实际问题与一元一次方程

合集下载

实际问题与一元一次方程(行程问题)

实际问题与一元一次方程(行程问题)

1. 谈谈你的收获. 2.你还有什么疑惑吗?
相遇问题: 甲路程+乙路程=总路程 追及问题: 追者路程=被追者路程+相隔距离
<1>学会借助线段图分析等量关 系;
<2>在探索解决实际问题时,应 从多角度思考问题.
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
一列客车和一列货车同时从两地车 站相对开出,货车每小时行35千米, 客车每小时行45千米,2.5小时相遇, 两车站相距多少千米?
速度、路程、时间之间的关系? 路程= 速度×时间 速度= 路程÷时间 时间= 路程÷速度
导入
想一想回答下面的问题:
1、A、B两车分别从相距S千米的甲、乙两地同时出 发,相向而行,两车会相遇吗?
精讲 例题


例1、 A、B两车分 别停靠在相距240千米
线段图分析:
的甲、乙两地,甲车每 小时行50千米,乙车每 小时行30千米.
A 50 x

80千米
30 x B

〔2若两车同时相向而 行,请问B车行了多长时 第一种情况: 间后两车相距80千米? A车路程+B车路程+相距80千米=
相距路程
相等关系:总量=各分量之和
3若解两:车设相〔y向小4而8时+行后60,慢两X=车车1先6相2开距出2710小公时里,再,由用题多意少得时:间
4两两车车同〔才时4能同8+相向解60遇 而得y行?:+1〔X6=2快1=.2车57在0 后面,几小时后快车 解可答:以:设追两再解上列用得慢火z:车车小?同时时两相车y向才=1而能行相,遇1.,5由小题时意可得以:相遇
解:设小王追上连队需要x小时,则小王行驶的路程为 14x千米,连队所行路程是 (6 18 6x) 千米 60 等量关系:小王所行路程=连队所行路程

七上数学实际问题与一元一次方程

七上数学实际问题与一元一次方程

七上数学实际问题与一元一次方程一、概述数学作为一门基础学科,在我们的日常生活中扮演着重要的角色。

数学知识的应用不仅仅停留在课堂上,更多的是贯穿在我们的日常生活和实际问题中。

在七年级的数学课程中,一元一次方程是一个重要的概念。

本文将通过介绍一元一次方程的实际问题,探讨其在现实生活中的应用。

二、什么是一元一次方程?一元一次方程是指方程中只含有一个未知数,并且未知数的最高次数为一的方程。

一般来说,一元一次方程的一般形式为ax+b=c,其中a、b、c为已知数,x为未知数。

通过解一元一次方程可以求出未知数的值,从而解决实际问题。

三、一元一次方程在实际问题中的应用1. 购物问题假设小明去商店买东西,他手头有一些零钱,但是不知道能不能够买到心仪的物品。

假设小明手头有5元、10元、20元三种面额的纸币各若干张,他想要买一件价值95元的物品,问他是否能够买到?这个问题可以用一元一次方程来解决。

设5元、10元、20元的钞票分别为x、y、z张,则可以得到一个一元一次方程:5x+10y+20z=95。

通过解这个方程,可以求出x、y、z 的取值范围,从而判断小明能否买到心仪的物品。

2. 分配问题假设一个班级有40个学生,老师根据学生的成绩等级分别设立了三个奖励等级:一等奖、二等奖、三等奖。

一等奖的奖品价值200元,二等奖的奖品价值100元,三等奖的奖品价值50元。

如果班级设置的奖品总价值不超过6000元,求一等奖、二等奖、三等奖分别应该设多少名学生?这个问题也可以用一元一次方程来解决。

设一等奖、二等奖、三等奖的学生数分别为x、y、z名,则可以得到一个一元一次方程:200x+100y+50z=6000。

通过解这个方程,可以求出x、y、z的取值范围,从而得出合理的分配方案。

3. 速度问题假设小明和小华分别从A地和B地同时出发,小明的速度是v1,小华的速度是v2。

他们在t小时后相遇,求A地到B地的距离。

这个问题也可以用一元一次方程来解决。

实际问题与一元一次方程洋葱数学

实际问题与一元一次方程洋葱数学

实际问题与一元一次方程洋葱数学摘要:一、实际问题与一元一次方程的关联1.实际生活中的问题2.一元一次方程的应用3.洋葱数学与实际问题的结合二、一元一次方程的基本概念1.一元一次方程的定义2.常见的一元一次方程形式3.一元一次方程的解法三、洋葱数学解决一元一次方程的实例1.问题背景及分析2.利用洋葱数学解一元一次方程3.结果与讨论正文:一、实际问题与一元一次方程的关联在现实生活中,我们常常会遇到各种需要解决的问题。

这些问题可能涉及到数量、时间和各种变量的关系。

一元一次方程正是用来描述这类关系的数学工具。

通过建立一元一次方程,我们可以将实际问题转化为数学问题,从而更方便地分析和解决。

洋葱数学作为一种寓教于乐的在线教育平台,巧妙地将实际问题与一元一次方程相结合,使得学习变得更加生动有趣。

二、一元一次方程的基本概念1.一元一次方程的定义:一元一次方程是指形如ax + b = 0 的方程,其中a 和b 是已知数,x 是未知数。

2.常见的一元一次方程形式:除了ax + b = 0 的标准形式外,一元一次方程还可以有其他形式,如a1x + a2 = b、ax + by = c 等。

3.一元一次方程的解法:求解一元一次方程的方法有多种,如直接开平方法、因式分解法、完全平方公式法等。

其中最常用的是直接开平方法,即x = -b / a。

三、洋葱数学解决一元一次方程的实例1.问题背景及分析:假设有一个果园,苹果树的数量是梨树的两倍,已知苹果树有15 棵,求梨树的数量。

2.利用洋葱数学解一元一次方程:首先,根据题意可以建立一元一次方程:2x = 15,其中x 表示梨树的数量。

3.结果与讨论:将方程2x = 15 带入求解,得到x = 7.5。

由于梨树的数量应该是整数,所以这个结果并不符合实际情况。

此时,我们需要对题目进行进一步的分析,找出问题所在。

通过回顾题目,我们发现题目中“苹果树的数量是梨树的两倍”这一条件并未给出,因此需要补充这一条件,重新建立一元一次方程。

实际问题与一元一次方程

实际问题与一元一次方程

实际问题与一元一次方程实际问题与一元一次方程我们生活在一个充满实际问题的世界中,这些问题可以涉及到各个领域,例如财务管理、物理学、化学和生物学等等。

很多时候解决这些实际问题需要运用数学知识,特别是代数中的方程。

其中,一元一次方程是最简单也是最常见的一种方程。

一元一次方程可以写成形如ax + b = 0的形式,其中a和b是已知的常数,而x是未知数。

这种方程可以通过变量的代数运算来求解,从而得到未知数的值。

这样,我们可以将实际问题转化为一元一次方程,然后求解方程,最终得到实际问题的答案。

下面我将给出几个实际问题,并使用一元一次方程来解决这些问题。

问题1:电影院售票问题某个电影院的票价为67元,一天售出的票数为150张,总共收入9945元。

求这个电影院的固定费用。

我们可以将这个问题转化为一个一元一次方程。

设固定费用为x元,则电影院的总收入等于售票收入加上固定费用。

根据题目中的条件,我们可以列出方程:67 * 150 + x = 9945。

通过求解这个方程,我们可以得到固定费用的值。

问题2:汽车油耗问题一辆汽车每行驶100公里,需要消耗8升汽油。

求这辆汽车每公里的油耗。

我们可以设每公里的油耗为x升,则汽车每行驶100公里的总耗油量为100 * x升。

根据题目中的条件,我们可以列出方程:100 * x = 8。

通过求解这个方程,我们可以得到每公里的油耗。

问题3:商品价格打折问题某商店的商品原价为x元,现在打折后的价格为80元,求原价。

我们可以设商品原价为x元,则打折后的价格为80元。

根据题目中的条件,我们可以列出方程:x - 80 = 0。

通过求解这个方程,我们可以得到商品的原价。

通过以上三个问题的解答,我们可以看到一元一次方程在解决实际问题中的应用广泛。

在实际生活中,我们还可以运用一元一次方程来解决许多其他类型的问题,例如距离、速度和时间的关系等。

虽然一元一次方程是最简单的一种方程,但它提供了解决实际问题的基本思路和方法。

实际问题与一元一次方程解题技巧

实际问题与一元一次方程解题技巧

实际问题与一元一次方程解题技巧现实生活中常常需要列方程解决实际问题。

实际问题的内容不一定很精确,它一般比数学问题更宽一些。

如工程问题、调配问题、生产问题、造价问题、行程问题、时间问题等都是实际生活中的典型问题。

这些问题和方程对提高我们的数学素养和解决实际问题的能力有很大的帮助。

一、实际问题转化为数学问题——建立方程实际问题往往很复杂,涉及到的未知数很多,关系很复杂,列方程往往无从下手。

这就要求我们先认真审题,从中找出已知量和未知量,再找出它们之间的数量关系,从而列出方程。

例:一个水池可贮水250吨,现水池中已有水50吨,再注入多少水才能使水池中水量达300吨?分析:这是一个工程问题,先要求出水池的贮水增量与注入的水量之间的关系,再根据题目条件列出方程。

解:设再注入x吨水,则有方程:(250+50)+x=300二、解一元一次方程——化简求值解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项、系数化为1。

在解某些方程时,往往需要灵活运用各种方法,如因式分解法、公式法等。

在解一元一次方程时,要注意检验。

例:解方程:3(2x-1)-(x+2)=8-2(x-1)分析:去括号、移项时要注意符号的变化。

解:去括号得:6x-3-x-2=8-2x+2移项合并同类项得:7x=13解得:x=1.3三、实际问题解答要完整——实际问题解答时要注意完整地叙述表达实际问题中的对象、关系、叙述准确、完整;特别是实际问题的等量关系,在解答过程中常常需要构造代数式把它转化为一元一次方程加以解决;另外对实际问题的解答要有初步估计,看看结果是否符合实际情况。

解一元一次方程的基本步骤也可以直接应用于一元一次方程的实际问题。

在解答实际问题时,我们还要注意以下几点:1. 实际问题中有些数据是多余的,在解答时可以不要;如果某些数据在题目中没有出现,当然也不能代入。

2. 实际问题中数量关系式较多时容易使人分辨不清,在列方程的过程中,对于基本数量关系一定要用具体的字或词表示出来,防止由于概括不当造成的错误。

一元一次方程与实际问题

一元一次方程与实际问题

一元一次方程与实际问题一元一次方程是数学中最基础、最常见的方程之一。

它由一个未知数和其他数构成,满足未知数的最高次数为一。

实际问题中,一元一次方程可以帮助我们解决很多实际情境中的数学难题。

例如,我们可以利用一元一次方程解决以下几类问题:1. 比例问题:假设一公斤苹果的价格为x元,那么y公斤苹果的价格可以表示为y * x元。

如果知道y=3公斤苹果的价格为6元,我们可以列出方程3x=6。

通过求解这个方程,我们可以得到每公斤苹果的价格x=2元。

2. 几何问题:假设一个长方形的长度为x米,宽度为2米。

如果知道长方形的面积为6平方米,我们可以列出方程x * 2 = 6。

通过求解这个方程,我们可以得到长方形的长度x=3米。

3. 配平化学方程:在化学反应中,我们常常需要配平化学方程以满足质量守恒定律和原子数守恒定律。

一元一次方程可以帮助我们解决配平化学方程的问题。

例如,对于化学反应Na + H2O → NaOH + H2,我们可以列出方程xNa + yH2O → zNaOH + wH2,其中x、y、z、w分别表示相应的系数。

通过求解这个方程系统,我们可以得到配平后的化学方程。

4. 商业问题:一元一次方程也常用于解决商业问题。

例如,假设某公司每个月固定的营业额为20000元,并且每卖出一件商品可以获利50元。

如果该公司希望达到每月利润6000元的目标,我们可以列出方程20000 + 50x = 26000。

通过求解这个方程,我们可以得知该公司需要卖出120件商品才能实现目标利润。

总之,一元一次方程是解决实际问题中的数学工具之一。

通过学习和应用一元一次方程,我们可以解决各种实际情况下的计算难题,并在日常生活中运用数学思维解决实际问题。

实际问题与一元一次方程

实际问题与一元一次方程

2023实际问题与一元一次方程CATALOGUE目录•引言•实际问题与一元一次方程的基础知识•实际问题与一元一次方程的应用•复杂实际问题与一元一次方程的解决策略•实际问题的创新思考与一元一次方程的拓展应用01引言1什么是实际问题与一元一次方程?23实际问题是指与生活、工作、学习等实际情境相关的问题,通常需要解决的是数量关系和空间关系。

一元一次方程是一种数学模型,它由一个未知数和一个常数组成,并且未知数的最高次数为1。

实际问题与一元一次方程是数学应用题的重要组成部分,通过建立数学模型,解决实际问题。

03增强数学兴趣通过解决实际问题,可以增强对数学的兴趣和好奇心,提高学习数学的积极性。

为什么学习实际问题与一元一次方程?01提高数学应用能力学习实际问题与一元一次方程能够提高数学应用能力,更好地理解数量关系和空间关系,解决实际生活中的问题。

02培养逻辑思维解决实际问题需要分析和推理,学习一元一次方程能够培养逻辑思维和解决问题的能力。

02实际问题与一元一次方程的基础知识一元一次方程是一个等式,其中只包含一个未知数,未知数的最高次数为1。

定义ax + b = 0,其中a、b为常数,且a≠0。

形式通过移项、合并同类项、系数化为1等方法求解未知数的值。

解法将方程中的未知数移到等式的另一边,常数项移到等式的另一边。

移项合并同类项系数化为1将方程中相同类型的项合并。

将方程中的系数化为1,从而得到未知数的值。

030201一元一次方程的应用场景物理应用在物理问题中,一元一次方程可以用来求解物理量之间的关系,如速度、加速度等。

经济应用在经济问题中,一元一次方程可以用来求解成本、价格等问题。

计算应用题在计算问题中,一元一次方程可以用来求解未知数,如工程问题、相遇问题等。

03实际问题与一元一次方程的应用假设商品原价为x元,打折后的价格为y元,折扣率为z,则有方程x × (1-z) = y。

通过该方程可以求解折扣率z和打折后的价格y。

实际问题与一元一次方程(基础版)含答案

实际问题与一元一次方程(基础版)含答案

实际问题与一元一次方程(基础版)含答案【学习目标】1.熟练掌握分析解决实际问题的一般方法及步骤;2.熟悉行程,工程,配套及和差倍分问题的解题思路.【要点梳理】知识点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、设、列、解、检验、答.技巧小结:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.知识点二、常见列方程解应用题的几种类型1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【活学活用】类型一、和差倍分问题例1.(2016•黄冈)在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?【思路点拨】设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇.结合七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,即可列出关于x的一元一次方程,解方程即可得出结论.【答案解析】解:设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇,依题意得:(x+2)×2=118﹣x,解得:x=38.答:七年级收到的征文有38篇.【总结升华】本题考查了一元一次方程的应用,解题的关键是列出方程(x+2)×2=118﹣x.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.举一反三:【变式】(2015•南充)学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是()A. 25台B. 50台C. 75台D. 100台【答案解析】C.解:设今年购置计算机的数量是x台,去年购置计算机的数量是(100﹣x)台,根据题意可得:x=3(100﹣x),解得:x=75.类型二、行程问题1.一般问题例2.小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米?【答案解析】解:设小山娃预订的时间为x 小时,由题意得:4x+0.5=5(x-0.5),解得x =3.所以4x+0.5=4×3+0.5=12.5(千米).答:学校到县城的距离是12.5千米.【总结升华】当直接设未知数有困难时,可采用间接设的方法.即所设的不是最后所求的,而是通过求其它的数量间接地求最后的未知量.举一反三:【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度.【答案解析】解:设这段坡路长为a 千米,汽车的平均速度为x 千米/时,则上坡行驶的时间为10a 小时,下坡行驶的时间为20a 小时.依题意,得:21020a a x a ⎛⎫+= ⎪⎝⎭, 化简得: 340ax a =.显然a ≠0,解得1133x =.答:汽车的平均速度为1133千米/时.2.相遇问题(相向问题)例3. A 、B 两地相距100km ,甲、乙两人骑自行车分别从A 、B 两地出发相向而行,甲的速度是23km/h ,乙的速度是21km/h ,甲骑了1h 后,乙从B 地出发,问甲经过多少时间与乙相遇?【答案解析】解:设甲经过x 小时与乙相遇.由题意得:()2312321(1)100x ⨯++-=.解得,x=2.75.答:甲经过2.75小时与乙相遇.【总结升华】等量关系:甲走的路程+乙走的路程=100km举一反三:【变式】甲、乙两人骑自行车,同时从相距45km 的两地相向而行,2小时相遇,每小时甲比乙多走2.5km ,求甲、乙每小时各行驶多少千米?【答案解析】解:设乙每小时行驶x 千米,则甲每小时行驶(x +2.5)千米,根据题意,得:2( 2.5)245x x ++=.解得:10x =.2.510 2.512.5x +=+=(千米)答:甲每小时行驶12.5千米,乙每小时行驶10千米3.追及问题(同向问题)例4.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟时,学校要将一紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍?【答案解析】解:设通讯员x 小时可以追上学生队伍,则根据题意, 得18145560x x =⨯+. 得:16x =, 16小时=10分钟. 答:通讯员用10分钟可以追上学生队伍.【总结升华】追及问题:路程差=速度差×时间,此外注意:方程中x 表示小时,18表示分钟,两边单位不一致,应先统一单位.4.航行问题(顺逆流问题)例5.一艘船航行于A 、B 两个码头之间,轮船顺水航行需3小时,逆水航行需5小时,已知水流速度是4千米/时,求这两个码头之间的距离.【答案解析】解法1:设船在静水中速度为x 千米/时,则船顺水航行的速度为(x+4)千米/时,逆水航行的速度为(x-4)千米/时,由两码头的距离不变得方程:3(x+4)=5(x-4),解得:x=16,(16+4)×3=60(千米).答:两码头之间的距离为60千米.解法2:设A 、B 两码头之间的距离为x 千米,则船顺水航行时速度为3x 千米/时,逆水航行时速度为5x 千米/时,由船在静水中的速度不变得方程:4435x x -=+,解得:60x =.答:两码头之间的距离为60千米.【总结升华】顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程.类似地,当物体在空中飞翔时,常会遇到顺风逆风问题,解题思路类似顺逆流问题.类型三、工程问题例6.一个水池有两个注水管,两个水管同时注水,10小时可以注满水池;甲管单独开15小时可以注满水池,现两管同时注水7小时,关掉甲管,单独开乙管注水,还需要几小时能注满水池?【思路点拨】视水管的蓄水量为“1”,设乙管还需x 小时可以注满水池;那么甲乙合注1小时注水池的110,甲管单独注水每小时注水池的115,合注7小时注水池的710,乙管每小时注水池的111015⎛⎫- ⎪⎝⎭. 【答案解析】解:设乙管还需x 小时才能注满水池.由题意得方程:1171101510x ⎛⎫-=- ⎪⎝⎭. 解此方程得:x =9.答:单独开乙管,还需9小时可以注满水池.【总结升华】工作效率×工作时间=工作量,如果没有具体的工作量,一般视总的工作量为“1” .举一反三:【变式】修建某处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合作,但乙中途离开了一段时间,后两天由乙、丙合作完成问乙中途离开了几天?【答案解析】解:设乙中途离开x 天,由题意得:1117(72)21141812x ⨯+-++⨯=. 解得:3x =.答:乙中途离开了3天.类型四、调配问题(比例问题、劳动力调配问题)例7.(2015春•衡阳校级月考)某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x 人,则可列方程( )A . 22+x=2×26B . 22+x=2(26﹣x )C . 2(22+x )=26﹣xD . 22=2(26﹣x )【思路点拨】设抽调x 人,则调后一组有(22+x )人,第二组有(26﹣x )人,根据关键语句:使第一组的人数是第二组的2倍列出方程即可.【答案解析】B .解:设抽调x 人,由题意得:(22+x )=2(26﹣x ),【总结升华】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,表示出调后两个组的人数.举一反三:【变式】甲队有72人,乙队有68人,需要从甲队调出多少人到乙队,才能使甲队恰好是乙队人数的34.【答案解析】:设从甲队调出x 人到乙队.由题意得,()372684x x -=+. 解得,x=12. 答:需要从甲队调出 12人到乙队,才能使甲队恰好是乙队人数的34 .【巩固练习】一、选择题1. 一个长方形的周长为26 cm, 这个长方形的长减少1 cm, 宽增加2 cm, 就可成为一个正方形, 设长方形的长为 x cm, 则可列方程 ( ) .A. ()2261+-=-x xB. ()2131+-=-x xC. ()2261--=+x xD. 2)13(1--=+x x2.飞机逆风时速度为x 千米/小时,风速为y 千米/小时,则飞机顺风时速度为 ( ) .A .()x y +千米/小时B .()x y -千米/小时C .(2)x y +千米/小时D .(2)x y +千米/小时3.(2016•聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.724. 甲能在11天内独立完成某项工作, 乙的工作效率比甲高10%, 那么乙独立完成这项工作的天数为 ( ) .A.10天 B. 12.1天C.9.9天D.9天.5.甲列车从A地以50千米/时的速度开往B地,1小时后,乙列车从B地以70千米/时的速度开往A地,如果A,B两地相距200千米,则两车相遇点距A地( )千米.A. 100B. 112C. 112.5D. 114.56.(2015春•宁波期中)某班同学去划船,若每船坐7人,则余下5人没有座位;若每船坐8人,则又空出2个座位.这个班参加划船的同学人数和船数分别是()A. 47,6 B. 46,6 C. 54,7 D. 61,8二、填空题7.湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个湘莲,付50元,找回38元,设每个湘莲的价格为x元,根据题意,列出方程为______________.8.某校用56m长的篱笆围成一个长方形的生物园,要使长为16 m,则宽为________m.9.小明和他父亲的年龄之和为54,又知父亲年龄是小明年龄的3倍少2岁,则他父亲的年龄为____岁.10.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.(1)当两人同时同地背向而行时,经过________秒钟两人首次相遇;(2)两人同时同地同向而行时,经过________秒钟两人首次相遇.11.(2016春•原阳县校级月考)某水池有甲进水管和乙出水管,已知单开甲注满水池需6h,单开乙管放完全池水需要9h,当同时开放甲、乙两管时需要h水池水量达全池的.12.王会计在结账时发现现金少了153.9元,查账时得知是一笔支出款的小数点看错了一位.王会计查出这笔看错了的支出款实际是________元.三、解答题13. A、B两地相距216千米,甲、乙分别在A、B两地,若甲骑车的速度为15千米/时,乙骑车的速度为12千米/时。

实际问题与一元一次方程公式总结

实际问题与一元一次方程公式总结
S 总= S甲+S乙 S 总= (V甲+V乙)T
b、工程款=工程单价*工作时间S 总= S甲+S乙=甲单价*T甲+乙单价*T乙
c、合作类题型
S 总= S甲+S乙= V甲t甲合作时间+V乙t甲合作时间
三、和倍分差问题
加(和)—+ 减(差)-- 乘(倍)—* 分(除)—/
四、数字问题
123= 1*100+2*10+3*1
实际问题与一元一次方程公式模型总结
一、行程问题(路程=速度*时间)
a、相遇问题
S 总= S甲+S乙 S 总= (V甲+V乙)T
b、追击问题
S 差= S甲-S乙 S 总= S甲+S乙 S 总= (V甲-V乙)T
c、顺逆流问题
V顺=V船+V水
V逆=V船-V水
二、工程问题(a、工程总量=工作时间*工作效率)
xyz=100x+10y+z
五、利润问题
利润=售价-进价(标价-成本)
售价=标价*折数
利润金*期数*利率*(1-利息税)
本息和=本金+利息
年利率=月利率* 12

实际问题与一元一次方程

实际问题与一元一次方程

实际问题与一元一次方程【学习目标】1.熟练掌握分析解决实际问题的一般方法及步骤;2.熟悉行程,工程,配套及和差倍分问题的解题思路.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.要点二、常见列方程解应用题的几种类型1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一,同地不同时出发:前者走的路程=追者走的路程; 第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度, 顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.5.利润问题 (1) =100% 利润利润率进价(2) 标价=成本(或进价)×(1+利润率)(3) 实际售价=标价×打折率(4) 利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.6.存贷款问题(1)利息=本金×利率×期数(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)(3)实得利息=利息-利息税(4)利息税=利息×利息税率(5)年利率=月利率×12(6)月利率=年利率×121 7.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a ,十位数字为b ,则这个两位数可以表示为10b+a .8.方案问题选择设计方案的一般步骤:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用【典型例题】类型一、和差倍分问题例1.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?等量关系为:油箱中剩余汽油+1=用去的汽油.【变式】某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班有多少学生?一共展出了多少张邮票?类型二、行程问题1.车过桥问题例2.某桥长1200m,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s,而整个火车在桥上的时间是30s,求火车的长度和速度.注:火车“完全过桥”和“完全在桥上”是两种不同的情况,借助线段图分析如下(注:A点表示火车头):(1)火车从上桥到完全过桥如图(1)所示,此时火车走的路程是桥长+车长.(2)火车完全在桥上如图(2)所示,此时火车走的路程是桥长-车长.由于火车是匀速行驶的,所以等量关【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟?2.相遇问题(相向问题)例3.小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12点,两人又相距36千米.求A、B两地间的路程.【变式】甲、乙两辆汽车分别从A、B两站同时开出,相向而行,途中相遇后继续沿原路线行驶,在分别到达对方车站后立即返回,两车第二次相遇时距A站34km,已知甲车的速度是70km/h,乙车的速度是52km/h,求A、B两站间的距离.3.追及问题(同向问题)例4.一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶一小时后突遇故障,修理15分钟后,又上路追这辆卡车,但速度减小了13,结果又用两小时才追上这辆卡车,求卡车的速度.4.航行问题(顺逆风问题)例5.盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A地上船,沿江而下至B地,然后溯江而上到C地下船,共乘船4小时.已知A、C两地相距10千米,船在静水中的速度为7.5千米/时,求A、B 两地间的距离.【点评】这是航行问题,本题需分类讨论,采用“线示”分析法画出示意图(如下图所示),然后利用“共乘”4小时构建方程求解.5.环形问题例6.环城自行车赛,最快的人在开始48分钟后遇到最慢的人,已知最快的人的速度是最慢的人速度的72倍,环城一周是20千米,求两个人的速度.相等关系为:最快的人骑的路程-最慢人骑的路程=20千米.【变式】两人沿着边长为90m的正方形行走,按A→B→C→D→A…方向,甲从A以65m/min的速度,乙从B 以72m/min的速度行走,如图所示,当乙第一次追上甲时,在正方形的哪一条边上?例7.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?相等关系:甲、乙开2h的工作量+甲、乙、丙水管的工作量=1.【变式】收割一块水稻田,若每小时收割4亩,预计若干小时完成,收割23后,改用新式农机,工作效率提高到原来的112倍,因此比预计时间提早1小时完成,求这块水稻田的面积.类型四、配套问题(比例问题、劳动力调配问题)例8.某工程队每天安排120个工人修建水库,平均每天每个工人能挖土5 m3或运土3 m3,为了使挖出的土及时被运走,问:应如何安排挖土和运土的工人?【变式】某商店选用A、B两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?例9.以现价销售一件商品的利润率为30%,如果商家在现有的价格基础上先提价40%,后降价50%的方法进行销售,商家还能有利润吗?为什么?【变式1】某个商品的进价是500元,把它提价40%后作为标价.如果商家要想保住12%的利润率搞促销活动,请你计算一下广告上可写出打几折?【变式2】张新和李明相约到图书大厦去买书,请你根据他们的对话内容(如图所示),求出李明上次所买书籍的原价.类型六、存贷款问题例10.爸爸为小强存了一个五年期的教育储蓄,年利率为2.7%,五年后取出本息和为17025元,爸爸开始存入多少元.例11.一个三位数,十位上的数是百位上的数的2倍,百位、个位上的数的和比十位上的数大2,又个位、十位、百位上的数的和是14,求这个三位数.【变式】一个两位数,个位上的数字比十位上的数字大4,这个两位数又是这两个数字的和的4倍,求这个两位数.类型八、方案设计问题例12.为鼓励学生参加体育锻炼.学校计划拿出不超过1600元的资金再购买一批篮球和排球.已知篮球和排球的单价比为3:2,单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量不少于26个.请探究有哪几种购买方案?【变式】某校组织10位教师和部分学生外出考察,全程票价为25元,对集体购票,客运公司有两种优惠方案可供选择:方案一:所有师生按票价的88%购票;方案二:前20人购全票,从第21人开始,每人按票价的80%购票.(1)若有30位学生参加考察,问选择哪种方案更省钱?(2)参加考察的学生人数是多少时,两种方案车费一样多?【课堂练习】1.某校用56m长的篱笆围成一个长方形的生物园,要使长为16 m,则宽为________m.2.小明和他父亲的年龄之和为54,又知父亲年龄是小明年龄的3倍少2岁,则他父亲的年龄为____岁.3. 甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.(1)当两人同时同地背向而行时,经过________秒钟两人首次相遇;(2)两人同时同地同向而行时,经过________秒钟两人首次相遇.4.某项工作甲单独做4天完成,乙单独做6天完成,若甲先干一天,然后,甲、乙合作完成此项工作,若设甲一共做了x天,乙工作的天数为________,由此可列出方程________________.5. A、B两地相距216千米,甲、乙分别在A、B两地,若甲骑车的速度为15千米/时,乙骑车的速度为12千米/时。

实际问题与一元一次方程知识讲解

实际问题与一元一次方程知识讲解

实际问题与一元一次方程知识讲解一元一次方程是代数学中最简单的方程形式之一、它的一般形式为ax + b = 0,其中a和b是已知数,x是未知数。

一元一次方程的解即未知数x的值,通过求解方程可以找到未知数的具体取值。

在实际生活中,一元一次方程常常用于解决一些实际问题。

下面将通过具体的例子来讲解实际问题与一元一次方程的关系。

例子1:小明买了一些水果,苹果每个卖3元,香蕉每个卖2元,小明花了10元钱,买了5个水果,请问他买了几个苹果和几个香蕉?解题思路:设小明买了x个苹果和y个香蕉,则根据题意可以列出一个一元一次方程:3x+2y=10。

通过求解这个方程,可以得到x和y的具体值。

例子2:一个科技公司的总收入是固定成本加上每件产品的生产成本与售价的乘积,已知总收入是400万元,固定成本是100万元,每件产品的生产成本是50万元,售价是10万元,请问该公司要卖出多少件产品才能达到盈亏平衡?解题思路:设要卖出的产品数量为x,则根据题意可以列出一个一元一次方程:50x+100=10x。

通过求解这个方程,可以得到x的具体值。

从以上两个例子可以看出,实际问题可以转化为一元一次方程来求解。

通过建立合适的方程模型,并对方程进行求解,可以得到实际问题的解答。

在解决实际问题时,我们需要通过分析问题,提取关键信息,并将其转化为数学语言,建立合适的方程模型。

然后,通过对方程进行求解,得到问题的解答。

在实际生活中,一元一次方程还可以用来解决很多其他类型的问题。

例如,可以用一元一次方程来计算两个物体之间的距离、解决速度和时间之间的关系问题、解决两个人同时从不同地点出发相向而行的相遇问题等等。

无论是何种类型的实际问题,我们都可以将其转化为一元一次方程来求解。

在解决实际问题时,我们还需要注意有时方程的解可能没有实际意义,或者有多个解,但只有其中的一个解符合实际要求。

因此,在求解方程的过程中,需要对解进行筛选和验证,以确定最终的解。

总之,一元一次方程是解决实际问题的有力工具之一、通过将实际问题转化为一元一次方程并进行求解,可以得到问题的具体解答。

9.实际问题与一元一次方程教案

9.实际问题与一元一次方程教案

◆课题名称:实际问题与一元一次方程◆教学目标:了解到一元一次方程与实际的联系,并具备运用一元一次方程的知识分析和解答相关实际问题的能力;◆重难点:重点:熟练掌握方程的解法并能运用一元一次方程的知识对所求问题进行分析和解答;难点:寻找应用题中的等量关系、列方程式并准确求解。

◆教学步骤及内容:1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,• 然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.一:简单应用题例1:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?分析:1、设未知数:设这个班有x名学生2、找相等关系:这批书的总数是一个定值,表示它的两个等式相等.3、列方程:3x+20=4x-254,解方程:解:移项,得 3x-4x=-25-20合并同类项,得 -x=-45系数化为1,得 x=45答:这个班有45个学生。

随堂练习:有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人,如果送还和了一条船,正每条船坐9人,问这个班共多少同学?例2:有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?分析:分析后发现:后面一个数是前一个数的-3倍。

解:设这三个相邻数中的第一个数为x,则第2个数为-3x,第3个数为-3×(-3x)=9x 根据这三个数的和是-1710,得x-3x+9x=-1701合并同类项,得 7x=-1701系数化为1 ,得x=-243所以-3x=729, 9x=-2187答:这三个数是-243、729、-2187随堂练习:1,三个连续的奇数的和是27,求这三个奇数。

一元一次方程与实际应用

一元一次方程与实际应用

一元一次方程与实际应用
1.货币问题:一元一次方程可以用来解决货币计算问题。

例如,小明
在超市买了苹果和香蕉,苹果单价为3元,香蕉单价为2元,他总共花了
8元。

现在我们可以用方程3x+2y=8来表示这个问题,其中x为苹果的数量,y为香蕉的数量。

通过解方程,可以得到苹果的数量和香蕉的数量。

2.速度问题:一元一次方程也可以用来解决速度计算问题。

例如,小
明骑自行车从A地到B地,全程50公里,他以10公里/小时的速度骑行。

如果他骑了t小时,那么我们可以用方程10t=50来表示这个问题。

通过
解方程,可以得到小明骑行的时间。

4.面积计算问题:一元一次方程还可以用来解决面积计算问题。

例如,一个矩形的长是x,宽是2x,已知它的面积为300平方米,我们可以用方
程x*2x=300来表示这个问题。

通过解方程,可以得到矩形的长和宽。

5.飞行时间问题:一元一次方程还可以用来解决飞行时间问题。

例如,一架飞机以400公里/小时的速度飞行,飞行了t小时后飞行了800公里。

我们可以用方程400t=800来表示这个问题。

通过解方程,可以得到飞机
的飞行时间。

综上所述,一元一次方程在实际生活中有着广泛的应用,可以解决各
种计算问题。

通过学习一元一次方程,我们可以更好地理解和解决实际问题,提高数学思维能力。

实际问题与一元一次方程洋葱数学

实际问题与一元一次方程洋葱数学

实际问题与一元一次方程洋葱数学(原创版)目录1.引言2.一元一次方程的定义和基本概念3.实际问题与一元一次方程的关联4.解一元一次方程的方法5.实际问题中一元一次方程的应用案例6.结论正文一、引言在我们的日常生活中,总会遇到各种各样的问题,有些问题可以用数学模型来描述和解决。

而在数学领域中,一元一次方程是一种基本的方程式,它可以帮助我们解决许多实际问题。

本文将从实际问题与一元一次方程的角度展开讨论,介绍一元一次方程的基本概念、解法以及在实际问题中的应用。

二、一元一次方程的定义和基本概念一元一次方程是指形如 ax+b=0 的方程,其中 a、b 为已知数,x 为未知数。

在这个方程中,a 称为系数,b 称为常数项,x 称为未知数。

解一元一次方程的目标就是求出使得等式成立的未知数 x 的值。

三、实际问题与一元一次方程的关联在实际问题中,我们可以通过建立一元一次方程来表示问题,并求解这个方程得到问题的解。

例如,某商场进货一批服装,已知每件服装的售价为 200 元,总售价为 8000 元,问这批服装有多少件?在这个问题中,我们可以建立一个一元一次方程来表示总售价与件数之间的关系,即200x=8000,其中 x 表示服装的件数。

解这个方程,我们可以得到 x=40,即这批服装有 40 件。

四、解一元一次方程的方法解一元一次方程的方法有多种,常见的有如下两种:1.直接法:通过移项、合并同类项等运算,将方程化为 x=a 的形式,从而求得未知数 x 的值。

2.间接法:通过代入法、消元法等方法,先求得一个或多个中间结果,再通过计算得到未知数 x 的值。

五、实际问题中一元一次方程的应用案例除了上述的商场服装问题外,一元一次方程在实际问题中的应用案例还有很多,例如:1.某家庭每月的水电费用为 500 元,若每月用水量为 x 吨,用电量为 y 度,已知每吨水的价格为 2 元,每度电的价格为 0.5 元,求这个家庭每月用水和用电的数量。

实际问题与一元一次方程

实际问题与一元一次方程
解得 y=80
60+60-48-80=-8(元)
答:卖这两件衣服总的亏损了8元。
巩固训练
某商场把进价为1980元的商品按标价的八 折出售,仍获利10%, 则该商品的标价为 _____ 元. 解:设该商品的标价为x元.
80%x-1980=1980×10%
解得 x=2722.5
答:设该商品的标价为2722.5元.
损,或是不盈不利?
两件衣服的进价是 x + y
=_1_2_8_元,而两件衣服的售
价是60+60=120元,进价
__大___于售价,由此可知卖
这两件衣服总的盈亏情况是
¥60
¥60
_亏__损__了__8__元_.
解:设盈利25%的那件衣服的进价是x元, 另一件的进价为y元,根据题意,得
x+0.25x=60 解得 x=48 y-0.25y=60
解 方 程
实际问题 的答案
检验
一元一次方程 的解(x = a)
四、尝试合作, 探究方法
商品销售中的盈亏问题。
成本
标价
实际售价
利润 = 售价-进价
利润
利润率
利润 利润率 =
进价
x
打 x 折的售价= 原价×
10
1.某商品原来每件零售价是a元, 现在每 件降价10%,降价后每件零售价 是 0.9a ;
利润 = 售价-进价
利润率 =
利润 进价
打 x 折的售价=
原价×
x 10
探究二:球赛积分表问题
某次篮球联赛积分榜如下:
队名
比赛 场次
胜 场
负 场
积 分
前进 14 10 4 24
问题1:你能从表格中 东方 14 10 4 24 了解到哪些信息?

一元一次方程与实际问题的多种题型

一元一次方程与实际问题的多种题型

一元一次方程与实际问题的多种题型实际问题与一元一次方程(1)一、数字问题1.一个两位数,十位数字比个位数字的4倍多1.将两个数字调换顺序后所得数比原数小63.求原数.2.日历的12月份上,爷爷生日那天的上、下、左、右4个日期的和为80,你能说出爷爷生日是几号吗?3.有一个三位数的百位数字是1,如果把1移到最后,其他两位数字顺序不变,所得的三位数比这个三位数的2倍少7,求这个三位数.二、人员分配问题4.某班同学参加平整土地劳动.运土人数比挖土人数的一半多3人.若从挖土人员中抽出6人运土,则挖土和运土的人数相等.求原来运土和挖土各多少人?5.某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?三、追击相遇问题6.甲、乙两车划分从相距XXX的两地相向开出,已知甲车速度60千米/时,乙车速度40千米/时,若甲车先开1个小时,问乙车开出多少小时后两车相遇?7.A、B两地相距31千米,甲从A地骑自行车去B地,1小时后乙骑摩托车也从A地去B地.已知甲每小时行12千米,乙每小时行28千米.(1)问乙动身后多少小时追上甲;(2)若乙抵达B地后立刻返回,则在返回路上与甲相遇时距乙动身多长工夫?8.某行军纵队以8千米/时的速度行进,队尾的通讯员以12千米/时的速度赶到队伍前送一个文件.送到后立即返回队尾,共用14.4分钟.求队伍长.9.某人有急事,预定搭乘一辆小货车从A地赶往B地,实际上他乘小货车行了三分之一路程后改乘一辆小轿车,车速提高了一倍,结果提前一个半小时抵达.已知小货车的速度是36千米/时,求两地间路程.四、工程问题10.一项工程甲、乙两队合作10天可以完成,甲队独做15天完成,现两队合作7天后,其余工程由乙队独做.乙队还需几天完成?11.检修一处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合做,但乙中途离开了一段时间,后2天由乙、丙合作完成.问乙中途离开了几天?5、方案计划题目12.某中学组织初一同砚春游,原打算租用45座客车若干辆,但有15人没有坐位;如果租用同样数目的60座客车,则多出一辆,且其余客车正好坐满.已知45座客车日房钱为每辆220元,60座客车日房钱为每辆300元.试问:(1)初一年级人数是多少?原计划租用45座客车多少辆?(2)要使每个同学都有座位,怎样租车更合算?13.XXX和XXX在课外研究中,用20张白卡纸做包装盒,每张白卡纸可以做2个盒身或者做3个盒底盖.且1个盒身和2个底盖正好做成一个包装盒,为了充裕利用资料使做成的盒身和底盖恰好配套,他们设想了两种方案:方案一:把这些白卡纸分成两部分,一部分做盒身,一部分做底盖;方案二:先把一张白卡纸适当剪裁出一个盒身和一个盒盖,余下的白卡纸分成两部分,一部分做盒身一部分做底盖.想一想,他们的方案是否可行?实际题目与一元一次方程(2)一、销售与利润问题1.在商品销售经营中,触及的基本干系式:(1)商品的原销售价、提价的百分数与商品的现销售价之间的关系是__________________________________________________ ____________________.商品的原销售价、降价的百分数与商品的现销售价之间的关系是__________________________________________________ ____________________.(2)商品的实际售价、商品的进价与商品的利润之间的干系是(这里不考虑其他因素)___________________________________________________ ___________________.(3)商品的利润、商品的进价与商品的利润率之间的干系是(这里不考虑其他因素)___________________________________________________ ___________________.(4)在打折销售中,商品的标价、折扣数与商品打折后的实际售价之间的干系是__________________________________________________ ____________________.2.在我国银行储蓄存款计较利息的基本干系式首要有:(1)主顾存入银行的钱叫做______,银行付给主顾的酬金叫做______,它们的和叫做____,即__________________.(2)顾客将钱存入银行的时间叫做______.每个期数内的______与____的比叫做利率.这样,本金、利率、期数、利息这四个量的关系是____________.3.商店中某个玩具的进价为40元,标价为60元.(1)若按标价出售这个玩具,则所得的利润及利润率分别是多少?(2)顾客在与店主砍价时,店主为了保住15%的利润率,出售这个玩具的售价底线是多少元?(3)店主为吸引顾客,把这个玩具的标价提高10%后,再贴出打八八折的告示,则这个玩具的实际售价是多少元?(4)若店主设法将进价降低10%,标价不变,而贴出打八八折的告示,则出售这个玩具的利润及利润率划分是多少?4.(1)某个商品的进价是500元,把它提价40%后作为标价.如果商家要想保住12%的利润率搞促销活动,请你计算一下广告上可写出打几折?(2)想一想,如果(1)中该商品的进价没有具体给出,这时该题目怎样办理?5.某经销商经销一种商品,由于进货价降低了5%,售价不变,使得利润率由k%提高到(k+7)%,求k.〔售价=进货价×(1+利润率)〕6.XXX和XXX相约到图书城去买书,请你根据他们的对话内容,求出XXX上次所买书籍的原价.7.下表是甲商场电脑产品的进货单,其中进价一栏被墨迹污染,读了进货单后,请你算出这台电脑的进价是多少元.甲商场商品进货单供货单位品名与规格商品代码商品所属进价(商品的进货代价)标价(商品的预售价格)折扣利润(实际销售后的利润)乙单位P4200DN—63D7电脑专柜元5850元8折210元保修终生,三年内免收任何费用,三年后收取材料费,五日售后效劳快修,周起色备用,免费投诉,回访实际问题与一元一次方程(测试)一、选择题1.篮球赛的组织者出售球票,需要付给售票处12%的酬金,如果组织者要在扣除酬金后,每张球票净得12元,按精确到0.1元的要求,球票票价应定为().(A)13.4元(B)13.5元(C)13.6元(D)13.7元2.一市肆把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则彩电的标价为().(A)3200元(B)3429元(C)2667元(D)3168元3.某市肆将彩电按原价提高40%,然后在广告上写“大酬宾,八折优待”,结果每台彩电仍获利270元,那么每台彩电原价是()(A)2150元(B)2200元(C)2250元(D)2300元4.一个市肆以每3盘16元的代价购进一批灌音带,又从别的一处以每4盘21元的代价购进比前一批数目加倍的灌音带.如果两种合在一起以每3盘k元的代价全部出售可得到所投资的20%的收益,则k值等于()(A)17(B)18(C)19(D)20二、解答题5.某城市有50万户居民,平均每户有两个水龙头,估计其中有1%的水龙头漏水.若每个漏水龙头1秒钟漏一滴水,10滴水约重1克,试问该城市一年因此而浪费多少吨水(一年按365天计算).6.某市居民生活用电基本代价为每度0.4元,若每月用电量跨越a度,跨越部分按基本电价的70%收取.(1)某户5月份用电84度,共交电费30.72元,求a是多少;(2)若6月份的电费平均为每度0.36元,求该户6月份共用多少度电,应交纳多少电费?7.八年级三班在召开期末总结表彰会前,班主任放置班长XXX去市肆买奖品,下面是XXX与售货员的对话:XXX说:阿姨好!售货员:同砚,你好,想买点甚么?XXX说:我只要100元,请您帮忙放置买10支钢笔和15本笔记本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题 3.4 实际问题与一元一次方程(第2课时)
教学目标
知识与技能
理解商品销售中所涉及的进价、原价、售价、利润及利润率等概念;能利用一元一次方程解决商品销售中的一些实际问题.
过程与方法
经历运用方程解决销售中的盈亏问题,进一步体会方程是刻画现实世界的有效数学模型,培养学生分析问题、解决实际问题的能力.
情感与态度
让学生在实际生活问题中感受到数学的价值,引导学生关注生活实际,建立数学应用意识,增强学生的经济知识和经营意识,提高对数学应用价值的认识.
教学重点、难点
重点利用盈亏问题中的等量关系,列方程.
难点商品销售中的盈亏的算法.
教学过程设计
一、创设情境,引入课题
问题1 老师周末花120元买了一件衣服,为今天上课作准备.回来上网一查,商家进价为100元,请同学思考下面几个问题:
(1)商家这件衣服赚了还是赔了?
追问:在这个问题中,涉及到哪几个量?它们之间有怎样的关系?
(售价=进价+利润;利润=售价-进价).
(2)进价100元,若商家获利20%,能赚多少钱?
追问:在这个问题中,又涉及到哪几个量?它们之间有怎样的关系?
(利润=进价×利润率;售价=进价+进价×利润率,=利润
利润率
进价
).
问题2 一书商从芜湖某书城以5折的优惠价购进一批定价为30元的教辅资料,再按定价的7折销售.在这个问题中,每本书的进价是______元,售价是_____元,书商每卖出一本书能获利______元.
标价×打折率=售价(成交价).
师生活动:教师播放课件,学生思考并答问,教师引导学生总结.
设计意图:用生活中的实际问题引入,有利于学生弄清销售问题中的量以及各量之间的关系,促进学生理解.同时使学生感到生活中处处有数学,激发学生的求知欲望.
问题3 (1)某商品进价100元,卖出后盈利25%,利润是___元,售价是___元.
(2)某商品进价100元,卖出后亏损25%,利润是元,售价是________元.
(3)小明花了10元钱从一文具店买了两本规格不同的笔记本,他在私下了解到其中一本进价是3元,另一本进价是8元,请问这次买卖文具店是盈利还是亏损?还是不盈不亏?
师生活动:学生思考并答问,教师引导,归纳销售中的盈亏的判断方法:
若售价>进价,表示(盈利) ,利润是(正)数;
若售价=进价,表示(不盈不亏),利润是(0);
若售价<进价,表示(亏损),利润是(负)数.
设计意图:通过这个问题分散下面例1的难点,为例1的学习做准备.
二、合作探究:销售中的盈亏问题
例1 某商店在某一时间以每件60元的价格卖两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
1.凭借你的直觉作出猜想,是什么结果?
2.判断是盈是亏要看什么?
师生活动:学生尝试答问,教师再进行点评:两件衣服共卖了120元,是盈是亏要看这家商店买进这两件衣服花了多少钱(即进价).如果进价大于售价就亏损,反之就盈利.
设计意图:让学生明确知道解题的关键是这两件衣服的进价,从而确定解题的目标,有利于学生抓住问题的核心.
追问:如何理解题目中“盈利25%”与“亏损25%”?假设衣服的进价是100元,这两件衣服盈利与亏损各是多少?
3.怎样求这两件衣服的进价?
师生活动:学生思考,并交流讨论,教师引导学生进行分析,明确解题思路.
解:设盈利25%的那件衣服的进价是x元,列方程,得:
60-x=0.25x.
x=48
设亏损25%的那件衣服的进价是y元,列方程,得:
y-0.25y=60.
y=80
两件衣服的进价是48+80=128(元),而售价是120元,所以共亏损128-120=8(元) 例2 一件服装先将进价提高25%出售,后进行促销活动,又按标价的8折出售, 此时售价为60元. 请问商家是盈是亏,还是不盈不亏?
师生活动:教师提出下列问题让学生思考:
(1)商家是盈还是亏,关键是求什么?
(2)若设进价为x,你能用x的式子分别表示提价25%与再按标价的8折出售的售价吗?
(3)请你给出本题的解答过程.
设计意图:通过对销售中的盈亏问题的探究,让学生认识到数学知识在生活中的广泛应用,感受数学的应用价值.通过对问题的分析让学生理解并掌握销售问题中相关各量之间的数量关,为学生今后解决类似问题奠定基础.
三、课堂小结,总结提升
教师提出问题,学生思考.
1.这节课,我们学习了哪些内容?
销售中涉及到的量有:进价(成本),标价(售价、定价),利润,利润率,打折等,它们之间的数量关系.
2.通过本课的学习,你有怎样的收获?
四、课堂练习,巩固基础
1. 某商店有两种书包,每个小书包比大书包的进价少10元,而它们的售后利润额相同。

其中,每个小书包的盈利率为30%,每个大书包的盈利率为20%,试求两种书包的进价.
2.某商人一次以相同价格卖出两件衣服,一件赚了60﹪,另一件赔了60﹪,则这次买卖中盈亏清况是()
A.不赔不赚
B.赚了
C.赔了
D.无法确定
设计意图:通过解决有关生活中的销售问题,进一步考查学生解题技能,促进学生理解销售问题中各个量之间的关系,增强学生解决此类问题的能力.
五、布置作业
1.课本第106页习题3.4第6、7、11题
2.基础训练
3.4“实际问题与一元一次方程”第2课时.。

相关文档
最新文档