一起学奥数鸡兔同笼培训课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、答对2、3、4题的人总数量
3、答对2、3题的人一样对,可以看做为 答对2.5题的人。如此可以得到标准的“鸡 兔同笼”:
兔脚数=4,鸡脚数=2.5, 总脚数=144,总头数=39
181-1×7-5×6=144(题)
52-7-6=39(人)
答对四道题的人数: (144-39×2.5)÷(4-2.5) =31(人)
四年级的学生植树为:20+18=38棵 五年级的学生植树为:20+30=50棵
例6、搬运1000只玻璃瓶,规定:安全运到1只可得搬运费3角;但打 碎1只,不仅搬运费不给,还要赔5角。如果运完后,共得运费260元。 那么,搬运中打碎了几只玻璃瓶?
【分析】这个题目我们要弄清楚一个问题:打碎一个碗,损失了多少钱?
250×n
600×n
900
【分析】先按照题目意思,画出苹果与香蕉间的数量关系,虚线表示卖了n’天后,剩下的苹果。
假设苹果最后也是卖完的,根据苹果是香蕉的3倍,苹果每天应该也卖掉香蕉的3倍,即750千克。 但因为苹果每天没有卖掉这么多,最后剩下900千克,这写苹果应该是每天比假设的卖出去少而剩 下的。所以,卖的天数为: 900÷(3×250-600)=6天
兔子的数量为: (70-30×2)×(4-2)=5只 鸡的数量为: 30-5=25只
你会假设鸡的腿和兔子一样都是4条吗?试试吧。
例2、四(2)班学生共52人,到公园去划船共租用11条船,每条大船 坐6人,每条小船坐4人,刚好坐满,求租用的大船、小船各多少只?
【分析】这是一个类似鸡兔同笼的问题。大船是兔,有6条腿;小船是鸡,有四条腿;学生是腿, 合计有52条。这样我们就可以像刚才一样,用假设法来做了。 假设小船大船都只能装得下4人,则总共能装: 11×4=44人 而实际有52人,比假设的多8人。因为假设大船少算了2个人,而小船正好。所以这8个人都是大 船上的,并且每船少算了2个,所以大船数为: 8÷2=4条
所以,租用的大船为: (52-11×4)÷(6-4)=4条 租用的小船为: 11-4=7条
例3、一辆卡车运矿石,晴天每天可运20次,雨天每天只能运12次, 它一连运了112次,平均每天运14次。问:这几天当中有几个晴天?
【分析】这是一个类似鸡兔同笼的问题。大家一起来找一下,什么是兔子,什么是鸡,什么是腿? 并且它们各是多少?(在黑板上进行罗列,注意规范性)
提示:“鸡兔同笼”只有两种动物,两个元素(头、腿),而这里有三种动 物,三个元素。观察蜻蜓与蝉的腿,都一样是6条腿。因此,我们可 以分两步(蜻蜓两对翅膀,蝉一对翅膀)
第一步:求6条腿、8条腿的动物各几只: 8条腿的蜘蛛为: (118-6×18)÷(8-6)=5只 6条腿的有:18-5=13只
第二步:就变成标准的“鸡兔同笼”。 蜻蜓为: (20-13)÷(2-1)=7只 蝉的数量为:13-7=6只
所以,有香蕉为:6×250=1500千克 有苹果为:1500×3=4500千克
例5、三、四、五年级同学共植树108棵,三年级比四年级少植18棵, 五年级比三年级多植30棵,三个年级同学各植树多少棵?
18 30
【分析】先按照题目意思,画出三、四、五年级同学植树的数量关系。 显然,这是三者间的可查问题。三年级的学生植树为: (108-18-30)÷3=20棵
题
例题:某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少 做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数 一样多,那么做对4道的人数有多少人?
分析:可以把显眼的已知数据剔除,剩下条件不足数据。
1、各答对2、3、4题的人数量不清楚,而 得对1、5道题的人已知。则答对2、3、4 的人,答对题的数量可知
题
例题:鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?
分析:鸡兔同笼脚的数量是两数之和,而这题是两数之差,那可以让脚相等,就 可以知道两种动物的比例,即脚的比例。
1、抓些鸡进笼子里,先让鸡、兔脚的数量 一样多,则鸡与兔的总数
2、一只兔的脚是一只鸡的2倍,则鸡的数 量应该是兔子的两倍,否则它们各自 脚的总数不可能一样多
鸡 兔子
腿 鸡和兔子
12 20 112 112÷14=8
源自文库
由大家罗列的清单可以看出,这辆卡车运的天数为:112÷14=8天 晴天的填数为: (112-12×8)÷(20-12)=2天
例4、仓库所存的苹果是香蕉的3倍。春节前夕,平均每天批发出250千 克香蕉,600千克苹果,几天后香蕉全部批发完,苹果还剩900千克?这 个仓库原有苹果、香蕉各多少千克?
一起学奥数鸡兔同笼
第一课 基础部分
例1、笼子里有鸡和兔共30只,总共有70条腿,问鸡和兔各有几只?
【分析】这是一个鸡兔同笼问题。通过对题目的分析,我们应该弄清楚鸡与兔的共性和不同处。 鸡和兔子不同是鸡是两条腿,兔子有四条腿。 用假设法来解本题,我们可以对鸡或兔子腿的数量做假设,使它们一致。如:假设兔子也只有两 条腿,则通过笼子里鸡和兔子的合计数量,可以知道腿为:30×2=60条 而实际上,腿总共有70条,比假设的多了10条。显然,这10条腿是兔子的(因为兔子有4条腿, 我们假设它只有两条),并且每只兔子少算了2条。所以,就可以知道兔子的数量了。
100+28÷2=114
兔子数量:
114÷(2+1)=38(只)
鸡的数量: 100-38=62(只)
知识点小结
总结
鸡兔同笼问题的关键:1、在于先做假设,可以先假设都是鸡,也可都假设为兔子 2、把干扰项一一清除,剩下标准的鸡兔同笼条件
(1)已知总头数和总脚数,求鸡、兔各多少: 兔数=(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只 鸡的脚数)
打碎一个碗损失的是3角搬运费+5角赔偿费。因此,我们可以假设全部安全运到目的地,可以 得到多少钱。
由于打碎了些,所以实际得到的运费,比计划的少了些,这是由于每打破一只玻璃瓶的损失。 那么,打碎的玻璃瓶为:
(1000×0.3-260)÷(0.5+0.3)=50
第二讲 提高篇
练习
例、有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿; 蜻蜓6条腿、两对翅膀;蝉6条腿、一对翅膀),求蜻蜓有多少只?
3、答对2、3题的人一样对,可以看做为 答对2.5题的人。如此可以得到标准的“鸡 兔同笼”:
兔脚数=4,鸡脚数=2.5, 总脚数=144,总头数=39
181-1×7-5×6=144(题)
52-7-6=39(人)
答对四道题的人数: (144-39×2.5)÷(4-2.5) =31(人)
四年级的学生植树为:20+18=38棵 五年级的学生植树为:20+30=50棵
例6、搬运1000只玻璃瓶,规定:安全运到1只可得搬运费3角;但打 碎1只,不仅搬运费不给,还要赔5角。如果运完后,共得运费260元。 那么,搬运中打碎了几只玻璃瓶?
【分析】这个题目我们要弄清楚一个问题:打碎一个碗,损失了多少钱?
250×n
600×n
900
【分析】先按照题目意思,画出苹果与香蕉间的数量关系,虚线表示卖了n’天后,剩下的苹果。
假设苹果最后也是卖完的,根据苹果是香蕉的3倍,苹果每天应该也卖掉香蕉的3倍,即750千克。 但因为苹果每天没有卖掉这么多,最后剩下900千克,这写苹果应该是每天比假设的卖出去少而剩 下的。所以,卖的天数为: 900÷(3×250-600)=6天
兔子的数量为: (70-30×2)×(4-2)=5只 鸡的数量为: 30-5=25只
你会假设鸡的腿和兔子一样都是4条吗?试试吧。
例2、四(2)班学生共52人,到公园去划船共租用11条船,每条大船 坐6人,每条小船坐4人,刚好坐满,求租用的大船、小船各多少只?
【分析】这是一个类似鸡兔同笼的问题。大船是兔,有6条腿;小船是鸡,有四条腿;学生是腿, 合计有52条。这样我们就可以像刚才一样,用假设法来做了。 假设小船大船都只能装得下4人,则总共能装: 11×4=44人 而实际有52人,比假设的多8人。因为假设大船少算了2个人,而小船正好。所以这8个人都是大 船上的,并且每船少算了2个,所以大船数为: 8÷2=4条
所以,租用的大船为: (52-11×4)÷(6-4)=4条 租用的小船为: 11-4=7条
例3、一辆卡车运矿石,晴天每天可运20次,雨天每天只能运12次, 它一连运了112次,平均每天运14次。问:这几天当中有几个晴天?
【分析】这是一个类似鸡兔同笼的问题。大家一起来找一下,什么是兔子,什么是鸡,什么是腿? 并且它们各是多少?(在黑板上进行罗列,注意规范性)
提示:“鸡兔同笼”只有两种动物,两个元素(头、腿),而这里有三种动 物,三个元素。观察蜻蜓与蝉的腿,都一样是6条腿。因此,我们可 以分两步(蜻蜓两对翅膀,蝉一对翅膀)
第一步:求6条腿、8条腿的动物各几只: 8条腿的蜘蛛为: (118-6×18)÷(8-6)=5只 6条腿的有:18-5=13只
第二步:就变成标准的“鸡兔同笼”。 蜻蜓为: (20-13)÷(2-1)=7只 蝉的数量为:13-7=6只
所以,有香蕉为:6×250=1500千克 有苹果为:1500×3=4500千克
例5、三、四、五年级同学共植树108棵,三年级比四年级少植18棵, 五年级比三年级多植30棵,三个年级同学各植树多少棵?
18 30
【分析】先按照题目意思,画出三、四、五年级同学植树的数量关系。 显然,这是三者间的可查问题。三年级的学生植树为: (108-18-30)÷3=20棵
题
例题:某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少 做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数 一样多,那么做对4道的人数有多少人?
分析:可以把显眼的已知数据剔除,剩下条件不足数据。
1、各答对2、3、4题的人数量不清楚,而 得对1、5道题的人已知。则答对2、3、4 的人,答对题的数量可知
题
例题:鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?
分析:鸡兔同笼脚的数量是两数之和,而这题是两数之差,那可以让脚相等,就 可以知道两种动物的比例,即脚的比例。
1、抓些鸡进笼子里,先让鸡、兔脚的数量 一样多,则鸡与兔的总数
2、一只兔的脚是一只鸡的2倍,则鸡的数 量应该是兔子的两倍,否则它们各自 脚的总数不可能一样多
鸡 兔子
腿 鸡和兔子
12 20 112 112÷14=8
源自文库
由大家罗列的清单可以看出,这辆卡车运的天数为:112÷14=8天 晴天的填数为: (112-12×8)÷(20-12)=2天
例4、仓库所存的苹果是香蕉的3倍。春节前夕,平均每天批发出250千 克香蕉,600千克苹果,几天后香蕉全部批发完,苹果还剩900千克?这 个仓库原有苹果、香蕉各多少千克?
一起学奥数鸡兔同笼
第一课 基础部分
例1、笼子里有鸡和兔共30只,总共有70条腿,问鸡和兔各有几只?
【分析】这是一个鸡兔同笼问题。通过对题目的分析,我们应该弄清楚鸡与兔的共性和不同处。 鸡和兔子不同是鸡是两条腿,兔子有四条腿。 用假设法来解本题,我们可以对鸡或兔子腿的数量做假设,使它们一致。如:假设兔子也只有两 条腿,则通过笼子里鸡和兔子的合计数量,可以知道腿为:30×2=60条 而实际上,腿总共有70条,比假设的多了10条。显然,这10条腿是兔子的(因为兔子有4条腿, 我们假设它只有两条),并且每只兔子少算了2条。所以,就可以知道兔子的数量了。
100+28÷2=114
兔子数量:
114÷(2+1)=38(只)
鸡的数量: 100-38=62(只)
知识点小结
总结
鸡兔同笼问题的关键:1、在于先做假设,可以先假设都是鸡,也可都假设为兔子 2、把干扰项一一清除,剩下标准的鸡兔同笼条件
(1)已知总头数和总脚数,求鸡、兔各多少: 兔数=(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只 鸡的脚数)
打碎一个碗损失的是3角搬运费+5角赔偿费。因此,我们可以假设全部安全运到目的地,可以 得到多少钱。
由于打碎了些,所以实际得到的运费,比计划的少了些,这是由于每打破一只玻璃瓶的损失。 那么,打碎的玻璃瓶为:
(1000×0.3-260)÷(0.5+0.3)=50
第二讲 提高篇
练习
例、有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿; 蜻蜓6条腿、两对翅膀;蝉6条腿、一对翅膀),求蜻蜓有多少只?