相似三角形模型分析大全
(完整版)相似三角形常见模型(总结材料).doc
(3)联结DF,如果△DEF与△DBE相似,求FC的长.
A
F
D
BEC
3、已知在梯形ABCD中,AD∥BC,AD<BC,且BC=6,AB=DC=4,点E
是AB的中点.
(1)如图,P为BC上的一点,且BP=2.求证:△BEP∽△CPD;
(2)如果点P在BC边上移动(点P与点B、C不重合),且满足∠EPF=∠C,PF交直线CD于点F,同
时交直线AD于点M,那么
x
①当点
F
在线段
的延长线上时,设
=
,
=
y
,求
y
关于
的函数解析式,并写出函数的定义
CD
BPx
DF
域;
②当SDMF
9SBEP时,求BP的长.
4
D
A
A
标准文案
实用文档
2、已知:AD是Rt△ABC中∠A的平分线,∠C=90°,EF是AD的垂直平分线交AD于M,EF、BC的延长线交于一点N。
求证:(1)△AME∽△NMD;(2)ND2=NC·NB
3、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,E
是AC上一点,CF⊥BE于F。求证:EB·DF=AE·DB
2、已知:如图,在Rt△ABC中,AB=AC,∠DAE=45°.
求证:(1)△∽△
;
(2)
BC
2
2BE C形
C
BDE
A
标准文案
EF
实用文档
例1:如图,等边△ABC中,边长为6,D是BC上动点,∠EDF=60°
(1)求证:△BDE∽△CFD
(2)当BD=1,FC=3时,求BE
A
M
相似三角形重难点模型(五大模型)(解析版)
相似三角形重难点模型(五大模型)【题型01:(双)A字型相似】【题型02:(双)8型相似】【题型03:母子型相似】【题型04:旋转相似】【题型05:K字型相似】【题型01:(双)A字型相似】1.如图,在△ABC中,BC=12,高AD=6,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,求AN的长.【答案】2【分析】设正方形EFGH的边长EF=EH=x,易证四边形EHDN是矩形,则DN=x,根据正方形的性质得出EF∥BC,推出△AEF∽△ABC,根据相似三角形的性质计算即可得解.【详解】解:设正方形EFGH的边长EF=EH=x,∵四边形EFGH是正方形,∴∠HEF=∠EHG=90°,EF∥BC,∴△AEF∽△ABC,∵AD是△ABC的高,∴∠HDN=90°,∴四边形EHDN是矩形,∴DN=EH=x,∵△AEF∽△ABC,∴AN AD =EFBC(相似三角形对应边上的高的比等于相似比),∵BC=12,AD=6,∴AN=6-x,∴6-x6=x 12,解得:x=4,∴AN=6-x=6-4=2.【点睛】本题考查了相似三角形的判定和性质,矩形的判定和性质.解题的关键是掌握相似三角形的判定和性质,矩形的判定和性质的运用,注意:矩形的对边相等且平行,相似三角形的对应高的比等于相似比.2.如图,光源P 在水平横杆AB 的上方,照射横杆AB 得到它在平地上的影子为CD (点P 、A 、C 在一条直线上,点P 、B 、D 在一条直线上),不难发现AB ⎳CD .已知AB =1.5m ,CD =4.5m ,点P 到横杆AB 的距离是1m ,则点P 到地面的距离等于m .【答案】3【分析】作PF ⊥CD 于点F ,利用AB ∥CD ,推导△P AB ∽△PCD ,再利用相似三角形对应高之比是相似比求解即可.【详解】解:如图,过点P 作PF ⊥CD 于点F ,交AB 于点E ,∵AB ∥CD ,∴△P AB ∽△PCD ,PE ⊥AB ,∵△P AB ∽△PCD ,∴AB CD =PE PF ,(相似三角形对应高之比是相似比)即:1.54.5=1PF,解得PF =3.故答案为:3.【点睛】本题考查相似三角形的判定与性质,掌握相似三角形对应高之比是相似比是解题的关键.3.如图,在Rt △ABC 中,∠ACB =90°,∠BAC =60°,AC =6,AD 平分∠BAC ,交边BC 于点D ,过点D 作CA 的平行线,交边AB 于点E .(1)求线段DE 的长;(2)取线段AD 的中点M ,连接BM ,交线段DE 于点F ,延长线段BM 交边AC 于点G ,求EF DF的值.【答案】(1)4(2)23【分析】(1)根据平行线分线段成比例定理,列出比例式求解即可;(2)根据平行线分线段成比例定理,列出比例式求解即可.【详解】(1)解:∵AD 平分∠BAC ,∠BAC =60°,∴∠DAC =30°,在Rt △ACD 中,∠ACD =90°,∠DAC =30°,AC =6,∴CD =23,在Rt △ACB 中,∠ACB =90°,∠BAC =60°,AC =6,∴BC =63,∴BD =BC -CD =43,∵DE ∥CA ,∴DE CA=BD BC =23,∴DE =4;(2)解:如图.∵点M 是线段AD 的中点,∴DM =AM ,∵DE ∥CA ,∴DF AG =DM AM.∴DF =AG .∵DE ∥CA ,∴EF AG =BF BG ,BF BG =BD BC .∴EF AG=BD BC .∵BD =43,BC =63,DF =AG ,∴EF DF=23.【点睛】考查了平行线分线段成比例定理,注意线段之间的对应关系.4.如图,△ABD 中,∠A =90°,AB =6cm ,AD =12cm .某一时刻,动点M 从点A 出发沿AB 方向以1cm/s 的速度向点B 匀速运动;同时,动点N 从点D 出发沿DA 方向以2cm/s 的速度向点A 匀速运动,运动的时间为ts .(1)求t 为何值时,△AMN 的面积是△ABD 面积的29;(2)当以点A ,M ,N 为顶点的三角形与△ABD 相似时,求t 值.【答案】(1)t 1=4,t 2=2;(2)t =3或245【分析】(1)由题意得DN =2t (cm ),AN =(12-2t )cm ,AM =tcm ,根据三角形的面积公式列出方程可求出答案;(2)分两种情况,由相似三角形的判定列出方程可求出t的值.【详解】解:(1)由题意得DN=2t(cm),AN=(12-2t)cm,AM=tcm,∴△AMN的面积=12AN•AM=12×(12-2t)×t=6t-t2,∵∠A=90°,AB=6cm,AD=12cm∴△ABD的面积为12AB•AD=12×6×12=36,∵△AMN的面积是△ABD面积的29,∴6t-t2=29×36,∴t2-6t+8=0,解得t1=4,t2=2,答:经过4秒或2秒,△AMN的面积是△ABD面积的2 9;(2)由题意得DN=2t(cm),AN=(12-2t)cm,AM=tcm,若△AMN∽△ABD,则有AMAB=ANAD,即t6=12-2t12,解得t=3,若△AMN∽△ADB,则有AMAD=ANAB,即t12=12-2t6,解得t=24 5,答:当t=3或245时,以A、M、N为顶点的三角形与△ABD相似.【点睛】本题考查了相似三角形的判定,直角三角形的性质和一元二次方程的应用,正确进行分类讨论是解题的关键.【题型02:(双)8型相似】5.已知:如图,四边形ABCD是平行四边形,在边AB的延长线上截取BE=AB,点F在AE的延长线上,CE和DF交于点M,BC和DF交于点N,联结BD.(1)求证:△BND∽△CNM;(2)如果AD2=AB•AF,求证:CM•AB=DM•CN.【答案】(1)见解析;(2)见解析【分析】(1)利用平行四边形的性质得AB=CD,AB∥CD,再证明四边形BECD为平行四边形得到BD∥CE,根据相似三角形的判定方法,由CM∥DB可判断△BND∽△CNM;(2)先利用AD 2=AB •AF 可证明△ADB ∽△AFD ,则∠1=∠F ,再根据平行线的性质得∠F =∠4,∠2=∠3,所以∠3=∠4,加上∠NMC =∠CMD ,于是可判断△MNC ∽△MCD ,所以MC :MD =CN :CD ,然后利用CD =AB 和比例的性质即可得到结论.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,而BE =AB ,∴BE =CD ,而BE ∥CD ,∴四边形BECD 为平行四边形,∴BD ∥CE ,∵CM ∥DB ,∴△BND ∽△CNM ;(2)∵AD 2=AB •AF ,∴AD :AB =AF :AD ,而∠DAB =∠FAD ,∴△ADB ∽△AFD ,∴∠1=∠F ,∵CD ∥AF ,BD ∥CE ,∴∠F =∠4,∠2=∠3,∴∠3=∠4,而∠NMC =∠CMD ,∴△MNC ∽△MCD ,∴MC :MD =CN :CD ,∴MC •CD =MD •CN ,而CD =AB ,∴CM •AB =DM •CN .【点睛】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.在运用相似三角形的性质时主要利用相似比计算线段的长.也考查了平行四边形的判定与性质.6.如图,在平行四边形ABCD 中,点E 是AD 上一点,AE =2ED ,连接BE 交AC 于点G ,延长BE 交CD 的延长线于点F ,则BG GF 的值为()A.23B.12C.13D.34【答案】A【分析】本题考查了相似三角形的判定与性质,平行四边形的性质,解决本题的关键是利用平行四边形的性质对边平行而构建相似三角形.先根据平行四边形的性质得到AB ∥CD ,则可判断△ABG ∽△CFG ,△ABE ∽△DFE ,于是根据相似三角形的性质和AE =2ED 即可得结果.【详解】解:∵四边形ABCD 为平行四边形,∴AB ∥CD ,∴△ABG ∽△CFG ,∴BG GF =AB CF∵△ABE ∽△DFE ,∴AE DE =AB DF,∵AE =2ED ,∴AB =2DF ,∴AB CF =23,∴BG GF=23.故选:A .7.如图1,在四边形ABDE 中,∠ABC =∠BDE ,点C 在边BD 上,且AC ∥DE ,AB ∥CE ,点F 在边AC 上,且AF =CE ,连接BF ,DF ,DF 交CE 于点G .(1)求证:BF =DF ;(2)如图2,若∠ACE =∠CDF ,求证:CE ⋅CF =BF ⋅DG ;(3)如图3,若延长BF 恰好经过点E ,求BC CD的值.【答案】(1)见解析(2)见解析(3)1+52【分析】(1)证明△ABF ≌△CAE ,得出BF =AE ,证明四边形AFDE 为平行四边形,得出AE =DF ,则可得出结论;(2)证明△FCG ∽△FDC ,得出CF DF =GF CF ,证明△FCG ∽△DEG ,得GF DG =CF DE ,则得出结论;(3)证明△ABF ∽△CEF ,得出AB CE =AF CF,设AB =x ,AF =CE =m ,解方程求出x ,则可得出答案.【详解】(1)∵AC∥DE,AB∥CE∴∠BDE=∠ACB,∠ABC=∠DCE,∠BAC=∠ACE ∵∠ABC=∠BDE∴∠ABC=∠BDE=∠ACB=∠DCE∴AB=AC,CE=DE在△ABF和△CAE中,又∵AF=CE∠BAC=∠ACE AB=AC∴△ABF≌△CAE(SAS)∴BF=AE∵CE=DE,AF=CE∴AF=DE∵AF=DE,AC∥DE∴四边形AFDE为平行四边形∴AE=DF∴BF=DF(2)∵∠CFG=∠CFD ∠ACE=∠CDF∴△FCG∽△FDC∴CF DF =GF CF又∵AC∥DE∴△FCG∽△DEG∴GF DG =CFDE,即GFCF=DGDE∴CF DF =DGDE.又∵DE=CE,DF=BF∴CF BF =DGCE,即CE⋅CF=BF⋅DG(3)∵∠ABC=∠DCE ∠ACB=∠EDC∴△ABC∽△ECD∴BC CD =AB CE∵AB∥CE,∴△ABF∽△CEF∴AB CE =AF CF∴AB⋅CF=AF⋅CE.设AB=x,AF=CE=m,则有x(x-m)=m2解得x=1+52m(负值舍去)∴BC CD =ABCE=1+52【点睛】本题考查了相似三角形的判定和性质、全等三角形的判定和性质、平行四边形的性质,利用相似三角形的判定和性质是本题解题的关键.8.如图1,在矩形ABCO 中,OA =8,OC =6,D ,E 分别是AB ,BC 上一点,AD =2,CE =3,OE 与CD 相交于点F .(1)求证:OE ⊥CD ;(2)如图2,点G 是CD 的中点,延长OG 交BC 于H ,求CH 的长.【答案】(1)见解析;(2)CH 的长为6.【分析】(1)根据四边形ABCO 是矩形,可得OA =BC =8,OC =AB =6,根据勾股定理可得OE 和CP 的长,进而得EF 和CF 的长,再根据勾股定理的逆定理即可得OE ⊥CD ;(2)在Rt △CBD 中,CB =8,BD =AB -AD =6-2=4,根据勾股定理可得CD =45,根据点G 是CD 的中点,可得CG =DG =25,所以得点G 是CP 的三等分点,根据OA ∥BC ,对应边成比例即可求出CH 的长.【详解】(1)∵四边形ABCO 是矩形,∴OA =BC =8,OC =AB =6,在Rt △OCE 中,CE =3,∴OE =OC 2+CE 2=62+32=35,∵AB ∥OC ,即AD ∥OC ,且AD =2,∴AD OC =P A PO ,∴26=P A P A +8,∴P A =4,∴PO =P A +OA =12,∴在Rt △OPC 中,OC =6,∴CP =OC 2+PO 2=62+122=65,∵OA ∥BC ,即OP ∥CE ,∴CE OP =EF OF =CF PF ,∴EF OF=CF PF =312=14,∴EF =15OE =355,CF =15CP =655,∵355 2+655 2=95+365=9,∴EF 2+CF 2=CE 2,∴△CEF 是直角三角形,∴∠CFE=90°,∴OE⊥CD;(2)在Rt△CBD中,CB=8,BD=AB-AD=6-2=4,根据勾股定理,得CD=CB2+BD2=82+42=45,∵点G是CD的中点,∴CG=DG=25,由(1)知:CP=65,∴DP=CP-CD=25,∴点G是CP的三等分点,∵OA∥BC,即OP∥CH,∴CH OP =CG GP,∴CH12=12,∴CH=6.答:CH的长为6.【点睛】本题考查了矩形的性质、勾股定理及其逆定理的应用、相似三角形的判定与性质以及平行线分线段成比例定理,解决本题的关键是掌握矩形的性质.【题型03:母子型相似】9.【典例3】如图1,∠C=90,BC=6,tan B=43,点M从点B出发以每秒1个单位长度的速度向点C运动,点N同时从点C出发以每秒2个单位长度的速度向点A运动,当一点到达终点时,另一点也停止运动.(1)求AB的长.(2)当以点M、C、N为顶点的三角形与△ABC相似时,求t的值.(3)如图2,将本题改为点M从点B出发以每秒3个单位长度的速度在BA上向点A运动,点N同时从点A出发向点C运动,其速度是每秒2个单位长度,其它条件不变,求当t为何值时,△MNA为等腰三角形.【答案】(1)10(2)t=125或t=1811时,以点M、C、N为顶点的三角形与△ABC相似(3)t=2或t=4017或t=5031时,△MNA为等腰三角形【分析】(1)根据三角函数解得即可;(2)分①当△MCN ∽△BCA 时和②当△MCN ∽△ACB 时,两种情况利用相似三角形的性质解答即可;(3)分①当AM =AN 时,②当AM =MN 时,③当MN =AN 时,三种情况,利用等腰三角形的性质得出比例解答即可.【详解】(1)解:∵∠C =90°,BC =6,tan B =43∴AC =8∴AB =BC 2+AC 2=62+82=10(2)解:解:①当△MCN ∽△BCA 时,∴MC BC =CN CA ,即6-t 6=2t 8,解得:t =125,②当△MCN ∽△ACB 时,∵MC AC =CN BC ,即6-t 8=2t 6,解得:t =1811,综上所述,t =125或t =1811时,以点M 、C 、N 为顶点的三角形与△ABC 相似,(3)解:①如图3,当AM =AN 时,10-3t =2t ,解得:t =2,②如图4,当AM =MN 时,过点M 作MD ⊥AC 于D ,则∠ADM =90°,AM =MN =10-3t ,AD =12AN =t ,∵∠ACB =90°,∴MD ∥BC ,∴△AMD ∽△ABC ,∴AM AB =AD AC ,即10-3t 10=t 8,解得:t =4017,③如图5,当MN =AN 时,过点N 作ND ⊥AB 于D ,则∠ADN =∠ACB =90°,AD =DM =12AM =12(10-3t ),∵∠A =∠A ,∴△ADN ∽△ACB ,∴AD AC =AN AB ,即12(10-3t )8=2t 10,解得:t =5031,综上所述,t =2或t =4017或t =5031时,△MNA 为等腰三角形【点睛】本题考查考查了相似三角形的判定与性质、等腰三角形的性质,已知正切求边长,解题的关键是掌握辅助线的作法,数形结合,分类讨论思想的应用.10.如图,在△ABC 中,D 是BC 上的点,E 是AD 上一点,且AB AC=AD CE ,∠BAD =∠ECA .(1)求证:AC 2=BC •CD ;(2)若AD 是△ABC 的中线,求CE AC 的值.【答案】(1)证明见解析;(2)22【分析】(1)首先利用相似三角形的判定得出△BAD ∽△ACE △,得∠B =∠EAC ,进而求出△ABC ∽△DAC ,再利用相似三角形的性质得出答案即可;(2)由△BAD ∽△ACE 可证∠CDE =∠CED ,进而得出CD =CE ,再由(1)可证AC =2CD ,由此即可得出线段之间关系.【详解】(1)证明:∵AB AC =AD CE ,∠BAD =∠ECA ,∴ΔBAD ∽ΔACE ,∴∠B =∠EAC ,∵∠ACB =∠DCA ,∴△ABC ∽△DAC ,∴AC CD =BC AC,∴AC 2=BC ·CD .(2)解:∵△BAD ∽△ACE ,∴∠BDA =∠AEC ,∴∠CDE =∠CED ,∴CD =CE ,∵AD 是△ABC 的中线,∴BC =2BD =2CD ,∴AC 2=BC ·CD =2CD 2,即:AC =2CD ,∴CE AC =CD 2CD=22.【点睛】此题主要考查了相似三角形的判定与性质以及重心的性质等知识,根据已知得出△BAD ∽△ACE 是解题关键.11.如果两个相似三角形的对应边存在2倍关系,则称这两个相似三角形互为母子三角形.(1)如果△DEF 与△ABC 互为母子三角形,则DE AB 的值可能为()A.2B.12C.2或12(2)已知:如图1,△ABC 中,AD 是∠BAC 的角平分线,AB =2AD , ∠ADE =∠B .求证:△ABD 与△ADE 互为母子三角形.(3)如图2,△ABC 中,AD 是中线,过射线CA 上点E 作EG ⎳BC ,交射线DA 于点G ,连结BE ,射线BE 与射线DA 交于点F ,若△AGE 与△ADC 互为母子三角形.求AG GF的值.【答案】(1)C ;(2)见解析;(3)AG GF=13或3.【分析】(1)根据互为母子三角形的定义即可得出结论;(2)根据两角对应相等两三角形相似得出△ABD ∽△ADE ,再根据AB =2AD 从而得出结论;(3)根据题意画出图形,分当G ,E 分别在线段AD ,AC 上时和当G ,E 分别在射线DA ,CA 上时两种情况加以讨论;【详解】(1)∵△DEF 与△ABC 互为母子三角形,∴DEAB=12或2故选:C(2)∵AD 是∠BAC 的角平分线,∴∠BAD =∠CAD ,∵∠ADE =∠B ,∴△ABD ∽△ADE .又∵AB =2AD ,∴△ABD 与△ADE 互为母子三角形.(3)如图,当G ,E 分别在线段AD ,AC 上时,∵△AGE 与△ADC 互为母子三角形,∴CD GE =AD AG=2,∴AG =DG ,∵AD 是中线,∴BD =CD ,又∵GE ⎳BC ,∴△GEF ∽△DBF .∴DF GF =DB GE =CD GE=2,∴DG =3GF ,∴AG GF=3.如图,当G ,E 分别在射线DA ,CA 上时,∵△AGE 与△ADC 互为母子三角形,∴CD GE =AD AG =2,∴AG =12AD =13DG ,∵AD 是中线,∴BD =CD ,又∵GE ⎳BC ,∴△GEF ∽△DBF .∴DF GF =DB GE =CD GE=2,∴DG =GF ,∴AG GF =13.综上所述,AG GF =13或3【点睛】本题主要考查了相似三角形的判定与性质、分类讨论的数学思想以及接受与理解新生事物的能力.准确理解题设条件中互为母子三角形的定义是正确解题的先决条件,在分析与解决问题的过程中,要考虑全面,进行分类讨论,避免漏解.12.如图1,AB =AC =2CD ,DC ∥AB ,将△ACD 绕点C 逆时针旋转得到△FCE ,使点D 落在AC 的点E 处,AB 与CF 相交于点O ,AB 与EF 相交于点G ,连接BF .(1)求证:△ABE ≌△CAD ;(2)求证:AC ∥FB ;(3)若点D,E,F在同一条直线上,如图2,求ABBC的值.(温馨提示:请用简洁的方式表示角)【答案】(1)见解析(2)见解析(3)2【分析】(1)根据旋转变换的性质得到旋转前后两个三角形全等,从而得到CE=CD,根据AC=2CD,就能得到AE=CD,然后利用平行可以得到内错角相等,最后加上AB=AC,就可以通过边角边证明两个三角形全等.(2)根据旋转和第一小题的结论,可以得到BE=FE,然后用等角对等边即可得到∠EFB=∠EBF,又可以从前面的两个全等中得到∠EFC=∠EBA,∠OAC=∠OCA从而得到∠OFB=∠OBF,那么△ACO和△BOF就是顶角互为对顶角的一组等腰三角形,所以就能得到底角相等,即∠CAO=∠FOB,那么内错角相等,两直线平行即可证结论.(3)根据D,E,F在同一条直线上,可以证明△AEG和△CED全等,即可得到AG=12AB,那么EG就是中位线,则EG∥CB,加上第二小题结论就能得到四边形BCEF是平行四边形,那么BC=AD,然后通过三角形外角的性质,可以证得∠ADE=∠ACD,就能证△ACD和△ADE是一组子母型相似,然后根据相似比可得最终答案.【详解】(1)解:∵将△ACD绕点C逆时针旋转得到△FCE,∴△FCE≌△ACD,∴CE=CD,∵AC=2CD,∴AC=2CE,∴AE=AC-CE=2CE-CE=CE=CD,∵DC∥AB∴∠DCA=∠EAB,在△ABE和△CAD中,∵AE=CD∠EAB=∠DCA AB=CA,∴△ABE≌△CAD SAS.(2)解:由(1)得BE=AD,∠ABE=∠CAD,∵△CEF≌△CDA,∴FE=AD,∠EFC=∠DAC,∴BE=FE,∠EFC=∠EBA,∴∠EFB=∠EBF,∵∠OFB=∠EFB-∠EFC,∠OBF=∠EBF-∠EBA,∴∠OFB=∠OBF,∵∠ECF=∠DCA,∴∠OAC=∠OCA,∵∠OCA+∠OAC+∠AOC=180°,∠OBF+∠OFB+∠BOF=180°,又∠AOC=∠BOF,∴∠OCA+∠OAC=∠OBF+∠OFB,即2∠CAO=2∠FOB,∴∠CAO=∠FOB,∴AC∥FB(3)解:在△AEG和△CED中,∵∠GAE=∠DCE AE=CE∠AEG=∠CED ,∴△AEG≌△CED ASA∴AG=CD=12AB,∵AE=CE,∴EG∥CB,∵AC∥FB,∴四边形BCEF是平行四边形,∴BC=FE=AD,∵∠AEG=∠ACD+∠CAD=∠DAE+∠ADE,∴∠ADE=∠ACD,∵∠CAD=∠DAE,∴△ACD∽△ADE,∴EA DA =DA CA,即DA2=EA⋅CA=2EA2,∴DA=2EA,∵AB=AC=2EA,∴AB BC =ABDA=2EA2EA=22=2.【点睛】本题考查了三角形全等的证明,平行线的判定以及利用相似三角形求线段长之比,解题时需要学会将多个小题的结论联系起来,把前面小题的结论用到后面小题的思路中,熟练寻找证明三角形全等或相似所需要的条件是解题的关键.【题型04:旋转相似】13.【典例4】某校数学活动小组探究了如下数学问题:(1)问题发现:如图1,△ABC中,∠BAC=90°,AB=AC.点P是底边BC上一点,连接AP,以AP为腰作等腰Rt△APQ,且∠P AQ=90°,连接CQ、则BP和CQ的数量关系是______;(2)变式探究:如图2,△ABC中,∠BAC=90°,AB=AC.点P是腰AB上一点,连接CP,以CP为底边作等腰Rt△CPQ,连接AQ,判断BP和AQ的数量关系,并说明理由;(3)问题解决:如图3,在正方形ABCD中,点P是边BC上一点,以DP为边作正方形DPEF,点Q是正方形DPEF两条对角线的交点,连接CQ.若正方形DPEF的边长为210,CQ=22,请直接写出正方形ABCD的边长.【答案】(1)BP=CQ(2)BP=2AQ(3)6【分析】(1)根据已知条件利用边角边证明△ABP≌△ACQ,再利用全等三角形的性质即可得到BP和CQ 的数量关系;(2)根据任意等腰直角三角形的直角边与斜边的比是相等的,利用两边长比例且夹角相等的判定定理证明△CBP∽△CAQ,之后再由相似三角形对应边成比例即可得到BP和AQ的数量关系;(3)连接BD,先由正方形的性质判断出△BCD和△PQD都是等腰直角三角形,再利用与第二问同样的方法证出△BDP∽△CDQ,由对应边成比例,依据相似比求出线段BP的长,接着设正方形ABCD的边长为x,运用勾股定理列出方程即可求得答案.【详解】(1)解:∵△APQ是等腰直角三角形,∠P AQ=90°,在△ABC中,∠BAC=90°,AB=AC,∴AP=AQ,∠BAP+∠P AC=∠CAQ+∠P AC,∴∠BAP=∠CAQ.在△ABP和△ACQ中,AB=AC∠BAP=∠CAQ AP=AQ,∴△ABP≌△ACQ(SAS),∴BP=CQ;(2)解:结论:BP=2AQ,理由如下:∵△CPQ是等腰直角三角形,△ABC中,∠BAC=90°,AB=AC,∴QCPC=ACBC=22,∠ACB=∠QCP=45°.∵∠BCP+∠ACP=∠ACQ+∠ACP=45°,∴∠BCP=∠ACQ,∴△CBP∽△CAQ,∴QCPC=ACBC=AQBP=22,∴BP=2AQ;(3)解:连接BD,如图所示,∵四边形ABCD与四边形DPEF是正方形,DE与PF交于点Q,∴△BCD和△PQD都是等腰直角三角形,∴QDPD=CDBD=22,∠BDC=∠PDQ=45°.∵∠BDP+∠PDC=∠CDQ+∠PDC=45°,∴∠BDP=∠CDQ,∴△BDP∽△CDQ,∴QDPD=CDBD=CQBP=22.∵CQ=22,∴BP=2CQ=4.在Rt△PCD中,CD2+CP2=DP2,设CD=x,则CP=x-4,又∵正方形DPEF的边长为210,∴DP=210,∴x2+(x-4)2=(210)2,解得x1=-2(舍去),x2=6.∴正方形ABCD的边长为6.【点睛】本题是一道几何综合题,考查了全等三角形,相似三角形的判定和性质,以及正方形和等腰三角形的性质,正确识图并能熟练地掌握几何图形的性质与判定定理进行证明是解题的关键.14.如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明:四边形CEGF是正方形;(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图3所示,当B,E,F三点在一条直线上时,延长CG交AD于点H,若AG=9,GH=32,求BC的长.【答案】(1)答案见解析;(2)AG=2BE;理由见解析;(3)BC=95 2.【分析】(1)先说明GE⊥BC、GF⊥CD,再结合∠BCD=90°可证四边形CEGF是矩形,再由∠ECG= 45°即可证明;(2)连接CG,证明△ACG∽△BCE,再应用相似三角形的性质解答即可;(3)先证△AHG∽△CHA可得AGAC =GHAH=AHCH,设BC=CD=AD=a,则AC=a,求出AH=23a,DH=13a,CH=103a最后代入即可求得a的值.【详解】(1)∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形.(2)结论:AG=2BE;理由:连接CG,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CE CG=cos45°=22,CB CA =cos45°=22,∴CG CE =CA CB=2,∴△ACG ∽△BCE ,∴AG BE =CA CB=2∴线段AG 与BE 之间的数量关系为AG =2BE ;(3)∵∠CEF =45°,点B 、E 、F 三点共线,∴∠BEC =135°,∵△ACG ∽△BCE ,∴∠AGC =∠BEC =135°,∴∠AGH =∠CAH =45°,∵∠CHA =∠AHG ,∴△AHG ∽△CHA ,∴AG AC =GH AH=AH CH ,设BC =CD =AD =a ,则AC =2a ,由AG AC =GH AH ,得92a =32AH ,∴AH =23a ,则DH =AD -AH =13a ,CH =CD 2+DH 2=103a ,∴AG AC =AH CH ,得 92a =23a 103a ,解得:a =952,即BC =952.【点睛】本题属于四边形综合题,主要考查相似形的判定和性质、正方形的性质等知识点,解题的关键是正确寻找相似三角形解决问题并利用参数构建方程解决问题.【题型05:K 字型相似】15.综合探究如图,在平面直角坐标系中,点O 为原点,□ABCD 的顶点B 、C 在x 轴上,A 在y 轴上,OA =OC =2OB =4,直线y =x +t (-2≤t ≤4)分别与x 轴、y 轴、线段AD 、直线AB 交于点E 、F 、P 、Q .(1)当t =1时,求证:AP =DP .(2)探究线段AP 、PQ 之间的数量关系,并说明理由.(3)在x 轴上是否存在点M ,使得∠PMQ =90°,且以点M 、P 、Q 为顶点的三角形与△AOB 相似,若存在,请求出此时t 的值以及点M 的坐标;若不存在,请说明理由.【答案】(1)见解析(2)PQ =22AP(3)t =73时,M 13,0 ;t =23时,M 143,0 ;t =-1时,M -7,0 .【分析】(1)根据t =1,求出t =1与AD 交点P 的坐标,即可求解;(2)先求出直线AB 的表达式为y =2x +4,再联立直线AB 与直线y =x +t 求出Q (t -4,2t -4),再求出点P (4-t ,4),利用坐标系中两点距离公式求出即可PQ =22(t -4),结合AP =4-t 即可求解;(3)证明△PHM ∽△MIQ ,得到PM QM =AO BO =2或PM QM =BO AO=12,分四种情况画图求解.【详解】(1)证明:由OA =OC =2OB =4知,OC =4,OB =2,则AD =BC =6,则点A 、B 的坐标分别为:(0,4)、(-2,0),当y =4时,y =x +1=4,则x =3=12AD ,即点P (3,4),∴AP =DP =3;(2)解:PQ =22AP ,理由:设直线AB 的表达式为:y =kx +b ,将A 0,4 、B -2,0 代入得:4=b 0=-2k +b ,解得:k =2b =4 .∴直线AB 的表达式为:y =2x +4,联立上式和y =x +t 得y =x +t y =2x +4 ,解得x =t -4y =2t -4 ,即点Q (t -4,2t -4),同理(1)可得,点P (4-t ,4),∴PQ =t -4 -4-t 2+2t -4 -4 2=224-t∵AP =4-t ,∴PQ =22AP ;(3)分别过点P 、Q 作PH ⊥x 轴,QI ⊥x 轴,∴∠PHM =∠MIQ =90°,∵∠PMQ =90°,∴∠PMH +∠QMI =90°,∵∠MQI +∠QMI =90°,∴∠PMH =∠MQI ,∴△PHM ∽△MIQ ,∴PH MI =MH QI =PM QM,设点M (x ,0),由(2)知,点P 、Q 的坐标分别为:(4-t ,4)、(t -4,2t -4),①若m >0,如图2,则MI =m -(t -4),MH =4-t -m ,QI =2t -4,当△PMQ ∽△AOB 时,∴PM QM =AO BO=42=2,∴PH MI =MH QI=2.∴PH =2MI ,MH =2QI ,联立方程组:4=2m -(t -4) 4-t -m =2(2t -4) ,解得:m =13t =73∴t =73时,M 13,0 ,②若m >0,MI =m -(t -4),MH =m -(4-t ),QI =4-2t ,如图3,当△QMP ∽△AOB 时,∴PM QM =BO AO=24=12∴PH MI =MH QI =12∴2PH =MI ,2MH =QI ,联立方程组:2×4=m -(t -4)2m -(4-t ) =4-2t ,解得m =143t =23.∴t =23时,M 143,0 ③若m <0,当△PMQ ∽△AOB 时,如图4,MI =(t -4)-m ,MH =(4-t )-m ,QI =4-2t ,∴PM AO =QM BO ,∴PM QM =AO BO=42=2,∴PH MI =MH QI =2∴PH =2MI ,MH =2QI ,联立方程组:4=2(t -4)-m 4-t -m =2(4-2t ),解得:m =-7t =-1 ∴t =-1,M -7,0④m <0,△QMP ∽△AOB 的情况不存在,综上,t =73时,M 13,0 ;t =23时,M 143,0 ;t =-1时,M -7,0 .【点睛】本题考查的是一次函数综合运用,涉及到三角形相似、平行四边形的性质等,分类求解是解题的关键.16.如图,边长为10的等边△ABC 中,点D 在边AC 上,且AD =3,将含30°角的直角三角板(∠F =30°)绕直角顶点D 旋转,DE 、DF 分别交边AB 、BC 于P 、Q ,连接PQ .当EF ∥PQ 时,DQ 长为()A.6B.39C.10D.63【答案】B【分析】证明△ADP ∽△BPQ ,由相似三角形的性质得出AD BP =AP BQ =DP PQ ,求出BP =6,CQ =2,过点Q 作QM ⊥AC 于点M ,由勾股定理可求出答案.【详解】解:∵∠F =30°,∴∠E =60°,∵EF ∥PQ ,∴∠DPQ =∠E =60°,∠DQP =∠F =30°,∴∠APD +∠BPQ =120°,∵△ABC 为等边三角形,∴∠A =∠B =60°,AC =BC =AB =10,∴∠APD +∠ADP =120°,∴∠BPQ =∠ADP ,∴△ADP ∽△BPQ ,∴AD BP =AP BQ =DP PQ,∵∠PDQ =90°,∠DQP =30°,∴PD =12PQ ,∴3 BP =APBQ=12,∴BP=6,∴AP=4,BQ=8,∴CQ=2,过点Q作QM⊥AC于点M,∴CM=12CQ=1,QM=3,∵CD=AC-AD=10-3=7,∴DM=CD-CM=7-1=6,∴DQ=DM2+QM2=62+(3)2=29.故选:B.【点睛】本题考查了勾股定理,等边三角形的性质,相似三角形的判定与性质,直角三角形的性质.先证明△ADP∽△BPQ是解题的关键.17.(1)问题如图1,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=90°时,求证:AD⋅BC=AP ⋅BP.(2)探究若将90°角改为锐角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用如图3,在△ABC中,AB=22,∠B=45°,以点A为直角顶点作等腰Rt△ADE.点D在BC上,点E在AC上,点F在BC上,且∠EFD=45°,若CE=5,求CD的长.【答案】(1)见解析;(2)成立;理由见解析;(3)5【分析】(1)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=α可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)证明△ABD∽△DFE,求出DF=4,再证△EFC∽△DEC,可求FC=1,进而解答即可.【详解】解:(1)证明:如图1,∵∠DPC=90°∴∠BPC+∠APD=90°,∵∠A=90°,∴∠ADP+∠APD=90°∴∠APD=∠BPC,又∵∠A=∠B=90°∴△ADP∽△BPC,∴AD:BP=AP:BC∴AD⋅BC=AP⋅BP;(2)结论AD⋅BC=AP⋅BP仍成立;理由:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=α,∴∠BPC=∠APD,又∵∠A=∠B=α,∴△ADP∽△BPC,∴AD:BP=AP:BC∴AD⋅BC=AP⋅BP;(3)∵∠EFD=45°,∴∠B=∠ADE=45°,∴∠BAD=∠EDF,∴△ABD∽△DFE∴AB:DF=AD:DE∵Rt△ADE是等腰直角三角形∴AD:DE=1:2∴AB:DF=1:2∵AB=22∴DF=4∵Rt△ADE是等腰直角三角形∴∠AED=45°∵∠EFD=45°∴∠DEC=∠EFC=180°-45°=135°又∵∠C=∠C∴△DEC∽△EFC∴DC:EC=EC:CF即EC2=FC⋅(4+FC)∵EC=5∴5=FC(4+FC)∴FC=1解得CD=5.【点睛】本题考查相似三角形的综合题,三角形的相似,正切值的求法,能够通过构造45°角将问题转化为一线三角是解题的关键.18.如图,在Rt△ABC中,∠ACB=90°,BCAC =mn,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m =n ,点E 在线段AC 上,则DE DF =;(2)数学思考:①如图2,若点E 在线段AC 上,则DE DF =(用含m ,n 的代数式表示);②当点E 在直线AC 上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC =5,BC =25,DF =42,请直接写出CE 的长.【答案】(1)1;n m ;(2)①n m ;②n m ;(3)CE =25或CE =255【分析】(1)先用等量代换判断出∠ADE =∠CDF ,∠A =∠DCB ,得到△ADE ∽△CDF ,再判断出△ADC ∽△CDB 即可;(2)方法和1 一样,先用等量代换判断出∠ADE =∠CDF ,∠A =∠DCB ,得到△ADE ∽△CDF ,再判断出△ADC ∽△CDB 即可;(3)由2 的结论得出△ADE ∽△CDF ,判断出CF =2AE ,求出DE ,再利用勾股定理,计算出即可.【详解】解:1 当m =n 时,即:BC =AC ,∵∠ACB =90°,∴∠A +∠ABC =90°,∵CD ⊥AB ,∴∠DCB +∠ABC =90°,∴∠A =∠DCB ,∵∠FDE =∠ADC =90°,∴∠FDE -∠CDE =∠ADC -∠CDE ,即∠ADE =∠CDF ,∴△ADE ∽△CDF ,∴DE DF =AD DC,∵∠A =∠DCB ,∠ADC =∠BDC =90°,∴△ADC ∽△CDB ,∴AD DC =AC BC=1,∴DE DF =12 ①∵∠ACB =90°,∴∠A +∠ABC =90°,∵CD ⊥AB ,∴∠DCB +∠ABC =90°,∴∠A =∠DCB ,∵∠FDE=∠ADC=90°,∴∠FDE-∠CDE=∠ADC-∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴DE DF =AD DC,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴AD DC =ACBC=nm,∴DEDF=nm②成立.如图3,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴DE DF =AD DC,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴AD DC =ACBC=nm,∴DE DF =n m.3 由2 有,△ADE∽△CDF,∵DE DF =ACBC=12,∴AD CD =AECF=DEDF=12,∴CF=2AE,如图4图5图6,连接EF.在Rt△DEF中,DE=22,DF=42,∴EF=210,①如图4,当E在线段AC上时,在Rt△CEF中,CF=2AE=2AC-CE=25-CE,EF=210,根据勾股定理得,CE2+CF2=EF2,∴CE2+25-CE2=40∴CE=25,或CE=-255(舍)②如图5,当E在AC延长线上时,在Rt△CEF中,CF=2AE=2AC+CE=25+CE,EF=210,根据勾股定理得,CE2+CF2=EF2,∴CE2+25+CE2=40,∴CE=255,或CE=-25(舍),③如图6,当E在CA延长线上时,在Rt△CEF中,CF=2AE=2CE-AC=2CE-5,EF=210,根据勾股定理得,CE2+CF2=EF2,∴CE2+2CE-52=40,∴CE=25,或CE=-255(舍),综上:CE=25或CE=25 5.【点睛】本题是三角形综合题,主要考查了三角形相似的性质和判定,勾股定理,判断相似是解决本题的关键,求CE是本题的难点.。
相似三角形模型分析大全(非常全面,经典)
相似三角形模型分析大全一、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)B(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。
8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:EG EF BE ⋅=2.ACDEB相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。
求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。
求证:∠=︒GBM 90GMF EHDCBA5.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DCB上一点,且∠EPD=∠A.设A、P两点的距离为x,△BEP的面积为y.(1)求证:AE=2PE;(2)求y关于x的函数解析式,并写出它的定义域;(3)当△BEP与△ABC相似时,求△BEP的面积.双垂型1、如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高求证:(1)△ABD∽△ACE;(2)△ADE∽△ABC;(3)BC=2ED2、如图,已知锐角△ABC,AD、CE分别是BC、AB边上的高,△ABC和△BDE的面积分别是27和3,DE=62,求:点B到直线AC的距离。
相似三角形常见模型(总结)
相似三角形常见模型(总结)第一部分相似三角形模型分析一、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)B(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:C D二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。
8字型拓展C B ED A 共享性G B EF一线三等角的变形一线三直角的变形第二部分相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E .求证:OE OA OC ?=2 .例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ?=2;(2)DAC DCE ∠=∠.A C D E B例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:EG EF BE ?=2.相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2.2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
求证:(1)△AME ∽△NMD; (2)ND 2=NC NB3、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,E是AC上一点,CF⊥BE于F。
求证:EBDF=AEDB4.在?ABC中,AB=AC,高AD与BE交于H,EF BC⊥,垂足为F,延长AD到G,使DG=EF,M是AH的中点。
求证:∠=?GBM905.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt△ABC中,∠C=90°,BC=2,AC=4,P是斜边AB上的一个动点,PD⊥AB,交边AC于点D(点D与点A、C都不重合),E是射线DC上一点,且∠EPD=∠A.设A、P两点的距离为x,△B EP的面积为y.AB PD E(第25题图)GMFEHDCBA(1)求证:AE=2PE;(2)求y关于x的函数解析式,并写出它的定义域;(3)当△BEP与△ABC相似时,求△BEP的面积.双垂型1、如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB 上的高2、如图,已知锐角△ABC,AD、CE分别是BC、AB边上的高,△ABC和△BDE的面积分别是27和3,DE=62,求:点B到直线AC的距离。
相似三角形模型分析报告大全
第一部分 相似三角形模型分析大全一、相似三角形判定的基本模型认识(一)A 字型、反A 字型(斜A 字型)ABCDE(平行)CBA DE(不平行)(二)8字型、反8字型J OADBCAB CD(蝴蝶型)(平行) (不平行)(三)母子型ABCDCAD(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:CAD二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。
8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:EG EF BE ⋅=2.ACDEB相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。
求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。
相似三角形常见模型(总结)
第一部分 相似三角形模型分析一、相似三角形判定的基本模型认识(一)A 字型、反A 字型(斜A 字型)B(平行)B(不平行)(二)8字型、反8字型(五)一线三直角型:(六)双垂型:CAD二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。
8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ⋅=2.相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.A C D E B2、已知:AD是Rt△ABC中∠A的平分线,∠C=90°,EF是AD的垂直平分线交AD于M,EF、BC的延长线交于一点N。
求证:(1)△AME∽△NMD; (2)ND2=NC·NB3、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,E是AC上一点,CF⊥BE于F。
求证:EB·DF=AE·DB4.在∆ABC中,AB=AC,高AD与BE交于H,EF BC⊥,垂足为F,延长AD到G,使DG=EF,M是AH的中点。
求证:∠=︒GBM905.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt△ABC中,∠C=90°,BC=2,AC=4,P是斜边AB上的一个动点,PD⊥AB,交边AC于点D(点D与点A、C都不重合),E是射线DC上一点,且∠EPD=∠A.设A、P两点的距离为x,△BEP的面积为y.(1)求证:AE=2PE;(2)求y关于x的函数解析式,并写出它的定义域;(3)当△BEP与△ABC相似时,求△BEP的面积.A CBPD E(第25题图)GMFEHDCBA双垂型1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC、AB 上的高 求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2ED2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE 求:点B 到直线AC 的距离。
【大全】相似三角形模型分析大全
【关键字】大全第一部分相似三角形模型分析大全一、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)(平行)(不平行)(二)8字型、反8字型(蝴蝶型)(平行)(不平行)(三)母子型(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:二、相似三角形判定的变化模型旋转型:由A字型旋转得到。
8字型拓展共享性一线三等角的变形一线三直角的变形第二部分相似三角形典型例题讲解母子型相似三角形例1、已知:如图,△ABC中,点E在中线AD上, .求证:(1);(2).例2、已知:如图,等腰△ABC中,AB=AC,AD△BC于D,CG△AB,BG分别交AD、AC于E、F.求证:.点评:本题考查了等腰三角形的性质、等腰三角形三线合一定理、平行线的性质、相似三角形的判定和性质.关键是能根据所证连接CE相关练习:1、如图,梯形ABCD中,AD△BC,对角线AC、BD交于点O,BE△CD交CA延长线于E.求证:.2、如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线.求证:.3、已知:如图,在Rt△ABC中,△C=90°,BC=2,AC=4,P是斜边AB上的一个动点,PD△AB,交边AC于点D(点D与点A、C都不重合),E是射线DC上一点,且△EPD=△A.设A、P两点的距离为x,△BEP的面积为y.(1)求证:AE=2PE;(2)求y关于x的函数解析式,并写出它的定义域;(3)当△BEP与△ABC相似时,求△BEP的面积.双垂型1、如图,在△ABC中,△A=60°,BD、CE分别是AC、AB上的高求证:(1)△ABD△△ACE;(2)△ADE△△ABC;(3)BC=2ED解答:证明:(1)△CE△AB于E,BF△AC于F,△△AFB=△AEC,△A为公共角,△△ABD△△ACE(两角对应相等的两个三角形相似).(2)由(1)得AB:AC=AD:AE,△A为公共角,△△ADE△△ABC(两边对应成比率且夹角相等的两个三角形相似)(3)△△ADE△△ABC△AD:AB=DE:BC又△△A=60° △BC=2ED共享型相似三角形1、△ABC是等边三角形,D、B、C、E在一条直线上,△DAE=,已知BD=1,CE=3,,求等边三角形的边长.如图△△ABC是等边三角形△△ABC=△BAC=△ACB=60°又△DBCE在一条直线上△△ADB+△DAB=△CAE+△AEC=△ABC=60°△△DAE=120°△△DAB+△CAE=△DAE-△BAC=120°-60°=60°由上可知△ADB=△CAE,△DAB=△CAE△△DAB△△AEC△三角形相似对应边成比率△BD/AC=AB/CE△BD=1,CE=3△AB=AC=√32、已知:如图,在Rt△ABC中,AB=AC,△DAE=45°.求证:(1)△ABE△△ACD;(2).解答:证明:(1)在Rt△ABC中,△AB=AC,△△B=△C=45°.(1分)△△BAE=△BAD+△DAE,△DAE=45°,△△BAE=△BAD+45°.(1分)而△ADC=△BAD+△B=△BAD+45°,(1分)△△BAE=△CDA.(1分)△△ABE△△DCA.(2分)(2)由△ABE△△DCA,得.(2分)△BE•CD=AB•AC.(1分)而AB=AC,BC2=AB2+AC2,△BC2=2AB2.(2分)△BC2=2BE•CD.(1分)点评:此题考查了相似三角形的判定和性质,特别是与勾股定理联系起来综合性很强,难度较大.一线三等角型相似三角形例1:如图,等边△ABC中,边长为6,D是BC上动点,△EDF=60°(1)求证:△BDE△△CFD(2)当BD=1,FC=3时,求BE证明:(1)△△ABC是等边三角形△△B=△C=60°△△EDF=60°△△CDF+△EDB=180°-△EDF=120° △BED+△EDB=180°-△B=120°△△CDF=△BED△△B=△C△△BDE相似△CFD2、△BD=1△CD=BC-BD=6-1=5△△BDE相似△CFD△BE/CD=BD/CFBE/5=1/3 BE=5/3例2、已知在梯形ABCD中,AD△BC,AD<BC,且AD=5,AB=DC=2.(1)如图8,P为AD上的一点,满足△BPC=△A.①求证;△ABP△△DPC②求AP的长.(2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足△BPE =△A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当CE =1时,写出AP 的长. 解答:解:(1)∵ABCD 是梯形,AD ∥BC ,AB=DC . ∴∠A=∠D∵∠ABP+∠APB+∠A=180°,∠APB+∠DPC+∠BPC=180°,∠BPC=∠A∴∠ABP=∠DPC ,∴△ABP ∽△DPC∴,即:解得:AP=1或AP=4.(2)①由(1)可知:△ABP ∽△DPQ∴,即:,∴(1<x <4). ②当CE=1时,AP=2或. 点评:本题结合梯形的性质考查二次函数的综合应用,利用相似三角形得出线段间的比例关系是求解的关键.例3:如图,在梯形ABCD 中,AD △BC ,6AB CD BC ===,3AD =.点M 为边BC的中点,以M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .(1)求证:△MEF △△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长;(3)若EF CD ⊥,求BE 的长1.证明:∵AB=CD.∴梯形ABCD 为等腰梯形,∠B=∠C;又∠EMF=∠B,则:∠CMF=180度-∠EMF-∠BME=180度-∠B-∠BME=∠BEM.∴⊿CMF ∽⊿BEM,MF/EM=CM/BE=BM/BE.∵MF/EM=BM/BE;∠EMF=∠B.∴△MEF ∽△BEM.2.解:当BM=BE=3时:MF/ME=BM/BE=1,则MF=ME.∴EF ∥BC;又BE=3=AB/2.故EF 为梯形的中位线,EF=(AD+BC)/2=9/2;当ME=BM=3时:∠MEB=∠B=∠C=∠FMC.连接DM.BM=BC/2=3=AD,又BM 平行BM,则四边形ABMD 为平行四边形.∴∠DMC=∠B=∠FMC,即F 与D 重合,此时EF=CD=6.3.解:∵EF ⊥CD;∠CFM=∠BME=∠EFM.∴∠EFM=45°=∠BME.作EG ⊥BM 于G,则EG=GM;作AH ⊥BM 于H.BH=(BC-AD)/2=3/2,AH=√(AB ²-BH ²)=3√15/2.设EG=GM=X,则BG=3-X.BG/BH=EG/AH,(3-X)/(3/2)=X/(3√15/2),X=(45-3√15)/14.BE/BA=EG/AH,即BE/6=[(45-3√15)/14]/(3√15/2),BE=(6√15-6)/7.练习:如图,已知边长为3的等边ABC ∆,点F 在边BC 上,1CF =,点E 是射线BA 上一动点,以线段EF 为边向右侧作等边EFG ∆,直线,EG FG 交直线AC 于点,M N ,(1)写出图中与BEF ∆相似的三角形;(2)证明其中一对三角形相似;(3)设,BE x MN y ==,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(4)若1AE =,试求GMN ∆的面积.一线三直角型相似三角形例:已知矩形ABCD 中,CD=2,AD=3,点P 是AD 上的一个动点,且和点A,D 不重合,过点P 作CP PE ⊥,交边AB 于点E,设y AE x PD ==,,(1)求y 关于x 的函数关系式,并写出x的取值范围。
相似三角形-模型分析(可修改)
第一部分相似三角形模型分析大全一、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)B(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型BB(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。
8字型拓展CB EDA共享性GABEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:EG EF BE ⋅=2.A C D E B双垂型1、如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高2、如图,已知锐角△ABC,AD、CE分别是BC、AB边上的高,△ABC和△BDE的面积分别是27和3,DE=62,求:点B到直线AC的距离。
CDC共享型相似三角形1、△ABC 是等边三角形,D 、B 、C 、E 在一条直线上,∠DAE=︒120,已知BD=1,CE=3,,求等边三角形的边长.2、已知:如图,在Rt △ABC 中,AB =AC ,∠DAE =45°.求证:(1)△ABE ∽△DCA ; (2)CD BE BC ⋅=22.。
初二--超经典相似三角形模型分析大全
相似三角形模型分析大全一、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。
8字型拓展CB EDA共享性GA BCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形:例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ⋅=2.相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NBACDEB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。
求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。
求证:∠=︒GBM 90GMF EHDCA5.已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y . (1)求证:AE =2PE ;(2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积.ABP D E双垂型:1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高 求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2ED2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE 的面积分别是27和3,DE=62,求:点B 到直线AC 的距离。
初二超经典相似三角形模型分析大全
相似三角形模型分析大全-、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)(二)8字型、反8字型C (平行)C (不平行)B(蝴蝶型)(不平行)(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:、相似三角形判定的变化模型母子型相似三角形:例1:如图,梯形ABCD中,AD // BC,对角线AC、BD交于点0, BE // CD交CA延长线于E.求证:0C2 0A 0E .旋转型: 由A字型旋转得到-- 1 - =—a h c8字型拓展EB共享性线三等角的变形一线三直角的变形第二部分相似三角形典型例题讲解等腰△ ABC 中,AB = AC , AD 丄 BC 于 D , CG // AB , BG 分另交 AD 、AC 于 E 、F .相关练习:1、如图,已知 AD 为^ ABC 的角平分线,EF 为AD 的垂直平分线•求证:FD 2FB FC .AD 是Rt △ ABC 中/ A 的平分线,/ C=90°, EF 是AD 的垂直平分线交 AD 于M EF 、BC 的延长线交于一点 N 。
2△ AM 0A NMD; (2)ND =NC- NB已知:如图, △ ABC 中,点E 在中线AD 上,DEB求证: (1) DB2DE DA ; (2) DCE求证: BE 2 EFEG .已知:如图, 2、已知: 求证:⑴A3、已知:如图,在△ ABC中,/ ACB=90 , CD! AB于D, E是AC上一点,CF丄BE于F。
求证:EB- DF=AE- DB/I4.在ABC中,AB=AC高AD与BE交于H EF BC,垂足为F,延长AD到G,使DG=EF M是AH勺中点。
求证:GBM 905.已知:如图,在Rt△ ABC中,/ C=90°,BC=2, AC=4, P是斜边AB上的一个动点,PDLAB,交边AC于点D (点D 与点A C都不重合),E是射线DC上一点,且/ EPD/ A.设A、P两点的距离为X, △ BEP的面积为y.(1)求证:AE=2PE求y关于X的函数解析式,并写出它的定义域;当^ BEP与△ ABC相似时,求△ BEP的面积.双垂型:1、如图,在△ ABC 中,/ A=60°, BD CE 分别是 AC AB 上的高2、如图,已知锐角△ ABC , AD 、CE 分别是BC 、AB 边上的高,△ ABC 和^ BDE 的面积分别是 27和3, DE=6 J 2 ,1 >△ ABC 是等边三角形,D 、B 、C E 在一条直线上,/ DAE=12O ,已知BD=1, CE=3 ,求等边三角形的边长.2、已知:如图,在 Rt △ ABC 中,AB=AC ,/ DAE =45°求证:(〔)△ AB»A ACE (2)A AD0AABC (3)BC=2ED求证:(1) △ ABE sA ACD ;(2) BC 22BE CD.求:点B 到直线AC 的距离。
(完整版)相似三角形模型分析大全(非常全面-经典)
相似三角形模型分析大全1、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)B(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(6)双垂型:2、相似三角形判定的变化模型旋转型:由A 字型旋转得到。
8字型拓展B一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E .求证:.OE OA OC ⋅=2例2:已知:如图,△ABC 中,点E 在中线AD 上, .ABC DEB ∠=∠求证:(1); (2).DA DE DB ⋅=2DAC DCE ∠=∠ACDEB例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:.EG EF BE ⋅=2相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:.FC FB FD ⋅=22、已知:AD 是Rt△ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
求证:(1)△AME∽△NMD; (2)ND =NC·NB23、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,E是AC上一点,CF⊥BE于F。
求证:EB·DF=AE·DB⊥,垂足为F,延长AD到G,使DG=EF,M是AH的中点。
4.在∆ABC中,AB=AC,高AD与BE交于H,EF BCGBM90求证:∠=︒5.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt△ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y .(1)求证:AE =2PE ;(2)求y 关于x 的函数解析式,并写出它的定义域;(3)当△BEP 与△ABC 相似时,求△BEP 的面积.双垂型1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高A(第25题图)求证:(1)△ABD∽△ACE;(2)△ADE∽△ABC;(3)BC=2ED2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE 的面积分别是27和3,DE=6,求:点B 到直线AC 的距离。
初中数学 相似三角形的8大模型
相似三角形是几何中重要的证明模型之一,是全等三角形的推广。
全等三角形可以被理解为相似比为1的相似三角形。
相似三角形其实是一套定理的集合,它主要描述了相似三角形是几何中两个三角形中,边、角的关系。
0 1 模型1:A字型相似
0 2 模型2:“8”字型相似
0 3 模型3:三平行倒数和模型
0 4 模型4:一线三等角
0 5 模型5:半角形似(两个字母型相似)
0 6 模型6:旋转型相似
0 7 模型7:与圆有关的简单相似
0 8 模型8:阿氏圆
知识需知:
阿波罗尼斯圆:在平面上给定两点A、B,设点P在同一平面上且满足PB/PA= λ ,当 λ > 0 且 λ ≠ 1 时,P点的轨迹就是一个圆,称之为阿波罗尼斯圆( λ
=1 时P点的轨迹为线段AB是的中垂线)。
相似三角形是几何中重要的模型之一,从历年中考考情来看,相似三角形的应用广泛。
在选择题中,直接应用相似三角形的性质,考察线段或面积比,分值4分,题型简单。
但它其实更多的是作为一种计算工具,在图形的翻折中,利用相似可以更快更简单求解;利用圆中的相似,快速求得线段或角度;在压轴大题二次函数中,利用相似可以简化模型,减少计算量,节约做题时间。
由此可看出相似三角形的重要性。
因此,笔者编写初中常见的八大相似模型,从最简单的“A”字、“8”字相似,到旋转型、半角型相似,从易到难,大家可以有选择性的进行学习。
“喜欢我到什么程度?”绿子问。
“整个世界的老虎全部融化成黄油。
” ——村上春树《挪威的森林》。
相似三角形模型分析大全(精)
(第 25 题图)
双垂型
1、如图,在△ABC 中,∠A=60°,BD、CE 分别是 AC、AB 上的高 求证:(1)△ABD∽△ACE;(2)△ADE∽△ABC;(3)BC=2ED
word 范文
A
E D
B
C
.
2、如图,已知锐角△ABC,AD、CE 分别是 BC、AB 边上的高,△ABC 和△BDE 的面积分别是 27 和 3,DE=6 2 ,
求:点 B 到直线 AC 的距离。
A
E
B
D
C
共享型相似三角形 1、△ABC 是等边三角形,D、B、C、E 在一条直线上,∠DAE=120 ,已知 BD=1,CE=3,,求等边三角形的边
长.
A
D
B
C
E
word 范文
.
2、已知:如图,在 Rt△ ABC 中,AB=AC,∠DAE=45°.
求证:(1)△ ABE∽△ ACD;
例 1.放大镜中的正方形与原正方形具有怎样的关系呢? 分析:要注意镜中的正方形与原正方形的形状没有改变. 解:是相似图形。因为它们的形状相同,大小不一定相同. 例 2.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角 80°的两个等腰三角 形;⑤两个正五边形;⑥有一个内角是 100°的两个等腰三角形,其中一定是相似图形的是_________(填 序号). 解析:根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,而平行四边形、矩形、等腰三 角形都属于形状不唯一的图形,而圆、正多边形、顶角为 100°的等腰三角形的形状不唯一,它们都相似.答 案:②⑤⑥. 知识点 2.比例线段
角形是相似三角形的特殊情况。若两个三角形全等,则这两个三角形相似;若两个三
相似三角形模型分析和典型例题讲解大全good
第一部分 相似三角形模型分析大全一、相似三角形判定的基本模型认识(一)A 字型、反A 字型(斜A 字型)ABCDE(平行)CBA DE(不平行)(二)8字型、反8字型J OADBCAB CD(蝴蝶型)(平行) (不平行)(三)母子型ABCDCAD(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:CAD二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。
8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ⋅=2.相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.AC D E B2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。
求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.第一部分相似三角形模型分析大全一、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)B(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景.(五)一线三直角型:(六)双垂型:二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。
8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1、已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例2、已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:EG EF BE ⋅=2.点评:本题考查了等腰三角形的性质、等腰三角形三线合一定理、平行线的性质、相似三角形的判定和性质.关键是能根据所证连接CE 相关练习:1、如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E .求证:OE OA OC ⋅=2.2、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.3、已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y . (1)求证:AE =2PE ;(2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积.双垂型1、如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高求证:(1)△ABD∽△ACE;(2)△ADE∽△ABC;(3)BC=2ED解答:证明:(1)∵CE⊥AB于E,BF⊥AC于F,∴∠AFB=∠AEC,∠A为公共角,∴△ABD∽△ACE(两角对应相等的两个三角形相似).(2)由(1)得AB:AC=AD:AE,∠A为公共角,∴△ADE∽△ABC(两边对应成比例且夹角相等的两个三角形相似)(3)∵△ADE∽△ABC∴AD:AB=DE:BC又∵∠A=60°∴BC=2ED共享型相似三角形1、△ABC是等边三角形,D、B、C、E在一条直线上,∠DAE=120,已知BD=1,CE=3,,求等边三角形的边长. DECD如图∵△ABC 是等边三角形 ∴∠ABC=∠BAC=∠ACB=60° 又∵DBCE 在一条直线上∴∠ADB+∠DAB=∠CAE+∠AEC=∠ABC=60° ∵∠DAE=120°∴∠DAB+∠CAE=∠DAE-∠BAC=120°-60°=60° 由上可知∠ADB=∠CAE ,∠DAB=∠CAE ∴△DAB ∽△AEC∵三角形相似对应边成比例 ∴BD /AC=AB /CE ∵BD=1,CE=3 ∴AB=AC=√32、已知:如图,在Rt △ABC 中,AB =AC ,∠DAE =45°.求证:(1)△ABE ∽△ACD ; (2)CD BE BC ⋅=22.C A解答:证明:(1)在Rt △ABC 中, ∵AB=AC ,∴∠B=∠C=45°. (1分)∵∠BAE=∠BAD+∠DAE ,∠DAE=45°,∴∠BAE=∠BAD+45°.(1分)而∠ADC=∠BAD+∠B=∠BAD+45°,(1分)∴∠BAE=∠CDA.(1分)∴△ABE∽△DCA.(2分)(2)由△ABE∽△DCA,得.(2分)∴BE•CD=AB•AC.(1分)而AB=AC,BC2=AB2+AC2,∴BC2=2AB2.(2分)∴BC2=2BE•CD.(1分)点评:此题考查了相似三角形的判定和性质,特别是与勾股定理联系起来综合性很强,难度较大.一线三等角型相似三角形例1:如图,等边△ABC中,边长为6,D是BC上动点,∠EDF=60°(1)求证:△BDE∽△CFD(2)当BD=1,FC=3时,求BE证明:(1)∵△ABC是等边三角形∴∠B=∠C=60°∵∠EDF=60°∴∠CDF+∠EDB=180°-∠EDF=120°∠BED+∠EDB=180°-∠B=120°∴∠CDF=∠BED∵∠B=∠C∴△BDE相似△CFD2、∵BD=1∴CD=BC-BD=6-1=5∵△BDE相似△CFD∴BE/CD=BD/CFBE/5=1/3 BE=5/3例2、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2.(1)如图8,P 为AD 上的一点,满足∠BPC =∠A . ①求证;△ABP ∽△DPC ②求AP 的长.(2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当CE =1时,写出AP 的长.CBADCBA D解答:解:(1)∵ABCD 是梯形,AD ∥BC ,AB=DC . ∴∠A=∠D∵∠ABP+∠APB+∠A=180°,∠APB+∠DPC+∠BPC=180°,∠BPC=∠A ∴∠ABP=∠DPC , ∴△ABP ∽△DPC ∴,即:解得:AP=1或AP=4.(2)①由(1)可知:△ABP ∽△DPQ ∴,即:,∴(1<x <4).②当CE=1时,AP=2或.点评:本题结合梯形的性质考查二次函数的综合应用,利用相似三角形得出线段间的比例关系是求解的关键.例3:如图,在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .(1)求证:△MEF ∽△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长; (3)若EF CD ⊥,求BE 的长1.证明:∵AB=CD.∴梯形ABCD 为等腰梯形,∠B=∠C;又∠EMF=∠B,则:∠CMF=180度-∠EMF-∠BME=180度-∠B-∠BME=∠BEM. ∴⊿CMF ∽⊿BEM,MF/EM=CM/BE=BM/BE. ∵MF/EM=BM/BE;∠EMF=∠B. ∴△MEF ∽△BEM.2.解:当BM=BE=3时:MF/ME=BM/BE=1,则MF=ME.∴EF ∥BC;又BE=3=AB/2.故EF 为梯形的中位线,EF=(AD+BC)/2=9/2; 当ME=BM=3时:∠MEB=∠B=∠C=∠FMC.连接DM.BM=BC/2=3=AD,又BM 平行BM,则四边形ABMD 为平行四边形. ∴∠DMC=∠B=∠FMC,即F 与D 重合,此时EF=CD=6. 3.解:∵EF ⊥CD;∠CFM=∠BME=∠EFM. ∴∠EFM=45°=∠BME.作EG ⊥BM 于G,则EG=GM;作AH ⊥BM 于H.BH=(BC-AD)/2=3/2,AH=√(AB ²-BH ²)=3√15/2. 设EG=GM=X,则BG=3-X.BG/BH=EG/AH,(3-X)/(3/2)=X/(3√15/2),X=(45-3√15)/14. BE/BA=EG/AH,即BE/6=[(45-3√15)/14]/(3√15/2),BE=(6√15-6)/7.练习:如图,已知边长为3的等边ABC ∆,点F 在边BC 上,1CF =,点E 是射线BA 上一动点,以线段EF 为边向右侧作等边EFG ∆,直线,EG FG 交直线AC 于点,M N , (1)写出图中与BEF ∆相似的三角形; (2)证明其中一对三角形相似;(3)设,BE x MN y ==,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (4)若1AE =,试求GMN ∆的面积.一线三直角型相似三角形例:已知矩形ABCD 中,CD=2,AD=3,点P 是AD 上的一个动点,且和点A,D 不重合,过点P 作CP PE ⊥,交边AB 于点E,设y AE x PD ==,,(1)求y 关于x 的函数关系式,并写出x 的取值范围。
(2)如果△PCD 的面积是△AEP 面积的4倍,求CE 的长;(3)是否存在点P ,使△APE 沿PE 翻折后,点A 落在BC 上?证明你的结论。
E DP解答:(1)解:∵PE⊥CP,∴可得:△EAP∽△PDC,∴,又∵CD=2,AD=3,设PD=x,AE=y,∴,∴y=-,0<x<3;(2)解:当△PCD的面积是△AEP面积的4倍,则:相似比为2:1,∴,∵CD=2,∴AP=1,PD=2,∴PE=,PC=2,∴EC=.(3)不存在.作AF⊥PE,交PE于O,BC于F,连接EF∵AF⊥PE,CP⊥PE ∴AF=CP=, PE=,∵△CDP∽△POA∴=,OA=,若OA=AF =, 3x2-6x+4=0 △=62-4×4×3=-12x无解因此,不存在.点评:此题主要考查了相似三角形的判定,以及相似三角形面积比是相似比的平方.相关练习1、(2009虹口二模)如图,在ABC ∆中,90C ∠=︒,6AC =,3tan 4B =,D 是BC 边的中点,E 为AB 边上的一个动点,作90DEF ∠=︒,EF 交射线BC 于点F .设BE x =,BED ∆的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)如果以B 、E 、F 为顶点的三角形与BED ∆相似,求BED ∆的面积.。