磁电系电流表汇总
磁电式电流表工作原理
磁电式电流表工作原理
磁电式电流表即为中学物理常用的测量闭合回路电流大小的仪器。
当电流通过线圈时,导线受到安培力的作用,线圈左右两边所受安培力的方向相反,安装在轴上的线圈就会转动。
线圈中的电流方向改变时,安培力的方向随着改变,指针的偏转方向也随着改变。
根据指针的偏转方向,可以知道被测电流的方向。
工作原理
电流表由于蹄形磁铁和铁芯间的磁场是辐向均匀分布的,因此不管铜电线圈转到什幺角度,它的平面都跟磁感线平行。
因此,磁力矩与线圈中电流成正比(与线圈位置无关)。
当铜电线圈转动时,螺旋弹簧将被扭动,产生一个阻碍线圈转动的阻力矩,其大小与线圈转动的角度成正比,当磁力矩与螺旋弹簧中的阻力矩相等时,线圈停止转动,此时指针偏向的角度与电流成正比,故电流表的刻度是均匀的。
当线圈中的电流方向改变时,安培力的方向随着改变,指针的偏转方向也随着改变,所以,根据指针的偏转方向,可以知道被测电流的方向。
磁电式电流表的读数是应用了电磁阻尼的原理。
为了使指针摆动快速稳定下来,从而便于快速读出示数,磁电式电流表将线圈绕在闭合的铝框上,在。
磁电系仪表
BNs BNs U C I SU U C D D R
三、技术性能
1.灵敏度高、准确度高、表耗功率低
由于永久磁铁与铁心间的气隙小,气隙间的磁感应强度比较强,所以磁电
系仪表有比较高的灵敏度。且磁感应强度较强时,驱动力矩大,可采用反作
用力矩系数比较大的游丝。有较大的定位力矩,使摩擦力矩的影响减小。内 部磁场强度大,外磁场影响相对弱,可获得较高的准确度。且表耗功率低, 对被测电路的影响小。所以磁电系仪表是一种应用广泛具有高灵敏度、高准 确度、低表耗功率的仪表。
2.具有均匀等分的刻度
磁电系仪表的指针偏转角与可动线圈的电流成正比,标尺的刻度均匀等分, 易于标尺的制作。
3,只能用于直流电路
若在交流范围使用,必须配整流器。
四、电流表分流器 磁电系仪表可以通过分流器扩大其量程,也 可以并联若干个电阻,通过更换输入接头,可 组成多量程的电流表。
分流器电路
多量程分流器电路 分流器电路加温度补偿电阻
U
磁电系仪表
一、磁电系仪表结构
二、磁电系仪表工作原理
可动线圈通电后,由于线圈在磁场中受到电磁力矩 的作用使指针产生偏转,当可动线圈稳定后,可认为 驱动力矩等于反作用力矩,并推出仪表偏转角与电流 关系为
ቤተ መጻሕፍቲ ባይዱ
M Ma 2 BlINr D BNs I SI I D 若与被测电压并联,仪表的内阻为 R ,则仪表 偏转角与电压关系为
Rsh Rc n 1
五、电压表的附加电阻
扩大电压表量程可以串联附加电阻,设直接测量的 量程为 U c,测量机构内阻为 Rc,串联附加电阻 Rad 后,可将电压量程扩大为 U ,则 U 与 U c 的关系可 由下式求得
Uc U Ic Rc Rad Rc
电流表的分类及应用
电流表的分类及应用电流表是电学实验和工程设计中经常需要使用的一种仪器设备,它的主要作用是测量电路中的电流强度以及变化情况。
电流表通常可以分为不同的类型,通过分类以及应用的分析,可以帮助人们更好地理解和掌握这种重要的电学仪器。
一、电流表的分类根据电流表的基本原理以及测量的电流范围,我们可以将电流表分为以下几种类型:1. 磁力式电流表磁力式电流表是一种常见的电流表,它主要利用电流通过磁场产生的力矩作用来进行测量。
根据磁力式电流表的结构和灵敏度,可以进一步分为平衡式和偏转式两种类型。
2. 热电式电流表热电式电流表是一种将电流转换为温度变化的仪表,它利用热电效应来测量电流强度。
这种电流表可以测量直流和交流电流,在工业和实验室中广泛应用。
3. 电动式电流表电动式电流表是一种基于电动机原理实现的电流测量仪表,它利用电流通过线圈时所产生的磁场与磁场中的磁针相互作用,从而实现电流的测量。
4. 电子式电流表电子式电流表利用半导体器件(如晶体管、场效应管等)和集成电路来测量电路中的电流变化。
电子式电流表具有高精度、灵敏度高等优点,是现代电子测量中的重要组成部分。
二、电流表的应用电流表在电学实验和电路设计中有着广泛的应用,下面介绍一些常见的应用场景:1. 确定电路中元件的参数利用电流表可以对电路中各种元件的电流变化情况进行测量,从而帮助人们了解电路的性能和参数,进一步分析和设计电路。
2. 保护电路和设备在电路中设置合适的电流表和保险丝可以保护电路和设备不受过载和短路等故障的影响,从而提高电路的稳定性和安全性。
3. 电气安全检测电流表可以用来检测电器设备中的漏电情况,测试电气绝缘性能,从而确保人们在使用电器设备时的安全。
4. 实验教学和科学研究电流表作为电学实验和科学研究中基本的测量仪器之一,被广泛应用于物理、电子工程、材料科学等领域,促进了研究和发展。
综上所述,电流表在电路设计、实验教学和科学研究等方面都有着重要的应用价值,通过对电流表的分类和应用分析,人们可以更好地了解它的基本原理和实现方式,为电学实验和工程设计提供支持和指导。
磁电式电流表的工作原理
定期清洁电流表外壳表面,保持干燥,避免 潮湿和尘土侵蚀。
常见故障与排除方法
指针不归零 测量误差大
表壳破损 无显示
可能是由于机械磨损或电路故障导致,需要更换相关部件或进 行维修。
可能是由于量程选择不当、表笔接触不良或电路故障引起,需 要检查量程选择和表笔连接,如故障仍未排除,则需进行维修
。
刻度与量程
磁电式电流表的刻度与量程是根据其测量机构的特性和设计来确定的。 不同量程的电流表有不同的转换器和指示机构,以适应不同大小的电流 测量。
02 磁电式电流表的结构
测量机构
测量机构是磁电式电流表的核心部分, 它由线圈、铁芯和测量元件组成。
测量元件通常是一个铝框或铜框,上 面绕有测量线圈,当测量元件转动时, 测量线圈中的电流发生变化,从而产 生感应电动势。
刻度误差
刻度误差是由于刻度不准确或刻度盘磨损造成的。减小误差的方法包括定期对刻度盘进行 检查和校准,以及对磨损的刻度盘进行更换。
机械误差
机械误差是由于机械摩擦、传动机构松动等原因造成的。减小误差的方法包括保持机械部 分的清洁和润滑,定期对传动机构进行检查和紧固。
使用注意事项
正确接入电路
在使用磁电式电流表时,应正确接入电路,确保电流表串联在被 测电路中,以避免对电路造成影响。
可能是由于使用不当或意外碰撞导致,需要更换表壳或进行维 修。
可能是由于电源故障或电路故障导致,需要检查电源和电路连 接,如故障仍未排除,则需进行维修。
感谢您的观看
THANKS
磁电式电流表的工作 原理
目录
CONTENTS
• 磁电式电流表简介 • 磁电式电流表的结构 • 磁电式电流表的测量原理 • 磁电式电流表的特性与误差 • 磁电式电流表的应用与维护
电压和电流的测量(电磁系,磁电系,电动系仪表)
四、互感器的连接
电压互感器在供电系统中的连接
电流互感器在供电系统中的连接
五、钳式电流表
钳式电流表是电流互感器和电流表的 组合,可以在不断开交流电路,并在设备 仍运行的条件下,测量交流电流。
外型
返回本章首页Βιβλιοθήκη 内部结构示意第七节
万用电表
一、万用电表的结构
万用表是利用多刀多投转换开关,改变电 路连接方式,测量不同量程的电压、电流电 阻,或电平,三极管放大倍数等是电气维修 中常用的工具。
(200m V ) 200 μ A
IN+ R
数字电压表
I x
Ii
Ui
900 Ω 90 Ω
IN-
(200m V ) 2m A (200m V ) 20m A (200m V ) 200m A (200m V ) 2A
9Ω
0. 9Ω 0. 1Ω
(4)电阻转换电路(以20k挡为例)
V UREF+ I· RX I· RREF
改变电流量程
4.多量程电磁系 电压表举例
第五节
电动系仪表
一、电动系仪表的结构
二、电动系仪表的工作原理
两组线圈所构成的系统,通电后的磁场能量为
dW dM 12 可动线圈所受的驱动力矩为 M I1I 2 d d 1 dM 12 M=Ma I 1 I 2 cos Ψ D d
作为电流或电压表使用时,如果两线圈通以同一 电流,或被测电流的一部分,且互感变化率为常数,
M cp 1 1 ( 2 T
即指针偏转角与交流有效值平方成正比,所以电 磁系仪表可用于测量交流,并可与直流共用同一标尺。
T
0
i 2dt)
dL 1 dL I2 d 2 d
电磁测量第4章 U、I、Q的测量
e 0t sin 1 2
1 20t SI0Q
(2)
这是一个衰减的正弦函数,各次峰值均与电量Q成正比。
一般由第一次峰值 m1测量电量Q,即 m1=SQ m1。 SQ
称作检流计的电量灵敏度。
系数 Sq可通过对式(3)求极值的的方法,求出 (t) 的 第一个极值所需的时间t1和极值 m1。
Q
m1
t
0
t0 t1 m2
电流脉冲阶段
自由运动阶段
冲击检流计可动部分的运动方程式
J
d 2
dt 2
p d
dt
W
0i
令
0 W J ,
p
,
2 WJ
SI 0 W
考虑到在 期间, = 0,因此
d 2
dt 2
2 0
d
dt
SI02i
t 0, t0
光点式检流计结构示意图
二、磁电系检流计的动态特性
J
d 2
dt 2
Ma
Mf
Mp
或
J
d 2
dt 2
p
d
dt
W
0 I
式中
d2/dt2——检流计可动部分的角加速度;
J——可动部分的转动惯量;
d /dt——可动部分的角速度;
p——阻尼系数;
W——反抗力矩; 0I——驱动力矩
不同的 值下,偏转角随
时间变化曲线如右图所示。
<1 c
=1 >1
希望 取值0.9~1.0。
已知 又知
p
2 WJ p 02
R0 Rk
常用电工测量仪表--电流表、电压表
2.比较式仪表 比较式仪表是指在进行测量时,通过被测量与同类标准量进行比较,然后根据 比较结果确定被测量的大小。它包括直流比较式仪表和交流比较式仪表两类。如直 流电桥、电位差计都是直流比较式仪表.而交流电桥属于交流比较式仪表。比较式 仪器测量准确度比较高、但操作过程复杂、测量速度较慢。
直流单臂电桥
(2)按工作电流性质分:可分为直流表、交流表及交直流两用表。 (3)按使用方式分:可分为安装式(配电盘式)、便携式等。 (4)按工作原理分:可分为磁电系、电磁系、电动系、感应系、静电系、整流 系等。
(5)按使用环境条件分:可以分为A、A1、B、B1、C五个组。 (6)按防御外界电磁场的能力分:可分为Ⅰ、Ⅱ、Ⅲ 、Ⅳ四个等级。 (7)按准确度等级分:可分为0.1、0.2、0.5、1.0、1.5、2.5、5.0等七级 。
当电流扩大为I=n时,其中n表示量程的扩大倍数。
n I 1 Rc
Ic
Rs
分流器的电阻值为
RS
Rc n 1
分流器接线法
可见欲将表头量程扩大到n倍,分流电阻应为表头内阻的1/n-1。量程I越大,
分流电阻要越小。
考虑到分流电阻的散热和安装尺寸,当被测电流小于30A时,分流电阻可以安
装在电流表内部,称为内附分流器;当被测电流超过30A时,分流电阻一般安装在
电压。所能直接测量电压的上限为 U c I c Rc ,为了扩大量程,一般采用附 加电阻和磁电系测量机构相串联。
1.单量程电压表
磁电系电压表时根据电路分压原理来扩大量程的,方法是将测量机构
与附加电阻串联。这个串联电阻叫分压电阻,串联分压电阻后流过测量机
构的电流为
Ic
U Rc RS
所以仪表可以用偏转角a来反映被测电压的大小。
磁电式电流表
洛伦兹力知识点1.磁电式电流表电流表由于蹄形磁铁和铁芯间的磁场是辐向均匀分布的,因此不管铜电线圈转到什么角度,它的平面都跟磁感线平行.因此,磁力矩与线圈中电流成正比(与线圈位置无关).当铜电线圈转动时,螺旋弹簧将被扭动,产生一个阻碍线圈转动的阻力矩,其大小与线圈转动的角度成正比,当磁力矩与螺旋弹簧中的阻力矩相等时,线圈停止转动,此时指针偏向的角度与电流成正比,故电流表的刻度是均匀的.当线圈中的电流方向改变时,安培力的方向随着改变,指针的偏转方向也随着改变,所以,根据指针的偏转方向,可以知道被测电流的方向.2.洛伦兹力的大小和方向3.带电粒子在匀强磁场中的运动高考考纲1.磁电式电流表1、(2008高三上期末西城区)实验室经常使用的电流表是磁电式仪表.这种电流表的构造如图甲所示.蹄形磁铁和铁芯间的磁场是均匀地辐向分布的.当线圈通以如图乙所示的电流,下列说法正确的是()A .线圈转到什么角度,它的平面都跟磁感线平行B .线圈转动时,螺旋弹簧被扭动,阻碍线圈转动C .当线圈转到如图乙所示的位置,b 端受到的安培力方向向上D .当线圈转到如图乙所示的位置,安培力的作用使线圈沿顺时针方向转动【答案】 A B D【解析】A、磁场是均匀地辐向分布,所以磁感线始终与线圈平面平行,即始终与线圈边垂直.故A 正确;知识点B、当通电后,处于磁场中的线圈受到安培力作用,使其转动,螺旋弹簧被扭动,则受到弹簧的阻力,从而阻碍线圈转动,故B正确.C、由左手定则可判定:当线圈转到如图乙所示的位置,b端受到的安培力方向向下,故C 错误;D、由左手定则可判定:当线圈转到如图乙所示的位置,b端受到的安培力方向向下,a端受到的安培力方向向上,因此安培力使线圈沿顺时针方向转动,故D正确;2、(2012高三上期末西城区)实验室常用到磁电式电流表.其结构可简化为如图所示的模型,最基本的组成部分是磁铁和放在磁铁两极之间的线圈,OO'圈的转轴.忽略线圈转动中的摩擦.当静止的线圈中突然通有如图所示方向的电流时,顺着OO'向看,()A.线圈保持静止状态B.线圈开始沿顺时针方向转动C.线圈开始沿逆时针方向转动D.线圈既可能顺时针方向转动,也可能逆时针方向转动【答案】B【解析】由左手定则知线圈的左边受力向上,右边受力向下,故线圈开始沿顺时针方向转动,ACD 错误B正确.2.洛伦兹力的大小和方向3、显像管原理的示意图如图所示,当没有磁场时,电子束将打在荧光屏正中的O点,安装在管径上的偏转线圈可以产生磁场,使电子束发生偏转.设垂直纸面向里的磁场方向为正方向,若使电子打在荧光屏上的位置由a点逐渐移动到b点,下列变化的磁场能够使电子发生上述偏转的是()A.A图B.B图C.C图D.D图【答案】A【解析】根据左手定则判断电子受到的洛伦兹力的方向.电子偏转到a点时,根据左手定则可知,磁场方向垂直纸面向外,对应Bt图,图线应在t轴下方;电子偏转到b点时,根据左手定则可知,磁场方向垂直纸面向里,对应Bt图,图线应在t轴上方.4、如图所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直向下的匀强电场.一带电粒子a(不计重力)以一定的初速度由左边界的O点射入磁场、电场区域,恰好沿直线由区域右边界的O'点(图中未标出)穿出.若撤去该区域内的磁场而保留电场不变,另一个同样的粒子b(不计重力)仍以相同初速度由O点射入,从区域右边界穿出,则粒子b()A.在电场中运动时,动能一定减小B.在电场中的电势能一定减小C.穿出位置一定在O'点下方D.穿出位置一定在O'点上方运动时【答案】B【解析】根据题意,粒子b在电场中做类平抛运动,电场力一定做正功,其电势能一定减小,动能一定增大,选项A错误,B正确;因为粒子b所带电荷的电性不知,所以还不能确定穿出位置是在O'点的上方还是下方,选项CD错误.本题答案为B.5、(2011高考东城二模)如图所示,两个带等量正电荷的小球与水平放置的光滑绝缘杆相连,并固定在垂直纸面向外的匀强磁场中,杆上套有一个带正电的小环,带电小球和小环都可视为点电荷.若将小环由静止从图示位置开始释放,在小环运动的过程中,下列说法正确的是()A.小环的加速度的大小不断变化B.小环的速度将一直增大C.小环所受的洛伦兹力一直增大D.小环所受的洛伦兹力方向始终不变【答案】A【解析】小环在水平方向上受到两个库仑力作用,在竖直方向上受洛伦兹力和杆子对环的弹力.根据受力情况知,小环向左先加速后减速到0.然后又返回.加速度的大小在变,速度的大小和方向都在变,知洛伦兹力的大小和方向都变化.故A正确,BCD错误,6、(2009高三上期末东城区)质量为m、带电量为q的小物块,从倾角为θ的光滑绝缘斜面上由静止下滑,整个斜面置于方向水平向里的匀强磁场中,磁感应强度为B,如图所示.若带电小物块下滑后某时刻对斜面的作用力恰好为零,下面说法中正确的是()A.小物块一定带有正电荷B.小物块在斜面上运动时做匀加速直线运动C.小物块在斜面上运动时做加速度增大,而速度也增大的变加速直线运动D.小物块在斜面上下滑过程中,当小球对斜面压力为零时的速率为cos mgBqθ【答案】B D【解析】A、带电小球下滑后某时刻对斜面的作用力恰好为零,知洛伦兹力的方向垂直于斜面向上.根据左手定则知,小球带负电.故A错误.B 、小球在运动的过程中受重力、斜面的支持力、洛伦兹力,合外力沿斜面向下,大小为sin mg θ,根据牛顿第二定律知sin a g θ=,小球在离开斜面前做匀加速直线运动.故B 正确,C 错误D 、当压力为零时,在垂直于斜面方向上的合力为零,有cos mg qvB θ=,解得:cos mg v Bqθ=,故D 正确.7、(2014高三上期末朝阳区)如图10所示,空间有一个范围足够大的匀强磁场,磁感应强度为B ,一个质量为m 、电荷量为q +的带电小圆环套在一根固定的绝缘水平细杆上,杆足够长,环与杆的动摩擦因数为μ.现给环一个向右的初速度0v ,在圆环整个运动过程中,下列说法正确的是()A .如果磁场方向垂直纸面向里,圆环克服摩擦力做的功一定为2012m vB .如果磁场方向垂直纸面向里,圆环克服摩擦力做的功一定为322022122m g m B q -vC .如果磁场方向垂直纸面向外,圆环克服摩擦力做的功一定为2012m vD .如果磁场方向垂直纸面向外,圆环克服摩擦力做的功一定为322022122m g m B q-v【答案】C 【解析】 如果磁场放系那个垂直纸面向里,对带电小圆环受力分析,可知洛伦兹力竖直向上,若该力的大小等于重力,则带电小圆环做匀速直线运动,摩擦力不做功;如果磁场方向垂直纸面向外,则所受洛伦兹力竖直向下,小圆环与绝缘水平细杆之间必有摩擦力作用,小圆环在摩擦力的作用下,做减速运动,且最终一定静止,在此过程中,只有摩擦力对圆环做功,根据功能关系可知,圆环克服摩擦力做的功一定是2012m v3. 带电粒子在匀强磁场中的运动图108、(2008高三上期末朝阳区)如图所示是一磁控管的横截面示意图,管内有平行于管轴线的匀强磁场,磁感应强度大小为B .假设一群电子在垂直于管的某截面内做匀速圆周运动,这群电子的数量为n ,每个电子的电荷量为e ,质量为m ,则这群电子的运动等效为一个环形电流,该电流I 大小为()A .22ne Bm π B .2neB mπC .24ne B m πD .4neB m π【答案】 A【解析】电子在磁场中做匀速圆周运动,周期2mT eBπ=, 等效电流222Q ne ne ne BI m t Tm eBππ====;9、如图所示,圆形区域内有垂直于纸面的匀强磁场,三个质量和电荷量都相同的带电粒子a b c 、、,以不同速率对准圆心O 沿着AO 方向射入磁场,其运动轨迹如图.若带电粒子只受磁场力作用,则下列说法正确的是()A .a 粒子动能最大B .c 粒子速率最大C .c 粒子在磁场中运动时间最长D .它们做圆周运动的周期a b c T T T << 【答案】 B 【解析】由图可知,c 粒子的轨道半径最大,a 粒子的轨道半径最小,由m R=qBv可知,c 粒子的速度最大,动能最大,A 错B 对;粒子在匀强磁场中的运动周期2mT=qBπ可知,当三粒子的比荷相同时,在同一匀强磁场中运动周期相同,D 错;粒子在磁场中的运动时间t=T 2ϕπ,由圆弧对应的圆心角ϕ决定,圆心角ϕ与速度方向的偏转角相等,其中a 的偏转角最大,因此a 粒子在磁场中的运动时间最长,C 错.10、如图甲所示,直角坐标系中直线AB 与横轴x 夹角30BAO ∠=︒,AO 长为a .假设在点A 处有一放射源可沿BAO ∠所夹范围内的各个方向放射出质量为m 、速度大小均为v 、带电量为e 的电子,电子重力忽略不计.在三角形ABO 内有垂直纸面向里的匀强磁场,当电子从顶点A 沿AB 方向射入磁场时,电子恰好从O 点射出.试求: (1)从顶点A 沿AB 方向射入的电子在磁场中的运动时间t ;(2)速度大小为2v 的电子从顶点A 沿AB 方向射入磁场(其它条件不变),求从磁场射出的位置坐标.(3)磁场大小、方向保持不变,改变匀强磁场分布区域,使磁场存在于三角形ABO 内的左侧,要使放射出的速度大小为v 电子穿过磁场后都垂直穿过y 轴后向右运动,试求匀强磁场区域分布的最小面积S .(用阴影表示最小面积)【答案】(1)3at yπ=(2)()02a ,(3)2(3)6s a π-=【解析】(1)根据题意,电子在磁场中的运动的轨道半径R a = 由2/B ev mv a =得:/B mv ea =由2/?T m eB =,/6/3v t T a ==(2)由2/evB mv r =,得 /r mv eB =,因此其它条件不变,当速度大小为2v 时,2r a =如图所示, 从磁场射出的位置坐标为(0,2a )(3)有界磁场的上边界:沿AB 方向发射的电子在磁场中运动轨迹与AO 中垂线交点的左侧圆弧.有界磁场的下边界:以A 点的正上方、距A 点的距离为a 的点为圆心,以a 为半径的圆弧.如图所示: 最小面积为:22021(3)2(sin30)1226a s a a ππ-=-=11、如图所示,在平面直角坐标系xOy 内,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限以ON 为直径的半圆形区域内,存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电的粒子,从y 轴上y h =处的M 点,以速度0v 垂直于Y 轴射入电场,经x 轴上2h x =处的P 点进入磁场,最后以垂直于y 轴的方向射出磁场.不计粒子重力.求:(1)电场强度大小.E(2)粒子在磁场中运动的轨道半径r .(3)粒子从进入电场到离开磁场经历的总时间t .【答案】(1)202mv qh (23)0234h mv Bqπ+【解析】(1)粒子的运动轨迹如图所示,设粒子在电场中运动的时间为1t x 方向:012h v t =,y 方向:211h 2at =,根据牛顿第二定律: Eq ma =求得20E 2mv qh=(2)根据动能定理,2201122Eqh mv mv =-将E的表达式代入上式,可求得0v 再根据2v Bqv m r=,求出r =(2)粒子在电场中运动的时间:102ht v =,粒子在磁场中运动的周期:22R m T v Bq ππ== 设粒子射入磁场时与x 轴成α角,在磁场中运动的圆弧所对圆心角为β则0cos v v α==,45α=︒因射出磁场时的速度方向垂直于y 轴,故135β=︒所以粒子在磁场中运动的时间为238t T =总时间12023t t t 4h m v Bq π=+=+12、(2009高考西城三模)在研究性学习中,某同学设计了一个测定带电粒子比荷的实验,其实验装置如图所示.abcd 是一个长方形盒子,在ad 边和cd 边上各开有小孔f 和e ,e 是cd 边上的中点,荧光屏M 贴着cd 放置,能显示从e 孔射出的粒子落点位置.盒子内有一方向垂直于abcd 平面的匀强磁场,磁感应强度大小为B .粒子源不断地发射相同的带电粒子,粒子的初速度可以忽略.粒子经过电压为U 的电场加速后,从f 孔垂直于ad 边射入盒内.粒子经磁场偏转后恰好从e 孔射出.若已知fd cd L ==,不计粒子的重力和粒子之间的相互作用力.求: (1)带电粒子的荷质比/q m(2)带电粒子在磁场中运动的速度大小v .(3)带电粒子在磁场中运动的时间t (可用反三角函数表示).【答案】(1)带电粒子的荷质比2212825q Um B L =; (2)带电粒子在磁场中运动的速度大小165Uv BL=;(3)带电粒子在磁场中运动的时间2564BL t U =.【解析】(1)粒子经电场加速后,由动能定理得:212qU mv =射入磁场后,有:2v qvB m R=粒子在磁场中的运动轨迹如图所示,几何关系是:222()()2LL R R -+=联立解得:带电粒子的电量与质量的比值为:2212825q Um B L =(2)带电粒子在磁场中运动的速度大小:165Uv BL= (3)由几何关系得粒子轨迹所对应的圆心角2arcsin θ== 带电粒子在磁场中运动的时间:25264m BL t T qB U θθπ===13、(2007高三上期末西城区)如图所示,在NOQ 范围内有垂直于纸面向里的匀强磁场I ,在MOQ 范围内有垂直于纸面向外的匀强磁场Ⅱ,M O N 、、在一条直线上,60MOQ ∠=︒,这两个区域磁场的磁感应强度大小均为B .离子源中的离子带电荷量为q +,质量为m ,通过小孔1O 进入两板间电压为U 的加速电场区域(可认为初速度为零),离子经电场加速后由小孔2O 射出,再从O 点进入磁场区域I ,此时速度方向沿纸面垂直于磁场边界MN 不计离子的重力.(1)若加速电场两板间电压0U U =,求离子进入磁场后做圆周运动的半径0R(2)在OQ 上有一点P ,P 点到O 点距离为若离子能通过P 点,求加速电压U 和从O 点到P 点的运动.【答案】(1)离子进入磁场后做圆周运动的半径0R(2)加速电压U 是2222B L qmn 其中123n =⋯,,,,离子从O 点到P点的运动时间为3n m qB π,其中123n =⋯,,,.【解析】(1)离子在电场中加速时,根据动能定理得 20012qU mv = 电子在磁场中运动时,由洛伦兹力提供向心力,则有2000v qv B m R =联立解得,0R =(2)离子进入磁场时的运动轨迹如图所示由几何关系可知0''''OP P P R ==要保证离子通过P 点,必须有L nR =解得,2222B L qU mn =其中123n =⋯,,, 又离子运动的周期为2mT qBπ=则离子从O 点到P 点的运动时间为323n mt n T qBπππ=⋅=,其中123n =⋯,,,14、(2013高三上期末朝阳区)如图所示,LMN 是竖直平面内固定的光滑绝缘轨道,MN 水平且足够长,LM 下端与MN 相切.在虚线OP 的左侧,有一竖直向下的匀强电场1E ,在虚线OP 的右侧,有一水平向右的匀强电场2E 和垂直纸面向里的匀强磁场B .CD 、是质量均为m 的小物块(可视为质点),其中C 所带的电荷量为q +,D 不带电.现将物块D 静止放置在水平轨道的MO 段,将物块C 从LM 上某一位置由静止释放,物块C 沿轨道下滑进入水平轨道,速度为v ,然后与D 相碰,粘合在一起继续向右运动.求:(1)物块C 从LM 上释放时距水平轨道的高度h ; (2)物块C 与D 碰后瞬间的共同速度v 共; (3)物块C 与D 离开水平轨道时与OP 的距离x .【答案】(1)物块C 从LM 上释放时距水平轨道的高度212()mv h mg qE =+;(2)物块C 与D 碰后瞬间的共同速度2v v =共; (3)物块C 与D 离开水平轨道时与OP 的距离2222224()4m mg v x qE q B =-.【解析】(1)物块C 下滑过程中,由动能定理得:211()02mg qE h mv +=-,解得:212()mv h mg qE =+;(2)物块C D 、碰撞过程动量守恒,以C D 、组成的系统为研究对象,以C 的初速度方向为正方向,由动量守恒定律得:mv m m v =+共(),解得:2v v =共; (3)C 与D 刚要离开水平轨道时对轨道的压力为零, 设此时它们的速度为v ',在竖直方向上,'2qv B mg =①CD 一起向右运动过程中,由动能定理得:222112'222qE x mv mv =⨯-⨯共② 由①②解得:2222224()4m mg v x qE q B =-;1、如图,质量为m 、电量为e 的电子的初速为零,经电压为U 的加速电场加速后进入磁感强度为B 的偏转磁场(磁场方面垂直纸面),其运动轨迹如图所示.以下说法中正确的是()A .加速电场的场强方向向上B .偏转磁场的磁感应强度方向垂直纸面向里C .电子在电场中运动和在磁场中运动时,加速度都不变,都是匀变速运动 D.电子在磁场中所受的洛伦兹力的大小为f =【答案】 D 【解析】 电子带负电荷,其在电场中受到的电场力竖直向上,所以场强方向肯定竖直向下,选项A 错误;根据左手定则可知,偏转磁场的磁感应强度方向垂直纸面向外,选项B 错误;电子在电场中运动的加速度不变,做的是匀变速运动,而在磁场中运动时,加速度大小不变,方向时刻改变,所以做的是非匀变速运动,选项C 错误;设电子进入磁场时的速度大小为v ,则212eU mv =,f Bve =,联立解得f =D 正确.本题答案为D .2、如图,半径为R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外,一电荷量为()0q q >、质量为m 的粒子沿平行于直径ab 的方向射入磁场区域,射入点与ab 的距离为2R,已知粒子射出磁场与射入磁场时运动方向间的夹角为60︒,则粒子的速率为(不计重力)()随堂练习A .2qBRm B .qBR mC .32qBR mD .2qBR m【答案】 B【解析】 如图所示,粒子做圆周运动的圆心2O 必在垂直于速度方向的直线EF 上,由于粒子射入、射出磁场时运动方向间的夹角为60︒,故圆弧ENM 对应圆心角为60︒,所以2EMO 为等边三角形.由于12RO D =,所以160EO D ∠=︒,1O ME 为等边三角形,所以可得到粒子做圆周运动的半径21EO O E R ==,由2mv qvB R=,得qBRv m =,B 正确.3、某空间存在着如图甲所示的足够大的沿水平方向的匀强磁场.在磁场中A B 、两个物块叠放在一起,置于光滑水平面上,物块A 带正电,物块B 不带电且表面绝缘.在10t =时刻,水平恒力F 作用在物块B 上,物块A B 、由静止开始做加速度相同的运动.在A B 、一起向左运动的过程中,以下说法正确的是()A .图乙可以反映A 所受洛仑兹力大小随时间t 变化的关系B .图乙可以反映A 对B 的摩擦力大小随时间t 变化的关系C .图乙可以反映A 对B 的压力大小随时间t 变化的关系D .图乙可以反映B 对地面压力大小随时间t 变化的关系 【答案】 C D 【解析】AB 整体向左做初速度为零的匀加速直线运动,所以f 洛与t 成正比,A 对B 的摩擦大小恒定,A 对B 压力1N mg Bqv =+, B 对地压力2()N M m g Bqv =++.4、(2010高三上期末朝阳区)如图所示,在正方形区域abcd 内有一垂直纸面向里的匀强磁场,一束电子以大小不同的速率垂直于ad 边且垂直于磁场射入磁场区域,下列判断正确的是()A .在磁场中运动时间越长的电子,其运动轨迹越长B .在磁场中运动时间相同的电子,其运动轨迹一定重合C .不同运动速率的电子,在磁场中的运动时间一定不相同D .在磁场中运动时间越长的电子,其运动轨迹所对应的圆心角越大 【答案】 D【解析】A 、根据弧长l vt =,可知,弧长与运动的时间及速度有关,时间长的轨迹不一定长,故A 错误;B 、根据2t T qBπ==可知,运动时间相同,圆心角一定相同,若电子都从ad 边射出,圆心角都是π,速度不同,半径不一样,轨迹不重合,故B 错误;C 、根据B 的分析可知,运动时间与圆心角由关,只要圆心角相同,运动时间就相同,与速度无关,故C 错误;D 、根据B 的分析可知,运动时间越长的电子,其运动轨迹所对应的圆心角越大,故D 正确.5、(2013高考门头沟二模)如图所示.有理想边界的匀强磁场方向垂直纸面向外.磁感应强度大小为B .某带电粒子的比荷(电荷量与质量之比)大小为k .由静止开始经电压为U 的电场加速后.从O 点垂直射入磁场.又从P 点穿出磁场.下列说法正确的是(不计粒子所受重力)()A .如果只增加U ,粒子可以从dP 之间某位置穿出磁场B .如果只减小B ,粒子可以从ab 边某位置穿出磁场C .如果既减小U 又增加B ,粒子可以从bc 边某位置穿出磁场D .如果只增加k ,粒子可以从dP 之间某位置穿出磁场 【答案】 D 【解析】带电粒子在电场中加速的过程中.有:212qU mv =;进入磁场中.设其运动的半径为r .则有:mv r qB =.有:r =;如果只增加U .则粒子的运动半径变大.粒子的出射点将向右侧移动.不可能从dP 之间的某位置穿出磁场;如果只减小B .则粒子的运动半径变大.但粒子最后的出射点一定在入射方向的下侧部分.不可能从ab 边上的某位置穿出;如果既减小U 又增加B ,则粒子的运动半径减小,粒子的出射点向原出射点的左侧移动,不可能从bd 边的某位置穿出磁场;如果只增加k ,则粒子的运动半径减小,可以从dP 之间的某位置穿出磁场.6、(2011高考西城二模)如图所示,在x o y ﹣﹣坐标系中,以0r (,)为圆心,r 为半径的圆形区域内存在匀强磁场,磁场的磁感应强度大小为B ,方向垂直于纸面向里.在y r >的足够大的区域内,存在沿y 轴负方向的匀强电场,场强大小为E .从O 点以相同速率向不同方向发射质子,质子的运动轨迹均在纸面内,且质子在磁场中做圆周运动的轨迹半径也为r.已知质子的电荷量为q,质量为m,不计质子所受重力及质子间相互作用力的影响.(1)求质子射入磁场时速度的大小;(2)若质子沿x轴正方向射入磁场,求质子从O点进入磁场到第二次离开磁场经历的时间;(3)若质子沿与x轴正方向成夹角θ的方向从O点射入第一象限的磁场中,求质子在磁场中运动的总时间.【答案】(1)求质子射入磁场时速度的大小为qBr m(2)若质子沿x轴正方向射入磁场,求质子从O点进入磁场到第二次离开磁场经历的时间为2m Br qB Eπ+.(3)若质子沿与x轴正方向成夹角θ的方向从O点射入第一象限的磁场中,求质子在磁场中运动的总时间为m qBπ.【解析】(1)质子射入磁场后做匀速圆周运动,有:2v qvB mr=得:qBr vm =即质子射入磁场时速度的大小为qBrm.(2)质子沿x轴正向射入磁场后,在磁场中运动了14个圆周后,以速度υ逆着电场方向进入电场,原路径返回后,再射入磁场,在磁场中运动了14个圆周后离开磁场.在磁场中运动周期:22r m Tv qBππ==质子在磁场中运动的时间:12t qB== 进入电场后做匀变速直线运动,加速度大小:qEa m= 质子在电场中运动的时间:222v Brt a E==所求时间为:122m Brt t t qB Eπ=+=+ 故质子从O 点进入磁场到第二次离开磁场经历的时间为2mBrqBEπ+. (3)当质子沿与x 轴正方向成夹角θ的方向从第一象限射入磁场时,设质子将从A 点射出磁场,如图所示,其中12O O 、分别为磁场区域圆和质子轨迹圆的圆心.由于轨迹圆的半径等于磁场区域圆的半径,所以12OO AO 为菱形,即2AO 平行x 轴,说明质子以平行y 轴的速度离开磁场,也以沿y 轴负方向的速度再次进入磁场.290O θ∠=︒﹣. 所以,质子第一次在磁场中运动的时间 190360t T θ︒-'=︒此后质子轨迹圆的半径依然等于磁场区域圆的半径,设质子将从C 点再次射出磁场.如图所示,其中13O O 、分别为磁场区域圆和质子轨迹圆的圆心,3AO 平行x 轴.由于13O AO C 为菱形,即1CO 平行3AO ,即平行x 轴,说明C 就是磁场区域圆与x 轴的交点.这个结论与θ无关.所以,23OO O C 为平行四边形,390O θ∠=︒+ 质子第二次在磁场中运动的时间:290360t T θ︒+'=︒ 质子在磁场中运动的总时间:122T mt t t qBπ'='+'==故质子在磁场中运动的总时间为mqBπ.7、(2012高三上期末西城区)如图1所示,在x 轴上0到d 范围内存在电场(图中未画出),x 轴上各点的电场沿着B x 轴正方向,并且电场强度大小E 随x 的分布如图2所示;在x 轴上d 到2d 范围内存在垂直纸面向里的匀强磁场,磁感应强度大小为B .一质量为m ,电量为q +粒子沿x 轴正方向以一定速度从O 点进入电场,最终粒子恰从坐标为(2d )的P 点离开磁场.不计粒子重力.(1)求在0.5x d =处,粒子的加速度大小a ; (2)求粒子在磁场中的运动时间t ;(3)类比是一种常用的研究方法.对于直线运动,教科书中讲解了由v t ﹣图象求位移的方法.请你借鉴此方法,并结合其他物理知识,求电场对粒子的冲量大小I .【答案】(1)在0.5x d =处,粒子的加速度大小为02qE m. (2)粒子在磁场中的运动时间为3mqBπ.(3【解析】(1)由图象,0.5x d =处,电场强度为00.5E E =,由牛顿第二定律得: qE ma =解得:02qE a m=. (2)在磁场中运动轨迹如图,设半径为R ,由几何关系222()R d R =+解得:R =.设圆弧所对圆心为α,满足:sin d R α==。
磁电系电流表
磁电系电流表原理:磁电系测量机构中的游丝要导入和到处被侧电流。
游丝一般只能通过几十毫安电流,如果被测电流大于100毫安,则必须采用分流器加以分流。
这样磁电系测量机构与分流器就构成了磁电系电流表。
因为分流器电阻比测量机构的内阻小得多,故绝大部分电流从分流器流走,而通过表头的电流只是被测电流中很小的部分,且被测电流与流过表头电流成一定的比例,故障量机构的偏角可以反映被测电流的大小。
扩大量线的原因:用磁电系测量机构可以直接测量的电流范围一般在几十微安到几十毫安之间,如果用它来测量较大的电流时,就必须扩大量限。
方式:磁电系电流表是采用分流的方法来扩大量限的。
方法就是在测量机构上并联一个分流电阻RfL如图2-5所示。
下面来决定将磁电系测量机构的量限扩大n倍的电流表所需的分流电阻值。
将I=nIc代入式(2-9)可得在一个仪表中采用不同大小的分流电阻,便可以制成多量限的分流表。
在实际测量中,当被测电流很大时,由于分流电阻发热很严重,将影响测量机构的正常工作。
而且它的体积也很大,所以将分流电阻做成单独的装置,称为外附分流器(30A以上都用外附分流器)如图2-7所示。
电流表的使用与维护1.合理选择电流表(1)根据被测量准确度要求,合理选择电流表的准确度。
一般地讲,0.1-0.2级的磁电系电流表适合用于标准表及精密测量中;0.5-1.5级磁电系电流表适合用于实验室中进行测量;1.0—5.0级磁电系仪表适合用于工矿企业中作为电气设备运行监测和电气设备检修使用。
(2)根据被侧电流大小选择相应量限的电流表。
量限过大会造成测量准确度下降,量限过小会造成电流表损坏。
为充分利用仪表的准确度,应当按尽量使用标尺度的后1/4段的原则选择仪表的量程。
(3)合理选择电流表内阻。
对电流表要求其内阻越小越好o2.测量前的检查测量前,应检查电流表指针是否对准“0”刻度线。
如果没对准,应调节“调零器”,使指针归零。
3.电流表与被测电路的连接(1)测量时,应将电流表串接于被测电路的低电位一侧。
磁电系仪表
磁电系仪表磁电系仪表广泛应用于直流电流和电压的测量。
如果和整流元件配合,可以用于交流电流和电压的测量;与变换器配合,可以测量交流功率、频率、相位以及温度压力等;此外,它还广泛用作电子仪器中的指示器。
第一节磁电系测量机构一、结构和工作原理1、结构图3-1 磁电式测量机构的结构示意图通常的磁电系测量机构由固定的磁路系统和可动线圈部分组成。
其结构如图3-1所示。
磁路系统包括永久磁铁1,固定在磁铁两极的极掌2和处于两个极掌之间的圆柱形铁芯3。
圆柱形铁芯3固定在仪表支架上,使两个极掌与圆柱形铁芯之间的空隙中形成均匀的辐射状磁场。
可动部分由绕在铝框架上的可动线圈4、指针6、平衡锤7和游丝5组成。
可动线圈两端装有两个半轴支承在轴承上,而指针、平衡锤及游丝的一端固定安装在半轴上。
当可动部分发生转动时,游丝变形产生与转动方向相反的反作用力矩。
另外,游丝还具有把电流导入可动线圈的作用。
2、工作原理磁电系测量机构的基本原理是利用可动线圈中的电流与气隙中磁场相互作用,产生电磁力,可动线圈在力矩的作用下发生偏转,因此称这个力矩为转动力矩。
可动线圈的转动使游丝产生反作用力矩,当反作用力矩与转动力矩相等时,可动线圈将停留在某一位置上,指针也相应停留在某一位置上。
磁电系测量机构产生转动力矩的原理如图2-2所示。
二、技术特性和应用范围1、技术特性(1)准确度高。
磁电系测量机构由于采用了永久磁铁,且工作气隙比较小,所以气隙磁场的磁感应强度较大,可以在很小的电流作用下,产生较大的转动力矩。
可以减小由于摩擦、外磁场等原因引起的误差,提高了仪表的准确度。
磁电系测量机构的准确度可以达到0.1~0.05级。
(2)灵敏度高。
仪表消耗的功率很小。
(3)表盘标度尺的刻度均匀,便于读数。
(4)过载能力小。
由于被测电流通过游丝导入可动线圈,所以电流过大容易引起游丝发热使弹性发生变化,产生不允许的误差,甚至可能因过热而烧毁游丝。
另外,可动线圈的导线横截面很小,电流过大也会使线圈发热甚至烧毁。
第二讲 磁电系电流表
Ic
Rc
ILeabharlann IfRf图3-2-2
Rc
Rc
Rf 1
1 2 S
+
Rf 1
Rf 2
Rf 2
开路式
图3-2-3
5A 闭路式
2.5A
(1)开路式 优点:各量程独立,互不干扰,调整方便。 缺点:开关接触电阻包含在分流电阻支路内,使仪 表误差增大,接触不好会损坏表头;当载流换挡时, 会使表头过载或损坏。 (2)闭路式 优点:开关接触电阻对分流关系没有影响,不会产 生仪表误差或损坏表头。 缺点:任一个分流电阻阻值发生变化,会影响其他 量程,调整和修理繁琐。
三、填空题 1.磁电系电流表由 和 组成。 2.多量程电流表的分流器可以有两种连接方法,分别 是 和 ,在实际应用中都采用 。 3.在测量中,一般规定电流表内阻 与负载电阻R 之比应不大于允许相对误差的 。 4.一只量程为150A的磁电系电流表,标明需配用 RA “150A,45mV”的分流器,现配用“450A, 45mV”分流器,测量时指在100A处,其实际测 到的电流为 。
)
Rc (n 1) R f
A. 正比 B. 反比 C.不成比例 D. 以上答案都不对 4.有一只磁电系表头,满偏电流为50µ A,内阻为200Ω,现要改装成量程为1A的电 流表,则需 的电阻。( ) A.串联0.1Ω B.并联0.1Ω C.串联0.01Ω D.并联0.01Ω 5. 磁电系电流表精密测量时,选用准确度等级范围是。( ) A.0.1~0.2级 B.0.2~0.5级 C.0.5~1.5级 D.1.0~5.0级 6.电流表在测量过程中,应串接于被测电路的 一侧。( ) A.高电位 B.任意 C.低电位 D.以上答案都不对
磁电系仪表解读
从上面的公式可以求得各个附加电阻的 阻值。
四、磁电系欧姆表
1、工作原理
通过测量机构活动部分偏转大小来反映被测电 阻值,故必须将被测电流转化为电阻,所以在测量线 路中,既有被测电阻,还要有电源。
Rg R
I=U/(Rg+R+Rx)
Rx
当U、R一定时,Rx与I对应,只要表头 标尺按阻值刻度,就可测出被测电阻(R起
同理,当我们需要一定扩大倍数得时候我们
可以通过公式:
Rp Rg n 1
求得分流电阻的大小。
对于同样量程,表头Ig越小,则n越大,Rp 越小。
注意:当被测电流很大时(>50A),分流器会严 重发热,而影响测量效果。所以对于测量大电流
的分流器都放在仪表之外,成为:外附分流器, 同理在仪表内的分流器成为:内附分流器。
第二章电测量指示仪 表
第一节 磁电系仪表
本节重点: ➢磁电系仪表的工作原理 ➢磁电系电流表的测量电路
磁电系仪表是指示仪表中最广泛应用的一 类仪表,普遍应用于测量直流电流和直流电压, 还可以测量其他电量、电路参数以及非电量。 学校实验室中用的电流表和电压表大都是磁电 系仪表
一、磁电系测量机构
(一)、磁电系测量机构的一般结构 驱动装置:永久磁铁 载流导体
永磁铁转动
载流体转动
永久磁铁1两端各有一个半圆形极掌2,构成 两个磁极。在两权掌间有圆柱形铁心3,极掌和 圆柱形铁心间的空隙中形成均匀辐射状的强磁 场。细导线线圈5绕在矩形铝框上(阻尼器),轴6
与线圈两端相连,轴尖支撑在轴承里,使线 圈可以自由转动。指针9与轴相连。游丝8的 内端固定在转轴上,外端固定在仪表内部的 支架上。一个仪表中通常有两个游丝,它们 的旋绕方向相反。当线圈中通电转动时,两 个游丝被扭转,产生反作用力矩,两个游丝 还兼作线圈中电流的引入线和引出线。 11是 零点调节器。10是平衡锤,用来调节可动部 分的机械平衡
电流表
电流表科技名词定义中文名称:电流表英文名称:ammeter其他名称:安培表定义1:测量电流值的仪表。
所属学科:电力(一级学科);电测与计量(二级学科)定义2:测量电流的仪表。
所属学科:机械工程(一级学科);电测量仪器仪表(二级学科);电测量仪器仪表一般名词(三级学科)本内容由全国科学技术名词审定委员会审定公布百科名片电流表(ammeter) 又称“安培表”,是测量电路中电流大小的工具,主要采用磁电系电表的测量机构。
目录[隐藏]简介发展过程分类直流电流表构造使用规则使用步骤读数改装简介发展过程分类直流电流表构造使用规则使用步骤读数改装工作原理[编辑本段]简介名称电流表电流表英文ammeter 电流表:current meter又称“安培表”。
--电流表指固定安装在电力、电信、电子设备面板上使用的仪表,用来测量交、直流电路中的电流[1]。
--在电路图中,电流表的符号为"圈A"[编辑本段]发展过程韦伯在电磁学上的贡献是多方面的。
为了德国物理学家韦伯进行研究,他发明了许多电磁仪器。
1841年发明了既可测量地磁强度又可测量电流强度的绝对电磁学单位的双线电流表;1846年发明了既可用来确定电流强度的电动力学单位又可用来测量交流电功率的电功率表;1853年发明了测量地磁强度垂直分量的地磁感应器。
韦伯在建立电学单位的绝对测量方面卓有成效。
他提出了电流强度、电量和电动势的绝对单位和测量方法;根据安培的电动力学公式提出了电流强度的电动力学单位;还提出了电阻的绝对单位。
韦伯与柯尔劳施合作测定了电量的电磁单位对静电单位的比值,发现这个比值等于3×108m/s,接近于光速。
[编辑本段]分类电流表是分为直流电流表和交流电流表。
直流电流表主要采用磁电系电表的测量机构。
一般可直直流电流表接测量微安或毫安数量级的电流,为测更大的电流,电流表应有并联电阻器(又称分流器)。
分流器的电阻值要使满量程电流通过时,电流表满偏转,即电流表指示达到最大。
物理磁电式电流表知识点
物理磁电式电流表知识点
(1)用途:
判断电流的大小和方向。
(2)磁电式电流表的构造:主要包括蹄形磁铁、圆柱形铁芯、线圈、螺旋弹簧、指针和刻度盘。
(3)原理:
蹄形磁铁和铁芯间的磁场是均匀地辐射分布的,这样不管通电导线处于什么角度,它的平面均与磁感线平行,从而保证受到的磁力矩不随转动角度的变化而变化,始终有M=NBIS(N为线圈的匝数)。
当线圈转到某一角度时,磁力矩与弹簧产生的阻力矩 M,相等时,线圈就停止转动,此时指针(指针随线圈一起转动)就停在某处,指向一确定的读数I=
M',由于M'与转动的角度θ成正比,所以电流越大,偏
NBS
转角就越大,θ与电流I成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是啊,这个就是显示光标的作用。
看图上标度尺上影像怎么那么宽啊?光标的影像。
光标当中有个中心线,相对的就是测量值,这样精 度才高啊。聊天记录
AC15光点式检流计
光标读数装置
便携式检流计结构图
分装式检流计结构图
二、磁电系检流计的选择和使用方法 选择 1、正确选择磁电系检流计 2、应选择阻尼时间较短的检流计 2、使用维护方法 (1)使用时必须轻放,将两个接线端钮短接 (2)不能用万用表或电阻表去测检流计的内阻, 由于电流过大烧毁检流计。
电源为干电池,端电压为U,从a、b两个端 钮接入被测电阻Rx。流过Rx的电流
I U Rc R Rx
流过表头电流的大小与Rx大小是一一对应的,即表头指针的偏 转角反映了被测电阻的大小。将表头的刻度尺按电阻刻度,就 可以直接测量电阻的大小。但注意不是线性关系。所以电阻档 刻度是不均匀的。
Rx为无穷大,即a、b开路,I=0,指针不偏转,
3、测量前的检查 调节调零器,使电流表指针对准0刻度。 4、电流表与被测电路的连接 应将电流表串联与被测电路的低电位一侧。 电流从正极流入,从负极流出。 5、正确读数 指针稳定后,按正确方法读数。 6、维护方法 使用时,极性不能接错,灵敏度高的表应 用导线将正负端钮连接起来。
2.3 磁电系检流计
AC15里面结构图我没有。
2、使用和维护 (1)正确选用磁电系电压表 (2)并联接入电路,+接高电位,-接低电位 (3)多量程电压表,变换量程时,应先断开,再换量程 (4)不用时要按说明书保管
2.5 万用电表
一、结构 组成:测量机构、测量线路、转换开关 1、表头及面板 表头:高灵敏度的磁电系测量机构(0.5级以上) 面板:标度盘(有的带反射镜)转换开关、零位调节旋钮、电阻调零旋
二、技术特性和应用 1、量程范围较广,利用外附附加电阻,其量程可以从毫伏级至千伏级。 2、内阻较高,对被测电路影响较小。主要用于直流电压的测量。
三、直流电压的测量方法和磁电系电压表的使用维护方法 1、直流电压的测量方法
与负载并联 要求内阻Rv远大于负载电阻R 例 有一磁电系测量机构,满偏电流为200μA,内阻为250Ω,欲 改成量程为100V的电压表,迎接多大的附加电阻?
Rx=0,流过表头的电流为满偏电流,指针满刻度偏转。
电阻档刻度为反向刻度。
2、工作原理
分流器扩大量程的基本原理
IcRc I RcRf Rc Rf
n I Ic
通过表头的电流Ic与被测电流I成正比。根据这一比例对电流表进 行刻度,就可以指示出被测电流I的大小。
量程扩大倍数
则
Ic I Rf
将表头的电流量程扩大n倍, 分流电阻Rf应为表头内阻Re的1/n。
Rc Rf
由上式可计算分流电阻的阻值。
三、使用维护方法 1、直流电流的测量方法 与负载串联,可测10-6~102A的电流 2、合理选择电流表 (1)准确度的选择:
0.1~0.2级 标准表、精密测量 0.5~1.5级 实验室 1.0~5.0级 企业电气设备运行监测检修
(2)根据被测电流大小选择量程 (3)根据使用环境选择电流表 (4)合理选择电流表内阻。越小越好。 小于被测电路内阻的百分之一。
测量时,里面的灯泡就会发光吗?
磁电系检流计是一种高灵敏度的检测仪表, 可以测量微小电流、电压和短暂的脉冲电量。
一、结构
检查电路中有无电流流过,如在电桥电路中 作为指零仪表。标度尺上不标注电压和电流数 值。
分指针式和光点式
指针式,用于携带式电桥或电位计中。
光点式灵敏度较高:便携式检流计
分装式光标指示检流计 用于精密测量
复习引入 磁电系量机构的结构
指针
铁心
游丝 引出线 机械调 零旋钮
标度尺 永久磁铁
极掌 平衡锤
磁电系直流电流表的分类
2.2 磁电系电流表
一、结构和工作原理 1、结构 磁电系测量机构和测量线路,R是分 流电阻。
多量程电流表,如右图,属于闭路连接方式。
内附分流器
开路式分流器
闭路式分流器
外附分流器及其接线
2.4 磁电系电压表
一、结构和工作原理
1、结构
磁电系测量机构和测量线路(附加电阻)
附加电阻由温度系数很小的锰铜丝绕成。
2、工作原理
Ic U Rj Rc
U Ic(Rj Rc)
原理图
Uc IcRc
如将量程扩大到m倍,则
mU , Uc
Rj (m 1)Rc
多量程电压表
附加电阻Rj是测量机构内阻的(m-1)倍; 在选定测量机构的前提下,串联的附加电阻越大,仪表 对电压的灵敏度越低,电压量程就越大。
1
Rf
Rc
n 1
例2-1
有一只磁电系表头,满偏电流为500μA,内阻为200Ω,先要把它制成 量程为1A的电流表,应选用多大的分流电阻?若需利用该表头测量 100A的电流,应选用何种规格的外附分流器?
二、技术特性和应用范围 1、技术特性 内阻很小 结构复杂,成本高 2、应用范围 直流电路中电流的测量。
钮、接线柱等。
2、测量线路(中心环节) (1)主要由多量程直流电流表、直流电压表、整流式交流电流表、交流
电压表、电阻表等几种测量线路组合而成。 (2)构成元件:电阻元件——线绕电阻、碳膜电阻、电位器 交流线路的整流元件——二极管
3、转换开关 作用是切换不同测量线路 类型:机械接触式转换开关,可动触点叫做刀,固定触点叫做掷
1、直流电流档测量线路 2、直流电压档测量线路 3、交流电压档和电流档测量线路 (1)整流电路。
最终指示值是交流量的平均值,因此万用表只适用于正弦交流量的测量 (2)整流系多量程交流电压表 接入各种数值的附加电阻 (3)整流系多量程交流电压表 接入各种数值的分流电阻
4、电阻档的测量线路
实质是一个多量程的电阻表,基本电路如图