线性代数1-4行列式的展开定理

合集下载

线性代数课件1-4行列式按行(列)展开

线性代数课件1-4行列式按行(列)展开

实例解析
• 实例2:考虑行列式$\begin{vmatrix}
实例解析
01
a&b&c
02
d&e&f
g&h&i
03
实例解析
• \end{vmatrix}$,按第2行展开,得到 $D=b\times\begin{vmatrix}
实例解析
d&f g&i
end{vmatrix}+ctimesbegin{vmatrix}
二阶行列式
由两个元素$a_{11}$和$a_{12}$,以及$a_{21}$ 和$a_{22}$构成的矩形,其值为$a_{11}a_{22} a_{12}a_{21}$。
三阶行列式
由八个元素构成的三个二阶行列式,其结果为三 个二阶行列式的代数和。
n阶行列式
由n阶方阵的n个元素构成的n个二阶行列式的代数 和。
行列式的性质
01
交换律:行列式的行和列可以交换, 即$|begin{matrix} a_{11} & a_{12} a_{21} & a_{22} end{matrix}| = | begin{matrix} a_{21} & a_{22} a_{11} & a_{12} end{matrix}|$。
02
结合律:行列式的行和列的乘法可以 按照任意组合进行,即 $|begin{matrix} a_{11} & a_{12} a_{21} & a_{22} end{matrix}| = | begin{matrix} a_{11} & a_{12} a_{21} & a_{22} end{matrix}| - | begin{matrix} a_{11} & a_{21} a_{12} & a_{22} end{matrix}|$。

线性代数自考知识点汇总

线性代数自考知识点汇总

行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行列,行列式变号.推论1 如果行列式有两行列的对应元素完全相同,则此行列式的值为零.如a b ca b c 0a b c'''= 性质3 行列式的某一行列中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行列元素成比例,则此行列式的值为零.如a b ca b c 0ka kb kc'''= 性质4 若行列式的某一行列的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行列的各元素乘以同一数然后加到另一行列对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.如111213212223313233a a a a a a a a a ,元素23a 的余子式为1112233132aa M a a =,元素23a 的代数余子式为11122323233132a a A (1)M a a +=-=-.3. 行列式按行列展开法则定理1 行列式的值等于它的任一行列的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++()1,2,,;1,2i n j n ==如111213212223313233a a a a a a a a a 111112121313a A a A a A =++ 定理2 行列式任一行列的元素与另一行列的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠()1,2,,;1,2i n j n ==4. 行列式的计算 1二阶行列式1112112212212122a a a a a a a a =- 2三阶行列式111213212223313233a a a a a a a a a 112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a =++--- 3对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-4三角行列式1111121n 2122222n 1122nn n1n2nn nn a a a a a a a a a a a a a a a ==111,n 11n1n n(n 1)212,n 12,n 12n 21n 2,n 1n1n1n1n2nna a a a a a a a (1)a a a a a a a -----==-5消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.6降阶法:利用行列式的性质,化某行列只有一个非零元素,再按该行列展开,通过降低行列式的阶数求出行列式的值.7加边法:行列式每行列所有元素的和相等,将各行列元素加到第一列行,再提出公因式,进而求出行列式的值.矩阵1. 常见矩阵1对角矩阵:主对角线以外的元素全为0的方阵,称为对角矩阵.记作Λ. 2单位矩阵:主对角线上的元素全为1的对角矩阵,称为单位矩阵.记作E.3上三角矩阵:对角线以下的元素全为0的方阵.如11121n 222n nn a a a a a a ⎛⎫⎪⎪⎪ ⎪⎝⎭ 4下三角矩阵:对角线以上的元素全为0的方阵.如112122n1n2nn a a a a a a ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭5对称矩阵:设A 为n阶方阵,若T A A =,即ij ji a a =,则称A 为对称矩阵. 6反对称矩阵:设A 为n阶方阵,若T A A =-,即ij ji a a =- ,则称A 为反对称矩阵. 7正交矩阵:设A 为n阶方阵,如果T AA E =或T A A E =,则称A 为正交矩阵. 2. 矩阵的加法、数乘、乘法运算 1矩阵的加法 如a b c a b c a a b b c c d e f d e f d d e e f f ''''''+++⎛⎫⎛⎫⎛⎫+=⎪ ⎪⎪''''''+++⎝⎭⎝⎭⎝⎭注:① 只有同型矩阵才能进行加减运算;② 矩阵相加减就是对应元素相加减. 2数乘矩阵 如a b c ka kb kc k d e f kd ke kf ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭注:数乘矩阵就是数乘矩阵中的每个元素.3矩阵的乘法:设ij m ij n s s A (a ),B (b )⨯⨯==,规定ij m n AB C (c ),⨯== 其中sij i11j i22j is sj ik kj k 1c a b a b a b a b ==+++=∑(i 1,2,,m,j 1,2,,n.)==注:①左矩阵A 的列数等于右矩阵B 的行数;②左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积的和是矩阵乘积C 的元素ij c . ③左矩阵A 的行数为乘积C 的行数,右矩阵B 的列数为乘积C 的列数. 如行矩阵乘列矩阵是一阶方阵即一个数,即()112111121s 111112211s s1s1b ba a a ab a b a b b ⎛⎫ ⎪ ⎪=++⎪ ⎪⎝⎭列矩阵乘行矩阵是s 阶方阵,即()1111111112111s 2121112112211s 11121s s1s111s112s11s a a b a b a b a a b a b a b b b b a a b a b a b ⎛⎫⎛⎫⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭3. 逆矩阵设n 阶方阵A 、B,若AB=E 或BA=E,则A,B 都可逆,且11A B,B A --==.1二阶方阵求逆,设a b A c d ⎛⎫=⎪⎝⎭,则1*d b 11A A c a A ad bc --⎛⎫== ⎪--⎝⎭两调一除法. 2对角矩阵的逆11111221n n a a a a a a ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭, 111n 2121n1a a a a a a ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭.3分块对角阵的逆11111221s s A A A A ;A A ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭111s 2121s1A A A A A A ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. 4一般矩阵求逆,初等行变换的方法:()()ERT1A E EA -−−−→.4. 方阵的行列式由n阶方阵A 的元素所构成的行列式各元素的位置不变叫做方阵A 的行列式.记作A 或detA. 5. 矩阵的初等变换下面三种变换称为矩阵的初等行列变换:1互换两行列;2数乘某行列;3某行列的倍数加到另一行列. 6. 初等矩阵单位矩阵经过一次初等变换得到的矩阵,称为初等矩阵.如001100100010,0k 0,010100001k 01⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都是初等矩阵. 7. 矩阵的秩矩阵A 的非零子式的最高阶数,称为矩阵A 的秩.记作RA 或rA. 求矩阵的秩的方法:1定义法:找出A 中最高阶的非零子式, 它的阶数即为A 的秩.2初等行变换法:ERTA −−−→行阶梯形矩阵,RA=R 行阶梯形矩阵=非零行的行数. 8. 重要公式及结论 1矩阵运算的公式及结论()()12121212k k k k k k k k k k k k kk 10A B B A,(A B )C A (B C ),(A B )A B (AB )C A(BC ),(A B )C AC BC ,(AB )(A )B A(B )A A A ,(A )A ,(A )A ,E EAB A BA B ,EA AE A,A Eλλλλλλλλ+-+=+++=+++=+=+=+==⋅========()()()()()()T TTT T T T T T TTT nT n n A A,(A B )A B ,A A ,AB B A A A ,AB B A ,AA A A A EA A ,A A ,AB A B BA ,A A ,A B A Bλλλλ*******=+=+===========+≠+矩阵乘法不满足交换律,即一般地A B ≠AB;矩阵乘法不满足消去律,即一般地若AB=AC,无B=C ;只有当A 可逆时,有B=C.一般地若AB=O,则无A=O 或B=O.()222A B ?A 2AB B +++.2逆矩阵的公式及定理()()()()()()()()11111111n 11111k1k1T11T 1A A ,A A ,,A A 1A A,A A,A A ,A A AB B A1A A A AAA A ,Aλλ----------*-**--**-----===========A 可逆⇔|A |≠0⇔A ~E 即A 与单位矩阵E 等价 3矩阵秩的公式及结论()()()T m n R(O )0,R(A )min{m,n },R(A )R(A ),R(kA )R(A ),k 0A 0R(A )n ,R A B R A R B ⨯=≤==≠≠⇔=+≤+R AB ≤R A , R AB ≤R B .特别地,当A 可逆时,RAB=RB ;当B 可逆时,RAB=RA.()()ET A B A ~B R A R B −−→⇔⇒= 即等价矩阵的秩相等或初等变换不改变矩阵的秩.9. 矩阵方程1设 A 为n 阶可逆矩阵,B 为n ×m 矩阵,则矩阵方程AX=B 的解为1X A B -=;解法:① 求出1A -,再计算1A B -; ② ()()ERTAB E X −−−→ .2设 A 为n 阶可逆矩阵,B 为m ×n 矩阵,则矩阵方程XA=B 的解为1X BA -=;解法:① 求出1A -,再计算1BA -; ② ECT A E B X ⎛⎫⎛⎫−−−→⎪ ⎪⎝⎭⎝⎭. 10. 矩阵间的关系1等价矩阵:如果矩阵A 经过有限次初等变换变成矩阵B,那么称矩阵A 与B 等价.即存在可逆矩阵P,Q,使得PAQ=B.性质:等价矩阵的秩相等.2相似矩阵:如果存在可逆矩阵P,使得1P AP B -=,那么称A 与B 相似. 性质:相似矩阵有相同的特征多项式,相同的特征值,相同的行列式,相同的迹. 3合同矩阵:如果存在可逆矩阵P,使得TP AP B =,那么称A 与B 合同. 性质:合同矩阵的秩相等.向量空间1. 线性组合1若α=k β,则称向量α与β成比例. 2零向量O是任一向量组的线性组合.3向量组中每一向量都可由该向量组线性表示. 2. 线性相关与线性无关1 单独一个向量线性相关当且仅当它是零向量.2 单独一个向量线性无关当且仅当它是非零向量.3 两向量线性相关当且仅当两向量对应成比例.4 两向量线性无关当且仅当两向量不对应成比例.5 含有O向量的向量组一定线性相关.6 向量组12m ,,,ααα线性相关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=有非零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩<向量的个数m.7n 个n 维向量12n ,,,ααα线性相关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα=0.8 向量组12m ,,,ααα线性无关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=只有零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩=向量的个数m.9 n 个n 维向量12n ,,,ααα线性无关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα≠0.10当m>n 时,m 个n 维向量一定线性相关.定理1:向量组 a 1 , a 2 ,……, a m m ≥2线性相关的充分必要条件是向量组中至少有一个向量可由其余m-1个向量线性表示.向量组线性无关的充分必要条件是向量组中任何一个向量都不能由其余向量线性表示. 定理2:如果向量组A :a 1 , a 2 ,……, a r 线性无关,而向量组 a 1 , a 2 ,……, a r ,α线性相关,则α可由A线性表示,且表示式唯一.定理3:设向量组2r 1A :,,,ααα,12r r 1m B :,,,,,,ααααα+若A 线性相关,则向量组B 也线性相关;反之,若向量组B 线性无关,则向量组A 也线性无关.即部分相关,则整体相关;整体无关,则部分无关. 定理4:无关组的截短组无关,相关组的接长组相关. 3. 极大无关组与向量组的秩定义1 如果在向量组 T 中有 r 个向量 a 1 , a 2 ,……, a r ,满足条件: ⑴ 向量组 a 1 , a 2 ,……, a r 线性无关, ⑵ T α∀∈,2r 1,,,,αααα线性相关.那么称向量 a 1 , a 2 ,……, a r 是向量组 T 的一个极大无关组.定义2 向量组的极大无关组中所含向量的个数,称为向量组的秩.定义3 矩阵的行向量组的秩称为矩阵的行秩;矩阵的列向量组的秩称为矩阵的列秩; 结论1 线性无关的向量组的极大无关组就是它本身;结论2 如果向量组的秩是r ,那么该向量组的任意 r 个线性无关的向量都是它的一个极大无关组; 定理1 设向量组A:a 1,a 2, …,a r ;及向量组B:b 1,b 2, …, b s ,如果组A 能由组B 线性表示,且组A 线性无关,则r ≦s.推论1 等价的向量组有相同的秩.定理2 矩阵的秩=矩阵列向量组的秩=矩阵行向量组的秩. 4. 向量空间定义1 设V 为n 维向量的集合,如果集合V 非空,且集合V 对于加法及乘数两种运算封闭,那么就称集合V 为向量空间.5. 基与向量在基下的坐标定义2 设V 是向量空间,如果向量组a 1 , a 2 ,……, a r ,满足条件: 1向量组 a 1 , a 2 ,……, a r 线性无关; 2T α∀∈,2r 1,,,,αααα线性相关.那么称向量组a 1 , a 2 ,……, a r 是向量空间V 的一个基, 基中所含向量的个数称为向量空间V 的维数,记作dimV ,并称V 为r 维向量空间.定义3 设向量组 a 1 , a 2 , … , a r 是向量空间V 的一个基,则V 中任一向量x 可唯一地表示为基的一个线性组合,即 1122r r x a a a λλλ=+++,称有序数组12r ,,,λλλ为向量x 在基 a 1 , a 2 , … , a r 下的坐标.线性方程组1. 线性方程组解的判定1 线性方程组Ax=b 有解的充分必要条件是它的系数矩阵A 和增广矩阵A,b 的秩相同,即RA=RA,b . 当RA=RA,b=r① 方程组AX=b 有惟一解的充分必要条件是r=n; ② 方程组AX=b 有无穷多解的充分必要条件是r < n. 2 方程组AX= b 无解的充分必要条件是R A ≠RA,b. 2. 齐次线性方程组有非零解的判定1 齐次方程组AX=0有非零解的充分必要条件是系数矩阵A 的秩 RA < 未知量的个数n .2 含有n 个方程,n 个未知量的齐次线性方程组AX=0有非零解的充分必要条件是方程组的系数行列式等于零.即|A |=03 齐次线性方程组AX=0中,若方程的个数m<未知量的个数n,则方程组有非零解 3. 齐次线性方程组解的性质(1) 若12,ξξ是Ax=0的解,则12ξξ+也是Ax=0的解; (2) 若ξ是Ax=0的解,则k ξ也是Ax=0的解.4. 齐次线性方程组的基础解系与通解 (1) 解空间齐次线性方程组Ax=0的全体解向量所组成的集合,是一个向量空间,称为方程组 Ax=0的解空间.记作V,即V={ x | Ax=0,x ∈R }. 2 基础解系齐次方程组AX=0的解空间 V 的一个基,称为齐次方程组AX=0 的一个基础解系. 基础解系中解向量的个数是n-rA.方程组AX=0的任意n-r 个线性无关的解都是AX=0的基础解系. 3齐次线性方程组的通解为1122n r n r k k k ξξξ--+++,其中12n r ,,,ξξξ-是Ax=0的一个基础解系.5. 非齐次线性方程组解的性质1若12,ηη是Ax=b 的解,则12ηη-是Ax=0的解; 即Ax=b 的任意两个解的差必是其导出组A x =0的解. 2若η是Ax=b 的解,ξ是Ax=0的解,则ηξ+是Ax=b 的解.即Ax=b 的任意一个解和其导出组 A x =0 的任意一个解之和仍是 Ax=b 的解. 6. 非齐次线性方程组的通解非齐次线性方程组AX=b 的通解为*1122n r n r k k k ξξξη--++++其中12n r ,,,ξξξ-为对应的齐次线性方程组Ax=0的一个基础解系, *η为非齐次线性方程组AX=b 的任意一个解,称为特解.方阵的特征值1. 向量的内积设1122n n x y x y x ,y x y ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则x,y 的内积为[]1122n n x,y x y x y x y =+++.1向量x 的长度:2n x x ==++2非零向量的单位化:若向量 x ≠0 , 1x .x则是单位向量 3当[]x,y 0,x y =时称向量与正交.4若非零向量组中的向量两两正交,则称该向量组为正交组. 5若正交组中每个向量都是单位向量,则称它为标准正交组. 定理1 正交向量组必线性无关定理2 A 为正交矩阵的充分必要条件是 A 的列行向量都是单位向量且两两正交. 6施密特正交化过程设123,,ααα是一个线性无关的向量组,① 正交化:令11,βα=[][]1222111,a ,,ββββββ=-[][][][]132333121122,a ,a a ,,βββββββββ=--;② 单位化:取312123123e ,e ,e ββββββ===. 则123e ,e ,e 是与123,,ααα等价的标准正交组. 2. 特征值与特征向量1方阵A 的特征值λ是特征方程A E 0λ-=的根. 2三角矩阵和对角矩阵的全部特征值就是它的全部对角元.3方阵和它的转置方阵有相同的特征值. 4设12n ,,,λλλ是n 阶方阵A 的全部特征值,则()12n tr A λλλ=+++,12n A λλλ=⋅⋅.即方阵A 的对角线上元素之和等于A 的全部特征值之和,方阵A 的行列式等于A 的全部特征值的乘积. 5若λ是方阵A 的特征值,则()fλ是方阵()f A 的特征值. 特别地,当()f A 0=时,方阵A 的特征值是()f 0λ=的根.说明:m m 1m m 110f (x )a x a xa x a --=++++,m m 1m m 110f (A )a A a A a A a E --=++++.例如λ是方阵A 的特征值,则方阵()f A A 2E =+的特征值是()f2λλ=+.方阵()2f A A 3A 4E =--的特征值是()2f34λλλ=--.例如若2A 3A 4E 0--=,则方阵A 的特征值是2340λλ--=的根,即121,4λλ=-=.6设12P ,P 都是方阵A 的属于同一特征值0λ的特征向量,则()112212k P k P k ,k +不全为零也是0λ的特征向量.7属于不同特征值的特征向量线性无关.8属于不同特征值的线性无关的特征向量的并集仍线性无关. 3. 方阵的对角化1若方阵A 与对角矩阵Λ相似,则说A 可以对角化.即存在可逆矩阵P,使得1P AP Λ-=. Λ是以A 的n 个特征值为对角元素的对角矩阵. 2n 阶方阵A 可以对角化的充分必要条件是①A 有n 个线性无关的特征向量;②属于每一个特征值的线性无关的特征向量的个数与该特征值的重数相同. 3n 阶方阵A 可以对角化的充分条件是n 阶方阵A 的n 个特征值互不相等. 4若A 与B 相似,则()f A 与()f B 相似.4. 实对称矩阵的对角化1实对称矩阵的属于不同特征值的特征向量彼此正交.2实对称矩阵一定可以对角化. 即存在正交矩阵P,使得1P AP Λ-=.Λ是以A 的n 个特征值为对角元素的对角矩阵.3利用正交矩阵将对称矩阵化为对角矩阵的步骤:1求特征值;2求特征向量;3将特征向量正交化,单位化;4最后将这些特征向量做成矩阵.二次型1. 二次型的标准化(1) 用正交变换化二次型为标准形的具体步骤:① 写出二次型T f x Ax =的对称矩阵A ;② 求A 的全部特征值12n ,,,λλλ;③ 求每个特征值的线性无关的特征向量12n ,,,ξξξ; ④ 将特征向量正交化,单位化,得12n ,,,ηηη;⑤ 将这些特征向量做成矩阵,记()12n C ,,,ηηη=,最后做正交变换x=Cy ,得到f 的标准形为 2221122n n f y y y λλλ=+++.其中12n ,,,λλλ是T f x Ax =的矩阵A 的特征值.(2) 用配方法化二次型为标准形的具体步骤:① 若二次型含有i x 的平方项,则先把含有i x 的项集中,然后配方,再对其余的变量同样进行,直到都配成平方项为止,经过可逆的线性变换,就得到标准形;② 若二次型中不含有平方项,则先作可逆线性变换,令i i j j i j kk x y y x y y x y =-⎧⎪=+⎨⎪=⎩,k=1,2,…,n,i≠j化二次型为含有平方项的二次型,然后再按1中方法配方.2. 规范二次型设二次型T f x Ax =的标准形为222211p p p 1p 1r r f d y d y d y d y ++=++---,i d 0>,r 是f 的秩令11p p p 1p 1r r y z y z y z y z ++⎧=⎪⎪⎪⎪⎪=⎪⎪⎨⎪=⎪⎪⎪⎪⎪=⎪⎩,得22221p p 1r f z z z z +=++---,称为二次型T f x Ax =的规范形.注:规范形是唯一的.其中正平方项的个数p 称为Tf x Ax =正惯性指数,负平方项的个数r-p 称为T f x Ax =负惯性指数,它们的差p-r-p=2p-r 称为T f x Ax =符号差.3. 正定二次型二次型T f x Ax =正定⇔矩阵A 正定⇔A 的特征值全为正⇔A 的各阶顺序主子式都为正. 二次型T f x Ax =负定⇔矩阵A 负定⇔A 的奇数阶顺序主子式为负,偶数阶顺序主子式为正.。

线性代数第一章

线性代数第一章

0 0
a11a22 ann
ann
除了以上三种特殊行列式外,还有以下对角行列式和三角行列式:
a2 ,n1
a1n
a1n
a11 a12
a1n
a2 ,n1 a2n a21 a22
an1
an1 an2
ann
an1
n ( n 1)
(1) 2 a1na2 ,n1 an1 ,
1.2.4 特殊行列式
定义4
(4)如果行列式 D 中元素满足 aij aji ,则行列式 D 称为对称行列式.
(1-3)
1.2.1 二阶行列式
定义1
二元线性方程组的解(1-2)可简单表示为
x1
D1 D
,x2
D2 D
(D 0) .
(1-4)
其中, D a11 a12 为方程组未知数的系数所组成的行列式,称为方程组的系数行列 a21 a22
式;D1
b1 b2
a12 a22
(用方程组的常数项代替系数行列式的第 1 列);D2
uvgh
分析:按行列式的定义,它应有 4! 24 项.但只有 adeh,adfg,bceh,bcfg 这四项不为
零.与这四项相对应列标的排列分别为 1 2 3 4,1 2 4 3,2 1 3 4 和 2 1 4 3,它们的逆序数分
别为 0,1,1,2,所以第一、四项应取正号,第二、三项应取负号.
解: D adeh adfg bceh bcfg .
行列式的和,即
a11
a12
bi1 ci1 bi2 ci2
a1n
a11 a12
bin cin bi1 bi2
a1n
a11 a12
bin ci1 ci2

自考线性代数(经管类)-考点

自考线性代数(经管类)-考点

线性代数第一章行列式(一)行列式的定义行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数.1.二阶行列式由4个数得到下列式子:称为一个二阶行列式,其运算规则为2.三阶行列式由9个数得到下列式子:称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念.3.余子式及代数余子式设有三阶行列式对任何一个元素,我们划去它所在的第i行及第j列,剩下的元素按原先次序组成一个二阶行列式,称它为元素的余子式,记成例如,,再记,称为元素的代数余子式.例如,那么,三阶行列式定义为我们把它称为按第一列的展开式,经常简写成4.n阶行列式一阶行列式n阶行列式其中为元素的代数余子式.5.特殊行列式上三角行列式下三角行列式对角行列式(二)行列式的性质性质1 行列式和它的转置行列式相等,即性质2 用数k乘行列式D中某一行(列)的所有元素所得到的行列式等于kD,也就是说,行列式可以按行和列提出公因数.性质3 互换行列式的任意两行(列),行列式的值改变符号.推论1 如果行列式中有某两行(列)相同,则此行列式的值等于零.推论2 如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零.性质4 行列式可以按行(列)拆开.性质5 把行列式D的某一行(列)的所有元素都乘以同一个数以后加到另一行(列)的对应元素上去,所得的行列式仍为D.定理1(行列式展开定理)n阶行列式等于它的任意一行(列)的各元素与其对应的代数余子式的乘积的和,即或前一式称为D按第i行的展开式,后一式称为D按第j列的展开式.本定理说明,行列式可以按其任意一行或按其任意一列展开来求出它的值.定理2 n阶行列式的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.即或(三)行列式的计算行列式的计算主要采用以下两种基本方法:(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值,此时要注意的是,在互换两行或两列时,必须在新的行列式的前面乘上(-1),在按行或按列提取公因子k时,必须在新的行列式前面乘上k.(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:例1 计算行列式解:观察到第二列第四行的元素为0,而且第二列第一行的元素是,利用这个元素可以把这一列其它两个非零元素化为0,然后按第二列展开.例2 计算行列式解:方法1 这个行列式的元素含有文字,在计算它的值时,切忌用文字作字母,因为文字可能取0值.要注意观察其特点,这个行列式的特点是它的每一行元素之和均为(我们把它称为行和相同行列式),我们可以先把后三列都加到第一列上去,提出第一列的公因子,再将后三行都减去第一行:方法2 观察到这个行列式每一行元素中有多个b,我们采用“加边法”来计算,即是构造一个与有相同值的五阶行列式:这样得到一个“箭形”行列式,如果,则原行列式的值为零,故不妨假设,即,把后四列的倍加到第一列上,可以把第一列的(-1)化为零.例3 三阶范德蒙德行列式(四)克拉默法则定理1(克拉默法则)设含有n个方程的n元线性方程组为如果其系数行列式,则方程组必有唯一解:其中是把D中第j列换成常数项后得到的行列式.把这个法则应用于齐次线性方程组,则有定理2 设有含n个方程的n元齐次线性方程组如果其系数行列式,则该方程组只有零解:换句话说,若齐次线性方程组有非零解,则必有,在教材第二章中,将要证明,n个方程的n元齐次线性方程组有非零解的充分必要条件是系数行列式等于零.第二章矩阵(一)矩阵的定义1.矩阵的概念由个数排成的一个m行n列的数表称为一个m行n列矩阵或矩阵当时,称为n阶矩阵或n阶方阵元素全为零的矩阵称为零矩阵,用或O表示2.3个常用的特殊方阵:①n阶对角矩阵是指形如的矩阵②n阶单位方阵是指形如的矩阵③n阶三角矩阵是指形如的矩阵3.矩阵与行列式的差异矩阵仅是一个数表,而n阶行列式的最后结果为一个数,因而矩阵与行列式是两个完全不同的概念,只有一阶方阵是一个数,而且行列式记号“”与矩阵记号“”也不同,不能用错.(二)矩阵的运算1.矩阵的同型与相等设有矩阵,,若,,则说A与B是同型矩阵.若A与B同型,且对应元素相等,即,则称矩阵A与B相等,记为因而只有当两个矩阵从型号到元素全一样的矩阵,才能说相等.2.矩阵的加、减法设,是两个同型矩阵则规定注意:只有A与B为同型矩阵,它们才可以相加或相减.由于矩阵的相加体现为元素的相加,因而与普通数的加法运算有相同的运算律.3.数乘运算设,k为任一个数,则规定故数k与矩阵A的乘积就是A中所有元素都乘以k,要注意数k与行列式D 的乘积,只是用k乘行列式中某一行或某一列,这两种数乘截然不同.矩阵的数乘运算具有普通数的乘法所具有的运算律.4.乘法运算设,,则规定其中由此定义可知,只有当左矩阵A的列数与右矩阵B的行数相等时,AB才有意义,而且矩阵AB的行数为A的行数,AB的列数为B的列数,而矩阵AB中的元素是由左矩阵A中某一行元素与右矩阵B中某一列元素对应相乘再相加而得到.故矩阵乘法与普通数的乘法有所不同,一般地:①不满足交换律,即②在时,不能推出或,因而也不满足消去律.特别,若矩阵A与B满足,则称A与B可交换,此时A与B必为同阶方阵.矩阵乘法满足结合律,分配律及与数乘的结合律.5.方阵的乘幂与多项式方阵设A为n阶方阵,则规定特别又若,则规定称为A的方阵多项式,它也是一个n阶方阵6.矩阵的转置设A为一个矩阵,把A中行与列互换,得到一个矩阵,称为A的转置矩阵,记为,转置运算满足以下运算律:,,,由转置运算给出对称矩阵,反对称矩阵的定义设A为一个n阶方阵,若A满足,则称A为对称矩阵,若A满足,则称A为反对称矩阵.7.方阵的行列式矩阵与行列式是两个完全不同的概念,但对于n阶方阵,有方阵的行列式的概念.设为一个n阶方阵,则由A中元素构成一个n阶行列式,称为方阵A的行列式,记为方阵的行列式具有下列性质:设A,B为n阶方阵,k为数,则①;②③(三)方阵的逆矩阵1.可逆矩阵的概念与性质设A为一个n阶方阵,若存在另一个n阶方阵B,使满足,则把B称为A的逆矩阵,且说A为一个可逆矩阵,意指A是一个可以存在逆矩阵的矩阵,把A的逆矩阵B记为,从而A与首先必可交换,且乘积为单位方阵E.逆矩阵具有以下性质:设A,B为同阶可逆矩阵,为常数,则①是可逆矩阵,且;②AB是可逆矩阵,且;③kA是可逆矩阵,且④是可逆矩阵,且⑤可逆矩阵可从矩阵等式的同侧消去,即设P为可逆矩阵,则2.伴随矩阵设为一个n阶方阵,为A的行列式中元素的代数余子式,则矩阵称为A的伴随矩阵,记为(务必注意中元素排列的特点)伴随矩阵必满足(n为A的阶数)3.n阶阵可逆的条件与逆矩阵的求法定理:n阶方阵A可逆,且推论:设A,B均为n阶方阵,且满足,则A,B都可逆,且,例1 设(1)求A的伴随矩阵(2)a,b,c,d满足什么条件时,A可逆?此时求解:(1)对二阶方阵A,求的口诀为“主交换,次变号”即(2)由,故当时,即,A为可逆矩阵此时(四)分块矩阵1.分块矩阵的概念与运算对于行数和列数较高的矩阵,为了表示方便和运算简洁,常用一些贯穿于矩阵的横线和纵线把矩阵分割成若干小块,每个小块叫做矩阵的子块,以子块为元素的形式上的矩阵叫做分块矩阵.在作分块矩阵的运算时,加、减法,数乘及转置是完全类似的,特别在乘法时,要注意到应使左矩阵A的列分块方式与右矩阵B的行分块方式一致,然后把子块当作元素来看待,相乘时A的各子块分别左乘B的对应的子块.2.准对角矩阵的逆矩阵形如的分块矩阵称为准对角矩阵,其中均为方阵空白处都是零块.若都是可逆矩阵,则这个准对角矩阵也可逆,并且(五)矩阵的初等变换与初等方阵1.初等变换对一个矩阵A施行以下三种类型的变换,称为矩阵的初等行(列)变换,统称为初等变换,(1)交换A的某两行(列);(2)用一个非零数k乘A的某一行(列);(3)把A中某一行(列)的k倍加到另一行(列)上.注意:矩阵的初等变换与行列式计算有本质区别,行列式计算是求值过程,用等号连接,而对矩阵施行初等变换是变换过程用“”连接前后矩阵.初等变换是矩阵理论中一个常用的运算,而且最常见的是利用矩阵的初等行变换把矩阵化成阶梯形矩阵,以至于化为行简化的阶梯形矩阵.2.初等方阵由单位方阵E经过一次初等变换得到的矩阵称为初等方阵.由于初等变换有三种类型,相应的有三种类型的初等方阵,依次记为,和,容易证明,初等方阵都是可逆矩阵,且它们的逆矩阵还是同一类的初等方阵.3.初等变换与初等方阵的关系设A为任一个矩阵,当在A的左边乘一个初等方阵的乘积相当于对A作同类型的初等行变换;在A的右边乘一个初等方阵的乘积相当于对A作同类型的初等列变换.4.矩阵的等价与等价标准形若矩阵A经过若干次初等变换变为B,则称A与B等价,记为对任一个矩阵A,必与分块矩阵等价,称这个分块矩阵为A的等价标准形.即对任一个矩阵A,必存在n阶可逆矩阵P及n阶可逆矩阵Q,使得5.用初等行变换求可逆矩阵的逆矩阵设A为任一个n阶可逆矩阵,构造矩阵(A,E)然后注意:这里的初等变换必须是初等行变换.例2 求的逆矩阵解:则例3 求解矩阵方程解:令,则矩阵方程为,这里A即为例2中矩阵,是可逆的,在矩阵方程两边左乘,得也能用初等行变换法,不用求出,而直接求则(六)矩阵的秩1.秩的定义设A为矩阵,把A中非零子式的最高阶数称为A的秩,记为秩或零矩阵的秩为0,因而,对n阶方阵A,若秩,称A为满秩矩阵,否则称为降秩矩阵.2.秩的求法由于阶梯形矩阵的秩就是矩阵中非零行的行数,又矩阵初等变换不改变矩阵的秩.对任一个矩阵A,只要用初等行变换把A化成阶梯形矩阵T,则秩(A)=秩(T)=T中非零行的行数.3.与满秩矩阵等价的条件n阶方阵A满秩A可逆,即存在B,使A非奇异,即A的等价标准形为EA可以表示为有限个初等方阵的乘积齐次线性方程组只有零解对任意非零列向量b,非齐次线性方程组有唯一解A的行(列)向量组线性无关A的行(列)向量组为的一个基任意n维行(列)向量均可以表示为A的行(列)向量组的线性组合,且表示法唯一.A的特征值均不为零为正定矩阵.(七)线性方程组的消元法.对任一个线性方程组可以表示成矩阵形式,其中为系数矩阵,为常数列矩阵,为未知元列矩阵.从而线性方程组与增广矩阵一一对应.对于给定的线性方程组,可利用矩阵的初等行变换,把它的增广矩阵化成简化阶梯形矩阵,从而得到易于求解的同解线性方程组,然后求出方程组的解.第三章向量空间(一)n维向量的定义与向量组的线性组合1. n维向量的定义与向量的线性运算由n个数组成的一个有序数组称为一个n维向量,若用一行表示,称为n维行向量,即矩阵,若用一列表示,称为n维列向量,即矩阵与矩阵线性运算类似,有向量的线性运算及运算律.2.向量的线性组合设是一组n维向量,是一组常数,则称为的一个线性组合,常数称为组合系数.若一个向量可以表示成则称是的线性组合,或称可用线性表出.3.矩阵的行、列向量组设A为一个矩阵,若把A按列分块,可得一个m维列向量组称之为A的列向量组.若把A按行分块,可得一个n维行向量组称之为A的行向量组.4.线性表示的判断及表出系数的求法.向量能用线性表出的充要条件是线性方程组有解,且每一个解就是一个组合系数.例1 问能否表示成,,的线性组合?解:设线性方程组为对方程组的增广矩阵作初等行变换:则方程组有唯一解所以可以唯一地表示成的线性组合,且(二)向量组的线性相关与线性无关1.线性相关性概念设是m个n维向量,如果存在m个不全为零的数,使得,则称向量组线性相关,称为相关系数.否则,称向量线性无关.由定义可知,线性无关就是指向量等式当且仅当时成立.特别单个向量线性相关;单个向量线性无关2.求相关系数的方法设为m个n维列向量,则线性相关m元齐次线性方程组有非零解,且每一个非零解就是一个相关系数矩阵的秩小于m例2 设向量组,试讨论其线性相关性.解:考虑方程组其系数矩阵于是,秩,所以向量组线性相关,与方程组同解的方程组为令,得一个非零解为则3.线性相关性的若干基本定理定理1 n维向量组线性相关至少有一个向量是其余向量的线性组合.即线性无关任一个向量都不能表示为其余向量的线性组合.定理2 如果向量组线性无关,又线性相关,则可以用线性表出,且表示法是唯一的.定理3 若向量组中有部分组线性相关,则整体组也必相关,或者整体无关,部分必无关.定理4 无关组的接长向量组必无关.(三)向量组的极大无关组和向量组的秩1.向量组等价的概念若向量组S可以由向量组R线性表出,向量组R也可以由向量组S线性表出,则称这两个向量组等价.2.向量组的极大无关组设T为一个向量组,若存在T的一个部分组S,它是线性无关的,且T中任一个向量都能由S线性表示,则称部分向量组S为T的一个极大无关组.显然,线性无关向量组的极大无关组就是其本身.对于线性相关的向量组,一般地,它的极大无关组不是唯一的,但有以下性质:定理1 向量组T与它的任一个极大无关组等价,因而T的任意两个极大无关组等价.定理2 向量组T的任意两个极大无关组所含向量的个数相同.3.向量组的秩与矩阵的秩的关系把向量组T的任意一个极大无关组中的所含向量的个数称为向量组T的秩.把矩阵A的行向量组的秩,称为A的行秩,把A的列向量组的秩称为A的列秩.定理:对任一个矩阵A,A的列秩=A的行秩=秩(A)此定理说明,对于给定的向量组,可以按照列构造一个矩阵A,然后用矩阵的初等行变换法来求出向量组的秩和极大无关组.例3 求出下列向量组的秩和一个极大无关组,并将其余向量用极大无关组线性表出:解:把所有的行向量都转置成列向量,构造一个矩阵,再用初等行变换把它化成简化阶梯形矩阵易见B的秩为4,A的秩为4,从而秩,而且B中主元位于第一、二、三、五列,那么相应地为向量组的一个极大无关组,而且(四)向量空间1.向量空间及其子空间的定义定义1 n维实列向量全体(或实行向量全体)构成的集合称为实n维向量空间,记作定义2 设V是n维向量构成的非空集合,若V对于向量的线性运算封闭,则称集合V是的子空间,也称为向量空间.2.向量空间的基与维数设V为一个向量空间,它首先是一个向量组,把该向量组的任意一个极大无关组称为向量空间V的一个基,把向量组的秩称为向量空间的维数.显然,n维向量空间的维数为n,且中任意n个线性无关的向量都是的一个基.3.向量在某个基下的坐标设是向量空间V的一个基,则V中任一个向量都可以用唯一地线性表出,由r个表出系数组成的r维列向量称为向量在此基下的坐标.第四章线性方程组(一)线性方程组关于解的结论定理1 设为n元非齐次线性方程组,则它有解的充要条件是定理2 当n元非齐次线性方程组有解时,即时,那么(1)有唯一解;(2)有无穷多解.定理3 n元齐次线性方程组有非零解的充要条件是推论1 设A为n阶方阵,则n元齐次线性方程组有非零解推论2 设A为矩阵,且,则n元齐次线性方程组必有非零解(二)齐次线性方程组解的性质与解空间首先对任一个线性方程组,我们把它的任一个解用一个列向量表示,称为该方程组的解向量,也简称为方程组的解.考虑由齐次线性方程组的解的全体所组成的向量集合显然V是非空的,因为V中有零向量,即零解,而且容易证明V对向量的加法运算及数乘运算封闭,即解向量的和仍为解,解向量的倍数仍为解,于是V成为n维列向量空间的一个子空间,我们称V为方程组的解空间(三)齐次线性方程组的基础解系与通解把n元齐次线性方程组的解空间的任一个基,称为该齐次线性方程组的一个基础解系.当n元齐次线性方程组有非零解时,即时,就一定存在基础解系,且基础解系中所含有线性无关解向量的个数为求基础解系与通解的方法是:对方程组先由消元法,求出一般解,再把一般解写成向量形式,即为方程组的通解,从中也能求出一个基础解系.例1 求的通解解:对系数矩阵A,作初等行变换化成简化阶梯形矩阵:,有非零解,取为自由未知量,可得一般解为写成向量形式,令,为任意常数,则通解为可见,为方程组的一个基础解系.(四)非齐次线性方程组1.非齐次线性方程组与它对应的齐次线性方程组(即导出组)的解之间的关系设为一个n元非齐次线性方程组,为它的导出组,则它们的解之间有以下性质:性质1 如果是的解,则是的解性质2 如果是的解,是的解,则是的解由这两个性质,可以得到的解的结构定理:定理设A是矩阵,且,则方程组的通解为其中为的任一个解(称为特解),为导出组的一个基础解系.2.求非齐次线性方程组的通解的方法对非齐次线性方程组,由消元法求出其一般解,再把一般解改写为向量形式,就得到方程组的通解.例2 当参数a,b为何值时,线性方程组有唯一解?有无穷多解?无解?在有无穷多解时,求出通解.解:对方程组的增广矩阵施行初等行变换,把它化成阶梯形矩阵:_当时,,有唯一解;当时,,,无解;当时,,有无穷多解.此时,方程组的一般解为令为任意常数,故一般解为向量形式,得方程组通解为。

线性代数第一章PPT讲解1-4

线性代数第一章PPT讲解1-4

aaijij 0 0
D
1 i1
1
a j 1 i1, j
ai1, j1
ai1,n
anj an, j1 ann
aaiijj
0
0
1 i j2 ai1, j ai1, j1 ai1,n
anj an, j1 ann
aijj
0
0
1 i j ai1, j ai1, j1 ai1,n
anj an, j1 ann
aaiijj
0
0
元 素aij在 行 列 式ai1, j ai1, j1 ai1,n 中 的
anj an, j1 ann
余 子 式 仍 然 是aij在 a11 a1 j a1n
D 0 aaiijj 0 中的余子式 Mij .
an1 anj ann
二、行列式按行(列)展开法则
定理3 行列式等于它的任一列(行)的各元 素与其对应的代数余子式乘积之和,即
D a1 j A1 j a2 j A2 j anj Anj j 1,2,, n
证 a11 a1 j 0 0 a1n
D
a21
0 a2 j 0
a2n
an1 0 0 anj ann
1பைடு நூலகம்
x2
x2 x1
( xi x j ),
2i j1
当 n 2 时(1)式成立.
假设(1)对于 n 1 阶范德蒙德行列式成立,
依次做行变换:
rn x1rn1 , rn1 x1rn2 , ....., r2 x1r1

1
1
1
1
0
Dn 0
x2 x1
x2 ( x2 x1 )
x3 x1

线性代数第1章第4节行列式按行展开

线性代数第1章第4节行列式按行展开
a12 a22 a32
a14 a24 a34 a44
a13 a23 a33
a21 M 12 a31 a41
a23 a33 a43
a24 a34 a44
11 2 M 12 M12 A12
A44 1
4 4
M 44 a21 a31
M 44 M 44
注意:行列式的每个元素都分别对应着一个余子式 和一个代数余子式.
8
由性质2,行列式互换两行(列)行列式变号, 得,
aij

0

0
D ( 1)i j 2 ai 1, j ai 1, j 1 ai 1,n anj
i j

a n , j 1
i j

ann
( 1) aij M ij ( 1)
Aij

D a13 A13 a23 A23 a33 A33 a43 A43 .
15.
25
所以 D (1) 5 2 (3) 0 (7) 1 (4)
例:已知四阶行列式D中第一行上元素分别为1, 2, 0, -4;
第三行上元素的余子式依次为6, x, 19, 2.试求x 的值.
2
, j3 ,, jn )
a2 j a3 j anj
2 3
n
a2 j a3 j anj 恰是 M 11 的一般项.
2 3 n
所以,
D a11 M11
a11 ( 1)11 M 11
a11 A11
7
(2) 设 D 的第 i 行除了 a ij 外都是 0 .
a11 a1 j a1n D 0 aij 0 ann

线性代数行列式计算方法总结

线性代数行列式计算方法总结

a =2
a2
总结:当行列式元素排列很有规律且维数与n有关是可以考虑递推法
例7 求下列行列式的值 分块三角形法
1 3 3 5
2 0 0 4 0 0
0 0 5
D= 1 2 2 1
4 1 0 2 6 8 4 14
2 4 6
所以,原行列式可化
1 2 1 5 1 2 D 1 ,D2 1 0 5 C 3 解:不妨令 3 4 8 4 14 5
用加边法即构造n1阶行列式使其按第一列行展开后等于原行列式行列式展开定理定义25在n阶行列式中划掉元素所在的第列剩下的元素按原来的相对位置排列形成的n1阶行列式称为元素的余子式记作为元素的代数余子定理24设n阶矩阵a则a的行列式等于它的任一行列的个元素与其代数余子式的乘积之和即11122122ijijnjnj计算n阶行列式解
b1 a1 0 0
b2 0 a2 0
பைடு நூலகம்
bn 0 0 an
上三角行列式
a1a2 =
an (a0
bi ci ) i 1 ai
x 例3 计算n阶行列式 a a
a x a
a a x
加法
解:这个行列式的特点是各列(行)的元素之和相等,故可将各行加到第 一行,提出公因子,再化为上三角行列式。
x a a
8 1 1 1 2 3 r3 r4 0 3 5 0 5 3
1 0 8 0 0
8 1 0 0
1 1 1 2 3 0 =16 2 2 0 5 3 0
8 1 0 0
1 1 1 2 3 0 r4 5r3 16 1 1 0 5 3 0
8 1 0 0
1 1 2 3 =128 1 1 0 8
a x a
a r 1 ri a x

行列式运算法则

行列式运算法则

行列式运算法则行列式是线性代数中的重要概念,它在矩阵运算和方程组求解中起着重要作用。

行列式的计算方法多种多样,其中包括了一些重要的运算法则。

本文将介绍行列式运算法则的相关知识,包括展开定理、性质和计算方法等内容。

1. 展开定理展开定理是计算行列式的重要方法之一。

对于一个n阶行列式,可以通过展开定理将其转化为n-1阶行列式的求解。

展开定理的具体表达式如下:对于n阶行列式:\[D=\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn} \\\end{vmatrix}\]可以通过其中的某一行或某一列展开,得到:\[D=a_{i1}C_{i1}+a_{i2}C_{i2}+\cdots+a_{in}C_{in}\] 或\[D=a_{1j}C_{1j}+a_{2j}C_{2j}+\cdots+a_{nj}C_{nj}\]其中,\(C_{ij}\)是代数余子式,定义为去掉第i行第j列后剩余元素构成的n-1阶行列式乘以\((-1)^{i+j}\)。

通过展开定理,可以将一个n阶行列式转化为n-1阶行列式的求解,从而简化计算。

2. 行列式的性质行列式具有许多重要的性质,这些性质在计算和理论推导中起着重要作用。

下面列举几条常见的性质:(1)行列式与其转置行列式相等:即对于任意n阶方阵A,有\(det(A)=det(A^T)\)。

(2)行列式的某一行(列)乘以常数k,等于行列式乘以k:即对于n阶行列式D,有\(k\cdot det(A)=det(kA)\)。

(3)行列式中有两行(列)相等,则行列式为0:即如果行列式中有两行(列)元素完全相同,则行列式的值为0。

行列式展开公式

行列式展开公式

行列式展开公式
行列式的展开公式是在线性代数的范围内,行列式的值代表由它的列向量张成的“立体”的“体积”。

行列式按行展开的定理是拉普拉斯定理的一种简单情况,该行各元素分别乘以相应代数余子式求和,就等于行列式的值。

如果行列式D的第i行各元素与第j行各元素的代数余子式对应相乘后再相加,则当i≠j时,其和为零,行列式依行或依列展开,不仅对行列式计算有重要作用,且在行列式理论中也有重要的应用。

比如:行列式
D=|a11 a12 a13 a14|
|a21 a22 a23 a24|
|a31 a32 a33 a34|
|a41 a42 a43 a44|
a23处在二行三列,从原行列式中划去它所在的行和列各元素,剩下的元素按原位排列构成的新行列式,称为它的余子式。

(是一个比原来行列式低一阶的行列式)
性质:
1、行列互换,行列式不变。

2、把行列式中某一行(列)的所有元素都乘以一个数K,等于用数K乘以行列式。

3、如果行列式的某行(列)的各元素是两个元素之和,那么这个行列式等于两个行列式的和。

4、如果行列式中有两行(列)相同,那么行列式为零。

5、如果行列式中两行(列)成比例,那么行列式为零。

6、把一行(列)的倍数加到另一行(列),行列式不变。

7、对换行列式中两行(列)的位置,行列式反号。

线性代数1-4 克拉默法则

线性代数1-4 克拉默法则

第一章 行列式
克拉默法则仅适用于解方程的个数与未知量的个 数相等,且系数行列式不为零的线性方程组.
它的优点在于给出了方程组的解与方程组的系数及 常数项之间的关系式,因此具有重要的理论价值.
二、齐次线性方程组及其有关解的定理
第一章 行列式
a11 x1 a12 x2 +
n元线性方程组 a21 x1 a22 x2 +
2 1 5 8 1 3 0 9 D4 0 2 1 5 1 4 7 0
27,
x2

D2 D

108 27

4,
x4

D4 D

27 27

1.
例3 问 取何值时,齐次方程组
1

2
x1
x1 3
2x2 4x3
x2 x3
0, 0,
(1.12)
称为齐次线性方程组。
a11x1 a12 x2 a1n xn 0 a21x1a22x2 a2nxn0 an1x1 an2 x2 ann xn 0
第一章 行列式
(1.12)
显然齐次线性方程组一定有解 x1 x2 xn 0,
1 4 7 6
8 1 5 1
2 8 5 1
9 3 0 6 D1 5 2 1 2
1 9 0 6 D2 0 5 1 2
0 4 7 6
1 0 7 6
21 8 1 1 3 9 6 D3 0 2 5 2 14 0 6
2 1 5 8 1 3 0 9 D4 0 2 1 5 1 4 7 0
这个解叫做齐次线性方程组(1.12)的零解。
推论 如果齐次线性方程组的系数行列式 D 0, 则齐次线 性方程组只有零解。

线性代数知识点总结

线性代数知识点总结

大学线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j nija a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变;转置行列式T D D = ②行列式中某两行列互换,行列式变号;推论:若行列式中某两行列对应元素相等,则行列式等于零; ③常数k 乘以行列式的某一行列,等于k 乘以此行列式; 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零; ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零; 克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,;;化为三角形行列式 ⑤上下三角形行列式:行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵 矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0 转置A A TT =)( TT T B A B A +=+)( TTkA kA =)( TTTA B AB =)(反序定理 方幂:2121k k k kA AA +=2121)(k k k k A A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置 注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵 等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的;矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置TA 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B A A 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵; 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A AA A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==**4、1*-=A A A A 可逆5、1*-=n AA 6、()()A AA A1*11*==--A 可逆 7、()()**T TA A = 8、()***A B AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A II A nn只能是行变换初等矩阵与矩阵乘法的关系: 设()n m ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0 齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组;希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P 向量组的秩:极大无关组定义P188定理:如果r j j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由r j j j ααα,.....,21线性表出;秩:极大无关组中所含的向量个数;定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r;现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合 单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T T n T T T n T Tr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r T n T T<⇒)....(21ααα线性无关充要n r T n T T=⇒)....(21ααα推论①当m=n 时,相关,则0321=TTTααα;无关,则0321≠TTTααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关;定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关;极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的; 不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的; 齐次线性方程组I 解的结构:解为...,21ααI 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数; 非齐次线性方程组II 解的结构:解为...,21μμ II 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解; 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解;第四章 向量空间向量的内积 实向量定义:α,β=n n Tb a b a b a +++=....2211αβ性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ; ),(),(1111j i sj j r i i j sj jr i ii l k lk βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA TT==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵; 2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵;4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量; |A|=n λλλ...**21注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值 则1-A --------λ1 则m A --------mλ 则kA --------λk若2A =A 则-----------λ=0或1 若2A =I 则-----------λ=-1或1 若k A =O 则----------λ=0 迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281 相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BPP =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212- --C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P 6、若A~B,则它们有相同的特征值; 特征值相同的矩阵不一定相似 7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩 例子:B AP P =-1则1100100-=P PB A O AP P =-1A=O I AP P =-1A=I I AP P λ=-1 A=I λ矩阵对角化 定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ 注:三角形矩阵、数量矩阵I λ的特征值为主对角线;约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵;定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1;第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型; 标准型:形如 的二次型,称为标准型; 规范型:形如 的二次型,称为规范型; 线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B;合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。

【DOC】行列式的展开法则

【DOC】行列式的展开法则

【DOC】行列式的展开法则行列式是线性代数中的重要概念之一,它可以用于求解线性方程组、矩阵的逆、矩阵的秩等问题。

展开法则是求解行列式的一种方法,其基本思想是利用行列式的性质,在行(或列)上进行化简,直到得到一个简单的行列式,然后根据行列式的性质进行计算。

本文将介绍行列式的展开法则及其相关性质。

一、定义行列式是一个由数构成的方阵,其计算方式如下:$$ \begin{vmatrix}a_{11}& a_{12}& \cdots&a_{1n}\\ a_{21}& a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}& \cdots&a_{nn}\end{vmatrix}=\sum_{\sigma}\operatorname{sgn}(\sigma)a_{1\sigma(1)}a_{2\sigma( 2)}\cdots a_{n\sigma(n)} $$其中,$\sigma$ 是从 $n$ 个数 $1,2,\cdots,n$ 中选取 $n$ 个数的一个排列,$\operatorname{sgn}(\sigma)$ 是排列 $\sigma$ 的逆序数,$a_{i\sigma(i)}$ 是第$i$ 行 $\sigma(i)$ 列的元素。

例如,当 $n=2$ 时,行列式为:$$ \begin{vmatrix}a_{11}& a_{12}\\ a_{21}& a_{22}\\\end{vmatrix}=a_{11}a_{22}-a_{12}a_{21} $$二、展开法则1. 拉普拉斯展开法则拉普拉斯展开法则是行列式展开法则中最基本的一种。

它的基本思想是:对于一个$n$ 阶行列式 $D$,选取其中任意一行(或一列)进行展开,得到 $n-1$ 阶行列式,然后递归地对 $n-1$ 阶行列式进行展开,直到得到 $2$ 阶行列式为止,在计算过程中交替改变符号。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结第一章 行列式一要点1、二阶、三阶行列式2、全排列和逆序数;奇偶排列可以不介绍对换及有关定理;n 阶行列式的定义3、行列式的性质4、n 阶行列式ij a D =;元素ij a 的余子式和代数余子式;行列式按行列展开定理5、克莱姆法则二基本要求1、理解n 阶行列式的定义2、掌握n 阶行列式的性质3、会用定义判定行列式中项的符号4、理解和掌握行列式按行列展开的计算方法;即+11j i A a +22j i A a ⎩⎨⎧≠==+j i j i D A a jn in 0 +j i A a 1122i j a A +⎩⎨⎧≠==+j i j i D A a nj ni0 5、会用行列式的性质简化行列式的计算;并掌握几个基本方法:归化为上三角或下三角行列式;各行列元素之和等于同一个常数的行列式;利用展开式计算6、掌握应用克莱姆法则的条件及结论会用克莱姆法则解低阶的线性方程组7、了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件第二章 矩阵一要点1、矩阵的概念n m ⨯矩阵n m ij a A ⨯=)(是一个矩阵表..当n m =时;称A 为n 阶矩阵;此时由A 的元素按原来排列的形式构成的n 阶行列式;称为矩阵A 的行列式;记为A .注:矩阵和行列式是两个完全不同的两个概念..2、几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法1矩阵的乘法不满足交换律和消去律;两个非零矩阵相乘可能是零矩阵..如果两矩阵A 与B 相乘;有BA AB =;则称矩阵A 与B 可换..注:矩阵乘积不一定符合交换2方阵的幂:对于n 阶矩阵A 及自然数k ;个k k A A A A ⋅⋅= 规定I A =0;其中I 为单位阵 .3 设多项式函数k k k k a a a a ++++=--λλλλϕ1110)( ;A 为方阵;矩阵A 的多项式I a A a A a A a A k k k k ++++=--1110)( ϕ;其中I 为单位阵..4n 阶矩阵A 和B ;则B A AB =.5n 阶矩阵A ;则A A nλλ=4、分块矩阵及其运算5、逆矩阵:可逆矩阵若矩阵A 可逆;则其逆矩阵是唯一的;矩阵A 的伴随矩阵记为*A ; E A A A AA ==**矩阵可逆的充要条件;逆矩阵的性质..6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价意义下的标准形;矩阵A 可逆的又一充分必要条件:A 可以表示成一些初等矩阵的乘积;用初等变换求逆矩阵..7、矩阵的秩:矩阵的k 阶子式;矩阵秩的概念;用初等变换求矩阵的秩8、矩阵的等价二要求1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等2、了解几种特殊的矩阵及其性质3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时;会用伴随矩阵求逆矩阵5、了解分块矩阵及其运算的方法1在对矩阵的分法符合分块矩阵运算规则的条件下;其分块矩阵的运算在形式上与不分块矩阵的运算是一致的..2特殊分法的分块矩阵的乘法;例如n m A ⨯;l n B ⨯;将矩阵B 分块为) (21l b b b B =;其中j b l j 2, ,1=是矩阵B 的第j 列;则=AB ) (21l b b b A ) (21l Ab Ab Ab =又如将n 阶矩阵P 分块为) (21n p p p P =;其中j p n j 2, ,1=是矩阵P 的第j 列.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n P λλλ 0 0 00 0 00 0 0 21 ) (21n p p p = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ 0 0 00 0 00 0 0 21) (2211n n p p p λλλ = 3设对角分块矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=SS A A A A 2211 ;),2,1(s P A PP =均为方阵; A 可逆的充要条件是PP A 均可逆;s P ,2,1=;且⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=----11221111 ss A A A A6、理解和掌握矩阵的初等变换和初等矩阵及其有关理论;掌握矩阵的初等变换;化矩阵为行最简形;会用初等变换求矩阵的秩、求逆矩阵7、理解矩阵的秩的概念以及初等变换不改变矩阵的秩等有关理论8、若矩阵A 经过有限次初等变换得到矩阵B ;则称矩阵A 和矩阵B 等价;记为B A ≅. n m ⨯矩阵A 和B 等价当且仅当)()(B r A r =;在等价意义下的标准型:若r A r =)(;则r D A ≅;⎥⎦⎤⎢⎣⎡=000 r r I D ;r I 为r 阶单位矩阵.. 因此n 阶矩阵A 可逆的充要条件为n I A ≅..第三章 线性方程组一要点1、n 维向量;向量的线性运算及其有关运算律记所有n 维向量的集合为n R ;n R 中定义了n 维向量的线性运算;则称nR 为 n 维向量空间..2、向量间的线性关系1线性组合与线性表示;线性表示的判定2线性相关与线性无关;向量组的线性相关与无关的判定3、向量组的等价;向量组的秩;向量组的极大无关组及其求法;向量组的秩及其求法 1设有两个向量组,1α,2αs α )(A,1β,2βt β )(B向量组)(A 和)(B 可以相互表示;称向量组)(A 和)(B 等价..向量组的等价具有传递性..2一个向量组的极大无关组不是惟一的;但其所含向量的个数相同;那么这个相同的个数定义为向量组的秩..4、矩阵的秩与向量组的秩的关系5、线性方程组的求解1线性方程组的消元解法2线性方程组解的存在性和唯一性的判定3线性方程组解的结构4齐次线性方程的基础解系与全部解的求法5非齐次方程组解的求法二要求1、理解n 维向量的概念;掌握向量的线性运算及有关的运算律2、掌握向量的线性组合、线性表示、线性相关、线性无关等概念3、掌握线性表示、线性相关、线性无关的有关定理4、理解并掌握向量组的等价极大无关组、向量组的秩等概念;及极大无关组、向量组秩的求法5、掌握线性方程组的矩阵形式、向量形式的表示方法6、会用消元法解线性方程组7、理解并掌握齐次方程组有非零解的充分条件及其判别方法8、理解并掌握齐次方程组的基础解系、全部解的概念及其求法9、理解非齐次方程组与其导出组解的关系;掌握非齐次方程组的求解方法第四章 矩阵的特征值与特征向量一要点1、矩阵的特征值与特征向量的定义;特征方程、特征值与特征向量的求法与性质2、相似矩阵的定义、性质;矩阵可对角化的条件3、实对称矩阵的特征值和特征向量向量内积的定义及其性质;正交向量组;施密特正交化方法;正交矩阵;实对称矩阵的特征值与特征向量的性质;实对称矩阵的对角化二要求1、理解矩阵的特征值、特征向量的概念及有关性质2、掌握特征值与特征向量的求法3、理解并掌握相似矩阵的概念与性质4、掌握判断矩阵与对角矩阵相似的条件及对角化的方法5、会将实对称矩阵正交相似变换化为对角矩阵..第五章二次型一要点1、二次型与对称矩阵:二次型的定义;二次型与对称矩阵的对应关系2、二次型与对称矩阵的标准形配方法;初等变换法;正交变换法;合同矩阵;二次型及对称矩阵的标准形与规范形 3、二次型与对称矩阵的有定性二次型与对称矩阵的正定、负定、半正定、半负定二要求1、理解并掌握二次型的定义及其矩阵的表示方法..2、会用三种非退化线性替换:即配方法、初等变换法、正交变换法化二次型为标准形及规范型3、掌握二次型的正定、负定、半正定、半负定的定义;会判定二次型的正定性..。

行列式展开法则

行列式展开法则

行列式展开法则行列式展开法则是线性代数中的一个重要概念,它可以用来计算一个矩阵的行列式值。

在实际应用中,行列式展开法则可以帮助我们求解线性方程组、计算向量的叉乘、判断矩阵的可逆性等问题。

本文将介绍行列式展开法则的定义、计算方法以及应用。

1. 行列式的定义行列式是一个数学概念,它是一个关于矩阵的函数,用来描述矩阵的某些性质。

对于一个n阶方阵A,它的行列式记作det(A),其中n表示矩阵的阶数。

行列式的计算方法有多种,其中最常用的方法之一就是行列式展开法则。

2. 行列式展开法则的基本思想行列式展开法则的基本思想是将一个n阶矩阵的行列式表示成n个n-1阶矩阵的行列式的和的形式。

具体来说,对于一个n阶方阵A,它的行列式可以表示为:det(A) = a11C11 + a12C12 + ... + a1nC1n其中a11, a12, ..., a1n分别表示矩阵A的第一行元素,C11, C12, ..., C1n分别表示与a11, a12, ..., a1n对应的代数余子式。

代数余子式的计算方法是将矩阵A中与a11, a12, ..., a1n对应的行和列划去后,计算剩下的n-1阶子矩阵的行列式值。

3. 行列式展开法则的计算方法行列式展开法则的计算方法可以通过一个简单的例子来说明。

假设有一个3阶方阵A,它的行列式记作det(A),则根据行列式展开法则,可以表示为:det(A) = a11C11 + a12C12 + a13C13其中a11, a12, a13分别表示矩阵A的第一行元素,C11, C12, C13分别表示与a11, a12, a13对应的代数余子式。

具体计算过程如下:C11 = det(A11) = a22a33 - a23a32C12 = det(A12) = -(a21a33 - a23a31)C13 = det(A13) = a21a32 - a22a31将代数余子式代入行列式展开公式中,得到:det(A) = a11(a22a33 - a23a32) - a12(a21a33 - a23a31) + a13(a21a32 - a22a31)通过计算可以得到矩阵A的行列式值det(A)。

行列式按行列展开法则

行列式按行列展开法则

行列式按行列展开法则行列式是线性代数中的一个重要概念,它是一个数学对象,用于描述矩阵的性质和特征。

行列式按行列展开法则是计算行列式的一种方法,它可以帮助我们快速准确地求解任意阶行列式的值。

本文将介绍行列式按行列展开法则的基本原理和具体计算步骤。

1. 行列式的定义在介绍行列式按行列展开法则之前,首先需要了解行列式的定义。

一个n阶方阵A的行列式记作|A|,它是一个数值,表示由矩阵A的元素所确定的一个量。

对于2阶矩阵:A = |a11 a12||a21 a22|其行列式的计算公式为:|A| = a11 * a22 - a12 * a21对于3阶矩阵:A = |a11 a12 a13||a21 a22 a23||a31 a32 a33|其行列式的计算公式为:|A| = a11 * a22 * a33 + a12 * a23 * a31 + a13 * a21 * a32 - a13 * a22 * a31 - a11 * a23 * a32 - a12 * a21 * a33对于n阶矩阵,行列式的计算公式较为复杂,因此需要借助行列式按行列展开法则来简化计算过程。

2. 行列式按行列展开法则的基本原理行列式按行列展开法则是通过递归的方式将一个n阶行列式的计算问题转化为n-1阶行列式的计算问题,从而简化计算过程。

具体来说,对于一个n阶矩阵A,其行列式的计算可以按照以下步骤进行:(1)选择矩阵A的第i行(或第j列)进行展开,记作Ai (或Aj);(2)对于展开后的行列式Ai(或Aj),将其每个元素乘以对应的代数余子式,并加上符号因子后相加,得到展开后的行列式的值。

符号因子的计算规则为:若i+j为偶数,则符号因子为正号;若i+j为奇数,则符号因子为负号。

通过以上步骤,可以将一个n阶行列式的计算问题转化为n-1阶行列式的计算问题,从而简化计算过程。

3. 行列式按行列展开法则的具体计算步骤接下来,我们以一个3阶矩阵的行列式为例,介绍行列式按行列展开法则的具体计算步骤。

行列式-线性代数

行列式-线性代数

也可记为 D
a
j 1
n
ain Ain aij Aij
j 1
n
(i 1, 2,
, n)
sj
Atj 当 s t 时,若
s t,
D ?
推论 行列式中任一行(列)的元素与另一行(列)对应元素的
代数余子式的乘积之和 , 等于零. 即
a A a A i1 j 1 i2 j2 a in A jn 0
所以 Dn
1i j n
(a
j
ai )
n2 n2 n2 n 2 n 2 a a a 3 nn 2 a22 a a 3 n
1 1 a ann (a j ai ) 2 i j n
展开定理 D ai1 Ai1 ai 2 Ai 2
较一般 一般
, n)
证明分三步: 特殊
(1)
(2)
(3)
D a11 A11 0 A12 0 A1n D 0 Ai1 0 Aij 1 aij Aij 0 Aij 1 D ai1 Ai1 ai 2 Ai 2 ain Ain
0 Ain
证 ( 1)
1 1 1 1
3 9 1 1 2 4 4 16
27 1 12 8 64
D1
(a 1)2 (a 2) 2 (a 3) 2 (a 4) 2 a 1 1 a2 1 a 3 1 a4 1
a 1 (a 1)2 r2 r3 (a 1)3
r1 r4
1 1 1 a2 a 3 a4 (a 2)2 (a 3)2 (a 4)2 (a 2)3 (a 3)3 (a 4)3
a11 a 1n a in a

行列式的展开法则

行列式的展开法则

行列式的展开法则行列式是线性代数中的重要概念,它可以用于解决许多数学问题。

在此,我们将介绍行列式的展开法则,并探讨其在计算中的应用。

首先,什么是行列式?行列式是一个方阵(即行数等于列数)的特殊矩阵。

方阵可以是2x2、3x3、4x4等不同维度的矩阵。

行列式的计算结果是一个标量,可以理解为一个数值。

行列式的展开法则是一种递归的计算方法,通过利用代数余子式和代数余子式的符号规律,将一个n阶行列式(即n维方阵的行列式)展开为n个n-1阶行列式的和。

具体呈现为一个公式:行列式的展开法则公式:det(A) = a11A11 + a12A12 + a13A13+ ... + a1nAn,其中a11、a12、a13等表示行列式A中的元素,A11、A12、A13等表示对应元素的代数余子式。

在上述公式中,每一项由行列式元素乘以对应代数余子式组成,并在最后求和得到行列式的值。

如何计算代数余子式?代数余子式是指在一个行列式中,去掉第i 行和第j列后,剩下的部分行列式。

例如,对于一个3x3方阵,A11表示去掉第1行和第1列的2x2方阵,即行列式的第一个元素的代数余子式。

行列式的展开法则对于计算高维矩阵的行列式特别有用。

由于递归的性质,我们可以将n阶行列式拆解成n个n-1阶行列式的和。

这种分解可以大大简化计算的复杂性。

行列式的展开法则在多个领域中有广泛的应用。

例如,在线性代数中,我们可以利用展开法则计算方阵的行列式,进而判断方阵是否可逆以及求解线性方程组的解。

此外,行列式的展开法则还可以应用于求解特征值和特征向量、求解矩阵的逆、求解方程组的解等问题。

通过利用代数余子式的规律,我们可以快速、准确地计算出复杂的行列式。

总之,行列式的展开法则是线性代数中至关重要的概念。

通过将n 阶行列式展开成n个n-1阶行列式的和,我们可以高效地计算行列式的值,并应用于解决各种数学问题。

希望本文能够帮助读者更好地理解行列式的展开法则,并在实际应用中发挥指导作用。

行列式展开定理

行列式展开定理

行列式展开定理行列式展开定理是线性代数中的一个重要定理,它描述了一个n阶行列式可通过对其中一行(或一列)进行展开,用余子式乘以对应元素的代数余子式构成的和来表示。

这个定理的证明主要基于数学归纳法和代数性质的运用。

首先,我们来介绍一些必要的定义和概念。

行列式是一个有序数表,是一个正方形矩阵中对角线上元素相乘并按照一定规则相加得到的一个数。

例如,对于一个2阶行列式(2x2矩阵):$\begin{vmatrix}a &b \\c & d\\\end{vmatrix}$ = ad - bc行列式的计算可以通过对行或列的操作转化为三角形矩阵,从而简化计算。

对于n阶行列式,可以递归地进行以下展开运算:选择第i行(或第j列)进行展开,将此行的元素乘以对应的代数余子式,并进行符号调整后相加。

具体地,使用数学归纳法,我们可以证明行列式展开定理。

当n=2时,定理显然成立。

假设当n=k时,定理成立,即k阶行列式可以通过任选一行(或一列)展开为余子式乘以对应元素的代数余子式之和,即$\begin{vmatrix}a_{11} & a_{12} & \ldots & a_{1k} \\a_{21} & a_{22} & \ldots & a_{2k}\\\vdots & \vdots & \ldots & \vdots\\a_{k1} & a_{k2} & \ldots & a_{kk}\\\end{vmatrix}$=$a_{i1}\begin{vmatrix}a_{11} & \ldots & a_{1,i-1} & a_{1,i+1} & \ldots &a_{1k} \\\ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ a_{k1} & \ldots & a_{k,i-1} & a_{k,i+1} & \ldots &a_{kk}\\\end{vmatrix}$+(-1)^(i+1)$a_{i2}\begin{vmatrix}a_{11} & \ldots & a_{1,i-1} & a_{1,i+1} & \ldots &a_{1k} \\\ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ a_{k1} & \ldots & a_{k,i-1} & a_{k,i+1} & \ldots &a_{kk}\\\end{vmatrix}$+$\ldots$+(-1)^(i+k)$a_{ik}\begin{vmatrix}a_{11} & \ldots & a_{1,i-1} & a_{1,i+1} & \ldots &a_{1k} \\\ldots & \ldots & \ldots & \ldots & \ldots & \ldots\\ a_{k1} & \ldots & a_{k,i-1} & a_{k,i+1} & \ldots &a_{kk}\\\end{vmatrix}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 2 ( 1 x ) D x D n 1 n 2
证明: 将上式右端的所有代数余子式都按行列式的定 义完全展开,得到一个包含 n(n 1)! 个项的代数和,共
n ! 个项,如 ak jA k的展开式中的一般项为: j
a a a a a k j 1 j kj 1 kj 1 n j 1 k 1 k 1 n
显然这些项都是 D 的 n ! 个展开项中的某一项,
2 3
a 13 a 23 a 33 a 43
a 14 a 24 a 34 a 44
a11 a12 a14 M23 a31 a32 a34 a41 a42 a44
M A 1 M . 23 23 23
a11
a12
a13 a23 a33 a43
a14 a24 , a34 a44
x3 x 1 x3 x 1
xn x 1 xn x 1
按第1列展开,提取公因式得:
D x x x n 2 1x 3 1
x x n 1
1 x 2 2 x 2
1 x 3 2 x 3
1 x n 2 x n
n 2 x n
n 2 n 2 x x 2 3
D x x x x x x D n 2 1 3 1 n 1 n 1
a a a a a a a a a a 11 22 33 23 32 12 23 31 21 33
a a a a a 13 21 32 22 31
a a a 2 2 a 2 3 2 1 a 2 3 2 1 a 2 2 a a a 1 1 1 2 1 3 a a a a a 3 2 3 3 3 1 3 3 3 1 a 3 2
0 0 0
0 0 0 1 x2 x
0 0 0 0 x
0 0 0 x 1 x2
例 9 计算
Dn
x 0 0 0
1 x2 x
D n , 解 : 将 按 第 行 展 开 有 n
2 D ( 1 x )D n n 1 x
0 0 0
按第n 列展开
1 x2 x
3 2 1 2 4
5 0 3 0 0
4 5
解:
1 4 2 3 3 3 D ( 1) 2 4 0 5 0
3 2 2 4
5 2 3 2 0 ( 1)1 4 2 5 4 0 2 0 5 0 4 0
42 (1 ) 2 5 3 3 0 ( 1 61 0 ) 1 8 0 54

解 : 记 M 为 a 的 余 子 式 ; A 为 其 代 数 余 子 式 , 则 : i j i j i j
M M M M 4 1 4 2 4 3 4 4 A 4 1 A 4 2 A 4 3 A 4 4
3 0 2 2 0 7 1 1
4 2 0 1
0 2 28 0 1
行列式的每个元素分别 对应着一个余子式 个代数余子式 .
二、基于行列式某一行(列)的展开定理
【定理】 行列式等于它的任一行(列)的各元素与 其对应的代数余子式乘积之和,即:
D a A a A a A i 1 , 2 , , n i 1 i 1 i 2 i 2 in in
0 0 0 ab ab .( a b )
例 8 Dn
解:按第1行展开:
1 a b 0 ab 0 0 0 1 0 0
0 a b ab 0 0
0 0 0 ab 1
0 0 0 a b ab .
D b D n ab n 1 a
即 有 : D a b D a b D n n 1 n 2
a21 a22 D a31 a32 a41 a42
1 2
a21 a23 a24 M12 a31 a33 a34 , a41 a43 a44
M A 1 M . 12 12 12 a11 a12 a13
4 4 M44 a21 a22 a23 , A M 1 M . 44 44 44 a31 a32 a33
第1-4节 拉普拉斯展开定理
一、余子式与代数余子式
简化高阶行列式计算的一个重要方法就是降低行 列式的阶数。 a 11 a 12 a 13 a a a a a a a a a 11 22 33 12 23 31 13 21 32 a a a 21 22 23 例如 a a a a a a a a a 11 23 32 12 21 33 13 22 31 , a 31 a 32 a 33
n 1 n 2 x D a x a x a 1 2 n 1 n n 1 n 2 a x a x a x a 1 2 n 1 n
ab 1 0 0 0
ab ab 1 0 0
0 ab ab 0 0
0 0 0 ab 1
n!(n 1)!(n 2)! 2!1!.
例5 计算
D
x 0 0y x 0 Nhomakorabea0 y x
0 0 0
0 0 0
0 0 0 x y y 0 0 0 x 解 : 将 D 按 第 一 行 展 开 有 : x y 0 0 0 y 0 0
0 x Dx 0 0 0 0
y x 0
0 0 x 0 y 0 0 x y 0
由以上递推公式可得:
D x D a n n 1 n D x D a n 1 n 2 n 1 … … … … D x D a 2 1 2 D a 1 1
逐个代入可得: 2 D x ( x D a ) a x D a x a n n 2 n 1 n n 2 n 1 n
n2 n n 1 n
Dn
.
1 x1 x12
1 x2
2 x2
1 x3
2 x3
1 xn 1
2 xn 1
1 xn
2 xn
解 : 从 最 后 一 行 开 始 , 后 一 行 减 去 前 一 行 的 x 倍 D . 1 n
x1n 2 x1n 1
n2 x2 n 1 x2 n2 x3 n 1 x3 n2 xn 1 n 1 xn 1 n2 xn n 1 xn
【定义】在 n 阶行列式中,把元素 a ij 所在的第 i 行 1 和第 j 列划去后,余下的 n 阶行列式叫做元素 a ij 的余子式,记作 M ij .
M 记 A 1 , 叫做元素 a ij ij
i j
ij
的代数余子式.
例如
D
a 11 a 21 a 31 a 41
a 12 a 22 a 32 a 42
a1 a2 a3 an1 an
1 x 0 0 0
0

0 0 0
0 0 0 1 x a1xn1 a2xn2 an
1 x
例7 证明
0 0 x 0
证:
n 1 D ( 1 ) a n n
1 0
0
0 0 0
0 0 0
a 1 x a 2 a 3
该符号正好是在D的完全展开式中
a a a a a k j 1 j kj 1 kj 1 n j 1 k 1 k 1 n
前面所带的符号。 证毕
例1
3 D 5 2 1 1 1 0 5 1 3 1 3 2 4 1 3
按第三行 展开
1 1 3 1 1 3 0 0
2 c3 c1
1 0 x 1 0 x 0 0 0 0
0 0 0 0 0 0 x 1 0 x
x 1 0 0 x 1 0 0 0 0 0 0
1 0 x 1
a n 2 a n 1
D
n
n 1 n 1 xD ( 1 ) a ( 1 ) xD a n 1 n n 1 n
1 0 D n 0
x 2 x 2 x 1
n 3 2 n 2 2
1 x 2 x 1
x 3 x 3 x 1 x x
n 3 3 n 2 3
1 x 3 x 1
x n x n x 1 x x
n 3 n n 2 n
1 x n x 1
0 x 0 x
x2 x 1 x2 x 1
整理: Da D b D a D n n 1 n 1 n 2
( 1 ) ( 2 )
Db D a D b D n n 1 n 1 n 2
n 由此: D a D b n n 1 n D b D a n n 1
( 3 ) ( 4 )
依次下去: D n x 2 x 1x 3 x 1x 4 x 1
xn x 1 x3 x2x4 x2 xn x2 xn xn1
D x x 即 : 。 n j i
1 刬 i j 刵 n

例4 计算
Dn
1 2 3 n
1 22 32 n2
1 2n 3n . nn
中 各 行 元 素 分 别 是 一 个 数 的 不 同 方 幂 ,方 幂 解:D n 次 数 自 左 至 右 按 递 升 次 序 排 列 , 但 不 是 从变 0 到 n 1 ,而 是 由递 1 升 至 n. 若 提 取 各 行 的 公 因 子 , 则 方 幂 次 数 便 从 0增 至 n 1 , 于 是 得 到 :
n 1n 1 a b 联 立 ( 3 ) ( 4 ) 解 得 : D 。 n a b
(请关注本题解决问题的思想!)
1 x2
x 1 x2 x 0 0
x 1 x2 x 0 0 0 x 1 x2 0 0
0 x 1 x2 0 0


k j
(1) (1) (1) (1) (1)
相关文档
最新文档