高一平面解析几何初步复习讲义
平面解析几何-高考复习知识点
平面解析几何 高考复习知识点一、直线的倾斜角、斜率1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。
当直线l 与x 轴重合或平行时,规定倾斜角为0; (2)倾斜角的范围[)π,0。
2、直线的斜率(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;(2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=;(3)直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系? (4)应用:证明三点共线: AB BC k k =。
例题:例1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;思路点拨:已知角的范围,通过正切函数的图像,可以求得斜率的范围,反之,已知斜率的范围,通过正切函数的图像,可以求得角的范围解析: ∵, ∴.总结升华:在知道斜率的取值范围求倾斜角的取值范围,或知道倾斜角的取值范围求斜率的取值范围时,可利用在和上是增函数分别求解.当时,;当时,;当时,;当不存在时,.反之,亦成立.类型二:斜率定义例2.已知△ABC 为正三角形,顶点A 在x 轴上,A 在边BC 的右侧,∠BAC 的平分线在x 轴上,求边AB 与AC 所在直线的斜率. 思路点拨:本题关键点是求出边AB 与AC 所在直线的倾斜角,利用斜率的定义求出斜率.解析:如右图,由题意知∠BAO=∠OAC=30°∴直线AB 的倾斜角为180°-30°=150°,直线AC 的倾斜角为30°,∴k AB =tan150°= k AC =tan30°=总结升华:在做题的过程中,要清楚倾斜角的定义中含有的三个条件①直线向上方向②轴正向③小于的角,只有这样才能正确的求出倾斜角.类型三:斜率公式的应用例3.求经过点,直线的斜率并判断倾斜角为锐角还是钝角.思路点拨: 已知两点坐标求斜率,直接利用斜率公式即可. 解析:且,经过两点的直线的斜率,即.即当时,为锐角,当时,为钝角.例4、过两点,的直线的倾斜角为,求的值.【答案】由题意得:直线的斜率,故由斜率公式,解得或. 经检验不适合,舍去. 故.例5.已知三点A(a ,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a 的值.思路点拨:如果过点AB ,BC 的斜率相等,那么A ,B ,C 三点共线.解析:∵A 、B 、C 三点在一条直线上,∴k AB =k AC .即二、直线方程的几种形式1、点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。
高三数一轮复习课件:第九章 平面解析几何. .ppt..
kBP= 03--10=- 3, 所以 k∈(-∞,- 3]∪[1,+∞). 故填(-∞,- 3]∪[1,+∞).
2019年5月30日
你是我心中最美的云朵
18
类型二 求直线方程
根据所给条件求直线的方程. (1)直线过点(-4,0),倾斜角的正弦值为 1100; (2)直线过点(-3,4),且在两坐标轴上的截距相等; (3)直线过点(5,10),且到原点的距离为 5.
2019年5月30日
你是我心中最美的云朵
13
类型一 直线的倾斜角和斜率
(1)设直线 2x+my=1 的倾斜角为 α,若 m∈(-∞, -2 3)∪[2,+∞),则角 α 的取值范围是________.
解:据题意知 tanα=-m2 ,因为 m<-2 3或 m≥2.
所以 0<tanα< 33或-1≤tanα<0.
(3)过点 P1(x1,y1),P2(x2,y2)的直线方程 ①若 x1=x2,且 y1≠y2 时,直线垂直于 x 轴,方程为____________; ②若 x1≠x2,且 y1=y2 时,直线垂直于 y 轴,方程为____________; ③若 x1=x2=0,且 y1≠y2 时,直线即为 y 轴,方程为____________; ④若 x1≠x2,且 y1=y2=0,直线即为 x 轴,方程为____________.
x=
,
y=
.
2019年5月30日
你是我心中最美的云朵
4
2.直线的倾斜角与斜率 (1)直线的倾斜角:当直线 l 与 x 轴相交时,取 x 轴作为基准,x 轴____________与 直线 l 向上方向之间所成的角 α 叫做直线 l 的倾斜角.当直线 l 与 x 轴________或________ 时,我们规定它的倾斜角为 0°.因此,直线的倾斜角 α 的取值范围为 __________________. (2)斜率:一条直线的倾斜角 α 的____________叫做这条直线的斜率,常用小写字母 k 表示,即 k=______(α≠______).当直线平行于 x 轴或者与 x 轴重合时,k______0; 当直线的倾斜角为锐角时,k______0;当直线的倾斜角为钝角时,k______0;倾斜角为 ______的直线没有斜率.倾斜角不同,直线的斜率也不同.因此,我们可以用斜率表示 直线的倾斜程度.
高中数学第二章平面解析几何初步章末总结归纳课件bb高一数学课件
(1)如图所示, 设点 B 关于 l 的对称点 B′的坐标为(a,b), 则 kBB′·kl=-1, 即 3·b-a 4=-1, ∴a+3b-12=0.① 又由于线段 BB′的中点坐标为a2,b+2 4,
第十七页,共三十八页。
且在直线 l 上, ∴3×a2-b+2 4-1=0, 即 3a-b-6=0.② 解①②得 a=3,b=3, ∴B′(3,3), 于是 AB′的方程为3y--11=3x--44,即 2x+y-9=0.
第十九页,共三十八页。
已知圆 C:(x+2)2+y2=1,P(x,y)为圆 C 上任一点. (1)求yx- -21的最大值与最小值; (2)求 x-2y 的最大值与最小值.
第二十页,共三十八页。
【解】 (1)显然yx- -21可以看作是点 P(x,y)与点 Q(1,2)连线 的斜率.
令yx- -21=k,如图所示,则其最大、最小值分别是过点 Q(1,2) 的圆 C 的两条切线的斜率.
A.a=-12,b=0 B.a=2,b=0 C.a=12,b=0 D.a=-12,b=2
第三十页,共三十八页。
解析:由题可得a11= +1 1a-- =2b- -≠1253≠,-3b, ∴a=-12, 故选 A.
b=0, 答案:A
第三十一页,共三十八页。
3.已知圆 C:x2+y2-4x-4y=0 与 x 轴相交于 A,B 两点,
第十三页,共三十八页。
(1)形如 u=yx- -ba形式的最值问题,可借助于图形分析转化为 直线斜率的最值问题;
(2)形如 t=ax+by 形式的最值问题,可借助于图形分析转化 为动直线截距的最值问题;
(3)形如(x-a)2+(y-b)2 的最值问题,可借助于图形分析转 化为动点到定点距离的最值问题.
平面解析几何初步
平面解析几何初步引言平面解析几何是数学中的一个重要分支,它研究了平面上点、直线、曲线的性质和相互关系。
本文将从平面上的点、直线以及曲线这三个方面,初步介绍平面解析几何的基本概念和方法。
一、平面上的点在平面解析几何中,点是最基本的概念之一。
点可以用坐标表示,常用的表示方法有直角坐标和极坐标两种。
1. 直角坐标系直角坐标系是平面上最常用的坐标系之一。
在直角坐标系中,平面被分成四个象限,每个象限有一个唯一的坐标表示。
点的坐标表示为(x, y),其中x表示横坐标,y表示纵坐标。
2. 极坐标系极坐标系是另一种常用的坐标系。
在极坐标系中,点的位置由极径和极角来确定。
极径表示点到原点的距离,极角表示点与正半轴的夹角。
二、平面上的直线直线是平面解析几何中的另一个重要概念。
直线可以用多种方式表示和描述,例如点斜式、一般式和截距式等。
1. 点斜式点斜式是一种常用的直线表示方法。
它通过给定直线上一点的坐标和直线的斜率来确定直线的方程。
点斜式的一般形式为y - y1 = k(x - x1),其中(x1, y1)为直线上的一点,k为直线的斜率。
2. 一般式一般式是另一种常用的直线表示方法。
它通过直线的一般方程来描述直线的性质。
一般式的一般形式为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。
3. 截距式截距式是直线的另一种表示方法。
它通过直线与坐标轴的交点来确定直线的方程。
截距式的一般形式为x/a + y/b = 1,其中a和b分别表示直线与x轴和y轴的截距。
三、平面上的曲线曲线是平面解析几何中的另一个重要概念。
曲线可以通过方程或参数方程来表示和描述。
1. 方程曲线的方程是最常用的表示方法之一。
通过给定曲线上点的坐标满足的方程来确定曲线的性质。
常见的曲线方程有圆的方程、椭圆的方程、双曲线的方程等。
2. 参数方程参数方程是曲线的另一种表示方法。
通过给定曲线上点的坐标与参数之间的关系来确定曲线的性质。
平面解析几何复习1
第1讲 │ 要点探究
已知 A(-3,1),B(1,1),过点 P(3,1+2 3)作直线 l 与线段 AB 恒有交点,求直线 l 的倾斜角的取值范围.
[思路] 作出图形, 观察有交点时, 直究
[解答] 如图当 l 绕点 P 由直线 PA 旋转到 PB 时,倾斜角 由最小角 α 变到最大角 β, 1-1-2 3 3 π 由斜率公式得 kPA=tanα= = ,所以 α= , 3 6 -3-3 1+2 3-1 π kPB=tanβ= = 3,所以 β= . 3 3-1 所以直线 l
第1讲 │ 要点探究
► 探究点3 综合应用
例 3 已知直线 l 经过点 P(t,t),Q(t-1,2t),t≠0.问直线 l 能 否经过点 A(-1,15)和点 B(2,-2)?若经过,分别求出 t 的值, 若不能,请说明理由.
[思路] 由两点式求得直线 l 的方程,再将点 A 和 B 的 坐标代入方程,解关于参数 t 的方程.
第1讲 │ 知识梳理
3.经过两点 P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜 y2-y1 x2-x1 率公式 k=______________. 4.直线方程的三种形式 (x1,y1) (1)点斜式:y-y1=k(x-x1)表示经过点________且斜 (0,b) k 率为____的直线.特例:y=kx+b 表示过点______且斜率 截距 为____的直线.其中 b 表示直线在 y 轴上的______.该方 k 斜截式方程 程叫直线方程的________.
倾斜角的范围得 0<k≤1,解不等式即可. y2-y1 a C [解析] 由 k= 得 k= (a≠2,当 a=2 时 x2-x1 a-2
倾斜角为 90° 大于 45° ),因为直线 l 的倾斜角 θ∈(0,45° ], a 所以 0<k≤1,即 0< ≤1,解之得 a<0,选 C. a-2
高中数学中的平面解析几何知识点总结
高中数学中的平面解析几何知识点总结高中数学中的平面解析几何是一个重要的知识板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了全新的思路和方法。
下面就让我们一起来详细梳理一下平面解析几何的相关知识点。
一、直线1、直线的方程点斜式:若直线过点\((x_0,y_0)\),斜率为\(k\),则直线方程为\(y y_0 = k(x x_0)\)。
斜截式:若直线斜率为\(k\),在\(y\)轴上的截距为\(b\),则直线方程为\(y = kx + b\)。
两点式:若直线过点\((x_1,y_1)\)和\((x_2,y_2)\),则直线方程为\(\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}\)。
截距式:若直线在\(x\)轴、\(y\)轴上的截距分别为\(a\)、\(b\)(\(a\neq 0\),\(b\neq 0\)),则直线方程为\(\frac{x}{a} +\frac{y}{b} = 1\)。
一般式:\(Ax + By + C = 0\)(\(A\)、\(B\)不同时为\(0\))。
2、直线的位置关系平行:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)平行,当且仅当\(k_1 = k_2\)且\(b_1 \neq b_2\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)平行,当且仅当\(A_1B_2 A_2B_1 = 0\)且\(A_1C_2 A_2C_1 \neq0\)。
垂直:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)垂直,当且仅当\(k_1k_2 =-1\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)垂直,当且仅当\(A_1A_2 + B_1B_2 = 0\)。
高中数学 第二章 平面解析几何初步 2.1 平面直角坐标
2.1 平面直角坐标ຫໍສະໝຸດ 中的基本公式课程目标1.理解实数与数轴上的点的对应关 系,理解实数与位移的对应关系. 2.掌握数轴上两点间的距离公式,理 解数轴上的向量加法的坐标运算. 3.探索并掌握平面直角坐标系中两 点的距离公式和中点公式. 4.通过对两点的距离求解过程的探 索,进一步体会“坐标法”的基本思 想,学会构造直角三角形解决问题的 基本思路.
思考 4 点 P(x,y)关于点 G(x0,y0)的对称点的坐标是什么?
提示:点 P(x,y)关于点 G(x0,y0)的对称点的坐标为(2x0-x,2y0-y).
思考 5 教材中的“?”
如果数轴上的单位长取作 1 cm,你能在数轴上标出数 0.001,0.000 1 和 2对应的点吗?你能说明在数轴上确实存在这些点吗?
若 AB∥x 轴或与 x 轴重合,则|AB|=|x2-x1|;若 AB∥y 轴或与 y 轴重合,则 |AB|=|y2-y1|.
思考 3 算术平方根 ������2 + ������2的几何意义是什么?
提示: ������2 + ������2表示点(x,y)到原点的距离.
3.中点公式 (1)直线上的中点坐标公式. 已知数轴上两点 A(x1),B(x2),则线段 AB 的中点 M 的坐标为������1+2������2. (2)平面内的中点坐标公式. 设平面内两点 A(x1,y1),B(x2,y2)的中点 M(x,y),则 x=������1+2������2,y=������1+2 ������2.
2.平面直角坐标系中的基本公式 平面直角坐标系中两点 A(x1,y1),B(x2,y2)的距离公
式:d(A,B)= (������2-������1)2 + (������2-������1)2.
高一下学期数学期末复习大串讲(新人教A版必修2)专题02 平面解析几何初步Word版含解析
二、平面解析几何初步【知识网络】第六章直线的方程专题一直线的倾斜角与斜率1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. (2)范围:直线l 倾斜角的范围是0°,180°). 2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 【典例1】 (1)直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是 . (2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为 .【答案】 (1)⎣⎢⎡⎦⎥⎤π4,π3 (2)(-∞,-3]∪1,+∞)(2)如图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴k ∈(-∞,- 3 ]∪1,+∞).【迁移训练1】 (1)直线x cos α+3y +2=0的倾斜角的范围是 .(2)已知实数x ,y 满足2x +y =8,当2≤x ≤3时,则yx的最大值为 ;最小值为 . 【答案】 (1)⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π (2)2 23(2)本题可先作出函数y =8-2x (2≤x ≤3)的图象,把yx看成过点(x ,y )和原点的直线的斜率进行求解.如图,设点P (x ,y ),因为x ,y 满足2x +y =8,且2≤x ≤3,所以点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标分别是(2,4),(3,2).因为y x的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以y x 的最大值为2,最小值为23. 专题二 求直线的方程名称 方程 适用范围 点斜式 y -y 1=k (x -x 1) 不含直线x =x 1 斜截式 y =kx +b 不含垂直于x 轴的直线 两点式y -y 1y 2-y 1=x -x 1x 2-x 1不含直线x =x 1 (x 1≠x 2)和直线y =y 1 (y 1≠y 2)截距式x a +y b=1 不含垂直于坐标轴和过原点的直线一般式 Ax +By +C =0(A ,B 不全为0)平面直角坐标系内的直线都适用【典例2】 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.(2)由题设知截距不为0,设直线方程为x a +y12-a=1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点线距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.【思维升华】在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况. 【迁移训练2】 求适合下列条件的直线方程: (1)经过点P (4,1),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍. 【解析】 (1)设直线l 在x ,y 轴上的截距均为a . 若a =0,即l 过点(0,0)及(4,1), ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(4,1), ∴4a +1a=1,∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0.专题三 直线方程的综合应用【典例3】 (1)(2014·四川)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则PA ·PB 的最大值是 .(2)(2015·安徽)在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为 . 【答案】 (1)5 (2)-12【解析】 (1)∵直线x +my =0与mx -y -m +3=0分别过定点A ,B ,∴A (0,0),B (1,3).当点P 与点A (或B )重合时,PA ·PB 为零; 当点P 与点A ,B 均不重合时,∵P 为直线x +my =0与mx -y -m +3=0的交点, 且易知此两直线垂直, ∴△APB 为直角三角形, ∴AP 2+BP 2=AB 2=10, ∴PA ·PB ≤PA 2+PB 22=102=5,当且仅当PA =PB 时,上式等号成立. (2)∵|x -a |≥0恒成立,∴要使y =2a 与y =|x -a |-1只有一个交点,必有2a =-1,解得a =-12.【迁移训练3】 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程. 【解析】【方法二】依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3) (k <0),且有A ⎝⎛⎭⎪⎫3-2k,0,B (0,2-3k ),∴S △ABO =12(2-3k )⎝ ⎛⎭⎪⎫3-2k =12⎣⎢⎡⎦⎥⎤12+-9k +4-k≥12⎣⎢⎡⎦⎥⎤12+2 -9k4-k =12×(12+12)=12. 当且仅当-9k =4-k ,即k =-23时,等号成立. 即△ABO 的面积的最小值为12.故所求直线的方程为2x+3y-12=0.第七章两条直线的位置关系专题一两条直线的平行与垂直(1)两条直线平行与垂直①两条直线平行:(ⅰ)对于两条不重合的直线l1、l2,若其斜率分别为k1、k2,则有l1∥l2⇔k1=k2(k1,k均存在).2(ⅱ)当直线l1、l2不重合且斜率都不存在时,l1∥l2.②两条直线垂直:(ⅰ)如果两条直线l1、l2的斜率存在,设为k1、k2,则有l1⊥l2⇔k1·k2=-1 (k1,k均存在).2(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l1⊥l2.【典例1】(1)已知两条直线l1:(a-1)·x+2y+1=0,l2:x+ay+3=0平行,则a=________.(2)已知两直线方程分别为l1:x+y=1,l2:ax+2y=0,若l1⊥l2,则a=________.【答案】(1)-1或2 (2)-2【思维升华】(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x、y的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.【迁移训练1】已知两直线l1:x+y sin α-1=0和l2:2x·sin α+y+1=0,求α的值,使得:(1)l1∥l2;(2)l1⊥l2.【解析】(1)【方法一】当sin α=0时,直线l1的斜率不存在,l2的斜率为0,显然l1不平行于l2.当sin α≠0时,k 1=-1sin α,k 2=-2sin α. 要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22.所以α=k π±π4,k ∈Z ,此时两直线的斜率相等.故当α=k π±π4,k ∈Z 时,l 1∥l 2.专题二 两条直线的交点与距离问题1、两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.2、几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离P 1P 2=x 2-x 12+y 2-y 12.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B2. (3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B 2. 【典例2】 (1)已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.(2)直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l __________________________.【答案】 (1)⎝ ⎛⎭⎪⎫-16,12 (2)x +3y -5=0或x =-1 【解析】(1)【方法一】 由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行) ∴交点坐标为⎝ ⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.又∵交点位于第一象限,∴⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.【方法二】如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点), ∴动直线的斜率k 需满足k PA <k <k PB . ∵k PA =-16,k PB =12. ∴-16<k <12.【方法二】 当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4).∴直线l 的方程为x =-1. 故所求直线l 的方程为x +3y -5=0或x =-1. 【思维升华】(1)求过两直线交点的直线方程的方法:求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |; ②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等. 【迁移训练2】(1)如图,设一直线过点(-1,1),它被两平行直线l 1:x +2y -1=0,l 2:x +2y -3=0所截的线段的中点在直线l 3:x -y -1=0上,求其方程.(2)正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程. 【解析】点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5),则点C 到直线x +3y +m =0的距离d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0, 则点C 到直线3x -y +n =0的距离d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0. 专题三 对称问题【典例3】 (1)过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.(2)已知直线l :2x -3y +1=0,点A (-1,-2),则点A 关于直线l 的对称点A ′的坐标为____________.(3)已知直线l :2x -3y +1=0,求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.(3) 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设对称点M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎪⎨⎪⎧a =613,b =3013,∴M ′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3).∴由两点式得直线m ′的方程为9x -46y +102=0. 【思维升华】 解决对称问题的方法 (1)中心对称①点P (x ,y )关于Q (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有⎩⎪⎨⎪⎧n -b m -a ·⎝ ⎛⎭⎪⎫-A B =-1,A ·a +m 2+B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决. 【迁移训练3】在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 发射后又回到原点P (如图).若光线QR 经过△ABC 的重心,则AP =________.【答案】 43【解析】建立如图所示的坐标系:可得B (4,0),C (0,4),故直线BC 的方程为x +y =4, △ABC 的重心为⎝⎛⎭⎪⎫0+0+43,0+4+03,设P (a,0),其中0<a <4,故直线QR 的方程为y =4-a4+a(x +a ),由于直线QR 过△ABC 的重心(43,43),代入化简可得3a 2-4a =0,解得a =43,或a =0(舍去),故P ⎝ ⎛⎭⎪⎫43,0,故AP =43.第八章 圆的方程专题一 求圆的方程 1.圆的标准方程(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径. 2.圆的一般方程x 2+y 2+Dx +Ey +F =0表示圆的充要条件是D 2+E 2-4F >0,其中圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径r =D 2+E 2-4F2.【典例1】 根据下列条件,求圆的方程.(1)经过P (-2,4)、Q (3,-1)两点,并且在x 轴上截得的弦长等于6; (2)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2).(2)【方法一】如图,设圆心(x 0,-4x 0),依题意得4x 0-23-x 0=1,∴x 0=1,即圆心坐标为(1,-4),半径r =22, 故圆的方程为(x -1)2+(y +4)2=8.【方法二】 设所求方程为(x -x 0)2+(y -y 0)2=r 2,根据已知条件得⎩⎪⎨⎪⎧y 0=-4x 0,-x 02+-2-y2=r 2,|x 0+y 0-1|2=r ,解得⎩⎨⎧x 0=1,y 0=-4,r =2 2.因此所求圆的方程为(x -1)2+(y +4)2=8.【思维升华】 (1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D 、E 、F 的方程组,进而求出D 、E 、F 的值.【迁移训练1】 (1)(2014·陕西)若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为____________.(2)过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________________. 【答案】 (1)x 2+(y -1)2=1 (2)(x -3)2+y 2=2专题二 与圆有关的最值问题 命题点1 斜率型最值问题【典例2】 已知实数x 、y 满足方程x 2+y 2-4x +1=0,则求: (1)y x的最大值为________,最小值为________. (2)求y -x 的最小值和最大值. (3)求x 2+y 2的最大值和最小值. 【解析】 (1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆. 设y x=k ,即y =kx ,则圆心(2,0)到直线y =kx 的距离为半径时直线与圆相切,斜率取得最大、最小值. 由|2k -0|k 2+1=3,解得k 2=3, ∴k max =3,k min =- 3.(也可由平面几何知识,得OC =2,CP =3,∠POC =60°,直线OP 的倾斜角为60°,直线OP ′的倾斜角为120°)解(3)x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图). 又因为圆心到原点的距离为-2+-2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值为(2-3)2=7-4 3.【思维升华】 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题. 【迁移训练2】(1)设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则PQ 的最小值为 ________. 【答案】 4【解析】 PQ 的最小值为圆心到直线的距离减去半径.因为圆的圆心为(3,-1),半径为2,所以PQ 的最小值d =3-(-3)-2=4.(2)已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3). ①求MQ 的最大值和最小值; ②若M (m ,n ),求n -3m +2的最大值和最小值.②可知n -3m +2表示直线MQ 的斜率,设直线MQ 的方程为y -3=k (x +2),即kx -y +2k +3=0,则n -3m +2=k . 由直线MQ 与圆C 有交点,所以|2k -7+2k +3|1+k 2≤22,可得2-3≤k ≤2+3, 所以n -3m +2的最大值为2+3,最小值为2- 3. 专题三 与圆有关的轨迹问题【典例3】设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON 为两边作平行四边形MONP ,求点P 的轨迹. 【解析】如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y2,线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分, 故x 2=x 0-32,y 2=y 0+42.从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4. 因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在直线OM 上的情况).【思维升华】 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: ①直接法:直接根据题目提供的条件列出方程. ②定义法:根据圆、直线等定义列方程. ③几何法:利用圆的几何性质列方程.④代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.【迁移训练3】 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.(2)设PQ 的中点为N (x ,y ),连结BN . 在Rt△PBQ 中,PN =BN .设O 为坐标原点,连结ON ,则ON ⊥PQ , 所以OP 2=ON 2+PN 2=ON 2+BN 2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.第九章 直线与圆、圆与圆的位置关系专题一 直线与圆的位置关系判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系.d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:――→判别式Δ=b 2-4ac ⎩⎨⎧>0⇔相交;=0⇔相切;<0⇔相离.【典例1】(1)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是______. (2)若过点(1,2)总可以作两条直线与圆x 2+y 2+kx +2y +k 2-15=0相切,则实数k 的取值范围是________.(3)已知方程x 2+x tan θ-1sin θ=0有两个不等实根a 和b ,那么过点A (a ,a 2),B (b ,b 2)的直线与圆x 2+y 2=1的位置关系是________.【答案】 (1)相交 (2)⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833(3)相切(2)把圆的方程化为标准方程得⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=16-3k 24,所以16-3k24>0,解得-833<k <833.由题意知点(1,2)应在已知圆的外部, 把点代入圆的方程得1+4+k +4+k 2-15>0, 即(k -2)(k +3)>0, 解得k >2或k <-3,则实数k 的取值范围是⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833.(3)由题意可知过A ,B 两点的直线方程为(a +b )x -y -ab =0,圆心到直线AB 的距离为d =|-ab |a +b 2+1,而a +b =-1tan θ,ab =-1sin θ,因此d =⎪⎪⎪⎪⎪⎪1sin θ⎝ ⎛⎭⎪⎫-1tan θ2+1,化简后得d=1,故直线与圆相切.【思维升华】 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题. 【迁移训练1】 已知直线l :y =kx +1,圆C :(x -1)2+(y +1)2=12. (1)试证明:不论k 为何实数,直线l 和圆C 总有两个交点; (2)求直线l 被圆C 截得的最短弦长.(2)解 设直线与圆交于A (x 1,y 1)、B (x 2,y 2)两点, 则直线l 被圆C 截得的弦长AB =1+k 2|x 1-x 2|=28-4k +11k21+k2=2 11-4k +31+k2,令t =4k +31+k 2,则tk 2-4k +(t -3)=0,当t =0时,k =-34,当t ≠0时,因为k ∈R ,所以Δ=16-4t (t -3)≥0,解得-1≤t ≤4,且t ≠0, 故t =4k +31+k 2的最大值为4,此时AB 最小为27.专题二 圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).方法 位置关系几何法:圆心距d 与r 1,r 2的关系代数法:联立两圆方程组成方程组的解的情况外离 d >r 1+r 2 无解 外切 d =r 1+r 2 一组实数解 相交 |r 1-r 2|<d <r 1+r 2两组不同的实数解 内切 d =|r 1-r 2|(r 1≠r 2) 一组实数解 内含0≤d <|r 1-r 2|(r 1≠r 2)无解【典例2】 (1)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为________. (2)过两圆x 2+y 2+4x +y =-1,x 2+y 2+2x +2y +1=0的交点的圆中面积最小的圆的方程为____________.(3)如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,那么实数a 的取值范围是__________.【答案】 (1)相交 (2)⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45(3)(-22,0)∪(0,22)∴两圆两个交点为⎝ ⎛⎭⎪⎫-15,-25,(-1,-2). 过两交点的圆中,以⎝ ⎛⎭⎪⎫-15,-25,(-1,-2)为端点的线段为直径的圆时,面积最小. ∴该圆圆心为⎝ ⎛⎭⎪⎫-35,-65,半径为 ⎝ ⎛⎭⎪⎫-15+12+⎝ ⎛⎭⎪⎫-25+222=255,圆的方程为⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45. (3)C 的标准方程为(x -a )2+(y -a )2=4,圆心坐标为(a ,a ),半径为2.依题意得:0<a 2+a 2<2+2,∴0<|a |<2 2.∴a ∈(-22,0)∪(0,22)【思维升华】 判断圆与圆的位置关系时,一般用几何法,其步骤是(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|;(3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.【迁移训练2】 (1)圆C 1:x 2+y 2-2y =0,C 2:x 2+y 2-23x -6=0的位置关系为________.【答案】 内切(2)设M ={(x ,y )|y =2a 2-x 2,a >0},N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},且M ∩N ≠∅,求a 的最大值和最小值.解 M ={(x ,y )|y =2a 2-x 2,a >0},即{(x ,y )|x 2+y 2=2a 2,y ≥0},表示以原点O 为圆心,半径等于2a 的半圆(位于横轴或横轴以上的部分).N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},表示以O ′(1,3)为圆心,半径等于a 的一个圆. 再由M ∩N ≠∅,可得半圆和圆有交点,故半圆和圆相交或相切.当半圆和圆相外切时,由OO ′=2=2a +a ,求得a =22-2;当半圆和圆相内切时,由OO ′=2=2a -a ,求得a =22+2,故a 的取值范围是22-2,22+2],a 的最大值为22+2,最小值为22-2.专题三 直线与圆的综合问题【典例3】 (2015·课标全国Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求MN .【解析】 (1)由题设,可知直线l 的方程为y =kx +1,因为直线l 与圆C 交于两点,所以|2k -3+1|1+k2<1. 解得4-73<k <4+73. 所以k 的取值范围为⎝ ⎛⎭⎪⎫4-73,4+73. (2)设M (x 1,y 1),N (x 2,y 2). 将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=+k 1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k +k 1+k2+8. 由题设可得4k +k 1+k 2+8=12,解得k =1, 所以直线l 的方程为y =x +1.故圆心C 在直线l 上,所以MN =2.【迁移训练3】 (1)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.(2)已知圆C 的方程为x 2+y 2+ax +2y +a 2=0,一定点为A (1,2),要使过A 点作圆的切线有两条,则a 的取值范围是____________. 【答案】 (1)2 2 (2)⎝ ⎛⎭⎪⎫-233,233 【解析】 (1)设P (3,1),圆心C (2,2),则PC =2,由题意知最短的弦过P (3,1)且与PC 垂直,所以最短弦长为222-22=2 2.。
高中数学 第二章 平面解析几何初步 2.2.4 点到直线的距离课件 bb高一数学课件
第七页,共三十九页。
求点到直线的距离 求点 P(1,2)到下列直线的距离: (1)l1:y=x-3;(2)l2:y=-1;(3)y 轴.
12/11/2021
第八页,共三十九页。
【解】 (1)将直线方程化为一般式为 x-y-3=0, 由点到直线的距离公式,得 d1= |112-+2(--31|)2=2 2. (2)法一:直线方程化为一般式为 y+1=0, 由点到直线的距离公式,得 d2= |20+2+11| 2=3.
2 4
12/11/2021
第六页,共三十九页。
4.当点 P(x1,y1)在直线 Ax+By+C=0 上时,还适合点到直 线的距离公式吗?
解:适合.点 P 在直线 Ax+By+C=0 上,则距离 d=0,且 有 Ax1+By1+C=0, 所以 d=|Ax1+A2B+y1B+2 C|=0.
12/11/2021
12/11/2021
第十八页,共三十九页。
两平行线间距离的求法 (1)求两平行线间的距离可以转化为求点到直线的距离,也可 以应用公式. (2)应用两平行线间的距离公式 d= |CA2-2+CB1|2时,两直线方程必 须是一般形式,而且 x,y 的系数对应相等.
12/11/2021
第十九页,共三十九页。
12/11/2021
第二十七页,共三十九页。
2.求过点 P(1,2)且与原点距离最大的直线方程. 解:由题意知与 OP 垂直的直线到原点 O 的距离最大, 因为 kOP=2, 所以所求直线方程为 y-2=-12(x-1), 即 x+2y-5=0.
12/11/2021
第二十八页,共三十九页。
1.点到直线距离公式的推导用到了解析几何中的常用方法 “设而不求”,希望在今后学习中注意这种方法在解题中的 应用.公式只与直线方程中的系数有关,因而它适合任意直 线,在具体应用过程中,应将直线方程化为一般式,再套用 公式.
[高中数学必修2]第二章 平面解析几何初步 知识梳理
第二章 平面解析几何初步2.1 平面直角坐标系中的基本公式1.数轴上的基本公式(1)数轴上的点与实数的对应关系直线坐标系:一条给出了原点、度量单位和正方向的直线叫做数轴,或说在这条直线上建立了直线坐标系。
数轴上的点与实数的对应法则:点P ←−−−→一一对应实数x 。
记法:如果点P 与实数x 对应,则称点P 的坐标为x ,记作P(x),当点P(x)中x >0时,点P 位于原点右侧,且点P 与原点O 的距离为|OP|=x ;当点P 的坐标P(x)中x <0时,点P 位于原点左侧,且点P 与原点O 的距离|OP|=-x 。
可以通过比较两点坐标的大小来判定两点在数轴上的相对位置。
(2)向量位移是一个既有大小又有方向的量,通常叫做位移向量,简称为向量。
从点A 到点B的向量,记作AB 。
线段AB 的长叫做向量AB 的长度,记作|AB|。
我们可以用实数表示数轴上的一个向量AB ,这个实数叫做向量AB 的坐标或数量。
例如:O 是原点,点A 的坐标为x 1,点B 的坐标为x 2,则AB=OB-OA ,所以AB=x 2-x 1。
注:①向量AB 的坐标用AB 表示,当向量AB 与其所在的数轴(或与其平行的数轴)的方向相同时,规定AB=|AB |;方向相反时,规定AB=-|AB |;②注意向量的长度与向量的坐标之间的区别:向量的长度是一个非负数,而向量的坐标是一个实数,可以是正数、负数、零。
③对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC ,可理解为AC 的坐标等于首尾相连的两向量AB ,BC 的坐标之和。
(3)数轴上的基本公式在数轴上,如果点A 作一次位移到点B ,接着由点B 再作一次位移到点C ,则位移AC叫做位移AB 与位移BC 的和,记作:AC AB BC =+ 。
对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC 。
已知数轴上两点A(x 1),B(x 2)则AB=x 2-x 1,d(A,B)=|x 2-x 1|。
2020高中数学 第2章 平面解析几何初步 2.1.2 直线的方程(第课时)一般式讲义 2
第3课时一般式学习目标核心素养1.了解二元一次方程与直线的对应关系,掌握直线的一般形式.(重点、难点)2.根据确定直线位置的几何要素,探索并掌握直线方程几种形式之间的关系.(易错、易混点)3.能灵活应用直线方程的几种形式求直线方程.(重点)通过学习本节内容来提升学生的数学运算和数学建模核心素养。
1.直线与二元一次方程的关系(1)在平面直角坐标系中,对于任何一条直线,都可以用一个关于x,y的二元一次方程Ax+By+C=0(A,B不全为0)来表示.(2)在平面直角坐标系中,任何一个关于x,y的二元一次方程Ax+By+C=0(A,B不全为0)都表示一条直线.2.直线的一般式方程(1)在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x,y的二元一次方程;任何关于x,y的二元一次方程都表示直线.方程Ax+By+C=0(A,B不全为0)叫做直线方程的一般式.(2)对于直线Ax+By+C=0,当B≠0时,其斜率为-错误!,在y 轴上的截距为-错误!;当B=0时,在x轴上的截距为-错误!;当AB≠0时,在两轴上的截距分别为-错误!,-错误!.(3)直线一般式方程的结构特征①方程是关于x,y的二元一次方程.②方程中等号的左侧自左向右一般按x,y,常数的先后顺序排列.③x的系数一般不为分数和负数.④虽然直线方程的一般式有三个参数,但只需两个独立的条件即可求得直线的方程.1。
思考辨析(1)在平面直角坐标系中,任何一个关于x,y的二元一次方程Ax+By+C=0都表示一条直线.()(2)直线的点斜式方程、两点式方程都可以化成一般式方程,反之,直线的一般式方程也都可以化成点斜式方程、两点式方程.( )(3)直线方程的一般式同二元一次方程Ax+By+C=0(A,B 不同时为零)之间是一一对应关系.()(4)方程①x+2y-3=0;②x-3=0;③y+1=0均表示直线.( )[答案] (1)×(2)×(3)√(4)√2.过点(1,2),斜率为0的直线对应的二元一次方程为________.y-2=0 [过点(1,2),斜率为0的直线方程为y=2,其对应的二元一次方程为y-2=0.]3.方程错误!-错误!=1,化成一般式为________.2x-3y-6=0 [由错误!-错误!=1,得2x-3y-6=0。
11、1 平面解析几何初步
11、平面解析几何初步11.1直线与方程【知识网络】1.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。
2.理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。
3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、斜截式、两点式、截距式及一般式),体会斜截式与一次函数的关系。
【典型例题】[例1](1)直线3y + 3 x +2=0的倾斜角是()A .30°B .60°C .120°D .150°(2)设直线的斜率k=2,P 1(3,5),P 2(x 2,7),P (-1,y 3)是直线上的三点,则x 2,y 3依次是 ( )A .-3,4B .2,-3C .4,-3D .4,3 (3)直线l 1与l 2关于x 轴对称,l 1的斜率是-7 ,则l 2的斜率是 ( )A .7 B.-7 C.7D .-7 (4)直线l 经过两点(1,-2),(-3,4),则该直线的方程是.(5)从直线l 上的一点A 到另一点B 的纵坐标增量是3,横坐标增量是-2,则该直线的斜率是.[例2]一条直线经过点M (2,1),且在两坐标轴上的截距和是6,求该直线的方程。
[例3]已知直线方程为ax -y +2a +1=0(1) 若x ∈(-1,1)时,y >0恒成立,求a 的取值X 围;(2) 若a ∈(-16 ,1)时,y >0恒成立,求x 的取值X围;[例4]设动点P ,P’的坐标分别为(x ,y ),(x ’,y’),它们满足⎩⎨⎧x' =3x +2y +1,y' =x +4y -3.若P ,P’在同一直线上运动,问:这样的直线是否存在?若存在,求出方程;若不存在,说明理由.【课内练习】1. 过点A (x ,4)和点B (-2,x )的直线的倾斜角等于45°,则x 的值为( )A .1B .-1C .22D .-2 2.直线ax+by+c=0同时通过第一、第二、第四象限,则a 、b 、c 应满足( )A .abc>0B .ac<0且bc<0C .b=0且ab<0D .a=0且bc<03.下列四个命题中的真命题是 ( )A .经过点P (x 0,y 0)的直线一定可以用方程y -y 0=k (x -x 0)表示B .经过任意两个不同点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程 (y -y 1)(x 2-x 1)= (x -x 1)(y 2-y 1)表示C .不经过原点的直线都可以用方程 x a + yb=1表示D .经过点A (0,b )的直线都可以用方程y =kx +b 表示 4.已知直线l 1:ax-y-b=0,l 2:bx-y+a=0,当a 、b 满足一定的条件时,它们的图形可以是( )5.将直线l 1:x-y+3–2=0绕着它一面的一点(2,3)沿逆时针方向旋转15º,得直线l 2,则l 2的方程为.6.倾斜角α= 120°的直线l 与两坐标轴围成的三角形面积S 不大于3,则直线l 在y 轴上的截距的取值X 围为 .7.经过点A (3,2)且在两轴上截距相等的直线方程是.8.某一次函数图象沿x 轴正方向平移2个长度单位后,经过点P (-1,3),再沿y 轴负方向平移1个长度单位后,又与原图象重合,求该一次函数解析式.9.设a ,b 是参数, c 是常数,且a 、b 、c ≠0,1a + 1b = 1c ,证明:直线 x a + yb = 1 必过一定点,求此定点的坐标.10.过点P (4,3)作直线l ,它与两坐标轴相交且与两坐标轴围成的三角形面积为3个平方单位,求直线l 的方程。
高中数学第2章平面解析几何初步2.1.3两条直线的平行与垂直讲义苏教版必修2
2.1.3 两直线的平行与垂直1.两条直线平行(1)若直线l1:y=k1x+b1,直线l2:y=k2x+b2,则l1∥l2⇔k1=k2且b1≠b2(k1,k2均存在).(2)设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0(或A1C2-A2C1≠0)思考:两平行直线的斜率是否一定相等.提示:只要斜率存在,则斜率一定相等.2.两条直线垂直(1)如图①,如果两条直线都有斜率且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直.即l1⊥l2⇔k1k2=-1(k1,k2均存在).(2)如图②,若l1与l2中的一条斜率不存在,另一条斜率为零,则l1与l2的位置关系是垂直.①②思考:两直线垂直,则两直线斜率乘积是否一定为-1?提示:两直线斜率存在的前提下,斜率乘积为-1.1.思考辨析(1)若直线l1与l2斜率相等,则l1∥l2. ( )(2)若直线l1∥l2(两条直线的斜率存在,分别为k1,k2),则k1=k2.( )(3)若两条直线的斜率不相等,则两直线不平行.( )[答案](1)×(2)√(3)√2.已知A(2,0),B(3,3),直线l∥AB,则直线l的斜率k=________.3 [k AB =3-03-2=3,k l =k AB =3.]3.与直线x +2y +7=0垂直的一条直线的斜率k =______.2 [直线x +2y +7=0的斜率k =-12,故与其垂直的一条直线的斜率k =2.]4.过点(0,1)且与直线2x -y =0垂直的直线的一般式方程是________.x +2y -2=0 [直线2x -y =0的斜率是k =2,故所求直线的方程是y =-12x +1,即x+2y -2=0.]12(1)l 1的斜率为1,l 2经过点P (1,1),Q (3,3);(2)l 1经过点A (-3,2),B (-3,10),l 2经过点C (5,-2),D (5,5); (3)l 1经过点A (0,1),B (1,0),l 2经过点C (-1,3),D (2,0); (4)l 1:x -3y +2=0,l 2:4x -12y +1=0.思路探究:依据斜率公式,求出斜率,利用l 1∥l 2或l 1,l 2重合⇔k 1=k 2或k 1,k 2不存在判断.[解] (1)k 1=1,k 2=3-13-1=1,k 1=k 2,∴l 1与l 2重合或l 1∥l 2.(2)l 1与l 2都与x 轴垂直,通过数形结合知l 1∥l 2.(3)k 1=0-11-0=-1,k 2=0-32-(-1)=-1,k 1=k 2,数形结合知l 1∥l 2.(4)l 1的方程可变形为y =13x +23;l 2的方程可变形为y =13x +112.∵k =13,b 1=23,k 2=13,b 2=112,∵k 1=k 2且b 1≠b 2,∴l 1∥l 2.判断两条直线平行的方法1.根据下列给定的条件,判断直线l 1与直线l 2的位置关系. (1)l 1经过点A (2,1),B (-3,5),l 2经过点C (3,-3),D (8,-7);(2)l 1的倾斜角为60°,l 2经过点M (3,23),N (-2,-33). [解] (1)由题意知k 1=5-1-3-2=-45,k 2=-7-(-3)8-3=-45.因为k 1=k 2,且A ,B ,C ,D 四点不共线,所以l 1∥l 2. (2)由题意知k 1=tan 60°=3,k 2=-33-23-2-3= 3.因为k 1=k 2,所以l 1∥l 2或l 1与l 2重合.12(1)直线l 1:2x -4y +7=0,直线l 2:2x +y -5=0; (2)直线l 1:y -2=0,直线l 2:x -ay +1=0;(3)直线l 1经过点⎝ ⎛⎭⎪⎫0,54,⎝ ⎛⎭⎪⎫53,0,l 2经过点⎝ ⎛⎭⎪⎫0,-78,⎝ ⎛⎭⎪⎫76,0. 思路探究:利用两直线垂直的斜率关系判定. [解] (1)k 1=12,k 2=-2,∵k 1·k 2=12×(-2)=-1,∴l 1与l 2垂直.(2)当a =0时,直线l 2方程为x =-1,即l 2斜率不存在,又直线l 1的斜率为0,故两直线垂直.当a ≠0时,直线l 2的斜率为1a,又直线l 1的斜率为0,故两直线相交但不垂直.(3)k 1=0-5453-0=-34,k 2=0-⎝ ⎛⎭⎪⎫-7876-0=34.∵k 1·k 2≠-1,∴两条直线不垂直.1.判断两直线是否垂直的依据是:当这两条直线都有斜率的前提下,只需看它们的斜率之积是否等于-1即可,但应注意有一条直线与x 轴垂直,另一条直线与x 轴平行时,两直线也垂直.2.直接使用A 1A 2+B 1B 2=0判断两条直线是否垂直更有优势.2.判断下列各组中的直线l 1与l 2是否垂直:(1)l 1经过点A (-1,-2),B (1,2),l 2经过点M (-2,-1),N (2,1); (2)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(3)l 1经过点A (3,4),B (3,100),l 2经过点M (-10,40),N (10,40).[解] (1)直线l 1的斜率k 1=2-(-2)1-(-1)=2,直线l 2的斜率k 2=1-(-1)2-(-2)=12,k 1k 2=1,故l 1与l 2不垂直.(2)直线l 1的斜率k 1=-10,直线l 2的斜率k 2=3-220-10=110,k 1k 2=-1,故l 1⊥l 2.(3)l 1的倾斜角为90°,则l 1⊥x 轴. 直线l 2的斜率k 2=40-4010-(-10)=0,则l 2∥x 轴.故l 1⊥l 2.1.如图,设直线l 1与l 2的倾斜角分别为α1与α2,且α1<α2,斜率分别为k 1,k 2,若l 1⊥l 2,α1与α2之间有什么关系?为什么?[提示] α2=90°+α1.因为三角形任意一外角等于不相邻两内角之和.2.已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A ,B ,C ,D 四点,试判定四边形ABCD 的形状.[提示] 四边形ABCD 为直角梯形,理由如下: 如图,由斜率公式得k AB =5-32-(-4)=13,k CD =0-3-3-6=13, k AD =0-3-3-(-4)=-3,k BC =3-56-2=-12, ∵k AB =k CD ,AB 与CD 不重合.∴AB ∥CD ,又k AD ≠k BC ,∴AD 与BC 不平行. 又∵k AB ·k AD =13×(-3)=-1,∴AB ⊥AD ,故四边形ABCD 为直角梯形.【例3】 已知点A (2,2)和直线l :3x +4y -20=0,求: (1)过点A 和直线l 平行的直线方程; (2)过点A 和直线l 垂直的直线方程.思路探究:利用两直线平行和垂直的条件求解或利用与已知直线平行与垂直的直线系方程求解.[解] 法一:∵3x +4y -20=0,∴k l =-34.(1)设过点A 与l 平行的直线为l 1.∵kl 1=k l =-34,∴l 1的方程为y -2=-34(x -2),即3x +4y -14=0.(2)设过点A 与l 垂直的直线为l 2.∵k l kl 2=-1,∴⎝ ⎛⎭⎪⎫-34×kl 2=-1,∴kl 2=43.∴l 2的方程为y -2=43(x -2),即4x -3y -2=0.法二:(1)设与直线l 平行的直线方程为3x +4y +m =0, 则6+8+m =0,∴m =-14,∴3x +4y -14=0为所求.(2)设与直线l 垂直的直线方程为4x -3y +n =0, 则8-6+n =0,∴n =-2, ∴4x -3y -2=0为所求.两直线平行或垂直的应用(1)求与已知直线平行或垂直的直线.此类问题有两种处理方法:一是利用平行与垂直的条件求斜率,进而求方程;二是利用直线系方程求解,与已知直线Ax +By +C =0平行的直线系方程为Ax +By +D =0(C ≠D ),垂直的直线系方程为Bx -Ay +D =0.(2)由直线平行或垂直求参数的值,此类问题直接利用平行和垂直的条件,列关于参数的方程求解即可.3.(1)已知四点A (5,3),B (10,6),C (3,-4),D (-6,11),求证:AB ⊥CD ; (2)已知直线l 1的斜率k 1=34,直线l 2经过点A (3a ,-2),B (0,a 2+1),且l 1⊥l 2,求实数a 的值.[解] (1)证明:由斜率公式得:k AB =6-310-5=35, k CD =11-(-4)-6-3=-53,则k AB ·k CD =-1,∴AB ⊥CD . (2)∵l 1⊥l 2,∴k 1·k 2=-1, 即34×a 2+1-(-2)0-3a =-1, 解得a =1或a =3.1.本节课的重点是理解两条直线平行或垂直的判定条件,会利用斜率判断两条直线平行或垂直,难点是利用斜率判断两条直线平行或垂直.2.本节课要重点掌握的规律方法 (1)判断两条直线平行的步骤.(2)利用斜率公式判断两条直线垂直的方法. (3)判断图形形状的方法步骤.3.本节课的易错点是利用斜率判断含字母参数的两直线平行或垂直时,对字母分类讨论.1.下列说法正确的有( ) A .若两直线斜率相等,则两直线平行 B .若l 1∥l 2,则k 1=k 2C .若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交D .若两直线斜率都不存在,则两直线平行C [A 中,当k 1=k 2时,l 1与l 2平行或重合,错误;B 中,若l 1∥l 2,则k 1=k 2或两直线的斜率都不存在,错误;D 中两直线可能重合.]2.过点(3,6),(0,3)的直线与过点(6,2),(2,0)的直线的位置关系为________. 垂直 [过点(3,6),(0,3)的直线的斜率k 1=6-33-0=2-3;过点(6,2),(2,0)的直线的斜率k2=2-06-2=3+ 2.因为k1·k2=-1,所以两条直线垂直.]3.已知直线(a-1)x+y-1=0与直线2x+ay+1=0平行,则实数a=________.2[由已知,得(a-1)a-2=0,解得a=-1或a=2,当a=-1时,两直线重合,故a =2.]4.已知直线l1:ax+3y=3,l2:x+2ay=5,若l1⊥l2,求a的值.[解]直线l1:ax+3y-3=0,直线l2:x+2ay-5=0.∵l1⊥l2,∴a×1+3×2a=0,即a=0.。
高中数学知识点:平面解析几何初步知识点总结
高中数学知识点:平面解析几何初步知识点总结高中数学知识点:平面解析几何初步知识点总结
平面解析几何初步:
①直线与方程是解析几何的基础,是高考重点考查的内容,单独考查多以选择题、填空题出现;间接考查则以直线与圆、椭圆、双曲线、抛物线等知识综合为主,多为中、高难度试题,往往作为把关题出现在高考题目中。
直接考查主要考查直线的倾斜角、
直线方程,两直线的位置关系,点到直线的距离,对称问题等,间接考查一定会出现
在高考试卷中,主要考查直线与圆锥曲线的综合问题。
②圆的问题主要涉及圆的方程、直线与圆的位置关系、圆与圆的位置关系以及圆
的集合性质的讨论,难度中等或偏易,多以选择题、填空题的形式出现,其中热点为
圆的切线问题。
③空间直角坐标系是平面直角坐标系在空间的推广,在解决空间问题中具有重要
的作业,空间向量的坐标运算就是在空间直角坐标系下实现的。
空间直角坐标系也是
解答立体几何问题的重要工具,一般是与空间向量在坐标运算结合起来运用,也不排
除出现考查基础知识的选择题和填空题。
高一平面解析几何初步复习讲义
2011元旦假期数学作业高一平面解析几何初步复习讲义1.掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根. 2.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念.第1课时 直线的方程1.倾斜角:对于一条与x 轴相交的直线,把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角α叫做直线的倾斜角.当直线和x 轴平行或重合时,规定直线的倾斜角为0°.倾斜角的范围为________.斜率:当直线的倾斜角α≠90°时,该直线的斜率即k =tanα;当直线的倾斜角等于90°时,直线的斜率不存在.2.过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式 .若x 1=x 2,则直线的斜率不存在,此时直线的倾斜角为90°. 3例1. 已知直线(2m 2+m -3)x +(m 2-m)y =4m -1.① 当m = 时,直线的倾斜角为45°.②当m = 时,直线在x 轴上的截距为1.③ 当m = 时,直线在y 轴上的截距为-23.④当m = 时,直线与x 轴平行.⑤当m = 时,直线过原点.变式训练1.(1)直线3y – 3 x +2=0的倾斜角是 ( ) A .30° B.60° C.120° D.150° (2)设直线的斜率k=2,P 1(3,5),P 2(x 2,7),P (-1,y 3)是直线上的三点,则x 2,y 3依次是 ( )A .-3,4B .2,-3C .4,-3D .4,3(3)直线l 1与l 2关于x 轴对称,l 1的斜率是-7 ,则l 2的斜率是 ( )A .7B .-77C .77D .-7 (4)直线l 经过两点(1,-2),(-3,4),则该直线的方程是 . 例2. 已知三点A (1,-1),B (3,3),C (4,5). 求证:A 、B 、C 三点在同一条直线上.变式训练2. 设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3)在同一直线上,求证:a+b+c=0.例3. 已知实数x,y 满足y=x 2-2x+2 (-1≤x≤1).试求:23++x y 的最大值与最小值.典型例题变式训练3. 若实数x,y 满足等式(x-2)2+y 2=3,那么xy的最大值为 ( ) A.21B.33 C.23D.3例4. 已知定点P(6, 4)与直线l 1:y =4x ,过点P 的直线l 与l 1交于第一象限的Q 点,与x 轴正半轴交于点M .求使△OQM 面积最小的直线l 的方程.变式训练4.直线l 过点M(2,1),且分别交x 轴y 轴的正半轴于点A 、B ,O 为坐标原点. (1)当△AOB 的面积最小时,求直线l 的方程; (2)当MB MA 取最小值时,求直线l 的方程.1.直线方程是表述直线上任意一点M 的坐标x 与y 之间的关系式,由斜率公式可导出直线方程的五种形式.这五种形式各有特点又相互联系,解题时具体选取哪一种形式,要根据直线的特点而定.2.待定系数法是解析几何中常用的思想方法之一,用此方法求直线方程,要注意所设方程的适用范围.如:点斜式、斜截式中首先要存在斜率,截距式中横纵截距存在且不为0,两点式的横纵坐标不能相同等(变形后除处).3.在解析几何中,设点而不求,往往是简化计算量的一个重要方法.4.在运用待定数法设出直线的斜率时,就是一种默认斜率存在,若有不存在的情况时,就会出现解题漏洞,此时就要补救:较好的方法是看图,数形结合来找差距.小结归纳第2课时直线与直线的位置关系(一)平面内两条直线的位置关系有三种________.1.当直线不平行坐标轴时,直线与直线的位置关系可根据下表判定2(二)点到直线的距离、直线与直线的距离1.P(x0,y0)到直线Ax+By+C=0 的距离为______________.2.直线l1∥l2,且其方程分别为:l1:Ax+By+C1=0 l2:Ax+By+C2=0,则l1与l2的距离为.(三)两条直线的交角公式若直线l1的斜率为k1,l2的斜率为k2,则1.直线l1到l2的角θ满足.2.直线l1与l2所成的角(简称夹角)θ满足.(四)两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数.(五)五种常用的直线系方程.① 过两直线l1和l2交点的直线系方程为A1x+B1y+C1+ (A2x+B2y+C2)=0(不含l2).② 与直线y=kx+b平行的直线系方程为y=kx+m (m≠b).③ 过定点(x0, y0)的直线系方程为y-y0=k(x-x0)及x=x0.④ 与Ax+By+C=0平行的直线系方程设为Ax+By+m=0 (m≠C).⑤ 与Ax+By+C=0垂直的直线系方程设为Bx-Ay+C1=0 (AB≠0).例1. 已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,(1)试判断l1与l2是否平行;(2)l1⊥l2时,求a的值.变式训练1.若直线l 1:ax+4y-20=0,l 2:x+ay-b=0,当a 、b 满足什么条件时,直线l 1与l 2分别相交?平行?垂直?重合?例2. 直线y =2x 是△ABC 中∠C 的平分线所在的直线,若A 、B 坐标分别为A(-4,2)、B(3,1),求点C 的坐标并判断△ABC 的形状.例3. 设点A(-3,5)和B(2,15),在直线l :3x -4y +4=0上找一点p ,使PB PA 为最小,并求出这个最小值.变式训练3:已知过点A (1,1)且斜率为-m(m>0)的直线l 与x 、y 轴分别交于P 、Q 两点,过P 、Q 作直线2x +y =0的垂线,垂足分别为R 、S ,求四边形PRSQ 的面积的最小值.1.处理两直线位置关系的有关问题时,要注意其满足的条件.如两直线垂直时,有两直线斜率都存在和斜率为O 与斜率不存在的两种直线垂直.2.注意数形结合,依据条件画出图形,充分利用平面图形的性质和图形的直观性,有助于问题的解决.3.利用直线系方程可少走弯路,使一些问题得到简捷的解法.4.解决对称问题中,若是成中心点对称的,关键是运用中点公式,而对于轴对称问题,一般是转化为求对称点,其关键抓住两点:一是对称点的连线与对称轴垂直;二是两对称点的中点在对称轴上,如例4第3课时 圆的方程1. 圆心为C(a 、b),半径为r 的圆的标准方程为_________________.2.圆的一般方程x2+y2+Dx+Ey+F=0(其中D2+E2-4F>0),圆心为,半径r=.3.二元二次方程Ax2+Bxy +Cy2+Dx+Ey+F=0表示圆的方程的充要条件是.4.圆C:(x-a)2+(y-b)2=r2的参数方程为_________.x2+y2=r2的参数方程为________________.5.过两圆的公共点的圆系方程:设⊙C1:x2+y2+D1x+E1y+F1=0,⊙C2:x2+y2+D2x+E2y+F2=0,则经过两圆公共点的圆系方程为.典型例题例1. 根据下列条件,求圆的方程.(1) 经过A(6,5),B(0,1)两点,并且圆心在直线3x+10y+9=0上.(2) 经过P(-2,4),Q(3,-1)两点,并且在x轴上截得的弦长为6.变式训练1:求过点A(2,-3),B(-2,-5),且圆心在直线x-2y-3=0上的圆的方程.例2. 已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.变式训练2:已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4 (m∈R).(1)证明:不论m取什么实数,直线l与圆C恒相交;(2)求直线l被圆C截得的弦长的最短长度及此时的直线方程.(例3. 知点P (x ,y )是圆(x+2)2+y 2=1上任意一点.(1)求P 点到直线3x+4y+12=0的距离的最大值和最小值; (2)求x-2y 的最大值和最小值; (3)求12--x y 的最大值和最小值.变式训练3:已知实数x 、y 满足方程x 2+y 2-4x+1=0. (1)求y-x 的最大值和最小值;(2)求x 2+y 2的最大值和最小值.例4. 设圆满足:①截y 轴所得的弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1.在满足条件①②的所有圆中,求圆心到直线l :x -2y=0的距离最小的圆的方程。
高中数学专题讲义:平面解析几何
高中数学专题讲义:平面解析几何第1讲 直线的方程最新考纲 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知 识 梳 理1.直线的倾斜角与斜率 (1)直线的倾斜角①定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角;②规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0;③范围:直线的倾斜角α的取值范围是[0,π). (2)直线的斜率①定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan__α;②斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.2.直线方程的五种形式名称 几何条件 方程 适用条件 斜截式 纵截距、斜率 y =kx +b 与x 轴不垂直的直线点斜式 过一点、斜率 y -y 0=k (x -x 0) 两点式过两点y -y 1y 2-y 1=x -x 1x 2-x 1与两坐标轴均不垂直的直线 截距式 纵、横截距x a +y b =1 不过原点且与两坐标轴均不垂直的直线 一般式Ax +By +C =0(A 2+B 2≠0)所有直线3.若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)直线的倾斜角越大,其斜率就越大.( ) (2)直线的斜率为tan α,则其倾斜角为α.( ) (3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示.( )(5)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )解析 (1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k 1=-1,k 2=1,k 1<k 2. (2)当直线斜率为tan(-45°)时,其倾斜角为135°. (3)两直线的斜率相等,则其倾斜角一定相等.(4)当直线的斜率不存在时,不可以用方程y -y 0=k (x -x 0)表示. 答案 (1)× (2)× (3)× (4)× (5)√2.(2017·衡水金卷)直线x -y +1=0的倾斜角为( ) A.30°B.45°C.120°D.150°解析 由题得,直线y =x +1的斜率为1,设其倾斜角为α,则tan α=1,又0°≤α<180°,故α=45°,故选B. 答案 B3.如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不通过( ) A.第一象限B.第二象限C.第三象限D.第四象限解析 由已知得直线Ax +By +C =0在x 轴上的截距-C A >0,在y 轴上的截距-CB >0,故直线经过第一、二、四象限,不经过第三象限. 答案 C4.已知A (3,5),B (4,7),C (-1,x )三点共线,则x =______.解析 ∵A ,B ,C 三点共线,∴k AB =k AC ,∴7-54-3=x -5-1-3,∴x =-3.答案 -35.(必修2P100A9改编)过点P (2,3)且在两轴上截距相等的直线方程为________. 解析 当纵、横截距为0时,直线方程为3x -2y =0;当截距不为0时,设直线方程为x a +y a =1,则2a +3a =1,解得a =5.所以直线方程为x +y -5=0. 答案 3x -2y =0或x +y -5=0考点一 直线的倾斜角与斜率(典例迁移)【例1】 (1)直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤π6,π3 B.⎣⎢⎡⎦⎥⎤π4,π3 C.⎣⎢⎡⎦⎥⎤π4,π2D.⎣⎢⎡⎦⎥⎤π4,2π3 (2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.解析 (1)直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cos α≤32,因此k =2·cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3]. 又θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3,即倾斜角的取值范围是⎣⎢⎡⎦⎥⎤π4,π3.(2)如图,∵k AP =1-02-1=1,k BP =3-00-1=-3,∴直线l 的斜率k ∈(-∞,-3]∪[1,+∞). 答案 (1)B (2)(-∞,-3]∪[1,+∞)【迁移探究1】 若将题(2)中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围.解 ∵P (-1,0),A (2,1),B (0,3), ∴k AP =1-02-(-1)=13,k BP =3-00-(-1)= 3.如图可知,直线l 斜率的取值范围为⎣⎢⎡⎦⎥⎤13,3.【迁移探究2】 将题(2)中的B 点坐标改为B (2,-1),其他条件不变,求直线l 倾斜角的范围. 解 如图:直线P A 的倾斜角为45°, 直线PB 的倾斜角为135°,由图象知直线l 的倾斜角的范围为[0°,45°]∪[135°,180°).规律方法 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0).【训练1】 (2017·惠州一调)直线x sin α+y +2=0的倾斜角的取值范围是( ) A.[0,π) B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π C.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫π2,π 解析 设直线的倾斜角为θ,则有tan θ=-sin α.因为sin α∈[-1,1],所以-1≤ tan θ≤1,又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π,故选B. 答案 B考点二 直线方程的求法【例2】 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0≤α<π), 从而cos α=±31010,则k =tan α=±13. 故所求直线方程为y =±13(x +4). 即x +3y +4=0或x -3y +4=0.(2)由题设知纵横截距不为0,设直线方程为xa +y12-a=1, 又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0满足题意; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0. 由点线距离公式,得|10-5k |k 2+1=5,解得k =34. 故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.规律方法 根据各种形式的方程,采用待定系数的方法求出其中的系数,在求直线方程时凡涉及斜率的要考虑其存在与否,凡涉及截距的要考虑是否为零截距以及其存在性. 【训练2】 求适合下列条件的直线方程: (1)经过点P (4,1),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍; (3)经过点B (3,4),且与两坐标轴围成一个等腰直角三角形. 解 (1)设直线l 在x ,y 轴上的截距均为a , 若a =0,即l 过点(0,0)和(4,1), ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +ya =1, ∵l 过点(4,1),∴4a +1a =1, ∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0.(2)由已知:设直线y =3x 的倾斜角为α ,则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34. 又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1), 即3x +4y +15=0.(3)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 所求直线的方程为x -y +1=0或x +y -7=0. 考点三 直线方程的综合应用【例3】 已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程可化为k (x +2)+(1-y )=0, 令⎩⎨⎧x +2=0,1-y =0,解得⎩⎨⎧x =-2,y =1.∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k >0; 当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞).(3)解 由题意可知k ≠0,再由l 的方程, 得A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ). 依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k | =12·(1+2k )2k =12⎝ ⎛⎭⎪⎫4k +1k +4 ≥12×(2×2+4)=4,“=”成立的条件是k >0且4k =1k ,即k =12, ∴S min =4,此时直线l 的方程为x -2y +4=0.规律方法 在求直线方程的过程中,若有以直线为载体的求面积、距离的最值问题,则可先设出直线方程,建立目标函数,再利用基本不等式求解最值.【训练3】 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程. 解 法一 设直线方程为x a +yb =1(a >0,b >0), 点P (3,2)代入得3a +2b =1≥26ab ,得ab ≥24,从而S △ABO =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23, 从而所求直线方程为2x +3y -12=0. 法二 依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3)(k <0), 且有A ⎝ ⎛⎭⎪⎫3-2k ,0,B (0,2-3k ),∴S △ABO =12(2-3k )⎝ ⎛⎭⎪⎫3-2k=12⎣⎢⎡⎦⎥⎤12+(-9k)+4(-k)≥12⎣⎢⎡⎦⎥⎤12+2(-9k)·4(-k)=12×(12+12)=12.当且仅当-9k=4-k,即k=-23时,等号成立,即△ABO的面积的最小值为12.故所求直线的方程为2x+3y-12=0.[思想方法]1.直线的倾斜角和斜率的关系:(1)任何直线都存在倾斜角,但并不是任意直线都存在斜率.(2)直线的倾斜角α和斜率k之间的对应关系:α0°0°<α<90°90°90°<α<180°k 0k>0不存在k<02.在求直线方程时,.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.[易错防范]1.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2.根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.基础巩固题组(建议用时:30分钟)一、选择题1.直线3x-y+a=0(a为常数)的倾斜角为()A.30°B.60°C.120°D.150°解析 直线的斜率为k =tan α=3,又因为0°≤α<180°,所以α=60°. 答案 B2.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则直线l 的方程是( ) A.x +y -2=0 B.x -y +2=0 C.x +y -3=0D.x -y +3=0解析 圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0. 答案 D3.直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4B.⎣⎢⎡⎭⎪⎫3π4,π C.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π D.⎣⎢⎡⎭⎪⎫π4,π2∪⎣⎢⎡⎭⎪⎫3π4,π 解析 ∵直线的斜率k =-1a 2+1,∴-1≤k <0,则倾斜角的范围是⎣⎢⎡⎭⎪⎫3π4,π. 答案 B4.(2017·高安市期中)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( )A.6x -4y -3=0B.3x -2y -3=0C.2x +3y -2=0D.2x +3y -1=0解析 因为抛物线y 2=2x 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l的方程为y =32⎝ ⎛⎭⎪⎫x -12,化为一般式,得6x -4y -3=0.答案 A5.(2016·广州质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( ) A.13B.-13C.-32D.23解析 依题意,设点P (a ,1),Q (7,b ),则有⎩⎨⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.答案 B6.(2017·深圳调研)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )解析 当a >0,b >0时,-a <0,-b <0.选项B 符合. 答案 B7.(2016·衡水一模)已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( ) A.y =3x +2 B.y =3x -2 C.y =3x +12D.y =-3x +2解析 ∵直线x -2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2,∴直线l 的方程为y =3x +2,故选A. 答案 A8.(2017·福州模拟)若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴、y 轴上的截距之和的最小值为( ) A.1B.2C.4D.8解析 ∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b ≥2+2b a ·ab =4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4. 答案 C 二、填空题9.已知三角形的三个顶点A (-5,0,),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0.答案 x +13y +5=010.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎢⎡⎭⎪⎫π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,则k 的取值范围是________.解析 当π6≤α<π4时,33≤tan α<1,∴33≤k <1. 当2π3≤α<π时,-3≤tan α<0, 3≤k <0,∴k ∈⎣⎢⎡⎭⎪⎫33,1∪[-3,0).答案 [-3,0)∪⎣⎢⎡⎭⎪⎫33,111.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为____________. 解析 ①若直线过原点,则k =-43, 所以y =-43x ,即4x +3y =0.②若直线不过原点,设直线方程为x a +ya =1, 即x +y =a .则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. 答案 4x +3y =0或x +y +1=012.直线l :(a -2)x +(a +1)y +6=0,则直线l 恒过定点________. 解析 直线l 的方程变形为a (x +y )-2x +y +6=0, 由⎩⎨⎧x +y =0,-2x +y +6=0,解得x =2,y =-2, 所以直线l 恒过定点(2,-2). 答案 (2,-2)能力提升题组 (建议用时:15分钟)13.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为( )A.4x -3y -3=0B.3x -4y -3=0C.3x -4y -4=0D.4x -3y -4=0解析 由题意可设直线l 0,l 的倾斜角分别为α,2α,因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝ ⎛⎭⎪⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0. 答案 D14.(2017·成都诊断)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则点P 横坐标的取值范围为( )A.⎣⎢⎡⎦⎥⎤-1,-12 B.[-1,0] C.[0,1]D.⎣⎢⎡⎦⎥⎤12,1 解析 由题意知y ′=2x +2,设P (x 0,y 0),则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.答案 A15.已知直线l 过坐标原点,若直线l 与线段2x +y =8(2≤x ≤3)有公共点,则直线l 的斜率的取值范围是________.解析 设直线l 与线段2x +y =8(2≤x ≤3)的公共点为P (x ,y ). 则点P (x ,y )在线段AB 上移动,且A (2,4),B (3,2),设直线l 的斜率为k .又k OA =2,k OB =23.如图所示,可知23≤k ≤2. ∴直线l 的斜率的取值范围是⎣⎢⎡⎦⎥⎤23,2.答案 ⎣⎢⎡⎦⎥⎤23,216.在平面直角坐标系xOy 中,设A 是半圆O :x 2+y 2=2(x ≥0)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是________. 解析 直线OA 的方程为y =x , 代入半圆方程得A (1,1),∴H (1,0),直线HB 的方程为y =x -1, 代入半圆方程得B ⎝ ⎛⎭⎪⎫1+32,-1+32. 所以直线AB 的方程为y -1-1+32-1=x -11+32-1,即3x +y -3-1=0. 答案3x +y -3-1=0第2讲 两直线的位置关系最新考纲 1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.知 识 梳 理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行. (2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应.相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解;重合⇔方程组有无数个解.3.距离公式(1)两点间的距离公式平面上任意两点P1(x1,y1),P2(x2,y2)间的距离公式为|P1P2|=(x2-x1)2+(y2-y1)2. 特别地,原点O(0,0)与任一点P(x,y)的距离|OP|=x2+y2.(2)点到直线的距离公式平面上任意一点P0(x0,y0)到直线l:Ax+By+C=0的距离d=|Ax0+By0+C|A2+B2.(3)两条平行线间的距离公式一般地,两条平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离d=|C1-C2| A2+B2.诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)当直线l1和l2的斜率都存在时,一定有k1=k2⇒l1∥l2.()(2)如果两条直线l1与l2垂直,则它们的斜率之积一定等于-1.()(3)若两直线的方程组成的方程组有唯一解,则两直线相交.()(4)已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1,B1,C1,A2,B2,C2为常数),若直线l1⊥l2,则A1A2+B1B2=0.()(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.()解析(1)两直线l1,l2有可能重合.(2)如果l1⊥l2,若l1的斜率k1=0,则l2的斜率不存在.答案(1)×(2)×(3)√(4)√(5)√2.(2016·北京卷)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.1B.2C. 2D.2 2解析圆(x+1)2+y2=2的圆心坐标为(-1,0),由y=x+3得x-y+3=0,则圆心到直线的距离d=|-1-0+3|12+(-1)2= 2.答案 C3.(2017·郑州调研)直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则m=()A.2B.-3C.2或-3D.-2或-3解析 直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2,故m =2或-3.故选C. 答案 C4.直线2x +2y +1=0,x +y +2=0之间的距离是________. 解析 先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =|2-12|2=324. 答案3245.(必修2P89练习2改编)已知P (-2,m ),Q (m ,4),且直线PQ 垂直于直线x +y +1=0,则m =________.解析 由题意知 m -4-2-m =1,所以m -4=-2-m ,所以m =1.答案 1考点一 两直线的平行与垂直【例1】 (1)已知两条直线l 1:(a -1)x +2y +1=0,l 2:x +ay +3=0平行,则a 等于( ) A.-1 B.2 C.0或-2D.-1或2(2)已知两直线方程分别为l 1:x +y =1,l 2:ax +2y =0,若l 1⊥l 2,则a =________.解析 (1)若a =0,两直线方程分别为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a ≠0;当a ≠0时,两直线平行,则有a -11=2a ≠13,解得a =-1或2. (2)因为l 1⊥l 2,所以k 1k 2=-1.即(-1)·⎝ ⎛⎭⎪⎫-a 2=-1,解得a =-2. 答案 (1)D (2)-2规律方法 (1)当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.【训练1】 (1)(2017·重庆一中检测)若直线l 1:(a -1)x +y -1=0和直线l 2:3x +ay +2=0垂直,则实数a 的值为( ) A.12B.32C.14D.34(2)(2017·西安模拟)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析 (1)由已知得3(a -1)+a =0,解得a =34.(2)由两直线平行可得,a (b -3)=2b ,即2b +3a =ab ,2a +3b =1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝ ⎛⎭⎪⎫2a +3b =13+6a b +6b a ≥13+26a b ·6ba =25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25.答案 (1)D (2)25考点二 两直线的交点与距离问题【例2】 (1)已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.(2)直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析 (1)法一由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k 2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴交点坐标为⎝⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.又∵交点位于第一象限, ∴⎩⎪⎨⎪⎧2-4k 2k +1>0,6k +12k +1>0,解得-16<k <12.法二 如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2). 而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线. ∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点), ∴动直线的斜率k 需满足k P A <k <k PB . ∵k P A =-16,k PB =12. ∴-16<k <12.(2)法一 当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0. 由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13. ∴直线l 的方程为y -2=-13(x +1), 即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意. 法二 当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当l 过AB 中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1. 答案 (1)⎝ ⎛⎭⎪⎫-16,12 (2)x +3y -5=0或x =-1规律方法 (1)求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.【训练2】 (1)曲线y =2x -x 3在横坐标为-1的点处的切线为l ,则点P (3,2)到直线l 的距离为( ) A.722B.922C.1122D.91010(2)(2017·河北省“五个一名校联盟”质检)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A. 2B.823C. 3D.833解析 (1)曲线y =2x -x 3上横坐标为-1的点的纵坐标为-1,故切点坐标为(-1,-1).切线斜率为k =y ′|x =-1=2-3×(-1)2=-1,故切线l 的方程为y -(-1)=-1×[x -(-1)],整理得x +y +2=0.由点到直线的距离公式,得点P (3,2)到直线l 的距离为|3+2+2|12+12=722. (2)因为l 1∥l 2,所以1a -2=a 3≠62a ,所以⎩⎨⎧a (a -2)=3,2a 2≠18,a ≠2,a ≠0,解得a =-1,所以l 1:x -y +6=0,l 2:x-y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪⎪⎪6-232=823,故选B.答案 (1)A (2)B 考点三 对称问题【例3】 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程.解(1)设A ′(x ,y ),再由已知⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,∴A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上. 设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得M ′⎝ ⎛⎭⎪⎫613,3013.设m 与l 的交点为N ,则由⎩⎨⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线方程为9x -46y +102=0. (3)法一 在l :2x -3y +1=0上任取两点, 如M (1,1),N (4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0. 法二 设P (x ,y )为l ′上任意一点, 则P (x ,y )关于点A (-1,-2)的对称点为 P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.规律方法 (1)解决点关于直线对称问题要把握两点,点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,直线l 与直线MN 垂直.(2)如果直线或点关于点成中心对称问题,则只需运用中点公式就可解决问题.(3)若直线l 1,l 2关于直线l 对称,则有如下性质:①若直线l 1与l 2相交,则交点在直线l 上;②若点B 在直线l 1上,则其关于直线l 的对称点B ′在直线l 2上.【训练3】 光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解 法一 由⎩⎨⎧x -2y +5=0,3x -2y +7=0,得⎩⎨⎧x =-1,y =2.∴反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0), 由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5.而PP ′的中点Q 的坐标为⎝ ⎛⎭⎪⎫x 0-52,y 02,又Q 点在l 上,∴3·x 0-52-2·y 02+7=0.由⎩⎪⎨⎪⎧y 0x 0+5=-23,32(x 0-5)-y 0+7=0.得⎩⎪⎨⎪⎧x 0=-1713,y 0=-3213.根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0. 法二 设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ),则y 0-y x 0-x=-23,又PP ′的中点Q ⎝ ⎛⎭⎪⎫x +x 02,y +y 02在l 上,∴3×x +x 02-2×y +y 02+7=0,由⎩⎪⎨⎪⎧y 0-y x 0-x =-23,3×x +x 02-(y +y 0)+7=0.可得P 点的横、纵坐标分别为 x 0=-5x +12y -4213,y 0=12x +5y +2813, 代入方程x -2y +5=0中,化简得29x -2y +33=0, ∴所求反射光线所在的直线方程为29x -2y +33=0.[思想方法]1.两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l 1,l 2,l 1∥l 2⇔k 1=k 2;l 1⊥l 2⇔k 1·k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率一定要特别注意.2.对称问题一般是将线与线的对称转化为点与点的对称.利用坐标转移法解决问题. [易错防范]1.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据判定定理判断,若直线无斜率,要单独考虑.2.在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2时,一定要注意将两方程中x ,y 的系数分别化为相同的形式.基础巩固题组 (建议用时:30分钟)一、选择题1.直线2x +y +m =0和x +2y +n =0的位置关系是( ) A.平行B.垂直C.相交但不垂直D.不能确定解析 直线2x +y +m =0的斜率k 1=-2,直线x +2y +n =0的斜率为k 2=-12,则k 1≠k 2,且k 1k 2≠-1.故选C. 答案 C2.(2017·刑台模拟)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 依题意得,直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎨⎧a (a -2)=3×1,a ×1≠3×1,解得a =-1,因此选C. 答案 C3.过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为( ) A.19x -9y =0 B.9x +19y =0 C.19x -3y =0D.3x +19y =0解析 法一由⎩⎨⎧x -3y +4=0,2x +y +5=0,得⎩⎪⎨⎪⎧x =-197,y =37,则所求直线方程为:y =37-197x =-319x ,即3x +19y =0.法二 设直线方程为x -3y +4+λ(2x +y +5)=0, 即(1+2λ)x -(3-λ)y +4+5λ=0,又直线过点(0,0), 所以(1+2λ)·0-(3-λ)·0+4+5λ=0, 解得λ=-45,故所求直线方程为3x +19y =0. 答案 D4.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A.x +2y -1=0 B.2x +y -1=0 C.x +2y +3=0D.x +2y -3=0解析 设所求直线上任一点(x ,y ),则它关于直线x =1的对称点(2-x ,y )在直线x -2y +1=0上,即2-x -2y +1=0,化简得x +2y -3=0. 答案 D5.(2017·安庆模拟)若直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,则m =( ) A.7B.172C.14D.17解析 直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离10,所以|2m +3|4+36=10,求得m =172,故选B. 答案 B6.平面直角坐标系中直线y =2x +1关于点(1,1)对称的直线方程是( ) A.y =2x -1 B.y =-2x +1 C.y =-2x +3D.y =2x -3解析 在直线y =2x +1上任取两个点A (0,1),B (1,3),则点A 关于点(1,1)对称的点为M (2,1),点B 关于点(1,1)对称的点为N (1,-1).由两点式求出对称直线MN 的方程为y +11+1=x -12-1,即y =2x -3,故选D. 答案 D7.(2017·成都调研)已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( ) A.(3,3) B.(2,3) C.(1,3)D.⎝⎛⎭⎪⎫1,32解析 直线l 1的斜率为k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2).两式联立,解得⎩⎨⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3).故选C. 答案 C8.从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为( )A.x +2y -4=0B.2x +y -1=0C.x +6y -16=0D.6x +y -8=0解析 由直线与向量a =(8,4)平行知:过点(2,3)的直线的斜率k =12,所以直线的方程为y -3=12(x -2),其与y 轴的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式知A 正确. 答案 A 二、填空题9.点(2,1)关于直线x -y +1=0的对称点为________.解析设对称点为(x 0,y 0),则⎩⎪⎨⎪⎧y 0-1x 0-2=-1,x 0+22-y 0+12+1=0,解得⎩⎨⎧x 0=0,y 0=3,故所求对称点为(0,3).答案 (0,3)10.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________. 解析 由⎩⎨⎧y =2x ,x +y =3,得⎩⎨⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9. 答案 -911.(2017·沈阳检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析 显然直线l 的斜率不存在时,不满足题意; 设所求直线方程为y -4=k (x -3), 即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2, ∴k =2或k =-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 答案 2x +3y -18=0或2x -y -2=012.(2016·长沙一调)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析 设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′, 所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6), 所以所求直线的方程为y -06-0=x -12-1, 即6x -y -6=0. 答案 6x -y -6=0能力提升题组 (建议用时:15分钟)13.(2017·洛阳模拟)在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2的值为( ) A.102B.10C.5D.10解析 由题意知P (0,1),Q (-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,∴M 位于以PQ 为直径的圆上,∵|PQ |=9+1=10,∴|MP |2+|MQ |2=|PQ |2=10,故选D. 答案 D14.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( ) A.210 B.6 C.3 3D.2 5解析 易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1(4,2)与A 2(-2,0)两点间的距离. 于是|A 1A 2|=(4+2)2+(2-0)2=210. 答案 A15.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.解析 易知A (0,0),B (1,3)且两直线互相垂直, 即△APB 为直角三角形,∴|P A |·|PB |≤|P A |2+|PB |22=|AB |22=102=5.当且仅当|P A |=|PB |时,等号成立. 答案 516.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________.解析 设平面上任一点M ,因为|MA |+|MC |≥|AC |,当且仅当A ,M ,C 共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 为所求.∵k AC =6-23-1=2, ∴直线AC 的方程为y -2=2(x -1), 即2x -y =0.①又∵k BD =5-(-1)1-7=-1,∴直线BD的方程为y-5=-(x-1),即x+y-6=0.②由①②得⎩⎨⎧2x-y=0,x+y-6=0,解得⎩⎨⎧x=2,y=4,所以M(2,4).答案(2,4)第3讲圆的方程最新考纲掌握确定圆的几何要素,掌握圆的标准方程与一般方程.知识梳理1.圆的定义和圆的方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心C(a,b)半径为r一般x2+y2+Dx+Ey+F=0(D2+E2-4F>0)充要条件:D2+E2-4F>0圆心坐标:⎝⎛⎭⎪⎫-D2,-E2半径r=12D2+E2-4F2.平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)d>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)d=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)d<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)确定圆的几何要素是圆心与半径.()(2)方程x2+y2=a2表示半径为a的圆.()(3)方程x2+y2+4mx-2y+5m=0表示圆.()(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.()解析(2)当a=0时,x2+y2=a2表示点(0,0);当a<0时,表示半径为|a|的圆.(3)当(4m)2+(-2)2-4×5m>0,即m<14或m>1时才表示圆.答案(1)√(2)×(3)×(4)√2.(2015·北京卷)圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2解析由题意得圆的半径为2,故该圆的方程为(x-1)2+(y-1)2=2,故选D.答案 D3.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是()A.(-1,1)B.(0,1)C.(-∞,-1)∪(1,+∞)D.a=±1解析因为点(1,1)在圆的内部,所以(1-a)2+(1+a)2<4,所以-1<a<1.答案 A4.(2016·浙江卷)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________.解析由已知方程表示圆,则a2=a+2,解得a=2或a=-1.当a=2时,方程不满足表示圆的条件,故舍去.当a=-1时,原方程为x2+y2+4x+8y-5=0,化为标准方程为(x+2)2+(y+4)2=25,表示以(-2,-4)为圆心,半径为5的圆.答案(-2,-4) 55.(必修2P124A4改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.解析设圆心坐标为C(a,0),∵点A(-1,1)和B(1,3)在圆C上,∴|CA|=|CB|,即(a+1)2+1=(a-1)2+9,解得a=2,所以圆心为C(2,0),半径|CA|=(2+1)2+1=10,∴圆C的方程为(x-2)2+y2=10.答案(x-2)2+y2=10考点一圆的方程【例1】(1)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为________.(2)已知圆C经过P(-2,4),Q(3,-1)两点,且在x轴上截得的弦长等于6,则圆C的方程为________.解析(1)法一由已知k AB=0,所以AB的中垂线方程为x=3.①过B点且垂直于直线x-y-1=0的直线方程为y-1=-(x-2),即x+y-3=0,②联立①②,解得⎩⎨⎧x=3,y=0,所以圆心坐标为(3,0),半径r=(4-3)2+(1-0)2=2,所以圆C的方程为(x-3)2+y2=2.法二设圆的方程为(x-a)2+(y-b)2=r2(r>0),∵点A(4,1),B(2,1)在圆上,故⎩⎨⎧(4-a)2+(1-b)2=r2,(2-a)2+(1-b)2=r2,又∵b-1a-2=-1,解得a=3,b=0,r=2,故所求圆的方程为(x-3)2+y2=2.(2)设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F=0),将P,Q两点的坐标分别代入得⎩⎨⎧2D-4E-F=20,3D-E+F=-10.①②又令y=0,得x2+Dx+F=0.③设x1,x2是方程③的两根,由|x1-x2|=6,得D2-4F=36,④由①,②,④解得D=-2,E=-4,F=-8,或D=-6,E=-8,F=0.故所求圆的方程为x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.答案(1)(x-3)2+y2=2(2)x2+y2-2x-4y-8=0或x2+y2-6x-8y=0规律方法求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;(2)代数法,即设出圆的方程,用待定系数法求解.【训练1】(1)(2016·天津卷)已知圆C的圆心在x轴的正半轴上,点M(0,5)在圆C上,且圆心到直线2x-y=0的距离为455,则圆C的方程为________.(2)(2017·武汉模拟)以抛物线y2=4x的焦点为圆心,与该抛物线的准线相切的圆的标准方程为________.解析(1)因为圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,所以圆心到直线2x-y=0的距离d=2a5=455,解得a=2,所以圆C的半径r=|CM|=4+5=3,所以圆C的方程为(x-2)2+y2=9.(2)抛物线y2=4x的焦点为(1,0),准线为x=-1,故所求圆的圆心为(1,0),半径为2,所以该圆的标准方程为(x-1)2+y2=4.答案(1)(x-2)2+y2=9(2)(x-1)2+y2=4考点二与圆有关的最值问题【例2】已知实数x,y满足方程x2+y2-4x+1=0.(1)求yx的最大值和最小值;(2)求y-x的最大值和最小值;(3)求x2+y2的最大值和最小值.解原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,3为半径的圆.(1)yx的几何意义是圆上一点与原点连线的斜率,所以设yx=k,即y=kx.当直线y=kx与圆相切时,斜率k取最大值或最小值,此时|2k-0|k2+1=3,解得k=±3(如图1).所以yx的最大值为3,最小值为- 3.。
平面解析几何初步
平面几何初步课程要求1.直线及方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式及一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆及方程(1)掌握确定圆的几何要素,掌握圆的标准方程及一般方程.(2)能根据给定直线、圆的方程判断直线及圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方法处理几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.考情分析平面解析几何是高中数学的一个基本知识点,我们学习它是为了后面学习空间几何和圆锥曲线打基础。
但平面几何作为一个考点,还是会在选择题或填空题中出现一道,而且难度适中。
为了拿到这5分,并且为后面的解答题做准备,我们需要牢牢掌握这部分基础知识。
知识梳理1一、直线及方程1.直线的倾斜角和斜率:倾斜角:x轴正向及直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线及x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180直线的斜率:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
斜率反映直线及轴的倾斜程度斜率的公式:给定两点()()y x p y x P ,,222111,,x x 21≠,则直线P P 21的斜率平行及垂直:两条直线l l 21,,他们的斜率分别为k k 2,12.直线的方程点斜式:直线l 过点()y x p 000,,且斜率为k,那么直线方程为: 斜截式:直线l 斜率为k ,且及y 轴交点为(0,b ), 那么直线方程为: y=kx+b两点式:直线l 过点(),y x p 111,()y x p 222,,其中x x 21≠,y y 21≠,那么直线方程为xx x yy y x y 121121--=--直线的一般方程:0=++C By Ax ,(A ,B 不同是为0) 3.两点间的距离 4.点到直线的距离点()y x p 000,到直线l :0=++C By Ax 的距离为:B2200+++=A y x CB A d5. 两条平行线间的距离已知两条平行线0:,0:C 2211=++=++By Ax By Ax l C l ,则l l 21与的距离为BA C C d 2221+-=二、圆及方程1.圆的定义(1)在平面内,到定点的距离等于定长的点的集合叫做圆. (2)确定一个圆的要素是圆心和半径. 2.圆的方程(1)圆的标准方程: 222()()x a y b r -+-=,其中圆心为A(a,b),半径为r ;(2)圆的一般方程:220x y Dx Ey F ++++=()2240D E F +->注:上述方程配方得:22224224D E D E F x y +-⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭3.求圆的方程的一般步骤为:(1) 根据题意选择标准方程或者一般方程; (2) 根据条件列出关于,,a b r 或者,,D E F 的方程组; (3)解出,,a b r 或者,,D E F 代入标准方程或者一般方程.4.点00(,)M x y 及圆222()()x a y b r -+-=的关系: (1)若2200()()x a y b -+->2r 则点M 在圆外;(2)若22200()()x a y b r -+-=,则点M 在圆上; (3)若2200()()x a y b -+-<2r ,则点M 在圆内.5.直线l :0Ax By C ++=及圆 222()()x a y b r -+-=的位置关系: (1)若圆心A 到直线l的距离d r =>,则直线及圆相离;(2)若圆心A 到直线l的距离d r =<,则直线及圆相交; (3)若圆心A 到直线l的距离d r ==,则直线及圆相切; 6.圆及圆的位置关系:设两圆的连心线长为l ,则判别圆及圆的位置关系的依据有以 下几点:(1)当21r r l +>时,圆1C 及圆2C 相离; (2)当21r r l +=时,圆1C 及圆2C 外切;(3)当<-||21r r 21r r l +<时,圆1C 及圆2C 相交;注:当圆()()2221111:C x a y b r -+-=及圆()()2222222:C x a y b r -+-=相交及A 、B 两点时,上述方程相减即得直线AB 方程. 题型分类1.求直线的方程:例. 如图所示,已知两条直线l 1:x -3y +12=0,l 2:3x +y -4=0,过定点P (-1,2作一条直线l ,分别及直线l 1、l 2 交于M 、N 两点,若点P 恰好是MN 的中点,求直线l 的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
条件
关系
l1:y=k1x+b1
l2:y=k2x+b2
l1:A1x+B1y+C1=0
l2:A2x+B2y+C2=0
平行
重合
相交
(垂直)
2.当直线平行于坐标轴时,可结合图形判定其位置关系.
(二)点到直线的距离、直线与直线的距离
1.P(x0,y0)到直线Ax+By+C=0 的距离为________x+E1y+F1=0,⊙C2:x2+y2+D2x+E2y+F2=0,则经过两圆公共点的圆系方程为.
例1. 根据下列条件,求圆的方程.
(1) 经过A(6,5),B(0,1)两点,并且圆心在直线3x+10y+9=0上.
(2) 经过P(-2,4),Q(3,-1)两点,并且在x轴上截得的弦长为6.
⑤ 与Ax+By+C=0垂直的直线系方程设为Bx-Ay+C1=0 (AB≠0).
例1. 已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,
(1)试判断l1与l2是否平行;
(2)l1⊥l2时,求a的值.
变式训练1.若直线l1:ax+4y-20=0,l2:x+ay-b=0,当a、b满足什么条件时,直线l1与l2分别相交?平行?垂直?重合?
(1)证明:不论m取什么实数,直线l与圆C恒相交;
第3课时 圆的方程
1. 圆心为C(a、b),半径为r的圆的标准方程为_________________.
2.圆的一般方程x2+y2+Dx+Ey+F=0(其中D2+E2-4F>0),圆心为,半径r=.
3.二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的方程的充要条件是.
4.圆C:(x-a)2+(y-b)2=r2的参数方程为_________.x2+y2=r2的参数方程为________________.
例3. 已知实数x,y满足y=x2-2x+2 (-1≤x≤1).
试求: 的最大值与最小值.
变式训练3. 若实数x,y满足等式(x-2)2+y2=3,那么 的最大值为( )
A. B. C. D.
例4. 已知定点P(6, 4)与直线l1:y=4x,过点P的直线l与l1交于第一象限的Q点,与x轴正半轴交于点M.求使△OQM面积最小的直线l的方程.
变式训练1.(1)直线3y– x+2=0的倾斜角是 ( )
A.30° B.60° C.120° D.150°
(2)设直线的斜率k=2,P1(3,5),P2(x2,7),P(-1,y3)是直线上的三点,则x2,y3依次是 ( )
A.-3,4 B.2,-3C.4,-3 D.4,3
(3)直线l1与l2关于x轴对称,l1的斜率是- ,则l2的斜率是 ( )
A. B.- C. D.-
(4)直线l经过两点(1,-2),(-3,4),则该直线的方程是.
例2. 已知三点A(1,-1),B(3,3),C(4,5).
求证:A、B、C三点在同一条直线上.
变式训练2. 设a,b,c是互不相等的三个实数,如果A(a,a3)、B(b,b3)、C(c,c3)在同一直线上,求证:a+b+c=0.
2.直线l1∥l2,且其方程分别为:l1:Ax+By+C1=0 l2:Ax+By+C2=0,则l1与l2的距离为.
(三)两条直线的交角公式
若直线l1的斜率为k1,l2的斜率为k2,则
1.直线l1到l2的角θ满足.
2.直线l1与l2所成的角(简称夹角)θ满足.
(四)两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数.
变式训练1:求过点A(2,-3),B(-2,-5),且圆心在直线x-2y-3=0上的圆的方程.
例2. 已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.
变式训练2:已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4 (m∈R).
第1课时 直线的方程
1.倾斜角:对于一条与x轴相交的直线,把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角α叫做直线的倾斜角.当直线和x轴平行或重合时,规定直线的倾斜角为0°.倾斜角的范围为________.
斜率:当直线的倾斜角α≠90°时,该直线的斜率即k=tanα;当直线的倾斜角等于90°时,直线的斜率不存在.
例2. 直线y=2x是△ABC中∠C的平分线所在的直线,若A、B坐标分别为A(-4,2)、B(3,1),求点C的坐标并判断△ABC的形状.
例3. 设点A(-3,5)和B(2,15),在直线l:3x-4y+4=0上找一点p,使 为最小,并求出这个最小值.
变式训练3:已知过点A(1,1)且斜率为-m(m>0)的直线l与x、y轴分别交于P、Q两点,过P、Q作直线2x+y=0的垂线,垂足分别为R、S,求四边形PRSQ的面积的最小值.
(五)五种常用的直线系方程.
① 过两直线l1和l2交点的直线系方程为A1x+B1y+C1+ (A2x+B2y+C2)=0(不含l2).
② 与直线y=kx+b平行的直线系方程为y=kx+m (m≠b).
③ 过定点(x0, y0)的直线系方程为y-y0=k(x-x0)及x=x0.
④ 与Ax+By+C=0平行的直线系方程设为Ax+By+m=0 (m≠C).
2.过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式.若x1=x2,则直线的斜率不存在,此时直线的倾斜角为90°.
3.直线方程的五种形式
名称
方程
适用范围
斜截式
点斜式
两点式
截距式
一般式
例1. 已知直线(2m2+m-3)x+(m2-m)y=4m-1.① 当m=时,直线的倾斜角为45°.②当m=时,直线在x轴上的截距为1.③ 当m=时,直线在y轴上的截距为- .④ 当m=时,直线与x轴平行.⑤当m=时,直线过原点.
变式训练4.直线l过点M(2,1),且分别交x轴y轴的正半轴于点A、B,O为坐标原点.
(1)当△AOB的面积最小时,求直线l的方程;
(2)当 取最小值时,求直线l的方程.
第2课时 直线与直线的位置关系
(一)平面内两条直线的位置关系有三种________.
1.当直线不平行坐标轴时,直线与直线的位置关系可根据下表判定