单晶硅多晶硅的生产工艺以及性质特点
单晶硅多晶硅的生产工艺以及性质特点培训
单晶硅多晶硅的生产工艺以及性质特点培训1. 简介单晶硅和多晶硅是用于制造半导体器件的重要材料。
本文将介绍单晶硅和多晶硅的生产工艺以及它们的性质特点。
2. 单晶硅的生产工艺单晶硅是由纯度极高的硅原料制成的。
下面是单晶硅的生产工艺步骤:2.1 原料准备原料准备阶段是整个生产过程的第一步。
常用的硅源包括硅石、三氯化硅等。
在这个阶段,硅源会经过多次加热、冷却和化学处理,以提高其纯度。
2.2 硅棒生长在硅棒生长阶段,通过将高纯度的硅溶液注入到石英坩埚中,然后慢慢降低温度,硅原料会逐渐结晶并形成硅棒。
这个过程需要精确的温度控制和其他参数调节,以确保硅棒的质量。
2.3 硅棒加工硅棒生长完成后,需要将其进行加工。
这个过程包括将硅棒切割成小块、研磨和抛光。
最终得到的是一系列小块的单晶硅片,它们可以用于制造半导体器件。
3. 多晶硅的生产工艺多晶硅与单晶硅不同,它的结晶结构是无序的。
下面是多晶硅的生产工艺步骤:3.1 原料准备多晶硅的原料准备阶段与单晶硅类似,也需要对硅源进行加热、冷却和化学处理,以提高纯度。
3.2 硅片生长在硅片生长阶段,通过将高纯度的硅原料加热至熔化状态,并引入掺杂物,在特定的温度和压力下,硅原料会结晶并形成多晶硅。
这个过程需要精确的温度和压力控制,以确保多晶硅的质量。
3.3 硅片加工多晶硅生长完成后,需要将其进行加工。
与单晶硅类似,多晶硅需要经过切割、研磨和抛光等步骤,以得到最终的多晶硅片。
4. 单晶硅和多晶硅的性质特点单晶硅和多晶硅在性质特点上有一些区别:4.1 结晶结构单晶硅具有有序的结晶结构,原子排列有规律,这使得单晶硅具有较高的电子迁移率和较低的电阻率。
多晶硅的结晶结构是无序的,原子排列无规律,电子迁移率和电阻率相对较低。
4.2 成本由于生产工艺的复杂性,单晶硅的生产成本相对较高。
多晶硅的生产成本相对较低。
4.3 应用范围单晶硅通常用于制造高性能的半导体器件,如集成电路和太阳能电池等。
多晶硅由于成本较低,通常用于制造一些低成本的半导体器件,如显示器件和光电器件等。
单晶硅多晶硅的生产工艺以及性质特点培训
单晶硅多晶硅的生产工艺以及性质特点培训1. 引言单晶硅和多晶硅是半导体行业中常见的材料,它们在太阳能电池、集成电路等领域得到广泛应用。
本文将为您介绍单晶硅和多晶硅的生产工艺以及它们的性质特点。
2. 单晶硅的生产工艺单晶硅是由高纯度硅材料制成的晶体,它具有较高的电子迁移率和较低的杂质浓度,适用于制造高性能的光电器件。
以下是单晶硅的主要生产工艺:2.1. Czochralski法生长单晶硅Czochralski法是目前最常用的单晶硅生长方法之一。
其基本过程如下:1.准备硅原料:将高纯度硅材料溶解在熔融的硅中,制备成硅锭。
2.调节温度和附加剂:控制硅锭的温度和加入适量的掺杂剂,以调节硅材料的电性能。
3.生长晶体:将铜制的拉杆浸入熔融硅中,形成硅锭的结晶核心,通过拉杆的旋转和上拉控制晶体的生长方向、速度和尺寸。
4.切割晶体:待晶体生长到一定程度后,将其从硅锭中切割成片,得到单晶硅片。
2.2. Float-zone法生长单晶硅Float-zone法是另一种单晶硅生长方法,它主要用于生产直径较小的单晶硅。
其生产过程相对复杂,但能够获得较高纯度的单晶硅。
3. 多晶硅的生产工艺多晶硅是由粉末状硅材料制成的,其晶体结构不规则,具有较高的电阻率和较高的杂质浓度。
以下是多晶硅的主要生产工艺:3.1. 气相淀积法制备多晶硅气相淀积法是最常用的多晶硅制备方法之一。
其基本过程如下:1.原料气体制备:将硅材料化为气态,如通过热解硅烷(SiH4)制备硅含氢气体。
2.沉积硅层:将硅含氢气体引入反应室,在衬底上沉积出一层硅薄膜。
3.重复沉积:重复沉积步骤,使硅薄膜逐渐增厚,形成多晶硅。
3.2. 其他多晶硅制备方法除了气相淀积法,还有一些其他的多晶硅制备方法,如溶液法、电化学沉积法等。
这些方法在特定的应用领域有其独特的优势和适用性。
4. 单晶硅和多晶硅的性质特点单晶硅和多晶硅在晶体结构、电子性能和应用方面存在一定的差异。
以下是它们的性质特点:4.1. 晶体结构单晶硅具有有序的晶体结构,晶界较少,晶粒较大。
单晶多晶硅片生产工艺流程详解
在【技术应用】单晶、多晶硅片生产工艺流程详解(上)中,笔者介绍了单晶和多晶硅片工艺流程的前半部分,概述了一些工艺流程和概念,以及术语的相关知识。
而本文则是从切片工艺开始了解,到磨片和吸杂,看硅片如何蜕变。
切片切片综述当单晶硅棒送至硅片生产区域时,晶棒已经过了头尾切除、滚磨、参考面磨制的过程,直接粘上碳板,再与切块粘接就能进行切片加工了。
为了能切割下单个的硅片,晶棒必须以某种方式进行切割。
切片过程有一些要求:能按晶体的一特定的方向进行切割;切割面尽可能平整;引入硅片的损伤尽可能的少;材料的损失尽量少。
碳板当硅片从晶棒上切割下来时,需要有某样东西能防止硅片松散地掉落下来。
有代表性的是用碳板与晶棒通过环氧粘合在一起从而使硅片从晶棒上切割下来后,仍粘在碳板上。
碳板不是粘接板的唯一选择,任何种类的粘接板和环氧结合剂都必须有以下几个特性:能支持硅片,防止其在切片过程中掉落并能容易地从粘板和环氧上剥离;还能保护硅片不受污染。
其它粘板材料还有陶瓷和环氧。
石墨是一种用来支撑硅片的坚硬材料,它被做成与晶棒粘接部位一致的形状。
大多数情况下,碳板应严格地沿着晶棒的参考面粘接,这样碳板就能加工成矩形长条。
当然,碳板也可以和晶棒的其它部位粘接,但同样应与该部位形状一致。
碳板的形状很重要,因为它要求能在碳板和晶棒间使用尽可能少的环氧和尽量短的距离。
这个距离要求尽量短,因为环氧是一种相当软的材料而碳板和晶棒是很硬的材料。
当刀片从硬的材料切到软的材料再到硬的材料,可能会引起硅片碎裂。
这里有一些选择环氧类型参考:强度、移动性和污染程度。
粘接碳板与晶棒的环氧应有足够强的粘度,才能支持硅片直到整根晶棒切割完成,因此,它必须能很容易地从硅片上移走,只有最小量的污染。
刀片当从晶棒上切割下硅片时,期望切面平整、损伤小、沿特定方向切割并且损失的材料尽量小。
有一个速度快、安全可靠、经济的切割方法是很值得的。
在半导体企业,两种通常被应用的方法是环型切割和线切割。
单晶硅、多晶硅、非晶硅简介及区别
名称:单晶硅英文名: Monocrystalline silicon分子式: Si单晶硅是一种比较活泼的非金属元素,是晶体材料的重要组成部分。
硅的单晶体,具有基本完整的点阵结构的晶体。
不同的方向具有不同的性质,是一种良好的半导材料。
纯度要求达到99.9999%,甚至达到99.9999999%以上。
用于制造半导体器件、太阳能电池等。
用高纯度的多晶硅在单晶炉内拉制而成。
熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。
单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。
超纯的单晶硅是本征半导体。
在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。
单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。
单晶硅主要用于制作半导体元件。
用途:是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。
名称:多晶硅英文名:polycrystalline silicon性质:灰色金属光泽。
密度2.32~2.34。
熔点1410℃。
沸点2355℃。
溶于氢氟酸和硝酸的混酸中,不溶于水、硝酸和盐酸。
硬度介于锗和石英之间,室温下质脆,切割时易碎裂。
加热至800℃以上即有延性,1300℃时显出明显变形。
常温下不活泼,高温下与氧、氮、硫等反应。
高温熔融状态下,具有较大的化学活泼性,能与几乎任何材料作用。
具有半导体性质,是极为重要的优良半导体材料,但微量的杂质即可大大影响其导电性。
多晶硅是单质硅的一种形态。
熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。
多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。
单晶硅多晶硅的生产工艺以及性质特点
单晶硅多晶硅的生产工艺以及性质特点1. 引言单晶硅和多晶硅是目前最主要的半导体材料,被广泛应用于集成电路、光伏电池等领域。
单晶硅和多晶硅具有不同的生产工艺和性质特点。
本文将对单晶硅和多晶硅的生产工艺和性质特点进行详细介绍。
2. 单晶硅的生产工艺单晶硅的生产工艺主要包括下面几个步骤:2.1 选材单晶硅的原料主要是高纯度的多晶硅块。
选择合适的多晶硅块对单晶硅的质量至关重要。
2.2 净化多晶硅块通过熔炼和净化等工艺,去除杂质,提高硅材料的纯度。
2.3 单晶生长净化后的多晶硅块通过单晶生长工艺,使其逐渐变为单晶体。
这个过程主要通过将硅液中的硅原子有序排列,形成单晶硅。
2.4 制取单晶硅片单晶生长后的硅块经过切割、研磨和抛光等步骤,得到单晶硅片,用于制作集成电路等器件。
3. 单晶硅的性质特点单晶硅具有以下性质特点:3.1 高纯度由于单晶硅的制备过程中能够去除杂质,因此单晶硅的纯度非常高,通常可以达到9N级(即99.9999999%)以上。
由于单晶硅的晶格结构有序,硅原子排列规整,因此具有优异的半导体特性。
单晶硅具有较高的迁移率和低的载流子浓度,使得其成为制作高性能集成电路的首选材料。
3.3 机械性能单晶硅具有较高的硬度和强度,具有优异的机械性能。
这使得单晶硅可以承受较高的压力和应力。
3.4 光学特性单晶硅在可见光范围内的折射率较高,因此单晶硅在光学器件中有较好的应用。
另外,单晶硅对红外光有较好的透过性,也被广泛用于红外光学器件。
4. 多晶硅的生产工艺多晶硅的生产工艺主要包括下面几个步骤:4.1 选材多晶硅的原料主要是矿石石英,经过一系列的炼制工艺获取纯度较高的硅块。
4.2 熔炼选材后的硅块通过熔炼工艺,将硅块加热到熔点,形成硅液。
4.3 拉丝硅液通过拉伸工艺,使其逐渐变为多晶硅棒。
拉丝过程中,硅液中的硅原子无序排列,形成多晶结构。
4.4 切割多晶硅棒经过切割等工艺,得到多晶硅片,用于制作光伏电池等器件。
5. 多晶硅的性质特点多晶硅具有以下性质特点:5.1 含杂质较多多晶硅的制备过程中,难以完全去除杂质,因此多晶硅的纯度相对较低。
单晶硅与多晶硅的区别、功能及优缺点
单晶硅与多晶硅的区别、功能及优缺点单晶硅硅有晶态和无定形两种同素异形体。
晶态硅又分为单晶硅和多晶硅,它们均具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随温度升高而增加,具有半导体性质。
单晶硅在日常生活中是电子计算机、自动控制系统等现代科学技术中不可缺少的基本材料。
电视、电脑、冰箱、电话、手表、汽车,处处都离不开单晶硅材料,单晶硅作为科技应用普及材料之一,已经渗透到人们生活中的各个角落。
单晶硅在火星上是火星探测器中太阳能转换器的制成材料。
火星探测器在火星上的能量全部来自太阳光,探测器白天休息---利用太阳能电池板把光能转化为电能存储起来,晚上则进行科学研究活动。
也就是说,只要有了单晶硅,在太阳光照到的地方,就有了能量来源单晶硅在太空中是航天飞机、宇宙飞船、人造卫星必不可少的原材料。
人类在征服宇宙的征途上,所取得的每一步进步,都有着单晶硅的身影。
航天器材大部分的零部件都要以单晶硅为基础。
离开单晶硅,卫星会没有能源,没有单晶硅,航天飞机和宇航员不会和地球取得联系,单晶硅作为人类科技进步的基石,为人类征服太空作出了不可磨灭的贡献。
单晶硅在太阳能电池中得到广泛的应用。
高纯的单晶硅是重要的半导体材料,在光伏技术和微小型半导体逆变器技术飞速发展的今天,利用硅单晶所生产的太阳能电池可以直接把太阳能转化为光能,实现了迈向绿色能源革命的开始。
单晶硅太阳能电池的特点:1.光电转换效率高,可靠性高; 2.先进的扩散技术,保证片内各处转换效率的均匀性; 3.运用先进的PECVD成膜技术,在电池表面镀上深蓝色的氮化硅减反射膜,颜色均匀美观;4.应用高品质的金属浆料制作背场和电极,确保良好的导电性。
单晶硅广阔的应用领域和良好的发展前景北京2008年奥运会将把"绿色奥运"做为重要展示面向全世界展现,单晶硅的利用在其中将是非常重要的一环。
现在,国外的太阳能光伏电站已经到了理论成熟阶段,正在向实际应用阶段过渡,太阳能硅单晶的利用将是普及到全世界范围,市场需求量不言而喻。
单晶硅多晶硅的生产工艺以及性质特点
单击添加标题
未来发展前景:随着光伏、半导体等领域的快速发展,单晶硅和多晶硅的市场前景广阔,未来将有更多的技术创新和应用场景出现。
单击添加标题
技术创新方向:单晶硅和多晶硅的生产工艺不断改进,未来将更加注重提高生产效率、降低成本、提高产品质量等方面。
单击添加标题
市场需求:随着环保意识的提高和能源结构的调整,光伏、半导体等领域的市场需求将持续增长,单晶硅和多晶硅的市场前景将更加广阔。
优点:可以制造出高质量、高性能的单晶硅外延材料,广泛应用于微电子、光电子等领域
Part Four
多晶硅的生产工艺
浇铸法
定义:浇铸法是一种通过将熔融的多晶硅倒入铸模中,待其冷却凝固后取出,形成多晶硅锭的方法。
工艺流程:熔化→浇注→凝固→取出→切片→多晶硅片
特点:生产效率高,成本低,适用于大规模生产。
Part Seven
单晶硅和多晶硅的市场前景和发展趋势
市场现状和发展趋势
市场现状: a. 全球单晶硅和多晶硅市场规模及增长趋势 b. 主要生产国家和地区及市场份额 c. 市场需求及消费者行为特点 a. 全球单晶硅和多晶硅市场规模及增长趋势b. 主要生产国家和地区及市场份额c. 市场需求及消费者行为特点发展趋势: a. 技术创新与升级:提高生产效率、降低成本、提高产品质量等方面的发展趋势 b. 绿色环保:可持续发展和环保要求对单晶硅和多晶硅产业的影响及应对策略 c. 市场需求变化:未来市场需求的变化趋势及预测 d. 行业竞争格局:主要生产商的竞争地位、市场份额及竞争策略a. 技术创新与升级:提高生产效率、降低成本、提高产品质量等方面的发展趋势b. 绿色环保:可持续发展和环保要求对单晶硅和多晶硅产业的影响及应对策略c. 市场需求变化:未来市场需求的变化趋势及预测d. 行业竞争格局:主要生产商的竞争地位、市场份额及竞争策略
多晶硅生产工艺
多晶硅生产工艺多晶硅是一种高纯度的硅材料,广泛应用于电子、光电和太阳能等领域。
多晶硅的制备工艺主要包括净化硅材料、化学气相沉积和熔融法等。
本文将从多晶硅生产的三个关键步骤入手,详细介绍多晶硅的生产工艺。
一、净化硅材料多晶硅的生产基础是高纯度硅材料,一般采用电石法或硅锭法生产。
在电石法中,石油焦、白炭黑等原料经高温炉处理生成硅单质,再通过进一步的加热处理和气相冷却得到高纯度的硅粉末。
硅锭法是利用单晶硅作为原料,通过高温熔化并在特殊条件下生长出大型晶体锭。
这两种方法都需要对产生的硅材料进行净化处理,以获得较高的纯度。
在净化过程中,首先需要通过化学方法除去硅杂质,例如氧化物、碳和氮等。
一般采用氢氧化钠或氢氧化铝作为碱性还原剂,使硅材料与还原剂反应生成挥发性化合物的气体,通过气体与净化剂的反应使杂质得到去除。
其次,通过热处理和气相冷却等方法去除非金属杂质,例如碳、氧、氮、铁、铝等。
最后,通过电石法或硅锭法制备出较高纯度的硅粉或硅锭,成为制备多晶硅的基础原料。
二、化学气相沉积法化学气相沉积法是多晶硅生产的主要方法之一。
其基本原理是利用硅化合物热分解生成硅单质并在沉积基底上生长晶体。
一般采用氯硅烷、氯化硅、三氯硅烷等硅化合物作为原料气体,通过加热至高温(1000-1400℃)使硅化合物分解,生成氯离子和硅单质原子。
硅单质原子进一步在沉积基底上生长成为多晶硅晶体。
在化学气相沉积法中,氯化氢和二氧化硅等气体通入反应器内,使反应器内维持一定的反应压力(约5-10kPa),并保证反应器内气氛处于还原条件下。
在材料沉积过程中,需要控制反应器的温度、反应气压和气体流量等参数,以使沉积层的粗细、取向和晶界质量达到理想状态。
三、熔融法熔融法是多晶硅生产的另一种常用方法。
其主要流程是将高纯度硅材料加热至熔化状态,然后在特定条件下进行成型和冷却。
其中的关键步骤包括炼铝电池法、湖式法和化学熔融法等。
炼铝电池法是将硅粉末加入熔融的铝中,在高温高压下反应生成硅铝合金,然后通过冷却、破碎等过程,得到晶粒尺寸较小的多晶硅。
单晶硅_多晶硅_非晶硅的区别和性能差异
单晶硅_多晶硅_非晶硅的区别和性能差异单晶硅,多晶硅,非晶硅的区别和性能差异一、单晶硅太阳能电池名称:单晶硅英文名: Monocrystalline silicon单晶硅是一种比较活泼的非金属元素,是晶体材料的重要组成部分。
硅的单晶体,具有基本完整的点阵结构的晶体。
不同的方向具有不同的性质,是一种良好的半导材料。
纯度要求达到99.9999,,甚至达到99.9999999,以上。
用于制造半导体器件、太阳能电池等。
用高纯度的多晶硅在单晶炉内拉制而成。
熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。
单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。
超纯的单晶硅是本征半导体。
在超纯单晶硅中掺入微量的?A族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的?A族元素,如磷或砷也可提高导电程度,形成n型硅半导体。
单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。
单晶硅主要用于制作半导体元件。
用途:是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。
二、多晶硅太阳能电池名称:多晶硅英文名:polycrystalline silicon性质:灰色金属光泽。
密度2.32~2.34。
熔点1410?。
沸点2355?。
溶于氢氟酸和硝酸的混酸中,不溶于水、硝酸和盐酸。
硬度介于锗和石英之间,室温下质脆,切割时易碎裂。
加热至800?以上即有延性,1300?时显出明显变形。
常温下不活泼,高温下与氧、氮、硫等反应。
高温熔融状态下,具有较大的化学活泼性,能与几乎任何材料作用。
具有半导体性质,是极为重要的优良半导体材料,但微量的杂质即可大大影响其导电性。
多晶硅是单质硅的一种形态。
熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。
单晶硅与多晶硅的区别、功能及优缺点
单晶硅与多晶硅地区别、功能及优缺点单晶硅硅有晶态和无定形两种同素异形体.晶态硅又分为单晶硅和多晶硅,它们均具有金刚石晶格,晶体硬而脆,具有金属光泽,能导电,但导电率不及金属,且随温度升高而增加,具有半导体性质.b5E2R。
单晶硅在日常生活中是电子计算机、自动控制系统等现代科学技术中不可缺少地基本材料.电视、电脑、冰箱、电话、手表、汽车,处处都离不开单晶硅材料,单晶硅作为科技应用普及材料之一,已经渗透到人们生活中地各个角落.p1Ean。
单晶硅在火星上是火星探测器中太阳能转换器地制成材料.火星探测器在火星上地能量全部来自太阳光,探测器白天休息利用太阳能电池板把光能转化为电能存储起来,晚上则进行科学研究活动.也就是说,只要有了单晶硅,在太阳光照到地地方,就有了能量来源DXDiT。
单晶硅在太空中是航天飞机、宇宙飞船、人造卫星必不可少地原材料.人类在征服宇宙地征途上,所取得地每一步进步,都有着单晶硅地身影.航天器材大部分地零部件都要以单晶硅为基础.离开单晶硅,卫星会没有能源,没有单晶硅,航天飞机和宇航员不会和地球取得联系,单晶硅作为人类科技进步地基石,为人类征服太空作出了不可磨灭地贡献.RTCrp。
单晶硅在太阳能电池中得到广泛地应用.高纯地单晶硅是重要地半导体材料,在光伏技术和微小型半导体逆变器技术飞速发展地今天,利用硅单晶所生产地太阳能电池可以直接把太阳能转化为光能,实现了迈向绿色能源革命地开始.单晶硅太阳能电池地特点:.光电转换效率高,可靠性高;.先进地扩散技术,保证片内各处转换效率地均匀性; .运用先进地成膜技术,在电池表面镀上深蓝色地氮化硅减反射膜,颜色均匀美观;.应用高品质地金属浆料制作背场和电极,确保良好地导电性.5PCzV。
单晶硅广阔地应用领域和良好地发展前景北京年奥运会将把"绿色奥运"做为重要展示面向全世界展现,单晶硅地利用在其中将是非常重要地一环.现在,国外地太阳能光伏电站已经到了理论成熟阶段,正在向实际应用阶段过渡,太阳能硅单晶地利用将是普及到全世界范围,市场需求量不言而喻.jLBHr。
单晶硅多晶硅生产流程
本工序设置以下贮槽:100m3氯硅烷贮槽、100m3工业级三氯氢硅贮槽、100m3工业级四氯化硅贮槽、100 m3氯硅烷紧急排放槽等。
从合成气干法分离工序、还原尾气干法分离工序、氢化气干法分离工序分离得到的氯硅烷液体,分别送入原料、还原、氢化氯硅烷贮槽,然后氯硅烷液体分别作为原料送至氯硅烷分离提纯工序的不同精馏塔。
2、残液处理
在精馏塔中排出的、主要含有四氯化硅和聚氯硅烷化合物的釜地残液以及装置停车放净的氯硅烷残液液体送到本工序加以处理。
需要处理的液体被送入残液收集槽。然后用氮气将液体压出,送入残液淋洗塔洗涤。采用10%NaOH碱液进行处置。废液中的氯硅烷与NaOH和水发生反应而被转化成无害的物质(处理原理同含氯化氢、氯硅烷废气处理)。
14、废硅粉处理
来自原料硅粉加料除尘器、三氯氢硅合成车间旋风除尘器和合成反应器排放出来的硅粉,通过废渣运料槽运送到废渣漏斗中,进入到带搅拌器的酸洗管内,在通过31%的盐酸对废硅粉(尘)脱碱,并溶解废硅中的铝、铁和钙等杂质。洗涤完成后,经压滤机过滤,废渣送干燥机干燥,干燥后的硅粉返回到三氯氢硅合成循环使用,废液汇入废气残液处理系统废水一并处理。
出喷淋洗涤塔塔顶除去了大部分氯硅烷的气体,用混合气压缩机压缩并经冷冻降温后,送入氯化氢吸收塔,被从氯化氢解析塔底部送来的经冷冻降温的氯硅烷液体洗涤,气体中绝大部分的氯化氢被氯硅烷吸收,气体中残留的大部分氯硅烷也被洗涤冷凝下来。出塔顶的气体为含有微量氯化氢和氯硅烷的氢气,经一组变温变压吸附器进一步除去氯化氢和氯硅烷后,得到高纯度的氢气。氢气流经氢气缓冲罐,然后返回氯化氢合成工序参与合成氯化氢的反应。吸附器再生废气含有氢气、氯化氢和氯硅烷,送往废气处理工序进行处理。
7 、还原尾气干法分离工序
光伏 单晶硅 多晶硅
光伏单晶硅多晶硅
光伏技术是一种利用太阳能转化为电能的技术,它是一种清洁、可再生的能源。
在光伏技术中,单晶硅和多晶硅是两种常见的材料。
单晶硅是一种高纯度的硅材料,它的晶体结构非常有序,因此具有非常高的电子迁移率和光电转换效率。
单晶硅的制造过程非常复杂,需要高温高压的条件下进行,因此成本较高。
但是,由于单晶硅的电子迁移率和光电转换效率非常高,因此在光伏技术中得到了广泛的应用。
单晶硅的光电转换效率可以达到20%以上,是目前光伏技术中最高的。
多晶硅是一种低纯度的硅材料,它的晶体结构比较杂乱,因此电子迁移率和光电转换效率比单晶硅低。
但是,多晶硅的制造成本比单晶硅低,因此在光伏技术中得到了广泛的应用。
多晶硅的光电转换效率一般在15%左右,比单晶硅低一些,但是由于成本低廉,因此在大规模应用中得到了广泛的应用。
总的来说,单晶硅和多晶硅都是光伏技术中非常重要的材料。
单晶硅具有非常高的电子迁移率和光电转换效率,但是成本较高;多晶硅的电子迁移率和光电转换效率比单晶硅低,但是成本较低。
在实际应用中,根据不同的需求和成本考虑,可以选择不同的材料来制造光伏电池。
太阳能新能源工业、单晶、多晶硅片生产工艺流程详解
单晶、多晶硅片生产工艺流程详解为了帮助大家认识和了解硅料到硅片的详细生产流程,提高对这个行业的认知,以便能更好的从事个行业,现在将一些生产流程资料整理如下,希望能对大家有所帮助。
简介硅片的准备过程从硅单晶棒开始,到清洁的抛光片结束,以能够在绝好的环境中使用。
期间,从一单晶硅棒到加工成数片能满足特殊要求的硅片要经过很多流程和清洗步骤。
除了有许多工艺步骤之外,整个过程几乎都要在无尘的环境中进行。
硅片的加工从一相对较脏的环境开始,最终在10级净空房内完成。
工艺过程综述所有的工艺步骤概括为三个主要种类:能修正物理性能如尺寸、形状、平整度、或一些体材料的性能;能减少不期望的表面损伤的数量;或能消除表面沾污和颗粒。
工艺步骤的顺序是很重要的,因为这些步骤的决定能使硅片受到尽可能少的损伤并且可以减少硅片的沾污。
切片(class 500k)硅片加工的介绍中,从单晶硅棒开始的第一个步骤就是切片。
这一步骤的关键是如何在将单晶硅棒加工成硅片时尽可能地降低损耗,也就是要求将单晶棒尽可能多地加工成有用的硅片。
为了尽量得到最好的硅片,硅片要求有最小量的翘曲和最少量的刀缝损耗。
切片过程中有两种主要方式——内圆切割和线切割。
这两种形式的切割方式被应用的原因是它们能将材料损失减少到最小,对硅片的损伤也最小,并且允许硅片的翘曲也是最小。
切片是一个相对较脏的过程,可以描述为一个研磨的过程,这一过程会产生大量的颗粒和大量的很浅表面损伤。
硅片切割完成后,所粘的碳板和用来粘碳板的粘结剂必须从硅片上清除。
在这清除和清洗过程中,很重要的一点就是保持硅片的顺序,因为这时它们还没有被标识区分。
激光标识(Class 500k)在晶棒被切割成一片片硅片之后,硅片会被用激光刻上标识。
一台高功率的激光打印机用来在硅片表面刻上标识。
硅片按从晶棒切割下的相同顺序进行编码,因而能知道硅片的正确位置。
这一编码应是统一的,用来识别硅片并知道它的来源。
编码能表明该硅片从哪一单晶棒的什么位置切割下来的。
单晶硅,多晶硅,非晶硅的区别和性能差异
单晶硅,多晶硅,非晶硅的区别和性能差异一、单晶硅太阳能电池名称:单晶硅英文名:Monocrystalline silicon单晶硅是一种比较活泼的非金属元素,是晶体材料的重要组成部分。
硅的单晶体,具有基本完整的点阵结构的晶体。
不同的方向具有不同的性质,是一种良好的半导材料。
纯度要求达到99.9999%,甚至达到99.9999999%以上。
用于制造半导体器件、太阳能电池等。
用高纯度的多晶硅在单晶炉内拉制而成。
熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。
单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。
超纯的单晶硅是本征半导体。
在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。
单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。
单晶硅主要用于制作半导体元件。
用途:是制造半导体硅器件的原料,用于制大功率整流器、大功率晶体管、二极管、开关器件等。
二、多晶硅太阳能电池名称:多晶硅英文名:polycrystalline silicon性质:灰色金属光泽。
密度2.32~2.34。
熔点1410℃。
沸点2355℃。
溶于氢氟酸和硝酸的混酸中,不溶于水、硝酸和盐酸。
硬度介于锗和石英之间,室温下质脆,切割时易碎裂。
加热至800℃以上即有延性,1300℃时显出明显变形。
常温下不活泼,高温下与氧、氮、硫等反应。
高温熔融状态下,具有较大的化学活泼性,能与几乎任何材料作用。
具有半导体性质,是极为重要的优良半导体材料,但微量的杂质即可大大影响其导电性。
多晶硅是单质硅的一种形态。
熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。
三元材料_多晶和单晶_单晶硅_多晶硅_解释说明
三元材料多晶和单晶单晶硅多晶硅解释说明1. 引言1.1 概述在现代科技发展中,新能源、电子器件和光学设备等领域的需求不断增加,对高性能材料的需求也日益迫切。
三元材料作为一类具有特殊结构和优异性能的材料,在这些领域中扮演着重要角色。
本文将重点介绍三元材料中的两种主要类型——多晶和单晶,并分析其区别、物理性质比较以及应用方面的差异。
1.2 文章结构本文共分为六个部分,首先是引言,接下来概述三元材料的定义和特点,以及其应用领域和制备方法;然后详细介绍多晶和单晶这两种主要类型,包括它们的定义和区别,物理性质比较以及应用比较;随后分别深入探讨单晶硅和多晶硅这两种具体材料,在结构与性质特点、制备方法及应用场景方面进行详细说明;最后总结其中的优缺点对比,并勾勒出未来研究的前景。
1.3 目的本文旨在提供关于三元材料中多晶与单晶的比较和分析,并探讨单晶硅和多晶硅这两种主要材料的特性、制备方法及应用场景。
通过本文的阐述,读者可以更加全面地了解三元材料中多晶和单晶的差异以及各自的特点,从而对其在不同领域中的应用有更清晰的认识。
2. 三元材料3.1 定义和特点三元材料是指由三种不同元素组成的化合物或混合物。
这些元素可以是金属、非金属或半导体等。
三元材料具有多样性和复杂性,在材料科学和工程中具有重要的应用价值。
三元材料的特点之一是它们的组成可调性,即可以通过改变其中一个或多个元素的比例来调节其性质和特征。
这使得三元材料在不同领域中具有广泛的应用潜力,例如能源储存与转换、化学催化、光电子器件和生物医学等领域。
此外,由于存在不同元素之间的相互作用,三元材料通常展现出独特的结构和性质。
这些相互作用能够引导其在纳米尺度下形成复杂的晶体结构,并赋予其优异的机械、电子和光学性能。
3.2 应用领域三元材料在各个应用领域中都发挥着重要作用。
以下是一些主要应用领域的例子:- 能源储存与转换:三元催化剂在燃料电池和电解水产氢领域有广泛应用。
晶体硅生产的工艺流程详解
晶体硅生产的工艺流程详解晶体硅生产的工艺流程详解硅材料是当前最重要的半导材料,目前常用的太阳能电池是硅电池。
单质硅是比较活泼的一种非金属元素,它能和96种稳定元素中的64种元素形成化合物。
硅的主要用途是取决于它的半导性。
晶体硅包括单晶硅和多晶硅,晶体硅的制备方法大致是先用碳还原SiO2成为Si,用HCl反应再提纯获得更高纯度多晶硅,单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。
硅的单晶体。
具有基本完整的点阵结构的晶体。
用于制造太阳能电池的多晶硅纯度要求达到99.9999%。
晶体硅生产一般工艺流程⑴ 清洗清洗的目的:1去除硅片表面的机械损伤层。
2对硅片的表面进行凹凸面(金字塔绒面)处理,增加光在太阳电池片表面的折射次数,利于太阳能电池片对光的吸收,以达到电池片对太阳能价值的最大利用率。
3清除表面硅酸钠、氧化物、油污以及金属离子杂质。
化学清理原理:HF去除硅片表面氧化层:HCl去除硅片表面金属杂质:盐酸具有酸和络合剂的双重作用,氯离子能与溶解片子表面可能沾污的杂质,铝、镁等活泼金属及其它氧化物。
但不能溶解铜、银、金等不活泼的金属以及二氧化硅等难溶物质。
安全提示:NaOH、HCl、HF都是强腐蚀性的化学药品,其固体颗粒、溶液、蒸汽会伤害到人的皮肤、眼睛、呼吸道,所以操作人员要按照规定穿戴防护服、防护面具、防护眼镜、长袖胶皮手套。
一旦有化学试剂伤害了员工的身体,马上用纯水冲洗30分钟,送医院就医。
⑵制绒制绒的目的:减少光的反射率,提高短路电流(Isc),最终提高电池的光电转换效率。
制绒的原理利用低浓度碱溶液对晶体硅在不同晶体取向上具有不同腐蚀速率的各向异性腐蚀特性,在硅片表面腐蚀形成角锥体密布的表面形貌,就称为表面织构化。
角锥体四面全是由〈111〉面包围形成。
反应为:Si+2NaOH+H2O →Na2SiO3 +2H2 ↑影响绒面的因素:NaOH浓度无水乙醇或异丙醇浓度制绒槽内硅酸钠的累计量制绒腐蚀的温度制绒腐蚀时间的长短槽体密封程度、乙醇或异丙醇的挥发程度⑶扩散扩散的目的:在p型晶体硅上进行N型扩散,形成PN结,它是半导体器件工作的“心脏”;扩散方法:1.三氯氧磷(POCl3)液态源扩散2.喷涂磷酸水溶液后链式扩散3.丝网印刷磷浆料后链式扩散POCl3磷扩散原理:1. POCl3在高温下(>600℃)分解生成五氯化磷(PCl5)和五氧化二磷(P2O5),其反应式如下:2.生成的P2O5在扩散温度下与硅反应,生成二氧化硅(SiO2)和磷原子,其反应式如下:3由上面反应式可以看出,POCl3热分解时,如果没有外来的氧(O2)参与其分解是不充分的,生成的PCl5是不易分解的,并且对硅有腐蚀作用,破坏硅片的表面状态。
单晶硅和多晶硅的特点
单晶硅和多晶硅的特点嘿,朋友们!今天咱来聊聊单晶硅和多晶硅呀,这俩可都是太阳能领域的宝贝呢!单晶硅呀,就像是班级里那个特别优秀的学霸,各方面都很突出。
它的纯度那叫一个高,结构也特别规整,就像列队整齐的士兵。
这就使得它的性能超棒,转换效率也很高。
你说这是不是很厉害?要是把太阳能板比作一支军队,那单晶硅就是那冲锋陷阵的猛将,战斗力超强!但它也有个小缺点,就是制造起来成本相对高一些,就像培养一个学霸需要投入不少精力和资源呢。
再来说说多晶硅。
多晶硅就像是一群小伙伴,它们团结在一起,也有着自己的独特魅力。
虽然纯度和结构规整度比不上单晶硅,但它胜在成本相对较低呀。
就好像一个团队,虽然每个人不一定是最顶尖的,但大家齐心协力,也能发挥出很大的作用。
多晶硅的产量还大呢,能满足很多实际需求。
你想想看,要是没有单晶硅,那我们的一些对性能要求特别高的太阳能设备可咋办呀?而要是没有多晶硅,那很多大规模的太阳能应用不就因为成本太高而没法实现了吗?它们俩就像是一对好兄弟,各自发挥着自己的优势,共同为太阳能事业做贡献呢。
咱平时生活中用到的很多太阳能产品,都离不开单晶硅和多晶硅呀。
比如说太阳能路灯,那在夜晚照亮我们回家的路,这里面说不定就有单晶硅或者多晶硅在默默工作呢。
还有太阳能热水器,让我们能舒舒服服地洗上热水澡,这可多亏了它们呀。
所以说呀,单晶硅和多晶硅真的是太重要啦!它们可不是什么冷冰冰的材料,而是为我们的生活带来便利和绿色能源的小天使呢!我们可得好好珍惜它们,让它们更好地为我们服务,不是吗?总之,单晶硅和多晶硅各有千秋,都在太阳能领域有着不可替代的地位。
它们就像两颗璀璨的星星,照亮了我们走向绿色能源未来的道路。
让我们一起为它们点赞吧!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太阳能电池的制备和发电原理
我国及全球多晶硅生产情况
我国多晶硅厂家生产情况
太阳能级多 晶硅的制备
传统方法
1
2
3
改良西门子法 硅烷法
流态床反应法
改良西门子工艺流程图
改良西门子法
西门子法, 即采用H2还 原SiHCl3生 产高纯多晶 硅的方法, 由德国 Siemens公 司发明并于 1954年申请 了专利, 1965年左右 实现了工业 化。
(2)与氧化性酸反应: 在常温下硅对多数酸是稳定 Si + 4HF == SiF4↑ + 2H2↑ Si + 4HNO3+6HF == H2SiF6+4NO2+4H2O
(3)与碱反应: 在常温下硅能与稀碱溶液反应 Si + 2OH - + H2O == SiO32- + 2H2↑
硅的分类
工业硅
硅
多晶硅 的性质
具有半导体性质
常温下不活泼,高温熔融状态下, 具有较大的化学活泼性
室温下质脆,切割时易碎裂
多晶硅的用途
01
多晶硅具有半导体性质,是极为重要的
优良半导体材料
02
电子工业中广泛用于制造半导体收音机、
电冰箱、彩电、电子计算机等的基础材料
03
多晶硅的最终用途主要是生产集成电路、
分立器件和太阳能光伏电池板
石焦油:
固定碳>82%,灰分<5%,水分<1% 容量:<5MVA,粒度:2~10mm 容量:5~16.5MVA,粒度:3~13mm
木炭:
固定碳>78%,3mm<粒度<80mm
煤:
灰分<4%,粒度<25mm
配料
还原剂中配碳量: 严格控制C与SiO2分子比为2,保证 熔炼过程中不会出现SiC和SiO2剩余
埋弧还原电炉
主体设备,用于对矿石等炉料进行还原熔炼。其生产特点是电极插入炉料,实 行埋弧操作,并利用电阻、电弧加热矿石使之还原。
电炉内部
1、炉料预热区 2、炉料凝结区 3、低温反应区 4、高温反应区 5、电弧区 6、硅液区 7、电极
8、炉衬
工业硅熔炼反应机理
SiO2 SiC Si
T<1500℃ 混合炉料处于预热阶段 T>1500℃ SiO2+3C=SiC+2CO T>1820℃ SiO2+2SiC=3Si+2CO
工业硅的用途
• (1)配制合金 • (2)制造高纯半导体 • (3)制造有机硅 • (4)制作耐高温材料和其他材料
配制合金
铝硅合金
硅铜合金
高纯半导体
大功率WLAN
有机硅
有机硅键盘
有机硅帆布兜
耐高温材料和其他材料
氮化硅陶瓷
氮化硅轴承
多晶硅
定义
形成过程
多晶硅,是 单质硅的一 种形态
熔融的单质硅在过冷 条件下凝固时,硅原 子以金刚石晶格形态 排列成许多晶核,如 这些晶核长成晶面取 向不同的晶粒,则这 些晶粒结合起来,就 结晶成多晶硅。
硅的性质
晶体类型:原子晶体
密度:2330 kg/m3
硬度:36.5
颜色和外表: 深灰色、有光泽
熔点:1420℃ 沸点:2355℃
硅
熔化热:50.55kJ/mol
蒸气压:4.77Pa(1683K)
化学性质:
常温下稳定,高温下比较活泼 (1)与单质反应:
Si + 2F2 == SiF4 3Si + 2N2 == Si3N4,条件:1000℃ Si + 2Cl2 == SiCl4,条件:300℃ Si + O2 == SiO2,条件:400℃ Si + C == SiC,条件:2000℃
工业硅的精制
含硅原料和还原剂带入的氧化物杂质
精炼, 除去其中的Ca、Al 等杂质 炉外精炼主要分为氯化精炼和氧化精炼两种 精炼原理是利用渣-金属元素相平衡的原理 将工业硅中的Ca 和Al 氧化脱除后使其进入渣 相
精炼系统
采用底吹方式, 底吹氧的透气砖安装在包底中,透 气砖内有较多的细铜管, 氧气和空气从细铜管中吹 向硅熔液实施精炼
巴西
国外硅矿的分布
• 据资料记载,巴 西较为丰富,次 之为马达加斯加 和危地马拉。美 国、加拿大、苏 联、法国、意大 利、印度、澳大 利亚、土耳其、 缅甸等30多个国 家和地区有少量
元素属性
名称:硅
符号:Si
序号:14
系列:类金属
族:第四主族 周期: 3 颜色和外表: 深灰色、带蓝色调
物理性质:
全球多晶硅价格行情
今年上半年,国内多晶硅价格再 次快速下跌并刷新了历史新低, 国内多晶硅主流报价从今年初的 21万元/吨~23万元/吨跌至16万 元/吨~17万元/吨。
进口多晶硅价格从今年初最高点 的35美元/千克快速下跌至18.5 美元/千克,现已逼近国内同类 产品的价格。据海关数据统计显 示,今年1月~6月份,我国累计 进口多晶硅40946吨,同比增长 34.7%,创历史新高。
高纯硅
高纯硅 高纯硅
单晶硅
多晶硅 无定形硅
电子级硅
太阳能级硅
工业硅
• 工业硅的纯度约为98%-99%,又称为冶金级 硅。
• 其中含有各种杂质012年上半年我国工业 硅价格呈现出震荡下行 走势。
553工业硅均价为11930 元/吨,441工业硅均价 12894元/吨
单晶硅多晶硅的生产工 艺以及性质特点
2020年6月5日星期五
硅的含量及存在形式
在地壳中,硅的含量居第二位 自然界中,只以化合态存在,是构成矿物和岩石的主要成分
国内硅矿分布情况
我国的水晶、石英、天然硅 砂除上海、天津市以外,其 它省、市、自治区均有产出 。
质量较好的广东、广西、青海、 福建、云南、四川、黑龙江等省 区;质量最好的有海南、江苏。
精炼包
1、钢板 2、石棉板 3、耐火砖 4、耐火砼打结层 5、透气砖
在出炉前向包底通入压缩空气,以防止硅液灌入透气孔 当硅液达三分之一硅包深度时,开启氧气进行氧化精炼
氧气和压缩空气输入硅包底部散气砖中与硅液进行反应,脱除杂质
待完成精炼,关闭氧气,倒完硅液后继续通入压缩空气, 防止散气孔 的堵塞, 稍后扒去硅渣, 等待出下一炉
工业硅的生产方法
工业硅是连续作业过程,无论是国内还是国外 都用碳热法。
以硅石和碳质还原剂为原料,在埋弧电炉中由 电热法冶炼生产的。
工业硅冶炼化学反应比较复杂,但最基本的反 应是:
SiO2+2C—→Si+2CO
制备工业硅的主要流程图
硅石、石焦油、木炭、煤 混料
电炉熔炼 精炼
选料
硅石粒度:
依据电炉容量大小而定 容量:<5MVA,粒度:8~80mm 容量:5~16.5MVA,粒度:50~100mm