息》2022年第33卷3月5期作者:雷平[导读] 近几年,电力行业的迅猛发展不仅为我国的经济建设提供了坚实的后盾,雷平天津联维乙烯工程有限公司 300270摘要:近几年,电力行业的迅猛发展不仅为我国的经济建设提供了坚实的后盾,同时也改善了人们日常的生活水平和质量。

并且伴随着科学技术的发展与进步,电测仪表所应用的领域也越来越广,其测量结果的准确性也关系到各个领域的生产和安全。

因此,为了保证电测仪表在使用过程中所得测量数据的准确可靠,就必须对用于计量的电测仪表进行有效溯源,即对其实施周期检定或者校准。

结合测量过程中各种因素的影响,并对其测量结果进行不确定度评定,进而提出相应的防范措施,能够有效推动电力行业的良好发展。

关键词:电测仪表测量;准确度;影响因素;防范措施;随着我国电力行业的不断发展,已经拥有了较大规模和先进的科研技术,其成果也为我国经济建设和发展做出了巨大的贡献,并且随着我国电力系统的发展,对工程中的仪器测量精确度提出了更高要求。

在此背景下,就需要对电测仪表测量过程中准确度影响因素进行分析,进而提出相关防范措施,以提高电测仪表测量准确度。

1 电测仪表测量误差分析测量仪器示值减相应输入量的真值为误差。

由于真值不能确知,实际中使用的为约定真值。

因受仪器设备本身计量性能的局限性以及测量水平、测量方法、环境条件和人为差错等因素的影响,测量的实际结果与约定真值之间存在一定的差异性难以避免,这就产生了测量误差。

较为典型的影响电测仪表测量结果误差的有测量方法路线设计的不合理、测量仪器精度等级选择不当、没有对测量过程中周围环境条件产生的偶然变化进行关注、测量过程中操作不规范等,都将进一步增加电测仪表测量过程中的误差。

因此,结合这些可能引起的误差因素,需要采取积极的措施尽量将误差消除或者控制在限值内,明确影响电测仪表测量结果准确程度的具体因素,并借助相应的修正技术进行防范。

测量误差与不确定度评定讲座01_一_测量误差的概念及其分类

测量误差与不确定度评定讲座01_一_测量误差的概念及其分类
都 各 有 其 误 差 值 ( 带 有 正或 负 的 符 号 ), 它 们 的 代 数 和 构 成了测量误差 。
4. 测量误差的分量 , 按其出现在测得量值中的规律进
行分类 。
5. 所有从测量误差引申出来的一些词组 , 例如基值误
差 、 零值误差 、 仪器误差 、 人员误差 、 环境误差 、 调整误差 、 允许误差 、 观测误差等 , 其中的含义均是测量误差的引 申 。 过去常用的 “ 极限误差 ” 也源于测量误差 。 但有些误差 是在特定条件下人为规定的 , 例如 : 最大允许误差和误差 限 , 是指技术规范或检定规程对给定测量 、 测量仪器所允 许的误差的极限值 。 需要引起注意的是 , 不应将测量误差 与产生的错误和过失相混淆 。 有时将测量误差称为 “绝对测量误差 ”或 “绝对误差 ”, 这样可以同 “ 相对误差 ” 相区别 。 相对误差是指测量误差除以被测量的参考量值 。 根据测量误差定义 δ=x-μ , 若用 δr 表示相对误差 , 则有
说明 : ( 1 ) 随机 误 差 的 参 考 量 值 应 确 保 是 同 一 个 被 测 量 无 穷多次重复测量的平均值 。 因此 , 随机误差可理解为测得 量值减去同一个被测量无穷多次重复测量的平均值 。 而 同一个被测量无穷多次重复测量的平均值就是数学期望 值 ,即
3. 测量误差往往是由若干个分量构成的 , 这些分量也
δr =
δ x-μ = ×100% μ μ
所以,相对误差表示绝对误差所占参考量值的百分比 。 一般来说 , 当被测量的大小相近时 , 通常用绝对误差 进行测量水平的比较 。 当被测量相差较大时 , 用相对误差 才能进行有效的比较 。 二 、 测量误差的分类 测量误差可以按其在测得量值中的规律分为若干分 量。 根据测量误差的定义 , 有

如何评估实验技术中的测量误差和不确定度

如何评估实验技术中的测量误差和不确定度

如何评估实验技术中的测量误差和不确定度在科学实验中,准确的数据是非常重要的,因为只有准确的数据才能得出可靠的结论和推论。

然而,在实验过程中,测量误差和不确定度是无法避免的问题。

所以,如何评估实验技术中的测量误差和不确定度,是科学家们一直在探索和研究的课题。

首先,我们需要了解什么是测量误差和不确定度。

测量误差指的是测量结果与真值之间的差异,可以由系统误差和随机误差构成。

系统误差是由于实验仪器的不准确或操作方法的不当引起的,而随机误差是由于各种随机因素造成的。

不确定度是对测量结果的不精确程度的量度,它是对测量结果的置信程度的度量。

为了评估实验技术中的测量误差和不确定度,我们可以采用以下方法:1. 重复实验法:通过进行多次实验,然后计算结果的平均值和标准差来评估测量误差和不确定度。

重复实验可以降低随机误差的影响,并提高测量结果的准确性。

在进行重复实验时,要注意控制实验条件的一致性,以减小系统误差的影响。

2. 不确定度分析法:通过分析实验技术本身的不确定度来评估整个实验结果的不确定度。

不确定度分析法主要包括以下几个步骤:确定实验技术的不确定度来源、计算各不确定度的贡献、组合不确定度以获得最终结果的不确定度。

通过这种方法,我们可以更全面地评估实验技术中的测量误差和不确定度。

3. 校准仪器:实验仪器是产生测量误差的重要原因之一,因此,定期对实验仪器进行校准是评估测量误差和不确定度的重要手段。

校准可以通过与已知准确度的标准进行对比来进行,以确定实验仪器的偏差和误差。

除了上述方法,还有一些其他的技术和方法可以用于评估实验技术中的测量误差和不确定度,例如数据处理和统计分析等。

数据处理包括数据筛选、数据平滑和数据插值等,可以减小随机误差和系统误差的影响。

统计分析可以通过假设检验、相关性分析和回归分析等方法对测量结果进行评估和解释。

总之,评估实验技术中的测量误差和不确定度是科学实验中非常重要的一环。

只有通过科学的方法和技术对测量误差和不确定度进行评估,才能得出准确可靠的实验结果,从而推动科学研究的进展。

测量不确定度与测量误差的区别与联系?

测量不确定度与测量误差的区别与联系?

测量不确定度与测量误差的区别与联系?测量不确定度和误差是计量学中研究的基本命题,也是计量测试⼈员经常运⽤的重要概念之⼀。

它直接关系着测量结果的可靠程度和量值传递的准确⼀致。

然⽽很多⼈由于概念不清,很容易将⼆者混淆或误⽤,本⽂结合学习测量不确定度评定与表⽰ 测量不确定度表征被测量的真值所处量值范围的评定。

它按某⼀置信概率给出真值可能落⼊的区间。

它可以是标准差或其倍数,或是说明了置信⽔准的区间的半宽。

它不是具体的真误差,它只是以参数形式定量表⽰了⽆法修正的那部分误差范围 误差多数情况下是指测量误差,它的传统定义是测量结果与被测量真值之差。

通常可分为两类:系统误差和偶然误差。

误差是客观存在的,它应该是⼀个确定的值,但由于在绝⼤多数情况下,真值是不知道的,所以真误差也⽆法准确知道。

我们 通过对概念的理解,我们可以看出测量不确定度与测量误差的主要有以下⼏⽅⾯区别: ⼀.评定⽬的的区别: 测量不确定度为的是表明被测量值的分散性; 测量误差为的是表明测量结果偏离真值的程度。

⼆.评定结果的区别: 测量不确定度是⽆符号的参数,⽤标准差或标准差的倍数或置信区间的半宽表⽰,由⼈们根据实验、资料、经验等信息进⾏评定,可以通过A,B两类评定⽅法定量确定; 测量误差为有正号或负号的量值,其值为测量结果减去被测量的真值,由于真值未知,往往不能准确得到,当⽤约定真值代替真值时,只可得到其估计值。

三.影响因素的区别: 测量不确定度由⼈们经过分析和评定得到,因⽽与⼈们对被测量、影响量及测量过程的认识有关; 测量误差是客观存在的,不受外界因素的影响,不以⼈的认识程度⽽改变; 因此,在进⾏不确定度分析时,应充分考虑各种影响因素,并对不确定度的评定加以验证。

否则由于分析估计不⾜,可能在测量结果⾮常接近真值(即误差很⼩)的情况下评定得到的不确定度却较⼤,也可能在测量误差实际上较⼤的情况下,给  四.按性质区分上的区别: 测量不确定度不确定度分量评定时⼀般不必区分其性质,若需要区分时应表述为:“由随机效应引⼊的不确定度分量”和“由系统效应引⼊的不确定度分量”; 测量误差按性质可分为随机误差和系统误差两类,按定义随机误差和系统误差都是⽆穷多次测量情况下的理想概念。

测量误差及不确定度

测量误差及不确定度

测量不确定度的主要来源 (1)
(1)被测量定义的不完善。 (2)实现被测量定义方法的不理想。 (3)测量样本不能完全代表定义的被测量。 (4)对测量过程受环境影响的认识不充分,或测量环境 条件不完善。 (5)对模拟的主要来源 (2)
(6)测量仪器的分辨力不够。 (7)计量标准和标准物质的赋值不准确。 (8)引用数据或其它参数的不确定度。 8 (9)测量方法和测量过程引入的近似值及假设。 (10)在相同条件下,重复观测的随机变化。 (11)系统误差修正不完善。
u ( y) = 4 ui ( y) ∑ v i
4 c
自由度的意义
自由度反映了标准不确定度的可靠程度,即不确 定度的不确定度。自由度越大,不确定度的可靠 程度越高。 注意:(1)不要认为把不确定度的可能值估计大 了就可以提高可靠性从而提高自由度。 (2)不确定度估大或估小都会降低自由度, 只有估准才能提高自由度。
B类评定的信息来源
(1)以前的观测数据。 (2)对有关技术资料和测量仪器特性的了解和检验。 (3)生产部门提供的技术说明文件。 (4)校准证书、检定证书或其他文件提供的数据,准确 度的等级,极限误差。 (5)某些资料给出的参考数据及其不确定度。 (6)实验方法标准给出的重复性限r或复现性限R。
B类评定方法(1)
pi u ( xi ) 相对合成方差为uc(y)/y= ∑ x 1 i
n 2
xipi ∏
输入量相关时的合成
当被测量与实测分量相关,且相关系数r(xi,xj)=1时
∂f 合成标准不确定度为 uc(y)= ∑ ( )u( xi ) 1 ∂xi
n
即代数和
输入量部分相关的合成,可以向相关或不相关 不相关两极 不相关 简化,从而进行合成计算。

测量误差与不确定度评定讲座(一) 测量误差的概念及其分类

测量误差与不确定度评定讲座(一)  测量误差的概念及其分类
信 息 系统设 计 与 应 用 》 等
其 中 . 得 量 值 也 可 称 为 测 得 值 . 表 示 测 量 结 果 的 测 是
量值 . 考量 值也可 称 为参考 值 ,可 以是 被测 量 的真值 .参 ( 的真值 ) 叮以是给定 的一 个约 定量值 ( 量 . 约定 真值 ) 可 ,
以 是 具 有 可 忽 略 测 量 不 确 定 度 的 测 量 标 准 赋 予 的 量 值 ( 准 量 值 ) 因 此 , 据 测 量 误 差 定 义 中 “ 考 量 值 ” 含 标 根 参 的
义 测 量 误 差 也 可 分 别 表 示 为
定 义 的 可 操 作 性 存 在 不 同程 度 的 疑 问
而 V M第 3 对 测 量 结 果 的 定 义 是 赋 予 被 测 量 的 一 组 I 版
量 值 以 及 其 他 适 用 的 相 关 信 息 可 以理 解 为 . 量 结 果 通 测 常 表 示 为 单 个 被 测 量 量 值 和测 量 不 确 定 度 因 此 . 测 量 用 结 果 减 去 被 测 量 的 真 值 去 定 义 测 量 误 差 显然 不 合 适 我 们 知 道 . 任 何 测 量 中 不 存 在 完 善 的 条 件 . 找 不 在 也
到 没有 缺陷 的测量 仪器 和测 量方 法 .也 不可 能创 造理 想 的环 境条 件 、 想 的操 作 人员 。因此 , 的真 值是 理想 的 理 量 概 念 . 客 观存 在 的 . 们 可 以逐 步测 得接 近 它 的量 值 , 是 人
但 只 能 是 被 测 量 量 值 的 近 似 或 估 计 真 值 是 量 的 定 义 的 完 整 体 现 . 质 上 真 值 是 不 能 确 定 的 . 际 用 的 是 约 定 真 本 实
测量误差 ; ~

实验误差与不确定度的评估方法

实验误差与不确定度的评估方法

实验误差与不确定度的评估方法实验误差与不确定度是科学实验中常常需要进行评估和控制的重要指标。

实验误差是指测量结果与真实值之间的差异,而不确定度则是对测量结果的不确定性的度量。

准确评估实验误差和不确定度可以提高实验结果的可靠性和可信度。

本文将介绍几种常用的实验误差与不确定度的评估方法。

一、重复测量法重复测量法是最常见和直观的评估实验误差和不确定度的方法之一。

该方法要求对同一样本或物体进行多次测量,然后计算这些测量结果的平均值和标准偏差。

平均值反映了测量结果的趋势,而标准偏差则表示了各次测量结果之间的离散程度,即实验误差。

通过计算标准偏差的方法,可以得到不确定度的估计。

二、直接测量法直接测量法是通过直接测量物理量来评估实验误差和不确定度的方法。

对于一些简单的物理量,可以使用直尺、量杯等工具进行直接测量。

然而,由于仪器的精度和测量条件的不完善,直接测量往往会引入一定的误差。

因此,在直接测量时应考虑仪器的精确度,以及环境条件的稳定性。

三、回归分析法回归分析法是一种统计分析方法,广泛应用于实验数据的处理和实验误差的评估。

通过建立一个数学模型,将自变量与因变量之间的关系进行拟合,并得到回归方程。

根据回归方程,可以计算得到实验结果的预测值和残差。

残差表示实验数据与回归模型之间的差异,即实验误差。

利用残差的统计特性,可以计算得到不确定度的估计。

四、不确定度的传递法不确定度的传递法是用于计算复杂测量结果不确定度的方法。

在实验中,往往需要通过一系列测量来得到希望获得的物理量。

不确定度的传递法基于不确定度的传递规律,将各个测量结果的不确定度进行求和,最终得到所求物理量的不确定度。

这种方法适用于各种复杂的测量情况,可以提供对测量结果全面的不确定度评估。

五、统计方法统计方法是一种基于概率统计理论的实验误差和不确定度评估方法。

通过对大量样本进行测量,并进行统计分析,可以得到实验结果的统计规律。

常见的统计方法包括频率分布分析、置信区间估计、假设检验等。

对测量误差和测量不确定度的分析与比较

对测量误差和测量不确定度的分析与比较
测 量 结 果 的 可信 程 度 是 由 其 测 量 结 果 的质 量 决 定 的 ,
外,还应同时给出测量结果的不确定度 ,这样才是完整
并 有意 义的。
长 期 以 来 ,人 们 都 用 传 统 方 法 对 测 量 结 果 进 行 误 差 评 定 ,
现改用测量不确定度评定主要原 因是 :( 是- 1 5国际接轨 )
I J I b \ ,
要 求用统 一 的标准来 评价测 量结 果 的质 量。 为此 ,1 9 93
1 9 测量 不确 定度 评定 - 示 》的颁布 实施 ,应用测 9 9《 5表
年 国 际标 准化 组 织 (S ) 七 个- IO 等 5计量 测试 相 关 的国
量不 确定 度评 价测 量结 果 的质 量 已在与 测 量有 关 的各个
差 和 测 量 不 确 定 度 密 切 相 联 , 它 们 都 是 由 测 量 过 程 不 完 善 性 因素 所 引 起 的 。 由 于 传 统 的 测 量 误 差 影 响 极 深 ,过 去 在 “ 差 ” 一 词 使 用 上 的 混 乱 ,加 之 对 测 量 不 确 定 度 误
的理 解 和 认 识 存 在 一 些 偏 差 , 因 此 有 必 要 对 测 量 误 差 和 测 量 不 确 定 度 的 概 念 进 行 剖 析 、 对 比 , 以利 于 全 面 掌 握 和 理 解 测 量 不 确 定 度 概 念 ,并 加 以 推 广 应 用 。 现 将 本 人
领域 推 广使用 。
测 量 的 目 的 是 为 了 得 到 测 量 结 果 , 但 在 许 多 场 合 下
际 组 织联 合发 布 了 《 量不 确定 度表 示 指南( UM) 测 G 》,
为 在 全 世 界 统 一 测 量 结 果 的不 确 定 度 评 定 和 表 示 奠 定 了

误差分析与测量不确定度评定

误差分析与测量不确定度评定

当今保存在国 际计量局的铂 铱合金千克原 器的最小不确 定度为0.004mg
误差是针对真值而言的,真值一般都是
指约定真值。
1-20
误差分析与测量不确定度评定 第一章 概述
二、误差的分类
表示形式
误差
性质特点
绝对 误差
相对 误差
系统 误差
随机 粗大 误差 误差
1-21
误差分析与测量不确定度评定 第一章 概述
1-18
误差分析与测量不确定度评定 第一章 概述
一、测量误差的定义
测量误差(error of measurement) 测量误差 = 测得值 - 真值
真值(true value) 是指一个特定的物理量 在一定条件下所定义的 客观量值,又称为理论 值或定义值。理论真值 一般只存在于纯理论之 中。
三角形内角之 和恒为180º
温度、湿度、压 力、气体浓度、
指非电子学中量的测量。
机械力、材料光 折射率等非电学
参数的测量
1-14
误差分析与测量不确定度评定 第一章 概述
根据对测量结果的要求不同分类
工程测量
指对测量误差要求不高的测量。用于这种测量的设备和 仪器的灵敏度和准确度比较低,对测量环境没有严格要求。
因此,对测量结果只需给出测量值。
(公式1) Δxm = ± xm × s%
最大相对误差为
(公式2)
rx
=
Δxm x

xm x
× s%
选定仪表后,被测量的值越接近于 标称范围(或量程)上限,测量的 相对误差越小,测量越准确
绝对误差的最大值与 该仪表的标称范围 (或量程)上限xm成 正比
1-28
误差分析与测量不确定度评定 第一章 概述

测量误差与不确定度评定(范例:常用玻璃量器比对测量结果不确定度评定)

测量误差与不确定度评定(范例:常用玻璃量器比对测量结果不确定度评定)

测量误差与不确定度评定一、测量误差1、测量误差和相对误差(1)、测量误差测量结果减去被测量的真值所得的差,称为测量误差,简称误差。

这个定义从20世纪70年代以来没有发生过变化,以公式可表示为:测量误差=测量结果-真值。

测量结果是由测量所得到的赋予被测量的值,是客观存在的量的实验表现,仅是对测量所得被测量之值的近似或估计,显然它是人们认识的结果,不仅与量的本身有关,而且与测量程序、测量仪器、测量环境以及测量人员等有关。

真值是量的定义的完整体现,是与给定的特定量的定义完全一致的值,它是通过完善的或完美无缺的测量,才能获得的值。

所以,真值反映了人们力求接近的理想目标或客观真理,本质上是不能确定的,量子效应排除了唯一真值的存在,实际上用的是约定真值,须以测量不确定度来表征其所处的范围。

因而,作为测量结果与真值之差的测量误差,也是无法准确得到或确切获知的。

过去人们有时会误用误差一词,即通过误差分析给出的往往是被测量值不能确定的范围,而不是真正的误差值。

误差与测量结果有关,即不同的测量结果有不同的误差,合理赋予的被测量之值各有其误差并不存在一个共同的误差。

一个测量结果的误差,若不是正值(正误差)就是负值(负误差),它取决于这个结果是大于还是小于真值。

实际上,误差可表示为:误差=测量结果-真值=(测量结果-总体均值)+(总体均值-真值)=随机误差+系统误差(2)、相对误差测量误差除以被测量的真值所得的商,称为相对误差。

2、随机误差和系统误差(1)、随机误差测量结果与重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差,称为随机误差。

随机误差=测量结果-多次测量的算术平均值(总体均值)重复性条件是指在尽量相同的条件下,包括测量程序、人员、仪器、环境等,以及尽量短的时间间隔内完成重复测量任务。

此前,随机误差曾被定义为:在同一量的多次测量过程中,以不可预知方式变化的测量误差的分量。

随机误差的统计规律性:○1对称性:绝对值相等而符号相反的误差,出现的次数大致相等,也即测得值是以它们的算术平均值为中心而对称分布的。

测量不确定度和误差的区别.

测量不确定度和误差的区别.

测量不确定度和误差的区别测量不确定度和误差是计量学中研究的基本命题,也是计量测试人员经常运用的重要概念之一。

它直接关系着测量结果的可靠程度和量值传递的准确一致。

然而很多人由于概念不清,很容易将二者混淆或误用,本文结合学习《测量不确定度评定与表示》的体会,着重谈谈二者之间的不同之处。

首先要明确的是测量不确定度与误差二者之间概念上的差异。

测量不确定度表征被测量的真值所处量值范围的评定。

它按某一置信概率给出真值可能落入的区间。

它可以是标准差或其倍数,或是说明了置信水准的区间的半宽。

它不是具体的真误差,它只是以参数形式定量表示了无法修正的那部分误差范围。

它来源于偶然效应和系统效应的不完善修正,是用于表征合理赋予的被测量值的分散性参数。

不确定度按其获得方法分为A、B两类评定分量。

A类评定分量是通过观测列统计分析作出的不确定度评定,B类评定分量是依据经验或其他信息进行估计,并假定存在近似的“标准偏差”所表征的不确定度分量。

误差多数情况下是指测量误差,它的传统定义是测量结果与被测量真值之差。

通常可分为两类:系统误差和偶然误差。

误差是客观存在的,它应该是一个确定的值,但由于在绝大多数情况下,真值是不知道的,所以真误差也无法准确知道。

我们只是在特定的条件下寻求最佳的真值近似值,并称之为约定真值。

通过对概念的理解,我们可以看出测量不确定度与测量误差的主要有以下几方面区别:一.评定目的的区别:测量不确定度为的是表明被测量值的分散性;测量误差为的是表明测量结果偏离真值的程度。

二.评定结果的区别:测量不确定度是无符号的参数,用标准差或标准差的倍数或置信区间的半宽表示,由人们根据实验、资料、经验等信息进行评定,可以通过A,B两类评定方法定量确定;测量误差为有正号或负号的量值,其值为测量结果减去被测量的真值,由于真值未知,往往不能准确得到,当用约定真值代替真值时,只可得到其估计值。

三.影响因素的区别:测量不确定度由人们经过分析和评定得到,因而与人们对被测量、影响量及测量过程的认识有关;测量误差是客观存在的,不受外界因素的影响,不以人的认识程度而改变;因此,在进行不确定度分析时,应充分考虑各种影响因素,并对不确定度的评定加以验证。

测量误差和测量不确定度的重要区别!

测量误差和测量不确定度的重要区别!

测量误差和测量不确定度的重要区别!(1)测量误差和测量不确定度两者最根本的区别在于定义上的差别。

误差表示测量结果对真值的偏离量,因此它是一个确定的差值,在数轴上表示为一个点。

而测量不确定度表示被测量之值的分散性,它以分布区间的半宽度表示,因此在数轴上它表示一个区间。

(2)按出现于测量结果中的规律,误差通常分为随机误差和系统误差两类。

随机误差表示测量结果与无限多次测量结果的平均值(也称为总体均值)之差,而系统误差则是无限多次测量结果的平均值与真值之差,因此它们都是对应于无限多次测量的理想概念。

由于实际上只能进行有限次测量,因此只能用有限次测量的平均值,即样本均值作为无限多次测量结果平均值的估计值。

也就是说,在实际工作中我们只能得到随机误差和系统误差的估计值。

而不确定度是根据对标准不确定度的评定方法不同而分成A类评定和B类评定两类,它们与“随机误差”和“系统误差”的分类之间不存在简单的对应关系。

“随机”和“系统”表示两种不同的性质,而“A类”和“B类”表示两种不同的评定方法。

目前,国际上一致认为,为避免误解和混淆,不再使用“随机不确定度”和“系统不确定度”这两个术语(这两个术语在采用不确定度概念的初期,曾被许多人经常使用,并且至今还有不少人在不正确地使用)。

在进行测量不确定度评定时,一般不必区分各不确定度分量的性质。

若必须要区分时,也应表示为“由随机效应引入的不确定度分量”或“由系统效应引入的不确定度分量”。

(3)误差的概念与真值相联系,而系统误差和随机误差又与无限多次测量的平均值有关,因此它们都是理想化的概念。

实际上只能得到它们的估计值,因而误差的可操作性较差。

而不确定度则可以根据实验、资料、经验等信息进行评定,从而是可以定量操作的。

(4)根据误差的定义,误差表示两个量的差值。

当测量结果大于真值时误差为正值,当测量结果小于真值时误差为负值。

因此误差既不应当也不可能以“±”号的形式出现。

而根据规定,不确定度以分散性区间的半宽度表示,且恒为正值,故在不确定度之前也不能冠以“±”号。

测量不确定度评定方法

测量不确定度评定方法
二、随机事件出现的概率
在一定条件下,随机事件可能发生,也可能 不发生,则称随机事件发生可能性的大小为随机事 件出现的概率。
• 必然事件:PA=1 • 不可能事件: PA=0 • 随机事件: 0<PA<1
第三节 随机变量及其概率密度分布函 数
在一定条件下对某个量进行测量,一般来说,每 次得到的测量结果是不相同的,即该被测量的量值 在某一个区间内取值,因此,我们将该被测量的量 值当作一个随机变量来处理,在测量结果不确定度 评定中,所研究的被测量都是随机变量。
(x) D(x)
(x
)2
f
(x)dx
六、用于估计随机变量特征值的估计量
上述特征值是对应于无限多次测量结果的, 而在实际工作中只可能进行有限次测量,因此, 只能根据有限次测量结果来估计样本总体的特征 值,如总体均值,总体方差 2等。通常的样本 均值 ,样本方差s2,则称为其估计量。
估x 计量本身也是一个随机变量,它有许多可
(2)当随机变量x和y的变化方向趋于反向时, (x,y)<0;
(3)当随机变量x和y相互独立无关时, (x,y)=0。
2.相关系数 虽然协方差可以表示随机变量之间的相关性,
但由于其量纲为两个随机变量的乘积,为了方便起 见,定义相关系数:
(x, y) (x, y)
协方差的样本估计量(x为):( y)
五、随机变量的标准偏差
由于方差的量纲与被测量具有不同的量纲,因 此,常用方差的正平方根(x)来表示其平均离散程 度,称为标准偏差。也称分布的标准偏差或单次测 量结果的标准偏差。
对于离散型随机变量,其标准偏差为:
(x)
D(x)
n
xi 2
lim i1
n

测量误差与不确定度评定 pdf

测量误差与不确定度评定 pdf

测量误差与不确定度评定 pdf测量误差与不确定度评定在科学研究和实际应用中,测量是获取数据的重要方法之一。

然而,由于各种因素的影响,我们所测量到的数据很少是完全准确的。

为了评估测量结果的可靠性和准确性,我们需要引入测量误差和不确定度的概念。

测量误差是指测量结果与被测量值的真实值之间的差异。

误差可以由多种因素引起,包括仪器的精度、环境条件的影响以及操作人员的技术能力等。

为了减小误差,我们可以采用多次测量的方法,并取平均值来代表最终的测量结果。

此外,校准仪器和提高操作人员的技术水平也是降低误差的有效手段。

然而,即使我们尽力降低误差,仍然无法完全消除。

这时,不确定度的概念就变得特别重要了。

不确定度是对测量结果的范围的估计。

它表示了测量结果的不确定程度。

在评定不确定度时,我们需要考虑多种因素,如仪器的精度、测量过程中的各种误差源以及统计误差等。

为了评估测量结果的不确定度,我们可以使用一系列统计方法,例如标准偏差、标准误差和置信区间等。

标准偏差是表示测量值的离散程度的指标,它越小表示数据越精确。

标准误差是标准偏差的估计值,它可以通过对多次重复测量的结果进行统计计算得到。

置信区间是用来估计真实值的范围的统计方法。

通过计算置信区间,我们可以得到一个范围,该范围内有一定的概率包含真实值。

除了统计方法,我们还可以使用仪器的说明书、专业知识和经验来评定误差和不确定度。

另外,对于一些特殊的测量方法,如不确定度传递和不确定度组合等,我们需要进行更加复杂的计算。

总之,评定测量误差和不确定度是一项复杂而且关键的工作,需要综合运用各种方法和技巧。

最后,评定测量误差和不确定度不仅仅是对测量结果的准确性的要求,更是对科学态度和严谨性的要求。

合理评定测量误差和不确定度可以提高实验的可重复性和可比性,确保科学实验和工程应用的准确可靠性。

因此,当进行任何测量时,我们应该始终意识到测量误差和不确定度的存在,并采取适当的措施来评估和减小它们。

不确定度计算

不确定度计算

测量误差与不确定度评定一、测量误差1、测量误差和相对误差(1)、测量误差测量结果减去被测量的真值所得的差,称为测量误差,简称误差这个定义从20 世纪70 年代以来没有发生过变化,以公式可表示为:测量误差=测量结果—真值。

测量结果是由测量所得到的赋予被测量的值,是客观存在的量的实验表现,仅是对测量所得被测量之值的近似或估计,显然它是人们认识的结果,不仅与量的本身有关,而且与测量程序、测量仪器、测量环境以及测量人员等有关。

真值是量的定义的完整体现,是与给定的特定量的定义完全一致的值,它是通过完善的或完美无缺的测量,才能获得的值。

所以,真值反映了人们力求接近的理想目标或客观真理,本质上是不能确定的,量子效应排除了唯一真值的存在,实际上用的是约定真值,须以测量不确定度来表征其所处的范围。

因而,作为测量结果与真值之差的测量误差,也是无法准确得到或确切获知的。

过去人们有时会误用误差一词,即通过误差分析给出的往往是被测量值不能确定的范围,而不是真正的误差值。

误差与测量结果有关,即不同的测量结果有不同的误差,合理赋予的被测量之值各有其误差并不存在一个共同的误差。

一个测量结果的误差,若不是正值(正误差)就是负值(负误差),它取决于这个结果是大于还是小于真值。

实际上,误差可表示为:误差=测量结果—真值=(测量结果—总体均值)+ (总体均值—真值)=随机误差+系统误差(2)、相对误差测量误差除以被测量的真值所得的商,称为相对误差。

2、随机误差和系统误差(1)、随机误差测量结果与重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差,称为随机误差。

随机误差=测量结果-多次测量的算术平均值(总体均值)重复性条件是指在尽量相同的条件下,包括测量程序、人员、仪器、环境等,以及尽量短的时间间隔内完成重复测量任务。

此前,随机误差曾被定义为:在同一量的多次测量过程中,以不可预知方式变化的测量误差的分量。

随机误差的统计规律性:①对称性:绝对值相等而符号相反的误差,出现的次数大致相等,也即测得值是以它们的算术平均值为中心而对称分布的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测量误差与不确定度评定一、测量误差1、测量误差和相对误差(1)、测量误差测量结果减去被测量的真值所得的差,称为测量误差,简称误差。

这个定义从 20 世纪 70 年代以来没有发生过变化,以公式可表示为:测量误差=测量结果-真值。

测量结果是由测量所得到的赋予被测量的值,是客观存在的量的实验表现,仅是对测量所得被测量之值的近似或估计,显然它是人们认识的结果,不仅与量的本身有关,而且与测量程序、测量仪器、测量环境以及测量人员等有关。

真值是量的定义的完整体现,是与给定的特定量的定义完全一致的值,它是通过完善的或完美无缺的测量,才能获得的值。

所以,真值反映了人们力求接近的理想目标或客观真理,本质上是不能确定的,量子效应排除了唯一真值的存在,实际上用的是约定真值,须以测量不确定度来表征其所处的范围。

因而,作为测量结果与真值之差的测量误差,也是无法准确得到或确切获知的。

过去人们有时会误用误差一词,即通过误差分析给出的往往是被测量值不能确定的范围,而不是真正的误差值。

误差与测量结果有关,即不同的测量结果有不同的误差,合理赋予的被测量之值各有其误差并不存在一个共同的误差。

一个测量结果的误差,若不是正值(正误差)就是负值(负误差),它取决于这个结果是大于还是小于真值。

实际上,误差可表示为:误差=测量结果-真值=(测量结果-总体均值)+(总体均值-真值)=随机误差+系统误差(2)、相对误差测量误差除以被测量的真值所得的商,称为相对误差。

2、随机误差和系统误差(1)、随机误差测量结果与重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差,称为随机误差。

随机误差=测量结果-多次测量的算术平均值(总体均值)重复性条件是指在尽量相同的条件下,包括测量程序、人员、仪器、环境等,以及尽量短的时间间隔内完成重复测量任务。

此前,随机误差曾被定义为:在同一量的多次测量过程中,以不可预知方式变化的测量误差的分量。

随机误差的统计规律性:○1对称性:绝对值相等而符号相反的误差,出现的次数大致相等,也即测得值是以它们的算术平均值为中心而对称分布的。

由于所有误差的代数和趋于零,故随机误差又具有低偿性,这个统计特性是最为本质的;换言之,凡具有低偿性的误差,原则上均可按随机误差处理。

○2有界性:测得值误差的绝对值不会超过一定的界限,也即不会出现绝对值很大的误差。

○3单峰性:绝对值小的误差比绝对值大的误差数目多,也即测得值是以它们的算术平均值为中心而相对集中地分布的。

(2)、系统误差在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差,称为系统误差。

它是测量结果中期望不为零的误差分量。

系统误差=多次测量的算术平均值-被测量真值由于只能进行有限次数的重复测量,真值也只能用约定真值代替,因此可能确定的系统误差只是其估计值,并具有一定的不确定度。

系统误差大抵来源于影响量,它对测量结果的影响若已识别并可定量表述,则称之为“系统效应” 。

该效应的大小若是显著的,则可通过估计的修正值予以补偿。

但是,用以估计的修正值均由测量获得,本身就是不确定的。

至于误差限、最大允许误差、可能误差、引用误差等,它们的前面带有正负(±)号,因而是一种可能误差区间,并不是某个测量结果的误差。

对于测量仪器而言,其示值的系统误差称为测量仪器的“偏移” ,通常用适当次数重复测量示值误差的均值来估计。

过去所谓的误差传播定律,所传播的其实并不是误差而是不确定度,故现已改称为不确定度传播定律。

还要指出的是:误差一词应按其定义使用,不宜用它来定量表明测量结果的可靠程度。

3、修正值和偏差(1 )、修正值和修正因子用代数方法与未修正测量结果相加,以补偿其系统误差的值,称为修正值。

含有误差的测量结果,加上修正值后就可能补偿或减少误差的影响。

由于系统误差不能完全获知,因此这种补偿并不完全。

修正值等于负的系统误差,这就是说加上某个修正值就像扣掉某个系统误差,其效果是一样的,只是人们考虑问题的出发点不同而已,即真值=测量结果+修正值=测量结果-误差在量值溯源和量值传递中,常常采用这种加修正值的直观的办法。

用高一个等级的计量标准来校准或检定测量仪器,其主要内容之一就是要获得准确的修正值。

换言之,系统误差可以用适当的修正值来估计并予以补偿。

但应强调指出:这种补偿是不完全的,也即修正值本身就含有不确定度。

当测量结果以代数和方式与修正值相加后,其系统误差之模会比修正前的小,但不可能为零,也即修正值只能对系统误差进行有限程度的补偿。

修正因子:为补偿系统误差而与未修正测量结果相乘的数字因子,称为修正因子。

含有系统误差的测量结果,乘以修正因子后就可以补偿或减少误差的影响。

但是,由于系统误差并不能完全获知,因而这种补偿是不完全的,也即修正因子本身仍含有不确定度。

通过修正因子或修正值已进行了修正的测量结果,即使具有较大的不确定度,但可能仍然十分接近被测量的真值(即误差甚小)。

因此,不应把测量不确定度与已修正测量结果的误差相混淆。

(2 )、偏差:一个值减去其参考值,称为偏差。

这里的值或一个值是指测量得到的值,参考值是指设定值、应有值或标称值。

例如:尺寸偏差=实际尺寸-应有参考尺寸偏差=实际值-标称值在此可见,偏差与修正值相等,或与误差等值而反向。

应强调指出的是:偏差相对于实际值而言,修正值与误差则相对于标称值而言,它们所指的对象不同。

所以在分析时,首先要分清所研究的对象是什么。

常见的概念还有上偏差(最大极限尺寸与参考尺寸之差)、下偏差(最小极限尺寸与参考尺寸之差),它们统称为极限偏差。

由代表上、下偏差的两条直线所确定的区域,即限制尺寸变动量的区域,统称为尺寸公差带。

二、测量不确定度的评定与表示1、测量不确定度表征合理地赋予被测量之值的分散性、与测量结果相联系的参数,称为测量不确定度。

“合理”意指应考虑到各种因素对测量的影响所做的修正,特别是测量应处于统计控制的状态下,即处于随机控制过程中。

“相联系”意指测量不确定度是一个与测量结果“在一起”的参数,在测量结果的完整表示中应包括测量不确定度。

此参数可以是诸如标准[偏 ]差或其倍数,或说明了置信水准的区间的半宽度。

测量不确定度从词意上理解,意味着对测量结果可信性、有效性的怀疑程度或不肯定程度,是定量说明测量结果的质量的一个参数。

实际上由于测量不完善和人们的认识不足,所得的被测量值具有分散性,即每次测得的结果不是同一值,而是以一定的概率分散在某个区域内的许多个值。

虽然客观存在的系统误差是一个不变值,但由于我们不能完全认知或掌握,只能认为它是以某种概率分布存在于某个区域内,而这种概率分布本身也具有分散性。

测量不确定度就是说明被测量之值分散性的参数,它不说明测量结果是否接近真值。

为了表征这种分散性,测量不确定度用标准[偏]差表示。

在实际使用中,往往希望知道测量结果的置信区间,因此规定测量不确定度也可用标准 [偏]差的倍数或说明了置信水准的区间的半宽度表示。

为了区分这两种不同的表示方法,分别称它们为标准不确定度和扩展不确定度。

(1)测量不确定度来源在实践中,测量不确定度可能来源于以下十个方面:○1对被测量的定义不完整或不完善;○2实现被测量的定义的方法不理想;○3取样的代表性不够,即被测量的样本不能代表所定义的被测量;○4对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善;○5对模拟仪器的读数存在人为偏移;○6测量仪器的分辩力或鉴别力不够;○7赋予计量标准的值或标准物质的值不准;○8引用于数据计算的常量和其它参量不准;○9测量方法和测量程序的近似性和假定性;10○在表面上看来完全相同的条件下,被测量重复观测值的变化。

由此可见,测量不确定度一般来源于随机性和模糊性,前者归因于条件不充分,后者归因于事物本身概念不明确。

这就使测量不确定度一般由许多分量组成,其中一些分量可以用测量列结果(观测值)的统计分布来进行评价,并且以实验标准 [偏]差表征;而另一些分量可以用其它方法(根据经验或其它信息的假定概率分布)来进行评价,并且也以标准 [偏]差表征。

所有这些分量,应理解为都贡献给了分散性。

若需要表示某分量是由某原因导致时,可以用随机效应导致的不确定度和系统效应导致的不确定度。

(2)标准不确定度和标准[偏] 差以标准 [ 偏] 差表示的测量不确定度,称为标准不确定度。

标准不确定度用符号u 表示,它不是由测量标准引起的不确定度,而是指不确定度以标准[偏]差表示,来表征被测量之值的分散性。

这种分nx i x散性可以有不同的表示方式,例如:用i 1n表示时,由于正残差与负残nx i x差可能相消,反映不出分散程度;用i 1表示时,则不便于进行解析运n算。

只有用标准 [偏]差表示的测量结果的不确定度,才称为标准不确定度。

当对同一被测量作n 次测量,表征测量结果分散性的量s 按下式算出时,称它为实验标准 [偏]差:n2x x=i 11S n式中: x i为第 i 次测量的结果;x 为所考虑的n次测量结果的算术平均值。

对同一被测量作有限的n 次测量,其中任何一次的测量结果或观测值,都可视作无穷多次测量结果或总体的一个样本。

数理统计方法就是要通过这个样本所获得的信息(例如算术平均值x 和实验标准[偏]差s 等),来推断总体的性质(例如期望和方差 2 等)。

期望是通过无穷多μσ次测量所得的观测值的算术平均值或加权平均值,又称为总体均值μ ,显然它只是在理论上存在并表示为limn 1μ =n nx ii1方差2则是无穷多次测量所得观测值x i 与期望之差的平方的算术σμ平均值,它也只是在理论上存在并可表示为2limn12]σ=n[nx ii 1方差的正平方根σ,通常被称为标准 [ 偏] 差,又称为总体标准 [偏 ] 差或理论标准 [ 偏] 差;而通过有限多次测量得的实验标准[偏]差s,又称为样本标准 [偏 ]差。

这个计算公式即为贝赛尔公式,算得的s 是的估计值。

σs是单次观测值 x i的实验标准[偏]差,s/n才是 n 次测量所得算术平均值 x 的实验标准[偏]差,它是 x 分布的标准[偏]差的估计值。

为易于区别,前者用 s(x)表示,后者用 s(x)表示,故有 s(x)= s(x)/n。

通常用 s(x)表征测量仪器的重复性,而用s(x)评价以此仪器进行n 次测量所得测量结果的分散性。

随着测量次数n 的增加,测量结果的分散性 s(x)即与n成反比地减小,这是由于对多次观测值取平均后,正、负误差相互抵偿所致。

所以,当测量要求较高或希望测量结果的标准[偏]差较小时,应适当增加n;但当 n>20时,随着 n 的增加,s(x)的减小速率减慢。

因此,在选取n 的多少时应予综合考虑或权衡利弊,因为增加测量次数就会拉长测量时间、加大测量成本。

相关文档
最新文档