实际问题与一元一次方程综合练习
实际问题与一元一次方程测试卷及答案
实际问题与一元一次方程测试卷一、选择题 (共10个小题,每小题3分,共30分)1.已知甲、乙两数之和为5,甲数比乙数大2,求甲、乙两数.设乙数为x ,可列出方程是( )A.x+2+x=5B.x-2+x=5C.5+x=x-2D.x(x+2)=5.2.水流速度为2千米/时,一小船逆流而上,速度为28千米/时, 则该船顺流而下时,速度为( )千米/时.A.30B.32C.24D.283. 天平的左边放2个硬币和10克砝码,右边放6个硬币和5克砝码,天平恰好平衡. 已知所有硬币的质量都相同,如果设一个硬币的质量为x 克,可列出方程为( )A.2x+10=6x+5B.2x-10=6x-5C.2x+10=6x-5D.2x-10=6x+5.4. 已知A ,B 两地相距30千米.小王从A 地出发,先以5千米/时的速度步行0.5时,然后骑自行车,共花了2.5时后到达B 地,则小王骑自行车的速度为( )A. 13.25千米/时B.7.5千米/时C.11千米/时D.13.75千米/时.5. 某种商品的标价为132元.若以标价的9折出售,仍可获利10%,则该商品的进价为( )A .108元B .105元C .106元D .118元6. (2008 台湾)某水果店贩卖西瓜、梨子及苹果,已知一个西瓜的价钱比6个梨子多6元,一个苹果的价钱比2个梨子少2元。
判断下列叙述何者正确?( )(A) 一个西瓜的价钱是一个苹果的3倍(B) 若一个西瓜降价4元,则其价钱是一个苹果的3倍(C)若一个西瓜降价8元,则其价钱是一个苹果的3倍(D) 若一个西瓜降价12元,则其价钱是一个苹果的3倍7.在四川汶川地震中,某地欲将一批救灾物运往火车站,用载重1.5吨的汽车比用载重4吨的大卡车要多运5次才能运完. 若设这批货物共x 吨,可列出方程( )A.1.5x-4x=5B.51.54x x +=C.51.54x x -=D.1.545x x-= 8.在日历上,用一个正方形任意圈出3×3个数,那么这九个数的和可能是( )A.80 B.98 C.108 D.206.9.为了节约用水,某市规定:每户居民每月用水不超过20立方米,按每立方米2元收费,超过20立方米,则超过部分按每立方米4元收费,某户居民五月份交水费72元,则该居民五月份实际用水( )A. 18立方米B. 8立方米C. 28立方米D. 36立方米10.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都一样重,驴子抱怨负担太重,骡子说:“你抱怨啥?如果你给我1袋,那我所负担的就是你的2倍;如果我给你1袋,我们才恰好驮得一样多!”那么驴子原来所驮货物的袋数是( )A .5B .6 C.7 D .8二、填空题(共8个小题,每小题3分,共24)11.小龙在日历中发现生日那天的上,下,左,右4个日期之和为48.则小龙的生日是________号.12.一种商品进价为50元,为赚取20%的利润,该商品的标价为________元.13. 在2008年北京奥运会上,某篮球队主力队员,在一次比赛中22投14中得28分,除了3个三分球全中外,他还投中了______个两分球和_______个罚球.14.某商店一套西服的进价为300元,按标价的80%销售可获利100元,若设该服装的标价为x 元,则可列出的方程为 .15.在课外活动中,李老师发现同学们的年龄基本是12岁.就问同学:“我今年27岁,几年以后你们的年龄是我年龄的二分之一?”设x 年后同学的年龄是老师年龄的21,可列方程为 .16.若干年前,创维牌25英寸彩电的价格为3000元,现在只卖1600元,设降低了x%,则可列方程为 .17.一个两位数,个位上的数字x 比十位上的数字大2,个位与十位上的数字之和是10,求这个两位数可列方程为 .18.王会计在记帐时发现现金少了153.9元,查账后得知是一笔支出款的小数点被看错了一位,王会计查出这笔看错了的支出款实际是 元.二、解答题(共66分)19.(6分) 小兵今年13岁,约翰的年龄的3倍比小兵的年龄的2倍多10岁,求约翰的年龄.20.(6分)有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?21.(8分)王小涵的妈妈从商店买回一条裤子,小涵问妈妈:“这条裤子需要多少钱?”妈妈说:“按标价的八折是36元.”你知道标价是多少元吗?22.(8分)某企业存入银行甲、乙两种不同性质、用途的存款共20万元,甲种存款的年利率为5.4%,乙种存款的年利率为8.28%,该企业一年可获利息收入12240元(包括利息税),问该企业存入银行的甲、乙两种存款各是多少万元?23.(9分)某天,一蔬菜经营户用70元钱从蔬菜市场批发了辣椒和蒜苗共40kg 到市场去卖,辣椒和蒜苗这天的批发价与零售价如表所示:辣椒和蒜苗各批发了多少kg ?24.(9分)某城市为了鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10t 部分,按0.45元/t 收费;超过10t 而不超过20t 部分,按0.80元/t 收费;超过20t 部分,按1.5元/t 收费.现已知欢欢家十月份缴水费14元,欢欢家十月份用水多少吨?25.(10分)某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a 千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a .(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?•应交电费是多少元26.(10分)某学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,(涂黑部分表示被墨水覆盖的若干文字).”请你将这道作业题补充完整,并列方程解答.参考答案1.A2.B [点拔]逆水行速=船速-水速,顺水行速=船速+水速.3.A4. D5.A[点拨]设进货价为x 元,根据题意,得(1+10%)x =132×(1-10%).6.D.7.C8.C [点拔]要满足和能被9整除9.C [点拔]设五月用水x 立方米则20*2+4(x-20)=72得x=28.10.A[点拨]不妨设驴子原来驮x 袋货物,根据题意可知骡子驮的袋数可分别表示为[2 ( x -1) -1],(x+1+1).由此可得2 ( x -1) -1= x+1+1.解得x=5.即驴子原来所驮货物的袋数是5.故选A.11.12 [点拔]设生日那天的日期为x ,则4x=48,x=12.12.60 [点拨]设标价为x 元,则x-50=50×20%.13. 8 ,314.80%300100x -=15.12+x =21(27+x ) 16.(1-x%)·3000=160017.x=10-x+2或x+x-2=1018.17.1[点拨]设这笔看错了的支出款实际是x 元,则记账时支出款记成了10x 元.根据题意,得10x -x=153.9.解得,x=17.1.故填17.1.19.设约翰的年龄x 岁,则3x-2×13=10,∴x=12.约翰的年龄是12岁.20.设这种三色冰淇淋中咖啡色配料为2x 克,那么红色和白色配料分别为3x 克和5x 克.根据题意,得2x+3x+5x=50解这个方程,得x=5于是2x=10,3x=15,5x=25答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.21.设标价是x 元,则售价就是80%x 元,根据售价是36元可列方程:80%x=36,两边同除以80%,得x=45.答:这条裤子的标价是45元.22.设甲种存款为x 万元,则乙种存款为(20-x)万元,依题意,得x×5.4%+(20-x)×8.28%=1.224.解得 x =15. 20-x =5.所以甲、乙两种存款各是15万元,5万元.23.设该经营户从蔬菜市场批发了辣椒x kg ,则蒜苗(40)x -kg ,得1.6 1.8(40)70x x +-=解得:10x = 4030x -=答:该经营户批发了10kg 辣椒和30kg 蒜苗.24.因为10×0.45+10×0.80=12.5,而12.5<14,所以欢欢家十月份用水一定超过20t.设欢欢家十月份用水x t.根据题意,得10×0.45+10×0.80+)20(-x ×1.50=14解这个方程,得21=x答:欢欢家十月份用水21t.25.(1)由题意,得0.4a+(84-a )×0.40×70%=30.72解得a=60(2)设九月份共用电x 千瓦时,则0.40×60+(x-60)×0.40×70%=0.36x解得x=90所以0.36×90=32.40(元)答:九月份共用电90千瓦时,应交电费32.40元.26.补充部分,若两车分别从两地同时开出,相向而行,经过几小时相遇?设经过x 小时两车相遇,依题意可得45x+35x=40整理得80x=40,两边同除以80,得x=0.5答:经过半小时两车相遇.一、1.小红一家假期外出旅游5天,已知这5天的日期之和为40. 则他们出发日期是()号A.5B.6C.7D.82.某种药品去年的单价为12元,今年该种药品降价x%,则今年该种药品的单价是()A.12x%B.12-x%C.0.12(1-x)D.12(1-x%)3.一件商品,标价12元,打x折后仍获利2元,则该商品的成本价是()A.(12x-2) 元B.(12x+2) 元C.(65x+2) 元 D.(65x-2) 元.1.B2.D3.A11.根据“x的2倍与5的和比x的12小10”可列方程为______.12.某商场今年月份的销售额是200万元,比去年五月份销售额的2倍少40万元,那么去年五月份的销售额是万元.14.“红星”商场对商品进行清仓处理,全场商品一律八折,小亮在该商场购买了一双运动鞋,比按原价购买该鞋节省了16元,他购买该鞋实际用元.15.今年哥哥的年龄是弟弟年龄的2倍,而5年前, 弟弟的年龄只有哥哥年龄的13,那么今年哥哥____岁,弟弟______岁.20. 一个三位数的个位数字是7,若把个位数字移到首位,则新数比原数的5倍还多86,求这个三位数.设这个三位数的前两位数为x,则列出的方程应是.11.2x+5=2x-1012.12014.6415.20,1020. 700+x-86=5(10x+7)3.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.3.解:设这一天有x名工人加工甲种零件,则这天加工甲种零件有5x个,乙种零件有4(16-x)个.根据题意,得16×5x+24×4(16-x)=1440解得x=6答:这一天有6名工人加工甲种零件.4.探索研究:用一根长60厘米的铁丝围成一个长方形.(1) ①②使长方形的宽是长的32,求这个长方形的长的宽. ②使长方形的宽比长少4厘米.求这个长方形的面积.(2) 比较(1) (2) 所得两长方形面积大小.还能围出面积更大的长方形吗?4.(1) ①设长方形的长为3x ,宽为2x ,根据题意有:(3x +2x )×2=60 解得x =6所以长为18cm 宽为12 cm .②设长方形的宽为x cm ,则长为(x +4)cm .根据题可得2(x +x +4)=60,解得x =13.所以长方形长为17cm 宽为13cm 面积为221cm 2(2)易得①中长方形面积为216cm 2.②中长方长面积为221cm 2,所以②中长方形面积大. 将②中宽比长少4厘米,改为少3厘米,2厘米,1厘米,0厘米后发现长方形面积逐渐增大.因此还能围出面积更大的长方形.7.七年级(1)班为奖励优秀学生,用30元钱买了钢笔和圆珠笔共10支,其中圆珠笔每支2元,钢笔每支4元.若设所买的圆珠笔的支数为x ,可列方程2x+4(10-x )=30,你能根据此方程编一道与上面不同的应用题吗?7.要编写应用题,关键是要抓住等量关系,就可以编写许多不同的应用题.如:•某校七年级(2)班的10名学生为学校绿化捐款,共计30元,其中部分学生每人捐款2元,另一部分学生每人捐款4元,捐款2元的学生是几人?8.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?8.解:设甲、乙一起做还需x 小时才能完成工作.根据题意,得16×12+(16+14)x=1 解这个方程,得x=115115=2小时12分 答:甲、乙一起做还需2小时12分才能完成工作.9.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.9.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需的时间为600x 分. 过完第二铁桥所需的时间为250600x -分. 依题意,可列出方程600x +560=250600x -解方程x+50=2x-50得x=100∴2x-50=2×100-50=150答:第一铁桥长100米,第二铁桥长150米.10.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?10.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程1500x+2100(50-x)=90000即5x+7(50-x)=3002x=50x=2550-x=25②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=900003x+5(50-x)=1800x=3550-x=15③当购B,C两种电视机时,C种电视机为(50-y)台.可得方程2100y+2500(50-y)=9000021y+25(50-y)=900,4y=350,不合题意由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C 种电视机15台.(2)若选择(1)中的方案①,可获利150×25+250×15=8750(元)若选择(1)中的方案②,可获利150×35+250×15=9000(元)9000>8750故为了获利最多,选择第二种方案.。
人教版七年级上册数学实际问题与一元一次方程--盈亏问题专题练习
人教版七年级上册数学3.4实际问题与一元一次方程--盈亏问题专题练习一、单选题1.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10%x =330B .(1﹣10%)x =330C .(1﹣10%)2x =330D .(1+10%)x =3302.一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的7折销售20件的销售额,与按这种服装每件的标价降低40元销售22件的销售额相等.则这种服装每件的标价是( )A .110元B .100元C .90元D .80元 3.天虹商场购将两件商品清仓销售,售价均为120元,其中一件商品获利20%,另一件商品亏损20%,则天虹商场销售完这两件商品的盈亏情况为( ) A .盈利10元 B .亏损10元 C .不盈不亏 D .无法确定 4.一件村衫按进价提高50%后进行标价,后来因季节原因要按标价的八折出售,此时每件村衫仍可获利12元,则这批衬衫的进价是每件( )A .48元B .90元C .60元D .180元 5.买两种布料共138m ,花了540元,其中蓝布料每米3元,黑布料得米5元,两种布料各买了多少米设买蓝布料x 米,列方程正确的是( )A .()35138540x x +-=B .()53138540x x +-=C .()35540138x x +-=D .()53540138x x +-= 6.某品牌冰箱去年国庆节开始季节性降低20%,到今年五一节又季节性涨价20%后,现售价为2400元/台,则该品牌冰箱去年国庆节之前的售价为每台( ) A .2000元 B .2500元 C .2400元 D .2200元 7.某网店销售一件商品,按标价的8折销售,可获利10%,已知这件商品的进价为每件300元,设这件商品的标价为x 元,根据题意可列出方程()A .0.830010%0.8x x -=⨯B .0.830030010%x -=⨯C .()110%0.8300x -⨯=D .()110%3000.8.x -⨯= 8.某商场把一个双肩包按进价提高30%标价,然后按八折出售,这样商场每卖出一个书包仍可盈利10元.设每个双肩书包的进价是x 元,根据题意列一元一次方程正确的是( )A .30%80%10x x ⋅-=B .(130%)80%10x x +⋅-=C .(130%)80%10x +⋅=D .(130%)10x x +-=二、填空题9.某种商品每件的进价为180元,按标价的九折销售时,利润率为20%,这种商品每件标价是________元.10.“春节”期间,某服装商店举行促销活动,全部商品八折销售,小华购买一件标价为80元的运动服,打折后的售价是______元.11.为迎春节,某商家将文具按进价60%提高后标价,销售时按标价打折销售,最后相对于进价仍获利4%,则这件文具销售时打________折.12.某商场一件衣服的成本是x 元,按成本的200%销售,后因换季打7折卖出,卖出时这件衣服140元,卖出后这件衣服的利润是_______元.13.一件商品如果按原价的八折销售,仍可获得15%的利润,已知该商品的成本价是50元,设该商品原价为x 元,那么根据题意可列方程______.14.一家商店将某种服装按成本价加价40%作为标价,又以八折优惠卖出,结果每件服装仍可获利15元,设每件服装的成本价为x 元,则可列方程______.15.某商场出售某种文具,每件可盈利2元,现在按原价的七折出售,结果每件仍然可盈利0.2元,问该文具每件进货价是______元.16.某超市为回馈顾客,推出两种优惠方式:一、消费满60元,全部商品享八折优惠;二、消费满90元立减30元,消费者可以选择其中一种方式结账.小明用方式一结账,实际付款88元,若是他改用方式二结账,比起方式一能省下______元三、解答题17.某超市要购进一批保温饭盒出售.现有甲、乙两个批发商处可进货,且每件均要价60元.为了招揽顾客,甲批发商说:“凡来我处进货一律九折”;乙批发商说:“如果超出50件,则超出的部分打八折”.(1)购进多少件时去两个批发商处进货价钱一样多?(2)若超市第一次购80件,第二次比第一次的2倍少10件,且每次只能在一个批发商处进货,如果你是超市经理应该如何进货更划算?共花费多少元?18.在开学前,博彩文化用品商店购进400本小笔记本,很快销售一空;商店又购进第二批该笔记本600本,购进时单价是第一批的54倍,所付货款比第一批货款多700元.(1)求第一批小笔记本购进时单价是多少?(2)若商店以每本4元的价格将这两批小笔记本全部售出,可以盈利多少元?19.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)某商场出售这样的水瓶和水杯,为了迎接新年,商场搞促销活动,规定:全场打八折.若某单位想要买5个水瓶和20个水杯,总共要花多少钱?20.“沙场点兵”是汉城景区的一个特色节目,“电动马玩具”在景区非常畅销,小李在某网店选中A、B两款电动马玩具,决定从该网店进货并销售,两款玩具的进货价和销售价如下表:(1)第一次小李用1100元购进了A,B两款玩具共30个,求两款玩具分别购进多少个?(2)第二次小李进货时,A款玩具的进货量是B款玩具的一半,将进货的玩具全部售出,共获利润920元.求两款玩具分别购进多少个?参考答案:1.D2.A3.B4.C5.A6.B7.B8.B9.24010.6411.六点五12.4013.0.8505015%-=⨯x14.()140%80%15x x +⋅-=15.416.817.(1)100(2)乙供货更划算;共花费12240元. 18.(1)2元;(2)170019.(1)一个水瓶40元,一个水杯8元;(2)总共要花288元20.(1)A 款玩具购进20个,B 款玩具购进10个;(2)A 款玩具购进20个,B 款玩具购进40个。
3-4 实际问题与一元一次方程(工程问题) 同步练习 2021-2022学年人教版数学七年级上册
3.4 实际问题与一元一次方程(工程问题)一、单选题1.有一个水池,只打开进水管,2h 可把空水池注满;只打开出水管,3h 可把满池水放空.若两管同时打开,则把空水池注满到水池的56需要的时间是( )A .3hB .4hC .5hD .6h2.一项工程甲单独做要40天完成,乙单独做需要50天完成.如果甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程正确的是( ) A .41404050x +=+ B .41404050x +=⨯ C .415050x += D .41404050x x ++= 3.完成某项工程,甲单独做10天完成,乙单独做7天完成,现在由甲先做了3天,乙再参加合作,求完成这项工程总共用去的时间,若设完成此项工程总共用x 天,则下列方程中正确的是( ) A .31107x xB .331107x x C .1107x x D .31107x x4.整理一批数据,由一个人做要40小时完成.现在计划由x 人先做4小时,再增加2人和他们一起做8小时,完成这项工作,假设这些人的工作效率相同,则得( ) A .()82414040x x ++= B .()82414040x x -+=C .()42814040x x-+= D .()()428214040x x -++=5.一项工程,甲单独做需要5天完成,乙单独做需要8天完成.若甲先做1天,然后由甲、乙合作完成此项工程.求甲一共做了多少天?若设甲一共做了x 天,则所列方程为( ) A .x 5+x+18=1B .x 5+x-18=1C .x 5﹣x+18=1D .x 5﹣x-18=16.一项工程由甲单独做需12天完成,由乙单独做需8天完成,若两人合作三天后,剩下的部分由乙单独完成,乙还需做多少天?( ) A .1天B .2天C .3天D .4天7.小王第一天做了x 个零件,第二天比第一天多做5个,第三天做的零件是第二天的2倍,若三天共做零件75个,则第一天做了( ) A .15个B .14个C .10个D .20个8.若9个工人14天完成了一件工作的35,由于任务的需要,剩下的工作要在4天内完成,则需要增加的人数是( )A .14B .13C .12D .119.某车间原计划 13 小时生产一批零件,后来每小时多生产 10 件,用了 12 小时不但完成任务,而且还多生产 60 件,设原计划每小时生产 x 个零件,则所列方程为( ) A .13x =12(x +10)+60 B .13x -12x=10+60 C .12(x +10)= 13x +60D .x+60=12x+1010.整理一批图书,由一个人做要40h 完成.现计划由一部分人先做4h ,然后增加2人与他们一起做8h ,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?设安排x 人先做4h ,则可列一元一次方程为( ) A .48(2)14040x x ++= B .114048(2)x x +=+ C .4040148(2)x x +=+ D .48(2)1x x ++=11.某水库建设工地调来64人参加挖土和运土,已知4人挖出的土1人恰好能全部运走,怎样调配劳动力才能使挖出来的土能及时运走?解决此问题,可设安排x 人挖土,其他人运土,则下列方程错误的是( ) A .1644x x += B .4(64)x x =-C .464x x +=D .1644x x -=12.某工程,甲独做需12天完成,乙独做需8天完成,该工程要在规定时间内完成,现由甲先做3天,乙再参加合做,正好如期完成,求完成这项工程规定的时间.设完成此项工程用了x 天,则下列方程正确的是( ) A .12x +38x -=1 B .312x ++38x -=1 C .12x +8x=1 D .312x ++ 8x =1 13.西安某厂车间原计划15小时生产一批急用零件,实际每小时多生产了10个,用了12小时不但完成了任务,而且还多生产了30个.设原计划每小时生产x 个零件,则所列方程为( ) A .30101512x x +-= B .30101215x x+-= C .12(10)1530x x +=+D .1512(10)30x x =++14.一项工程由甲工程队单独完成需要12天,由乙工程队单独完成需要16天,甲工程队单独施工5天后,为加快工程进度,又抽调乙工程加入该工程施工,问还需多少天可以完成该工程?如果设还需要x 天可以完成该工程,则下列方程正确的为( ) A .11216x x+= B .511612x x ++= C .12(5+x)+16x=1 D .12(5+x)=16x15.两根同样长的蜡烛,粗烛可燃4小时,细烛可燃3小时,一次停电,同时点燃两根蜡烛,来电后同时熄灭,发现粗烛的长是细烛的2倍,则停电的时间为( ) A .2小时 B .2小时20分C .2小时24分D .2小时40分二、填空题16.为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则植树总任务________棵.17.一项工程,A组独做需要10天完成,B组独做需要15天完成.若A组先做5天,再由A B、、两组需合做______天.两组合做,共要完成全部工程的三分之二,A B18.甲、乙两人检修一条长1000m的煤气管道,甲每小时检修100m,乙每小时检修150m.现在两人合作,需要_______小时完成.19.某中学的学生自己动手整修操场,如果让七年级学生单独工作,需要7.5h完成;如果让八年级学生单独工作,需要5h完成.如果让七、八年级一起工作1h,再由八年级单独完成剩余部分,求一共需要多少小时能完成.设共需要x小时完成,则可列方程_______.20.整理一批数据,甲单独完成需要30小时,乙单独完成需要60小时,现在由甲乙两人合作5小时后,剩余的由乙单独做,还需要_______小时完成.三、解答题21.学校学生自己动手整修操场,如果七年级学生单独工作,需要7.5小时完成;如果八年级学生单独工作,需要5小时完成,如果让七、八年级学生一起工作1小时,再由七年级学生单独完成剩余部分,共需多少时间完成?22.中国宝武马鞍山钢铁集团第二炼铁厂接到一批原料加工任务425吨,现打算调用甲、乙两条生产线完成.已知甲生产线平均每天比乙生产线多加工5吨.若甲生产线独立加工20天后,乙生产线加入,两条生产线又联合加工5天,刚好全部加工完毕.甲生产线加工一吨需用电40度,乙生产线加工一吨需用电25度.求完成这批加工任务需用电多少度?23.某人承做一批零件,原计划每天做40个,可按期完成任务,由于改进工艺,工作效率提高了20%,结果不但提前了16天完成,而且还超额完成了32个,求原计划规定几天完成?原计划做多少个零件?24.一项工程由甲单独完成需要20天;由乙单独完成需要30天.(1)若该项工程由甲、乙合作完成,则需要多少天?(2)由于场地限制,两人不能同时施工,若先安排甲单独施工完成一部分后,再由乙单独施工完成剩余工程.已知完成该项工程共用了25天,问甲、乙分别单独施工了几天?25.某城市平均每天产生垃圾700吨,由甲,乙两个垃圾处理厂处理.已知甲厂每小时可以处理垃圾55吨,每吨需费用10元;乙厂每小时可以处理垃圾45吨,每吨费用9元.(1)甲,乙两厂同时处理该城市的垃圾,每天需要多少时间完成?(2)如果该城市每天用于处理垃圾的费用为6700元,那么甲厂每天处理垃圾多少吨?答案 1.C解:设空水池注满到水池的56需要的时间是xh ,由题意得12x -13x=56,解得:x =5.答:把空水池注满到水池的56需要的时间是5h .故选:C . 2.D解:设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为: 41404050x x ++=, 故选:D . 3.D解:设完成这项工程共需x 天, 由题意得,31107x x .故选:D . 4.A解:由题意得: ()82414040x x ++=, 故选A . 5.B解:设甲一共做了x 天, 由题意得:x 5+x-18=1.故选:B . 6.C解:设乙还需做x 天. 由题意得:3311288x++=, 解之得:x =3.∴乙还需做3天. 故选:C . 7.A解:由题意得:x+x+5+2(x+5)=75,解得:x=15. 故选A . 8.C解:设剩下的工作要在4天内完成,需要增加的人数是x 人,由题意,得3391449155x ÷÷⨯⨯+=-()() , 解得:x=12. 故选:C . 9.C解:设原计划每小时生产x 个零件,则实际每小时生产(x +10)个零件, 根据等量关系列方程得:()121013+60x x +=. 故选择:C . 10.A解:设安排x 人先做4h ,根据题意可得:48(2)14040x x ++= 故选:A 11.C解:x 人挖土,则(64−x )运土,4人挖出的土1人恰好能全部运走,那么使挖出来的土能及时运走且不窝工,说明挖土的人的数量与运土人的数量之比=4:1.故1644x x +=,A 正确; B ,D 都是1644x x +=等量关系的变形,故正确.∴运土的人数应是14x ,方程应为x +14x =64,故选:C . 12.A解:设完成此项工程用了x 天,根据题意可得: 12x +38x -=1,故选:A . 13.C解:设原计划每小时生产x 个零件,则实际每小时生产(x+10)个零件, 依题意,得:12(x+10)=15x+30. 故选:C . 14.B解:设还需x 天可以完成该工程,由题意得,5 11612x x++=. 故选B.15.C解:设停电x 小时.由题意得:1﹣14x =2×(1﹣13x ),解得:x =2.4. 2.4h =2小时24分.答:停电的时间为2小时24分. 故选:C . 16.960解:设计划植树x 棵,计划需要的时间是60x 天,实际时间是80x天, 根据题意列式:60x -80x=4, 解得x =960, 故960. 17.1解:设共需x 天. 根据题意得:5112(5)()1010153x +-+=, 解得:x=6. 则x -5=6-5=1(天) 故答案是:1. 18.4解:设两人合作需要x 小时, 则1001501000x x +=, 解得:4x =. 故答案是4. 19.117.55x+=. 解:设共需要x 小时完成, 由题意得117.55x+=. 故填117.55x+=. 20.45解:由题意得:甲一小时完成130,乙一小时完成160, 设乙还需x 小时完成, 115()1306060x ⨯++=, 解得x=45, 故45.21.完成此项工作共需6小时. 解:设共需x 小时完成,根据题意,得: 111x 117.557.5⎛⎫++= ⎪⎝⎭(-) 解这个方程,得 :x=6 答:完成此项工作共需6小时. 22.完成这批加工任务需用电16250度解:设甲生产线每天生产x 吨,则乙生产线每天生产(5)x -吨, 由题意得205(5)425x x x ++-=, 解得15x =,所以510x -=,甲生产线每天生产15吨,乙生产线每天生产10吨, 需用电2515405102516250⨯⨯+⨯⨯=(度), 答:完成这批加工任务需用电16250度. 23.原来预定100天完成,共定做4000个零件. 解:设原计划规定x 天完成,则4040120%(16)32x x =⨯⋅--, 解得100x =, 即404000x =.答:原来预定100天完成,共定做4000个零件.24.(1)甲、乙合作完成这项工程需要12天;(2)甲单独施工了10天,则乙单独施工了15天解:(1)设设甲、乙合作完成这项工程需要x 天, 根据题意得,1112030x ⎛⎫+= ⎪⎝⎭解得:12x =,答:甲、乙合作完成这项工程需要12天;(2)设甲单独施工了y 天,则乙单独施工了(25-y )天, 根据题意得,2512030y y -+= 解得:10y =, 25-10=15(天),答:甲单独施工了10天,则乙单独施工了15天. 25.(1)7小时;(2)甲厂每天处理垃圾400吨.解:(1)设甲,乙两厂同时处理该城市的垃圾,每天需要x 小时完成,5545700x x +=,解得:7x =,答:甲,乙两厂同时处理该城市的垃圾,每天需要7小时完成; (2)设甲厂每天处理垃圾y 吨,109(700)6700y y +-=,解得:400y =,答:甲厂每天处理垃圾400吨.。
人教版七年级数学上册《3.4 实际问题与一元一次方程》练习题-带参考答案
人教版七年级数学上册《3.4 实际问题与一元一次方程》练习题-带参考答案一、选择题1.某电冰箱的进价为1530元,按商品标价的九折出售时,利润率为15%,若设该电冰箱的标价为x元,则可列方程为()A.90%x−1530=15%×1530B.90%x−1530=(1+15%)xC.1530×90%=15%x D.x−1530×90%=15%x2.几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种;如果每人种12棵,则缺6棵树苗.参与种树的有()人.A.8 B.7 C.6 D.53.某车间24名工人生产螺栓和螺母,每人每天平均生产螺栓4个或螺母6个,现有x名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按1:3配套,为求x列出的方程是()A.3×4(24﹣x)=6x B.4x=3×6(24﹣x)C.3×6x=4(24﹣x)D.3×4x=6(24﹣x)4.足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分,一个球队进行了14场比赛,共得19分,若其中只负5场,那么这个队胜了()A.3场B.4场C.5场D.6场5.互联网“微商”经营已经成为大众创业的一种新途径,某互联网平台上一件商品的标价为200元,按标价的六折销售,仍可获利20%,则这件商品的进价为()A.80元B.90元C.100元D.110元6.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x公顷旱地改为林地,则可列方程()A.54−x=20%×108 B.54−x=20%×(108+x)C.54+x=20%×162 D.108−x=20%(54+x)7.甲、乙两个工程队共同承接了某村“煤改气”工程,甲队单独施工需10天完成,乙队单独施工需15天完成.若甲队先做5天,剩下部分由两队合做,则完成该工程还需要()A.2天B.3天C.4天D.8天8.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90 元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.288B.296C.312D.320二、填空题9.一项工程甲单独做要20 h,乙单独做要12 h.现在先由甲单独做5 h,然后乙加入进来合做.完成整个工程一共需要多少小时?若设一共需要x h,则所列的方程为10.两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为°.11.今年3.15期间,惠东商场为感谢新老顾客,决定对某产品实行优惠政策:购买该产品,另外赠送礼品一份,经过与该产品的供应商协调,供应商同意将该产品供货价格降低5%,同时免费为顾客提供礼品;而该产品的商场零售价保持不变,这样一来,该产品的单位利润率由原来的x%提高到(x+6)%,则x的值是12.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套,所有工人全部参与生产,则生产螺钉的工人有人.13.某超市推出如下优惠方案:⑴一次性购物不超过100元不享受优惠;⑵一次性购物超过100元但不超过300元一律9折;⑶一次性购物超过300元一律8折。
解一元一次方程的实际问题50道练习题
解一元一次方程的实际问题50道练习题
以下是一些解一元一次方程实际问题的练题,希望能够帮助你
巩固对该知识点的理解。
1. 一个小酒店每晚每间客房的租金是100元,如果住满10晚,可以享受折扣,每晚租金减少10元,请问住满10晚的总费用是多
少元?
2. 小明去超市购买苹果,每斤苹果的价格是5元。
小明购买了
2斤苹果,总共花费了多少元?
3. 甲乙两个人一起工作,他们每小时一共可以产生70件产品。
如果甲每小时可以生产30件产品,乙每小时可以生产多少件产品?
4. 一辆汽车的每小时油耗是10升,如果行驶了200公里,需
要多少升油?
5. 小华打工每小时可以获得8元报酬。
他工作了5小时,总共
获得了多少报酬?
6. 一个三角形的底边长是10厘米,高是5厘米,计算其面积。
7. 甲乙两人一起修筑一段铁路,他们共用了20天完成。
如果
甲一人独立工作需要30天,乙一人独立工作需要多少天?
8. 一个矩形花坛的长是10米,宽是5米,计算其周长。
9. 一个长方体的长、宽和高之比是2:3:4,它的体积是48立方
厘米,求其长、宽和高的值。
10. 甲乙两个人一起旅行,他们每小时的速度之和是45公里。
如果甲的速度是20公里每小时,乙的速度是多少公里每小时?
...... (依此类推)
希望以上练习题能够帮助你熟练掌握解一元一次方程的实际应用。
练习题的答案可以通过代入方程中进行计算得出。
人教版七年级上册数学实际问题与一元一次方程(方案选择问题)训练
人教版七年级上册数学3.4实际问题与一元一次方程(方案选择问题)训练一、单选题1.寒假期间,小刚组织同学一起去看科幻电影《流浪地球》,票价每张45元,20张以上(不含20张)打八折,他们一共花了900元,则他们买到的电影票的张数是( )A .20B .22C .25D .20或252.某班同学一起去看电影,票价每张50元,20张以上(不含20张)打八折,他们一共花了1000元,则共买了( )张电影票.A .20B .25C .20或25D .25或303.七年级男生入住的一楼有x 间,如果每间住6人,恰好空出一间;如果每间住5人就有4人没有房间住,则一楼共有( )间.A ..7B ..8C ..9D .104.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽.问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的每3家共取一头,恰好取完.问城中有多少户人家?( )A .55户B .65户C .75户D .85户5.把一些笔记本分给某班学生,如果每人分2本,则剩余20本;如果每人分3本,则还缺30本,设该班有x 名学生,可列一元一次方程为( )A .220330x x -=-B .220330x x +=+C .220330x x -=+D .220330x x +=-6.某新华书店暑假期间推出售书优惠方案:①一次性购书不超过200元,不享受优惠;①一次性购书超过200元但不超过400元一律打九折;①一次性购书400元以上一律打八折.如果黄聪同学一次性购书共付款324元,那么黄聪所购书的原价是( )A .360元B .405元C .360元或400元D .360元或405元7.2019年猪肉涨价幅度很大.周日妈妈让张明去超市买猪肉,张明买二斤猪肉,剩余19元,买三斤猪肉还差20元.设妈妈一共给了张明x 元钱,则根据题意列方程是( ) A .192023x x +-= B .192023x x -+= C .192023x x +=- D .192023x x -=+ 8.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了()元.A.300B.260C.240D.220二、填空题9.小明去文具店购买2B铅笔,店主说:“如果多买一些,给你打8.5折”.小明测算了一下,如果买100支,比按原价购买可以便宜27元,每支铅笔的原价是________.10.张老师带学生乘车外出郊游,甲车主说:”不论师生,每人8折,"乙车主说:“学生9折,老师免费,“张老师算了一下,不论坐谁的车,费用一样,则张老师带的学生人数是________.11.某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x辆汽车,则根据题意可列出方程为______.12.为配合枣庄市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小丽同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小丽同学不买卡直接购书,则她需付款_____元.13.某书城开展学生优惠售书活动,凡一次性购买不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了36元,则该学生第二次购书实际付款_______元.14.小明、小华、小敏三人分别拿出相同数量的钱,合伙订购某种笔记本若干本,笔记本买来后,小明、小华分别比小敏多拿了5本和7本,最后结算时,三人要求按所得笔记本的实际数量付钱,多退少补,结果小明要付给小敏3元,那么,小华应付给小敏_____元.15.某校初一年级某班40个学生到湖边坐船游览,船家有三人船、二人船和一人船三种船提供出租,三人船每只船租金60元,二人船每只船租金50元,一人船每只船租金30元.40个学生刚好坐满了15只船,求这40个学生坐船的最低费用为_____元.16.在甲、乙两家复印店打印文件,收费标准如下表所示:打印__________张,两家复印店收费相同.三、解答题17.为贯彻落实“双减”政策,积极开拓校本研修课程,某校课外实践小组欲到植物园开展研修活动,植物园提供以下三种购票方式:购买散票:每人一张20元;当购票人数不小于100人时,可以选择购买优惠票或团队票;购买优惠票:可以享受票价9折优惠;购买团队票:一张团队票2400元,且入园时,每人还需付10元.(1)若有100名学生到植物园开展研修活动,你认为如何购票优惠?请计算说明;(2)当入园人数达到多少时,购买优惠票与购买团体票的价钱相同?18.某商店销售羽毛球拍和羽毛球,羽毛球拍每副定价40元,羽毛球每桶定价10元,“双十一”期间商店决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一副羽毛球拍送一桶羽毛球;方案二:羽毛球拍和羽毛球都按定价的90%付款.现某客户要到该商店购买羽毛球拍10副,羽毛球x 桶()10x >.(1)若该客户按方案一、方案二购买,分别需付款多少元?(用含x 的代数式表示)(2)当30x =时,通过计算,说明此时按哪种方案购买较为合算?(3)当30x =时,你还能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元19.两种移动电话记费方式表(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话费180元,则应该选择哪种通讯方式较合算?20.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?答案第1页,共1页 参考答案:1.D2.C3.D4.C5.D6.D7.B8.B9.1.8元10.8人11.4516509x x +=-12.15013.212元14.9.15.83016.6017.(1)购买优惠票;说明见详解;(2)300人.18.(1)方案一:()10300x +元;方案二:()9360x +元(2)按方案一购买较合算(3)能,先按方案一购买10副羽毛球拍送10桶羽毛球,再按方案二购买20桶羽毛球,共花费580元19.(1)一个月内本地通话250分钟时,两种通讯方式的费用相同;(2)若某人预计一个月内使用本地通话费180元,则选择全球通较合算20.(1)(70a +2800),(56a +3360)(2)购买40只书架时,无论到哪家超市所付货款都一样(3)第三种方案(到A 超市购买20个书柜和20个书架,到B 超市购买80只书架)所付款额最少,最少付款额为8680元.。
人教版七年级数学上册《实际问题与一元一次方程(配套问题)》专题训练-带答案
人教版七年级数学上册《实际问题与一元一次方程(配套问题)》专题训练-带答案学校: 班级: 姓名: 考号:一、单选题1.去年秋季,我市某果树基地安排26名工人将采摘的水果包装成果篮,每个工人每小时可包装200个苹果或者300个梨,每个果篮中放3个苹果和2个梨,为了使包装的水果刚好完整配成果篮.若设有x 名工人包装苹果,则可列方程( ) A .200300(26)x x =-B .32002300(26)x x ⨯=⨯-C .22003300(26)x x ⨯=⨯-D .2200(26)3300x x ⨯-=⨯2.某车间有20名工人,每人每天可以生产300张桌面或800根桌腿.已知1张桌面需要配4根桌腿,为使每天生产的桌面和桌腿刚好配套,应安排生产桌面和桌腿的工人各多少名 设安排x 名工人生产桌面,则下列方程正确的是( ) A .()480030020x x ⨯=-B .()800430020x x =⨯-C .()480020300x x ⨯-=D .()800204300x x -=⨯3.为筹备缤纷节“快乐易物”活动,甲乙两个小组计划分别制作一些桌面和桌腿.已知甲组比乙组少6人,若甲组每人制作4个桌面,乙组每人制作5个桌腿,1个桌面和4个桌腿组成一个桌子.制作的桌面和桌腿刚好配套.设乙组有x 人,由题意,可列出的方程为( )A .()1665x x -=B .()4620x x -=C .()1656x x =-D .()2064x x -=4.某车间有50名工人,每人每天可以生产600个螺栓或800个螺母,1个螺栓需要配2个螺母,要求每天生产的螺栓和螺母刚好配套.设安排x 名工人生产螺栓,则下面所列方程正确的是( ) A .()80050600x x -=B .()280050600x x ⨯-=C .()800502600x x -=⨯D .()80025600x x -=5.某车间35名工人生产螺栓和螺母,每人每天平均生产螺栓15个或螺母20个,一个螺栓需要配两个螺母,要想每天生产的螺栓和螺母刚好配套,应安排生产螺栓和螺母的工人各多少名?设安排x 人生产螺栓,符合题意的方程是( ) A .()1522035x x =⨯-B .()2152035x x ⨯=-C .()2201535x x ⨯=-D .()2021535x x =⨯-6.某工厂准备用200张铝片制作一批听装饮料瓶,每张铝片可制作9个瓶身或27个瓶底,已知1个瓶身和2个瓶底配成一套.问用其中多少张铝片制作瓶身,可以使制作的瓶身和瓶底恰好配套?若设用x 张铝片制作瓶身,根据题意,可列方程( )A .()927200x x =-B .()9227200x x =⨯-C .()2927200x x ⨯=-D .()2729200x x =⨯-7.2022年9月,花溪区抗击新冠病毒期间,为保障一线医护人员及抗疫自愿者的安全,需要大批防护服及防护面罩,为此某工厂加班生产防护服和防护面罩,已知工厂共40人,每人每天可加工防护服60件或防护面罩100个,已知一件防护服配一个防护面罩,为了使每天生产的防护服与防护面罩正好配套,需要安排生产防护服的人数是( )A .25人B .30人C .35人D .40人中正确的是( )A .①①B .①①C .①①D .①①二、填空题9.某车间有68名工人,每人每天能生产8个甲种部件或5个乙种部件,2个甲种部件和3个乙种部件配成一套,为使每天生产的两种部件刚好配套,应安排 名工人生产甲种配件.10.某车间有90名工人,每人平均每天加工大齿轮20个或小齿轮15个,已知2个大齿轮与3个小齿轮配成一套,问一天最多可以生产多少套这样成套的产品?设最多可生产套成x 套产品,则可列方程为 .11.某家具厂有60名工人,加工某种由一个桌面和四条桌腿的桌子,工人每天每人可以加工3个桌面或6个桌腿.为使每天生产的桌面和桌腿可以配套,设加工桌面的人数为x ,则可列方程为 . 12.某工艺品车间有20名工人,平均每人每天可制作3个大花瓶或8个小饰品,已知1个大花瓶与4个小饰品配成一套,为使每天制作的大花瓶和小饰品刚好配套,设安排x 名工人制作大花瓶,则可列方程为 .13.某眼镜厂车间有28名工人,每名工人每天可以生产60个镜架或90片镜片,要求每天生产的镜架和镜片刚好配套,则应安排 名工人生产镜片.14.一套仪器由一个A 部件和三个B 部件构成,用1m 3钢材可做30个A 部件或150个B 部件,现要用6m 3钢材制作这种仪器,设应用x m 3钢材做A 部件,剩余钢材做B 部件,恰好配套,则可列方程为 .15.光明服装厂要生产一批某种型号的工作服,已知3米长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.若计划用600米长的这种布料生产工作服,则用其中米布料生产裤子,才能恰好配套.16.制作一张桌子需要一个桌面和四个桌腿,1米3木材可制作20个桌面或制作400条桌腿,现有12米3的木材,要使生产出来的桌面和桌腿恰好都配成方桌,应安排米3木料用来生产桌面.三、解答题17.制作一种木床要用一个床板和4条床腿,324m1m木材可制作10个床板,或者制作200条床腿,现有3木材,要使生产出来的床板和床腿恰好都配成木床,应用多少立方米木材来生产床板?多少立方米木材生产床腿?18.某车间有15个工人.生产水桶、扁担两种商品.已知每人每天平均能生产水桶80个或扁担110个,若每2个水桶和1个扁担配成一套.则应分配多少人生产水桶,多少人生产扁担。
解一元一次方程实际问题专项练习题
解一元一次方程实际问题专项练习题
在解一元一次方程时,我们常常会遇到一些实际问题。
这些问题可以通过建立方程并解方程来求解。
下面是一些解一元一次方程实际问题的专项练题。
1. 题目一
一个长方形的宽度是长度的一半,周长为30米。
求长方形的长度和宽度。
解答
设长方形的长度为x,则宽度为x/2。
根据周长的定义,可以得到方程:
2(x + x/2) = 30
简化该方程可得:
2x + x = 30
合并同类项后得到:
3x = 30
解方程可以得到长方形的长度:
x = 10
将x的值代入宽度的方程,可以得到长方形的宽度:x/2 = 10/2 = 5
因此,该长方形的长度为10米,宽度为5米。
2. 题目二
一个有两个水桶,一个大桶和一个小桶。
大桶比小桶多装10
升水。
如果将小桶里的水倒入到大桶里,大桶就比小桶多装2升水。
求大桶和小桶分别能装多少升水。
解答
设小桶能装的水量为x升,则大桶能装的水量为x +10升。
根
据题目要求,可以得到方程:
(x + 2) - x = 10
简化该方程可得:
2 = 10
该方程没有解。
根据题意可知,出现这种情况是不可能的。
因此,该题无解。
以上是解一元一次方程实际问题的专项练题。
通过建立方程并解方程,我们可以求解实际问题中的未知数,解决实际生活中的各种应用问题。
*注意:本文档仅供参考,请勿引用未经证实的内容。
*。
实际问题与一元一次方程练习题
实际问题与一元一次方程练习题专题一:一元一次方程分配、调配、配套问题一、【配套问题】1、某车间22名工人生产螺母和螺钉,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?2、某工厂104名工人分别生产甲、乙两种产品,已知每个工人可生产甲种产品8个或乙种产品12个,3个甲种产品与2个乙种产品配成一套,问应分配多少工人生产甲种产品,多少工人生产乙种产品才能使生产的产品配套?3、一张方桌与四张椅子配成一套,如果5个工人每天能制11张椅子,每4个工人每天能制22张方桌,现有工人66人,应怎样合理分配生产椅子和桌子的工人才能使每天生产的方桌和椅子及时配套出厂?4、生产某种产品需经过两道工序,进行第一道工序时,每人每天可完成90件;进行第二道工序时,每人每天可完成120件。
今有14名工人分别参加这两道工序工作,问应如何安排人员,才能使每天生产的产品数量最多?5、XXX要生产某种学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?16、某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装土壤18袋或每2人每小时可抬土壤14袋,如何放置大好人力,才能使装泥和抬泥密切配合,而正好清场洁净。
调配问题】2、甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙队汽车数比甲队汽车数的2倍还多1辆,应从甲队调多少辆到乙车队?3、甲堆栈有煤200吨,乙堆栈有煤80吨,假如甲堆栈天天运出15吨,乙堆栈天天运进25吨,问多少天后两堆栈存煤相等?4、甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
实际问题与一元一次方程综合练习
11.在某张月历中,一个竖列上相邻的三个数的和是60。求出这三个数。
12.小彬假期外出旅行一周,这一周各天的日期之和是84,
小彬几号回家?
13.爷爷的生日那天的上、下、左、右4个日期的和为80,你能说出我爷爷的生日是几号吗?
5.在一次有12支球队参加的足球循环赛中,每两队必须赛一场,规定胜一场3分,平一场1分,负一场0分,某队在这次循环赛中所胜场数比所负的场数多两场,结果得18分,那么该队胜了几场?
6.暑假里,《新晚报》组织了“我们的小世界杯”足球邀请赛,勇士队在第一轮比赛中共赛了9场,得分17分.比赛规定胜一场得3分,平一场得1分,负一场得0分,勇士队在这一轮中只负了2场,那么这个队胜了几场?又平了几场呢?
12.甲、乙二人相距40千米,甲先出发1.5小时乙再出发,甲在后,乙在前,二人同向而行.甲的速度是每小时8千米,乙的速度是每小时6千米,甲出发后几小时可追上乙?
13.一旅客乘坐的火车以每小时40千米的速度前进,他看见迎面来的火车用了3秒时间从他身边驶过.已知迎面而来的火车长75千米,求它的速度。
14.一队步兵正以5.4千米/时的速度匀速前进。通讯员从队尾骑马到队头传令后,立刻返回队尾,总共用了10分钟,如果通讯员的速度是21.6千米/时,求步兵列的长是.
8.一条地下管线由甲工程单独铺设需要12天,由乙工程单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?
9.有一项工程,甲队单独做需要10天,甲、乙两队合做需要4天,乙单独做需要几天?
10.有一项工程,甲队单独做需要10天,甲、乙两队合做需要4天。如果甲队先做3天,然后两队合做还需要几天?
人教版七年级上册数学实际问题与一元一次方程(销售盈亏问题)专项训练
A.150元B.140元C.130元D.120元
二、填空题
9.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是_______元.
18.(1)220台;(2)154100元.
19.(1)共值691元;(2)是,节省了31.2元
20.(1)该水果经营户批发香蕉24千克,哈密瓜26千克;(2)202元.
15.乙种商品每件售价45元,利润率为50%,则乙种商品每件进价为____元.
16.某种衣服每件的进价为100元,如果按标价的八折销售时,每件的利润率为20%,则这种衣服每件的标价是__________元.
三、解答题
17.某商场从厂家购进了甲、乙两种商品,甲种商品的每件进价比乙种商品的每件进价少30元.若购进甲种商品4件,乙种商品5件,需要870元.
求:(1)该商场第一季度销售甲种冰箱多少台?
(2)若每台甲种冰箱的利润为250元,每台乙种冰箱的利润为300元,则该商场第二季度销售冰箱的总利润是多少元?
19.为了拉动内需,促进国内经济大循环,某超市在“元旦”期间搞促销活动,购物不超过200元不予优惠;购物超过200元不足500元的按全价的90%优惠;超过500元的,其中500元按9折优惠,超过部分按8折优惠.小明两次购物分别用了156元和478元.
8
15
(1)该水果经营户批发的香蕉和哈密瓜各是多少千kg?
(2)他当天卖完这些香蕉和哈密瓜可赚多少元?
参考答案
1.C
2.C
3.A
实际问题与一元一次方程练习题及答案
实际问题与一元一次方程练习题及答案1.某工地需要派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?2.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套,现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?3.某车间有工人85人,平均每人每天可以加工大齿轮8个或小齿轮10个,又知1个大齿轮和三个小齿轮配为一套,问应如何安排劳力使生产的产品刚好成套?4.某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?5.一张方桌与四张椅子配成一套,如果5个工人每天能制11张椅子,每4个工人每天能制22张方桌,现有工人66人,应怎样合理分配生产椅子和桌子的工人才能使每天生产的方桌和椅子及时配套出厂?6.生产某种产品需经过两道工序,进行第一道工序时,每人每天可完成90件;进行第二道工序时,每人每天可完成120件。
今有14名工人分别参加这两道工序工作,问应如何安排人员,才能使每天生产的产品数量最多?7.某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存这种布料600m,应如何分配布料做上衣和做裤子才能恰好配套?8.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净?9.某纺织厂有纺织工人300名,为增产创收,该纺织厂又增设了制衣车间,准备将这300名纺织工人合理分配到纺织车间和制衣车间。
现在知道工人每人每天平均能织布30米或制4件成衣,每件成衣用布1.5米,若使生产出的布匹刚好制成成衣,问应有多少人去生产成衣?10.有一些相同的房间需要粉刷墙面,一天3名一级技工去粉刷8个房间,结果其中有50㎡墙面未来得及刷,同样时间内5名二级技工粉刷了10个房间之外,还多刷了40㎡墙面,每名一级技工比二级技工一天多粉刷10㎡墙面。
人教版七年级上册数学实际问题与一元一次方程(行程问题)专项训练(含答案)
(2)到达“原生态劳动教育基地”后,需要购买门票,已知该基地门票票价情况如表,该校购买门票时共花了6250元,那么参加此次劳动实践教育的教师、学生各多少人?
11.甲、乙两站相距 公里,一列慢车从甲站开往乙站,每小时行 公里,一列快车从乙站开往甲站,每小时行 公里.慢车从甲站开出 小时后,快车从乙站开出,那么快车开出__________小时后快车与慢车相距 公里.
12.某人乘船由 地顺流而下到 地,然后又逆流而上到 地,共乘船 小时,已知船在静水中的速度是每小时 千米,水流速度是每小时 千米,已知 、 、 三地在一条直线上,若 、 两地距离 千米,则 、 两地之间的距离是__________千米.
类型
单价(元/人)
成人
20
学生
10
19.在数轴上,点A、B分别对应实数 和25,点M从A点出发,以每秒5个单位长度的速度沿数轴向右匀速运动;点N从A点以每秒7个单位长度的速度向右匀速运动;M,N两点到达B点后均停止运动;若点M出发1秒后点N才出发.
(1)点N出发后需要多长时间才追上点M?
(2)从点M出发开始到点M停止运动期间,何时M、N两点之间的距离刚好为1个单位长度?
A. B.
C. D.
5.我国元朝朱世杰所著的《算学启蒙》一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:“跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?”若慢马和快马从同一地点出发,设快马 天可以追上慢马,则可以列方程为()
七年级数学上册实际问题与一元一次方程练习题
七年级数学上册实际问题与一元一次方程练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.如图是一个数值转换机,如果输出的结果为﹣9,那么输入的数x 是_____.2.某数的3倍加上4等于10,设某数为x ,那么可列出方程为_____________.3.一个两位数的个位数字与十位数字之和为11,若这个两位数加上63,则所得新的两位数恰好成为个位数字与十位数字对调后组成的两位数,那么原来的两位数是_________.4.一个数与2的差的一半等于这个数的三分之一与1的和,则这个数是_______.5.传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,已知文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,为了计算该网站文创笔记本与珐琅书签销量的和,某同学列出了一元一次方程(2700)5900x x -+=.请你在横线上写出该同学设的未知数x 代表的是什么__________. 6.我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有_______两.(注:明代时1斤=16两)二、单选题7.疫情期间,小明去药店买口罩和消毒液(每包口罩单价相同,每瓶消毒液价格相同).若购买20包口罩和15瓶消毒液,则身上的钱还少25元,若购买19包口罩和13瓶消毒液,则他身上的钱会剩下15元,若小明购买16只口罩和7瓶消毒液,则( )A .他身上的钱会剩下135元B .他身上的钱会不足135元C .他身上的钱会剩下105元D .他身上的钱会不足105元8.干墨鱼用水浸泡后,重量可增加210%,某加工单位准备为某饭店提供湿墨鱼160kg ,问需要多少干墨鱼做原料?用x 表示所需干墨鱼的kg 数,则下列方程正确的是( ).A .2.116x =B .21160x x +=.C .21160x =⨯.D .1602.1x x += 9.父亲与小强下棋(设没有平局),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是( )A .2B .3C .4D .510.如图,现有3×3的方格,每个小方格内均有数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,记三个数字之和为P ,则P 的值是( )A .12B .15C .18D .2111.等腰三角形顶角度数比一个底角度数的2倍多20°,则这个底角的度数为( )A .30°B .40°C .50°D .60°12.初一(1)班有学生60名,其中参加数学小组的有36人,参加英语小组的人数比参加数学小组的人数少5人,并且这两个小组都不参加的人数比两个小组都参加的人数的14多2人.则同时参加这两个小组的人数是( )A .16B .12C .10D .8三、解答题13.有一个两位数,其值等于十位数字与个位数字之和的4倍,其十位数字比个位数字小2,求这个两位数. 14.小强(递上10元钱):爷爷,我买一枝钢笔和一个笔记本.售货员(爷爷):今天是“六一”儿童节,钢笔九折优惠,笔记本按标价卖给你,但如果你钢笔和笔记本都买,钱可不够了.小军:小强,钢笔的标价是笔记本的3倍.我借给你1.1元钱,就可以买这两样东西了.请你根据上述对话内容,算出钢笔和笔记本的标价.15.对于结论:当0a b +=时.330a b +=也成立.若将a 看成3a 的立方根,b 看成3b 的立方根.由此得出结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数”(1)举一个具体的例子进行验证;+的立方根.(2)互为相反数,且3x-的平方根是它本身,求x y参考答案:1.-21【分析】根据题意列出关于x 的方程,求出方程的解即可得到x 的值.【详解】根据题意得:(x +3)÷2=﹣9,即x +3=﹣18,解得:x =﹣21,故答案为:﹣21.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.2.3410x +=【分析】首先表示出某数的3倍为3x ,再表示出该数的3倍加4为3x +4,根据题意可得方程.【详解】解:设某数为x ,由题意得:3x +4=10,故答案为:3x +4=10.【点睛】本题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.3.29【分析】设这个两位数的个位数字为x ,则十位数字为11x -,根据题意列方程求解即可.【详解】解:设这个两位数的各位数字为x ,则十位数字为11x -由题意得:10(11)631011x x x x ⨯-++=+-化简得:18162x =解得:9x =,112x -=所以原来的两位数为29故答案为29【点睛】此题考查了一元一次方程的应用,解题的关键是理解题意找到等量关系列出方程.4.12【分析】设这个数为x ,根据题意列出方程求解即可.【详解】解:设这个数为x , 根据题意得:11(2)123x x -⨯=+, 解得:12x =,故答案为:12.【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解本题的关键. 5.珐琅书签的销量【分析】依题意即可得出答案.【详解】解:设珐琅书签的销量为x 件,依题意得:(2700)5900x x -+=故该同学设的未知数x 代表的是:珐琅书签的销量故答案为:珐琅书签的销量【点睛】本题考查了一元一次方程,能够理解题意,设出未知数,列出方程是解题的关键.6.46【分析】题目中分银子的人数和银子的总数不变,有两种分法,根据银子的总数一样建立等式,进行求解.【详解】解:设有x 人一起分银子,根据题意建立等式得,7498x x +=-,解得:6x =,∴银子共有:67446⨯+=(两)故答案是:46.【点睛】本题考查了一元一次方程在生活中的实际应用,解题的关键是:读懂题目意思,根据题目中的条件,建立等量关系.7.A【分析】设每包口罩x 元,每瓶消毒液y 元,根据小明带的总钱数是不变的,可得到:20x +15y -25=19x +13y +15,整理可得到x +2y =40.小明购买16只口罩和7瓶消毒液会消费16x +7y ,再利用20x +15y -25-(16x +7y )即可表示出小明身上剩下的钱数,代入计算即可.【详解】解:设每包口罩x 元,每瓶消毒液y 元,∵小明带的总钱数是不变的,∵20x +15y -25=19x +13y +15,整理得:x +2y =40.小明购买16只口罩和7瓶消毒液会消费:16x +7y ,∵剩余的钱为:20x +15y -25-(16x +7y )=20x +15y -25-16x -7y=4x+8y-25将x+2y=40代入得:4×40-25=135即小明身上的钱会剩下135元.故选:A【点睛】本题考查了字母表示数,代数式求值,整式加减运算,能够准确分析题意,找到不变量是解决本题的关键.8.B【分析】设干墨鱼为xkg,则增加的重量为2.1xkg,再根据题意列出方程即可.【详解】解:设干墨鱼为xkg,增加的重量为2.1xkg,所以x+2.1x=160,故选:B.【点睛】本题考查的是一元一次方程的应用,解答的关键是弄清数量关系,找出等量关系.9.C【详解】解:设小强胜了x盘,则父亲胜了(10﹣x)盘,根据题意得:3x=2(10﹣x),解得:x=4,答:小强胜了4盘.故选C【点睛】本题考查了列一元一次方程解决实际问题,一般步骤是:∵审题,找出已知量和未知量;∵设未知数,并用含未知数的代数式表示其它未知量;∵找等量关系,列方程;∵解方程;∵检验方程的解是否符合题意并写出答案10.D【分析】如图,A=P-10,C=x,求得E=P+x-17,D=P-x-7,由3+D+E=P,列式求解即可.【详解】解:如图,由题意得:A=P-10,设C=x,∵B=P-A-C=P-(P-10)-x=10-x,∵B+7+E=P,∵E=P-B-7=P-(10-x)-7=P+x-17,∵C+7+D=P,∵D=P-C-7=P-x-7,又∵3+D+E=P,∵3+P-x-7+P+x-17=P,整理得:2P-21=P,∵P=21.故选:D.【点睛】本题主要考查了整式的加减,图形的变化规律,学习过程中注意培养自己的观察、分析能力.11.B【分析】这个底角的度数为x,则顶角的度数为(2x+20°),根据三角形的内角和等于180°,即可求解.【详解】解:设这个底角的度数为x,则顶角的度数为(2x+20°),根据题意得:2220180x x++︒=︒,解得:40x=︒,即这个底角的度数为40°.故选:B【点睛】本题主要考查了等腰三角形的性质,三角形的内角和定理,熟练掌握等腰三角形的性质,三角形的内角和定理是解题的关键.12.B【分析】设同时参加这两个小组的人数为x人,根据参加这两个小组的人数与不参加这两个小组的人数之和等于60列方程即可求解,注意不能重复加同时参加这两个小组的人数.【详解】解:设同时参加这两个小组的人数为x人,则这两个小组都不参加的人数为124x⎛⎫+⎪⎝⎭人,由题意得:136(365)2604x x+--++=,解得12x=.故选:B .【点睛】本题考查的知识点是一元一次方程的应用,解题的关键是能根据题意准确列出一元一次方程.13.这个两位数是24.【分析】设十位数字为x ,则个位数字为x+2,根据这个两位数等于其数字之和的4倍列出方程,解方程即可.【详解】设十位数字为x ,则个位数字为x+2,根据题意得10x+x+2=4(x+x+2),解得x=2.答:这个两位数是24.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.14.钢笔标价为9元,笔记本标价为3元【分析】设笔记本的标价为x 元,则钢笔的标价为3x 元,根据花费的总钱数为(10+1.1)元列出方程即可.【详解】解:设笔记本的标价为x 元,则钢笔的标价为3x 元x +0.9⨯3x =10+1.1解得:x =3故钢笔的标价为:3⨯3=9(元)答:钢笔标价为9元,笔记本标价为3元.【点睛】本题考查一元一次方程,设出恰当的未知数,准确抓住等量关系列出方程是解题的关键.15.(1)见解析(2)1【分析】(1)举例338,8a b ==-,根据立方根的性质进行验证即可得;(2)先根据题中给的结论可得7y -与25y -互为相反数,由此建立方程可得y 的值,再根据平方根的性质可得30x -=,由此可得x 的值,然后根据立方根的性质即可得. (1)解:举例:338,8a b ==-,2(2)0+-=,此吋()880+-=,即8与8-互为相反数,所以“如果两数的立方根互为相反数,那么这两个数也互为相反数”成立.(2)解:∵7y -与25y -互为相反数,∵7250y y -+-=,解得2y =-,∵3x -的平方根是它本身,∵30x -=,解得3x =,∵321x y +=-=,∵x y +的立方根是1.【点睛】本题考查了平方根与立方根、一元一次方程的应用等知识点,熟练掌握平方根与立方根的性质是解题关键.。
实际问题与一元一次方程同步练习题
第三章一元一次方程3.4实际问题与一元一次方程一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知甲数是18,甲数比乙数的13还少1,设乙数为x,则可列方程为A.3(x–1)=18 B.3x–1=18C.13x–1=18 D.13(x+1)=18【答案】C【解析】由题意可得,13x−1=18,故选C.2.一件标价为300元的运动服,按九折销售仍可获利20元,设这件上衣的成本价为x元,根据题意,下面所列的方程.正确的是A.300×0.9–x=20 B.300×9–x=20C.300×0.9=x–20 D.300×9=x–20【答案】A3.某组女生占全组人数的13,再加上5名女生后就占全组人数的一半,设原来全组有x名同学,则可列方程为A.13x+5=12B.13x+5=12xC.13x+5=12(x+5) D.13x=12(x+5)【答案】C【解析】设原来全组有x名同学,则可列方程为:13x+5=12(x+5).故选C.4.实验中学七年级(2)班有学生56人,已知男生人数比女生人数的2倍少11人,求男生和女生各多少人.下面设未知数的方法,合适的是A.设总人数为x人B.设男生比女生多x人C.设男生人数是女生人数的x倍D.设女生人数为x人【答案】D【解析】∵男生人数比女生人数的2倍少11人,∴设女生为x人更为合适,故选D.5.甲商品的进价是1400元,按标价1700元的9折出售;乙商品的进价是400元,按标价520元的8折出售,则A.甲商品获利多B.乙商品获利多C.甲,乙一样多D.无法比较【答案】A【解析】甲商品获利为:1700×90%–1400=130(元),乙商品获利为:520×80%–400=16(元),∴甲商品获利多,故选A.二、填空题:请将答案填在题中横线上.6.一只签字笔进价0.8元,售价1元,销售这种笔的利润的百分比是__________.【答案】25%【解析】设销售这种笔的利润的百分比是x.根据题意,得0.8×(1+x)=1,解得x=25%.故答案为:25%.学#@科网7.七(1)班学生开展义务植树活动,参加者是未参加者的3倍,若班里共有48人,则参加者有__________人,未参加者有__________人.【答案】36,128.某项工作,甲单独做需20h完成,乙单独做需12h完成,现在先由甲单独做4h,剩下的部分由甲、乙合做一段时间后,乙再单独做2h全部完成,则甲、乙合做的时间为__________h.【答案】19 4【解析】设甲、乙合做的时间为x小时,由题意得:1 20(4+x)+112(x+2)=1,解得:x=194,故答案为:194.三、解答题:解答应写出文字说明、证明过程或演算步骤.9.一艘船从甲码头顺流而下到乙码头,用了2小时;逆流返回到甲码头时,用了2.5小时,已知水流速度是3千米/时,求船在静水中的平均速度.【答案】27千米/小时10.一个两位数,十位上的数字比个位上的数字大2,如果个位数字与十位数字交换,比原数小18,求这个两位数.【答案】42【解析】设原两位数的个位数字为x,则十位数字为(x+2),依题意有:10x+(x+2)=10(x+2)+x–18,整理,得11x+2=11x+2,即该等式恒成立,当x=1时,x+2=3,则原来的两位数是32,新两位数是23,32–23=9,不合题意,舍去;当x=2时,x+2=4,则原来的两位数是42,新两位数是24,42–24=18,符合题意;当x=3时,x+2=5,则原来的两位数是52,新两位数是25,52–25=27,不合题意,舍去;同理,当x=4、5、6、7、8、9时,均不合题意.综上所述,该两位数是42.11.希腊数学家丢番图(公元3~4世纪)的墓碑上记载着:“他生命的16是幸福的童年;再活了他生命的1 12,两颊长起了细细的胡须;又度过了一生的17,他结婚了;再过5年,他有了儿子,感到很幸福;可是儿子只活了他全部年龄的一半;儿子死后,他在极度痛苦中度过了4年,与世长辞了.”【答案】丢番图的年龄为84岁人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为() A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是() A.x=y B.ax+1=ay-1C .ax =-ayD .3-ax =3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( ) A .100元 B .105元 C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( ) A .130° B .40° C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b>0. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC是∠AOB的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF 是∠AOE 的平分线,所以∠AOE =2∠EOF =2(90°-α)=180°-2α.所以∠BOE =180°-∠AOE =180°-(180°-2α)=2α.所以∠BOE =2∠COF .(2)∠BOE =2∠COF 仍成立.理由:设∠AOC =β,则∠AOE =90°-β,又因为OF 是∠AOE 的平分线,所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF .25.解:(1)0.5x ;(0.65x -15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a 度.根据题意,得0.65a -15=0.55a ,解得a =150.答:该用户10月用电150度.26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)ON -AQ 的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
实际问题与一元一次方程练习题
实际问题与一元一次方程练习题1、扎西同学有150元零花钱,已经花了30元,预计以后每周花20元,经过多少周扎西同学将花完他的零花钱?2、卓玛种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高15厘米,几周后树苗长高到100厘米?解:设x周后树苗长高到100厘米.根据题意,得.解方程,得.答:周后树苗长高到100厘米.3、汽车上共有1500千克苹果,卸下600千克,还有30箱,每箱苹果重多少?4、根据题意,列出方程:(1)某数的3倍加上5等于它的4倍减3,求某数.设某数为x,根据题意,得:.(2)某数减去14等于它的13,求某数.设某数为x,根据题意,得,.(3)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?设经过x个月这台计算机的使用时间达到规定的检修时间2450小时,根据题意,得,.(4)用12元钱买了3个笔记本,找回1.2元,每个笔记本多少钱?设每个笔记本x元,根据题意,得,.5、某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?6、洗衣机厂今年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1﹕2﹕7,Ⅰ型洗衣机计划生产多少台?解:设Ⅰ型洗衣机计划生产x台,则Ⅱ型洗衣机计划生产台,Ⅲ型洗衣机计划生产台.根据题意,得.解方程,得.答:Ⅰ型洗衣机计划生台.7、某中学初一年级,一班人数是全年级人数的16,二班人数50人,两个班级人数的和是98人.求该校初一年级的人数.设该校初一年级的人数为x,根据题意,列方程得得.8、一个长方形的周长为32厘米,宽比长少4厘米,求这个长方形的宽?9、甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?(1)请你静下心来,仔仔细细把这道题默读几遍,弄清题目告诉了我们什么,要求的是什么.(2)如果设甲种铅笔买了x枝,那么乙种铅笔买了枝,买甲种铅笔用了元,买乙种铅笔用了元.(3)把这道题完整解一遍:解:设甲种铅笔买了x枝,则乙种铅笔买了枝.根据题意,列方程得.解方程得.乙种铅笔买的枝数==.答:甲种铅笔买了枝,乙种铅笔买了枝.10、一家人分一些苹果,每人3个剩3个,每人4个差2个.全家有几口人?共有多少个苹果?解:设全家有x口人.可以用两个式子来表示苹果总数,由此可得方程.解方程得.共有苹果个数== .答:全家有口人,共有个苹果.11、一个学生带钱到文具店买笔记本,若买3本就剩下1元,若买4本则差2元.笔记本每本多少元?这个学生共带了多少钱?(1)如果设笔记本每本x元,则这个学生所带的钱数可以用两个式子来表示,由此可列出方程.12、卓玛骑自行车从A村到B村,用了0.5小时;扎西走路从A村到B村,用了1.5小时.已知卓玛的速度比扎西的速度每小时快10千米,求扎西走路的速度.(1)设扎西走路的速度为每小时x千米,根据题意,在下面的图中填空:B村A村(2) 解:设扎西走路的速度为每小时x千米,则卓玛骑自行车的速度为每小时千米.根据卓玛骑自行车的路程与扎西走路的路程相等,列方程得.解方程得.答:扎西走路的速度为每小时千米.13、一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是每小时3千米,求船在静水中的速度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与一元一次方程综合练习【配套问题】1.某工地需要派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?2.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套,现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?3.某车间有工人85人,平均每人每天可以加工大齿轮8个或小齿轮10个,又知1个大齿轮和三个小齿轮配为一套,问应如何安排劳力使生产的产品刚好成套?4.某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?5.一张方桌与四张椅子配成一套,如果5个工人每天能制11张椅子,每4个工人每天能制22张方桌,现有工人66人,应怎样合理分配生产椅子和桌子的工人才能使每天生产的方桌和椅子及时配套出厂?6.生产某种产品需经过两道工序,进行第一道工序时,每人每天可完成90件;进行第二道工序时,每人每天可完成120件。
今有14名工人分别参加这两道工序工作,问应如何安排人员,才能使每天生产的产品数量最多?7.某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存这种布料600m,应如何分配布料做上衣和做裤子才能恰好配套?8.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净?9.某纺织厂有纺织工人300名,为增产创收,该纺织厂又增设了制衣车间,准备将这300名纺织工人合理分配到纺织车间和制衣车间。
现在知道工人每人每天平均能织布30米或制4件成衣,每件成衣用布1.5米,若使生产出的布匹刚好制成成衣,问应有多少人去生产成衣?10.有一些相同的房间需要粉刷墙面,一天3名一级技工去粉刷8个房间,结果其中有50㎡墙面未来得及刷,同样时间内5名二级技工粉刷了10个房间之外,还多刷了40㎡墙面,每名一级技工比二级技工一天多粉刷10㎡墙面。
求每个房间需要粉刷的墙面面积。
【工程问题】1.一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?2.一批零件,张师傅独做20时完成,王师傅独做30时完成。
如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件。
这批零件共有多少个?3.整理一批图书,由一个人做要40小时完成,现计划由一部分人先做4小时,再增加2人和他们一起做要8小时,完成这项工作。
假设这些人的工作效率相同,具体应先安排多少人工作?4.一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。
如果一开始是空池,打开放水管1时后又打开排水管,那么再过多长时间池内将没有水?5.要生产940个某种零件,甲,乙两人合作5天可以完成,若甲每天能生产这种零件80个,问乙每天能生产这种零件多少个?6.一项任务,原计划每天做80件,可按计划天数完成,实际上每天比原计划多完成25%,结果提前6天完成,问原计划几天完成?共完成多少件?7. 某车间一项工作由一名师傅去做要12天完成,由一名徒工去做要14天完成,现在派6名师傅和49名徒工共同完成,几小时可以完成?(一天工作时间为8小时)?8.一条地下管线由甲工程单独铺设需要12天,由乙工程单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?9.有一项工程,甲队单独做需要10天,甲、乙两队合做需要4天,乙单独做需要几天?10.有一项工程,甲队单独做需要10天,甲、乙两队合做需要4天。
如果甲队先做3天,然后两队合做还需要几天?【球赛积分问题】1.初一级进行法律知识竞赛,共有30题,答对一题得4分,不答或答错一题倒扣2分。
小明同学参加了竞赛,成绩是96分。
请问小明在竞赛中答对了多少题?2.在一次有12支球队参加的足球循环赛中,每两队必须赛一场,规定胜一场3分,平一场1分,负一场0分。
某队在这次循环赛中所胜场数比所负的场数多两场,结果得18分,那么该队胜了几场?3.在一次数学竞赛中,共有60题选择题,答对一题得2分,答错一题扣1分,不答题不得分也不扣分。
小华在竞赛中有2题忘记回答结果他得了92分。
问小华答对了多少题?4.一次足球赛11轮(即每队均需要需要11场)胜一场记2分,平一场记1分,负一场记0分。
北京“国安”队所负的场数是所胜场数的一半,结果共得14分,求“国安”队共平了多少场?5.在一次有12支球队参加的足球循环赛中,每两队必须赛一场,规定胜一场3分,平一场1分,负一场0分,某队在这次循环赛中所胜场数比所负的场数多两场,结果得18分,那么该队胜了几场?6.暑假里,《新晚报》组织了“我们的小世界杯”足球邀请赛,勇士队在第一轮比赛中共赛了9场,得分17分.比赛规定胜一场得3分,平一场得1分,负一场得0分,勇士队在这一轮中只负了2场,那么这个队胜了几场?又平了几场呢?7.在高校联赛中,广州大学共打了8场比赛,结果负了2场,共积14分。
已知胜一场积3分,平一场积1分,负一场没积分。
广州大学在联赛中胜了多少场?8.一份试卷共25道题,每道题都给出四个答案,其中只有一个是正确的,要求学生把正确答案选出来,每题选对得4,不选或选错扣1分,如果一个学生得90分,那么他选对几题?9.爷爷和孙子下12盘棋,未出现和棋,得分相同,爷爷赢一盘得1分,孙子赢一盘得3分,爷爷赢了多少盘?能出现爷爷得分是孙子的2倍吗?能出现爷爷得分比孙子多5分吗?请说明理由。
10.数学竟赛共有20道题.答对一题得5分.不答或答错扣3分.则要得84分需要答对几道题?【盈亏问题】1.仙游某琴行同时卖出两台钢琴,每台售价为960元。
其中一台盈利20%,另一台亏损20%。
这次琴行是盈利还是亏损,或是不盈不亏?2.商店对某种商品作调价,按原价的8折出售,此时商品的利润率是10%,若该商品的进价为1600元,问商品的原价是多少?3.某型号文曲星每件标价900元,在促销过程中,商店按标价的9折降价出售并让利40 元,可获利10%。
问这种商品进价是多少元?4.某种商品零售价为每件900元,为了适应市场竞争,商店决定按售价9折降价并让利48元销售,仍可获利20%,则这种商品进货价是每件多少元?5.某股民将甲、乙两种股票卖出,甲种股票卖了1500元,盈利20%,乙种股票卖了1600元,但亏损20%。
该股民在这次交易中是盈利还是亏损?盈利或亏损多少元?6.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元。
这种商品的定价是多少元?7.某种商品每件的进价为250元,按标价的九折销售时,利润率为%,这种商品每件标价是多少?8.(古代问题)某人工作一年的报酬是年终给他一件衣服和10枚银币,但他干满7个月就决定不再继续干了,结帐时,给了他一件衣服和2枚银币。
这件衣服值多少银币?9.某商店实行分期付款,小明的爸爸买了一台900元的电脑,第一次付款30%,以后每月付450元,需多长时间才能付完?10.某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?11.某种商品零售价为每件900元,为了适应市场竞争,商店按零售价的9折降价,并让利40元销售,仍可获利10%(相对进价),则这种商品进货每件多少元?【行程问题】1.甲、乙两站的路程为360千米,一列快车从乙站开出,每小时行驶72千米;一列慢车从甲站开出,每小时行驶48千米。
两列火车同时开出,相向而行,经过多少小时相遇?快车先开25分钟,两车相向而行,慢车行驶了多少小时两车相遇?2.一条环形跑道长400米,甲练习骑自行车,平均每分钟行驶550米,乙练习赛跑,平均每分钟跑250米.两人同时、同地、同向出发,经过多少时间,两人首次相遇?3.A,B两地相距15千米,甲每小时行5千米,乙每小时行4千米,甲、乙两队分别从A,B出发,背向而行,几小时后,两人相距60千米?4.甲、乙两人练习100米赛跑,甲每秒跑7米,乙每秒跑6.5米。
若甲让乙先跑1秒,甲经过几秒可以追上乙?5.敌、我相距28千米,得知敌军1小时前以每小时8千米的速度逃跑,现在我军以每小时14千米的速度追敌军,问几小时可以追上敌军?6.甲、乙两站间的路程为284千米.一列慢车从甲站开往乙站,每小时行驶48千米;慢车行驶了1小时后,另有一列快车从乙站开往甲站,每小时行驶70千米.快车行驶了几小时与慢车相遇?7.甲、乙骑自行车同时从相距65千米的两地相向而行,2小时相遇.甲比乙每小时多骑2.5千米,求乙的时速。
8.甲、乙两架飞机同时从相距750千米的两个机场相向飞行,飞了半小时到达同一中途机场,如果甲机的速度是乙机的速度的倍,求乙机的速度。
9.一列客车长200米,一列货车长280米,在平行的轨道上相向行驶,从相遇到车尾离开经过18秒,客车与货车的速度比是5∶3,问两车每秒各行驶多少米?10.一队学生去校外参加劳动,以4千米/时的速度步行前往.走了半小时,学校有紧急通知要传给队长,通讯员骑自行车以14千米/时的速度按原路追上去.通讯员要多少分才能追上学生队伍?11.甲、乙两人住处之间的路程为30千米.某天他俩同时骑摩托车出发去某地,甲在乙后面,乙每小时骑52千米,甲每小时骑70千米.经过多少时间甲赶上乙?12.甲、乙二人相距40千米,甲先出发小时乙再出发,甲在后,乙在前,二人同向而行.甲的速度是每小时8千米,乙的速度是每小时6千米,甲出发后几小时可追上乙?13.一旅客乘坐的火车以每小时40千米的速度前进,他看见迎面来的火车用了3秒时间从他身边驶过.已知迎面而来的火车长75千米,求它的速度。
14.一队步兵正以5.4千米/时的速度匀速前进。
通讯员从队尾骑马到队头传令后,立刻返回队尾,总共用了10分钟,如果通讯员的速度是21.6千米/时,求步兵列的长是.【数字问题】1.有甲、乙两个同学,甲对乙说:“如果把你的笔给我一支,那么我的笔是你的笔的两倍”,乙对甲说,“如果把你的笔给我一支,那么我的笔和你的笔一样多”,问他们各有几枝笔?2.有一个两位数,十位数字比个位数字的2倍多1,将两个数字调换顺序后所得的数比原数小36,求原数?3.九月初,张楠同学升入中学,老师宣布学校要组织初一年级的学生到外地军训,要求每位学生准备好一周的日用品,张楠回家告诉妈妈,妈妈问张楠哪天出发,张楠想了想说:“这些天的日期之和是49”,问张楠是哪天出发的?4.有一些分别标有6,12,18,24,……的卡片,后一张卡片上的数比前一张卡片上的数大6,你能拿到相邻的3张卡片,使得卡片上的数之和是375吗?如果能拿到,请求出这三张卡片上的数各是多少?如果拿不到,请说明理由。