2019高考数学试题评价与特点分析
2019年高考数学全国3卷文理科试卷分析和点评解析
2019年高考数学全国3卷文/理科试卷分析和点评解析10.双曲线 C :1 的右焦点为 F ,点 P 在 C 的一条渐近线上,O 为坐标原点.若4 2|PO |=|PF |,则△PFO 的面积为( )3 2 3 2 A. B.4 2C. 2 2D. 3 2【解析】看到焦点和渐近线,想到双曲线参数的几何意义,即焦点到渐近线的距离为b ,过F 作渐近线的垂线,垂足为 B ,设 POPFx ,a c 2x 2x 2法一:在 Rt OFB 中,有 cos FOB ,在 OFP 中,有 cos FOB,c 2cxc21 c23 2 联立得 x,得 S b 。
2a2 2a 4c 2 c 2法二:等腰直角三角形的高为 b xc x 2,易得 x ,同上。
4 2a【点评】双曲线参数的几何意义多次考查,《解析几何的系统性突破》(唯一正版销售书店)通过高考题反复强化学生认知,从而在一些几何图形中迅速找到隐含 的信息,快速突破。
11.(送分)12. 设函数 f (x )sin(xc 2x 2- 4[)(0) ,已知 f (x )在[0,2π]有且仅有 5 个零点,下述四个结5论:①f (x )在(0,2π)有且仅有 3 个极大值点;②f (x )在(0,2π)有且仅有 2个极小值点;③f (x )在(0, ) 单调递增;④的取值范围是 12 , 29).其中所有正确结论的编号是()105 10A.①④B.②③C.①②③D.①③④【点评 1】肖博老师威信:xbmath19《高观点下全国卷高考压轴题研究三部曲》书中 最后给出了 16 套小练习(搜集最新的各地模拟题),其中第 3 套和第 4 套第 1 题如下: 1.函数 fxcos x 0在区间, 上有且只有两个极值点,则的取值范围是3 4A. 2,3B.2,3C.3, 4D.3, 41.若函数 y2sin x0的图象在区间 (,)上只有一个极值点,则的取值范围3 6为( ))A. 13B.23 32C. 34D.3 92 2法一:还原,则变成同上 2 个题。
2019天津高考数学试卷分析
2019天津高考数学试卷分析试卷满分150分,考试时间120分钟试卷包括I、II两卷。
第I卷一、选择题(8题,40分)1集合的运算2函数求最值3充分必要条件,化简不等式4程序框图的应用5抛物线和双曲线的性质及离心率的求解6对数、指数比较大小:7三角函数的解析式8分段函数的最值第II卷二、填空题(6题,30分)9复数定义、模的概念及基本运算10二项式的展开式的通项11四棱锥与圆柱内接,立体几何12运用直线与圆相切等求解13基本不等式求最值14平面向量基本定理和数量积三、解答题(6题,80分)15 (13分)正弦定理、余弦定理两角和的正弦公式,二倍角的正余弦公式三角函数的基本关系16 (13分)离散型随机变量的分布列与期望互斥事件与相互独立事件的概率计算公式17 (13分)直线与平面平行的判定空间向量求解线面角与二面角的大小18 (13分)直线与椭圆方程求交点19 (14分)等差数列、等比数列通项公式20 (14分)导数的运算不等式的证明运用导数研究函数的性质2019年全国I卷高考理数试卷结构题型及分值试卷满分150分,考试时间120分钟第I卷一、选择题(12题,60分)1一元二次不等式解法和交集的运算2复数的模、几何意义3指数函数和对数函数的单调性增函数和减函数的定义4推理和估算5函数的图象与性质,奇偶性和特殊值6概率的求法,排列组合7平面向量的数量积和向量的夹角8程序框图的应用9等差数列的通项公式,前n项和公式10椭圆的性质11判断与三角函数有关的命题的真假12多面体外接球体积的求法二、填空题(4题,20分)13利用导数研究函数上某点的切线方程14等比数列的通项公式15相互独立事件概率乘法公式16双曲线的性质三、解答题(6题,70分)(一)必考题(5题,60分)17 (12分)正弦定理、余弦定理、三角函数性质18 (12分)直线与平面平行的判定利用空间向量求解空间角19 (12分)抛物线的性质20 (12分)利用导数求函数的极值函数零点的判定21 (12分)数列和函数的应用离散型随机变量的分布列(二)选考题(任选1题,10分)22曲线的极坐标方程参数方程化普通方程直线与椭圆位置关系的应用两平行线间的距离公式23不等式和基本不等式的运用。
2019年云南省_全国统一高考数学试卷(理科)(新课标ⅲ)及解析
2019年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={﹣1,0,1,2},B={x|x2≤1},则A∩B=()A.{﹣1,0,1}B.{0,1}C.{﹣1,1}D.{0,1,2} 2.(5分)若z(1+i)=2i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i3.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.84.(5分)(1+2x2)(1+x)4的展开式中x3的系数为()A.12B.16C.20D.245.(5分)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A.16B.8C.4D.26.(5分)已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1B.a=e,b=1C.a=e﹣1,b=1D.a=e﹣1,b=﹣1 7.(5分)函数y=在[﹣6,6]的图象大致为()A.B.C.D.8.(5分)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9.(5分)执行如图的程序框图,如果输入的ɛ为0.01,则输出s的值等于()A.2﹣B.2﹣C.2﹣D.2﹣10.(5分)双曲线C:﹣=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点.若|PO|=|PF|,则△PFO的面积为()A.B.C.2D.311.(5分)设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)12.(5分)设函数f(x)=sin(ωx+)(ω>0),已知f(x)在[0,2π]有且仅有5个零点.下述四个结论:①f(x)在(0,2π)有且仅有3个极大值点②f(x)在(0,2π)有且仅有2个极小值点③f(x)在(0,)单调递增④ω的取值范围是[,)其中所有正确结论的编号是()A.①④B.②③C.①②③D.①③④二、填空题:本题共4小题,每小题5分,共20分。
2019年上海市高考数学试卷+参考答案+详情解析
2019年上海市高考数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分). 1.(4分)已知集合A=(﹣∞,3),B=(2,+∞),则A∩B=.2.(4分)已知z∈C,且满足=i,求z=.3.(4分)已知向量=(1,0,2),=(2,1,0),则与的夹角为.4.(4分)已知二项式(2x+1)5,则展开式中含x2项的系数为.5.(4分)已知x,y满足,则z=2x﹣3y的最小值为.6.(4分)已知函数f(x)周期为1,且当0<x≤1时,f(x)=log2x,则f()=.7.(5分)若x,y∈R+,且+2y=3,则的最大值为.8.(5分)已知数列{a n}前n项和为S n,且满足S n+a n=2,则S5=.9.(5分)过曲线y2=4x的焦点F并垂直于x轴的直线分别与曲线y2=4x交于A,B,A 在B上方,M为抛物线上一点,=λ+(λ﹣2),则λ=.10.(5分)某三位数密码,每位数字可在0﹣9这10个数字中任选一个,则该三位数密码中,恰有两位数字相同的概率是.11.(5分)已知数列{a n}满足a n<a n+1(n∈N*),P n(n,a n)(n≥3)均在双曲线﹣=1上,则|P n P n+1|=.12.(5分)已知f(x)=|﹣a|(x>1,a>0),f(x)与x轴交点为A,若对于f(x)图象上任意一点P,在其图象上总存在另一点Q(P、Q异于A),满足AP⊥AQ,且|AP|=|AQ|,则a=.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)已知直线方程2x﹣y+c=0的一个方向向量可以是()A.(2,﹣1)B.(2,1)C.(﹣1,2)D.(1,2)14.(5分)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为()A.1 B.2 C.4 D.815.(5分)已知ω∈R,函数f(x)=(x﹣6)2•sin(ωx),存在常数a∈R,使f(x+a)为偶函数,则ω的值可能为()A.B.C.D.16.(5分)已知tanα•tanβ=tan(α+β).有下列两个结论:①存在α在第一象限,β在第三象限;②存在α在第二象限,β在第四象限;则()A.①②均正确B.①②均错误C.①对②错D.①错②对三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)如图,在长方体ABCD﹣A1B1C1D1中,M为BB1上一点,已知BM=2,CD =3,AD=4,AA1=5.(1)求直线A1C和平面ABCD的夹角;(2)求点A到平面A1MC的距离.18.(14分)已知f(x)=ax+,a∈R.(1)当a=1时,求不等式f(x)+1<f(x+1)的解集;(2)若f(x)在x∈[1,2]时有零点,求a的取值范围.19.(14分)如图,A﹣B﹣C为海岸线,AB为线段,为四分之一圆弧,BD=39.2km,∠BDC=22°,∠CBD=68°,∠BDA=58°.(1)求的长度;(2)若AB=40km,求D到海岸线A﹣B﹣C的最短距离.(精确到0.001km)20.(16分)已知椭圆+=1,F1,F2为左、右焦点,直线l过F2交椭圆于A,B两点.(1)若直线l垂直于x轴,求|AB|;(2)当∠F1AB=90°时,A在x轴上方时,求A、B的坐标;(3)若直线AF 1交y轴于M,直线BF1交y轴于N,是否存在直线l,使得S=S,若存在,求出直线l的方程;若不存在,请说明理由.21.(18分)数列{a n}(n∈N*)有100项,a1=a,对任意n∈[2,100],存在a n=a i+d,i∈[1,n﹣1],若a k与前n项中某一项相等,则称a k具有性质P.(1)若a1=1,d=2,求a4所有可能的值;(2)若{a n}不为等差数列,求证:数列{a n}中存在某些项具有性质P;(3)若{a n}中恰有三项具有性质P,这三项和为c,使用a,d,c表示a1+a2+…+a100.2019年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分). 1.(4分)已知集合A=(﹣∞,3),B=(2,+∞),则A∩B=(2,3).【分析】根据交集的概念可得.【解答】解:根据交集的概念可得A∩B=(2,3).故答案为:(2,3).【点评】本题考查了交集及其运算,属基础题.2.(4分)已知z∈C,且满足=i,求z=5﹣i.【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【解答】解:由=i,得z﹣5=,即z=5+=5﹣i.故答案为:5﹣i.【点评】本题考查复数代数形式的乘除运算,是基础的计算题.3.(4分)已知向量=(1,0,2),=(2,1,0),则与的夹角为.【分析】直接利用向量的夹角公式的应用求出结果.【解答】解:向量=(1,0,2),=(2,1,0),则,,所以:cos=,故:与的夹角为.故答案为:【点评】本题考查的知识要点:向量的夹角公式的应用,主要考察学生的运算能力和转换能力,属于基础题型.4.(4分)已知二项式(2x+1)5,则展开式中含x2项的系数为40 .【分析】先求得二项式展开式的通项公式,再令x的幂指数等于2,求得r的值,即可求得含x2项的系数值.【解答】解:二项式(2x﹣1)5的展开式的通项公式为T r+1=C5r•25﹣r•x5﹣r,令5﹣r=2,求得r=3,可得展开式中含x2项的系数值为C53•22=40,故答案为:40.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.5.(4分)已知x,y满足,则z=2x﹣3y的最小值为﹣6 .【分析】画出不等式组表示的平面区域,由目标函数的几何意义,结合平移直线,可得所求最小值.【解答】解:作出不等式组表示的平面区域,由z=2x﹣3y即y=,表示直线在y轴上的截距的相反数的倍,平移直线2x﹣3y=0,当经过点(0,2)时,z=2x﹣3y取得最小值﹣6,故答案为:﹣6.【点评】本题考查线性规划的运用,考查平移法求最值的方法,数形结合思想,考查运算能力,属于基础题.6.(4分)已知函数f(x)周期为1,且当0<x≤1时,f(x)=log2x,则f()=﹣1 .【分析】由题意知函数f(x)周期为1,所以化简f()再代入即可.【解答】解:因为函数f(x)周期为1,所以f()=f(),因为当0<x≤1时,f(x)=log2x,所以f()=﹣1,故答案为:﹣1.【点评】本题考查函数的周期性,属于简单题.7.(5分)若x,y∈R+,且+2y=3,则的最大值为.【分析】根据基本不等式可得.【解答】解:3=+2y≥2,∴≤()2=;故答案为:【点评】本题考查了基本不等式及其应用,属基础题.8.(5分)已知数列{a n}前n项和为S n,且满足S n+a n=2,则S5=.【分析】由已知数列递推式可得数列{a n}是等比数列,且,再由等比数列的前n项和公式求解.【解答】解:由S n+a n=2,①得2a1=2,即a1=1,且S n﹣1+a n﹣1=2(n≥2),②①﹣②得:(n≥2).∴数列{a n}是等比数列,且.∴.故答案为:.【点评】本题考查数列递推式,考查等比关系的确定,训练了等比数列前n项和的求法,是中档题.9.(5分)过曲线y2=4x的焦点F并垂直于x轴的直线分别与曲线y2=4x交于A,B,A 在B上方,M为抛物线上一点,=λ+(λ﹣2),则λ= 3 .【分析】直接利用直线和抛物线的位置关系的应用求出点的坐标,进一步利用向量的运算求出结果.【解答】解:过y2=4x的焦点F并垂直于x轴的直线分别与y2=4x交于A,B,A在B 上方,依题意:得到:A(1,2)B(1,﹣2),设点M(x,y),所以:M为抛物线上一点,=λ+(λ﹣2),则:(x,y)=λ(1,2)+(λ﹣2)(1,﹣2)=(2λ﹣2,4),代入y2=4x,得到:λ=3.故答案为:3【点评】本题考查的知识要点:直线和抛物线的位置关系的应用,向量的坐标运算的应用,主要考察学生的运算能力和转换能力,属于基础题型.10.(5分)某三位数密码,每位数字可在0﹣9这10个数字中任选一个,则该三位数密码中,恰有两位数字相同的概率是.【分析】分别运用直接法和排除法,结合古典概率的公式,以及计数的基本原理:分类和分步,计算可得所求值.【解答】解:方法一、(直接法)某三位数密码锁,每位数字在0﹣9数字中选取,总的基本事件个数为1000,其中恰有两位数字相同的个数为C C=270,则其中恰有两位数字相同的概率是=;方法二、(排除法)某三位数密码锁,每位数字在0﹣9数字中选取,总的基本事件个数为1000,其中三位数字均不同和全相同的个数为10×9×8+10=730,可得其中恰有两位数字相同的概率是1﹣=.故答案为:.【点评】本题考查古典型概率的求法,注意运用直接法和排除法,考查排列组合数的求法,以及运算能力,属于基础题.11.(5分)已知数列{a n}满足a n<a n+1(n∈N*),P n(n,a n)(n≥3)均在双曲线﹣=1上,则|P n P n+1|=.【分析】法一:根据两点之间的距离和极限即可求出,法二:根据向量法,当n→+∞时,P n P n+1与渐近线平行,P n P n+1在x轴的投影为1,渐近线倾斜角为θ,则tanθ=,即可求出.【解答】解:法一:由﹣=1,可得a n=,∴P n(n,),∴P n+1(n+1,),∴|P n P n+1|==∴求解极限可得|P n P n+1|=,方法二:当n→+∞时,P n P n+1与渐近线平行,P n P n+1在x轴的投影为1,渐近线倾斜角为θ,则tanθ=,故P n P n+1==故答案为:.【点评】本题考查了双曲线的简单性质和点与点的距离公式,极限的思想,向量的投影,属于中档题.12.(5分)已知f(x)=|﹣a|(x>1,a>0),f(x)与x轴交点为A,若对于f(x)图象上任意一点P,在其图象上总存在另一点Q(P、Q异于A),满足AP⊥AQ,且|AP|=|AQ|,则a=.【分析】本题根据题意对函数f(x)分析之后可画出f(x)大致图象,然后结合图象可不妨设点P在左边曲线上,点Q在右边曲线上.设直线AP的斜率为k,联立直线与曲线的方程可得P点坐标,同理可得Q点坐标.再分别算出|AP|、|AQ|,再根据|AP|=|AQ|及k的任意性可解得a的值.【解答】解:由题意,可知:令f(x)=|﹣a|=0,解得:x=+1,∴点A的坐标为:(+1,0).则f(x)=.∴f(x)大致图象如下:由题意,很明显P、Q两点分别在两个分段曲线上,不妨设点P在左边曲线上,点Q在右边曲线上.设直线AP的斜率为k,则l AP:y=k(x﹣﹣1).联立方程:,整理,得:kx2+[a﹣k(+2)]x+k(+1)﹣a﹣2=0.∴x P+x A=﹣=+2﹣.∵x A=+1,∴x P=+2﹣﹣x A=1﹣.再将x P=1﹣代入第一个方程,可得:y P=﹣a﹣.∴点P的坐标为:(1﹣,﹣a﹣).∴|AP|===.∵AP⊥AQ,∴直线AQ的斜率为﹣,则l AQ:y=﹣(x﹣﹣1).同理类似求点P的坐标的过程,可得:点Q的坐标为:(1﹣ak,a+).∴|AQ|===∵|AP|=|AQ|,及k的任意性,可知:=a2,解得:a=.故答案为:.【点评】本题主要考查对函数分析能力,根据平移对称画出符合函数的图象,采用数形结合法分析问题,以及用平面解析几何的方法进行计算,以及设而不求法的应用.本题是一道较难的中档题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)已知直线方程2x﹣y+c=0的一个方向向量可以是()A.(2,﹣1)B.(2,1)C.(﹣1,2)D.(1,2)【分析】先根据直线方程得直线的一个法向量,再根据法向量可得直线的方向向量.【解答】解:依题意,(2,﹣1)为直线的一个法向量,∴方向向量为(1,2),故选:D.【点评】本题考查了直线的方向向量,空间直线的向量,属基础题.14.(5分)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为()A.1 B.2 C.4 D.8【分析】直接利用圆锥的体积公式求得两个圆锥的体积,作比得答案.【解答】解:如图,则,,∴两个圆锥的体积之比为.故选:B.【点评】本题考查圆锥的定义,考查圆锥体积的求法,是基础题.15.(5分)已知ω∈R,函数f(x)=(x﹣6)2•sin(ωx),存在常数a∈R,使f(x+a)为偶函数,则ω的值可能为()A.B.C.D.【分析】直接利用三角函数的性质的应用和函数的奇偶性的应用求出结果.【解答】解:由于函数f(x)=(x﹣6)2•sin(ωx),存在常数a∈R,f(x+a)为偶函数,则:f(x+a)=(x+a﹣6)2•sin[ω(x+a)],由于函数为偶函数,故:a=6,所以:,当k=1时.ω=故选:C.【点评】本题考查的知识要点:三角函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.16.(5分)已知tanα•tanβ=tan(α+β).有下列两个结论:①存在α在第一象限,β在第三象限;②存在α在第二象限,β在第四象限;则()A.①②均正确B.①②均错误C.①对②错D.①错②对【分析】考虑运用二次方程的实根的分布,结合导数判断单调性可判断①;运用特殊值法,令tanα=﹣,结合两角和的正切公式,计算可得所求结论,可判断②.【解答】解:由tanα•tanβ=tan(α+β),即为tanα•tanβ=,设m=tanα,n=tanβ,可得n2m2+n(1﹣m)+m=0,若m>0,可得上式关于n的方程有两个同号的根,若为两个正根,可得n>0,即有m>1,考虑△=f(m)=(1﹣m)2﹣4m3,f′(m)=2m﹣2﹣8m2=﹣8(m﹣)2﹣,当m>1时,f(m)递减,可得f(m)<f(1)=﹣4<0,则方程无解,β在第三象限不可能,故①错;可令tanα=﹣,由tanα•tanβ=tan(α+β),即为tanα•tanβ=,可得﹣tanβ=,解得tanβ=﹣6±,存在β在第四象限,故②对.故选:D.【点评】本题考查三角函数的正切公式,以及方程思想、运算能力,属于基础题.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)如图,在长方体ABCD﹣A1B1C1D1中,M为BB1上一点,已知BM=2,CD =3,AD=4,AA1=5.(1)求直线A1C和平面ABCD的夹角;(2)求点A到平面A1MC的距离.【分析】(1)由题意可得A1C与平面ABCD所成夹角为∠A1CA,判断△A1CA为等腰三角形,即可求出,(2)如图建立坐标系,根据向量的关系可得点A到平面A1MC的距离d=,求出法向量即可求出.【解答】解:(1)依题意:AA1⊥平面ABCD,连接AC,则A1C与平面ABCD所成夹角为∠A1CA,∵AA1=5,AC==5,∴△A1CA为等腰三角形,∴∠A1CA=,∴直线A1C和平面ABCD的夹角为,(2)(空间向量),如图建立坐标系,则A(0,0,0),C(3,0,0),A1(0,0,5),M(3,0,2),∴=(3,4,0),=(3,4,﹣5),=(0,4.﹣2),设平面A1MC的法向量=(x,y,z),由,可得=(2,1,2),∴点A到平面A1MC的距离d===.【点评】本题考查了线面角的求法和点到平面的距离,考查了运算求解能力和转化与化归能力,空间想象能力,属于中档题.18.(14分)已知f(x)=ax+,a∈R.(1)当a=1时,求不等式f(x)+1<f(x+1)的解集;(2)若f(x)在x∈[1,2]时有零点,求a的取值范围.【分析】(1)直接利用转换关系,解分式不等式即可.(2)利用分离参数法和函数的值域的应用求出参数的范围.【解答】解:(1)f(x)=ax+(a∈R).当a=1时,f(x)=x+.所以:f(x)+1<f(x+1)转换为:x++1,即:,解得:﹣2<x<﹣1.故:{x|﹣2<x<﹣1}.(2)函数f(x)=ax+在x∈[1,2]时,f(x)有零点,即函数在该区间上有解,即:,即求函数g(x)在x∈[1,2]上的值域,由于:x(x+1)在x∈[1,2]上单调,故:x(x+1)∈[2,6],所以:,故:【点评】本题考查的知识要点:分式不等式的解法及应用,分离参数法的应用,主要考察学生的运算能力和转换能力,属于基础题.19.(14分)如图,A﹣B﹣C为海岸线,AB为线段,为四分之一圆弧,BD=39.2km,∠BDC=22°,∠CBD=68°,∠BDA=58°.(1)求的长度;(2)若AB=40km,求D到海岸线A﹣B﹣C的最短距离.(精确到0.001km)【分析】(1)由题意可求BC,及弧BC所在的圆的半径R,然后根据弧长公式可求;(2)根据正弦定理可得,,可求sin A,进而可求A,进而可求∠ABD,根据三角函数即可求解.【解答】解:(1)由题意可得,BC=BD sin22°,弧BC所在的圆的半径R=BC sin=,弧BC的长度为===16.310km;(2)根据正弦定理可得,,∴sin A==0.831,A=56.2°,∴∠ABD=180°﹣56.2°﹣58°=65.8°,∴DH=BD×sin∠ABD=35.750km<CD=36.346km∴D到海岸线A﹣B﹣C的最短距离为35.750km【点评】本题主要考查了利用三角函数,正弦定理求解三角形,还考查了基本运算.20.(16分)已知椭圆+=1,F1,F2为左、右焦点,直线l过F2交椭圆于A,B两点.(1)若直线l垂直于x轴,求|AB|;(2)当∠F1AB=90°时,A在x轴上方时,求A、B的坐标;(3)若直线AF 1交y轴于M,直线BF1交y轴于N,是否存在直线l,使得S=S,若存在,求出直线l的方程;若不存在,请说明理由.【分析】(1)由题意方程求得右焦点坐标,进一步求得A,B的坐标,则|AB|可求;(2)设A(x1,y1),由∠F1AB=90°(∠F1AF2=90°),利用数量积为0求得x1与y1的方程,再由A在椭圆上,得x1与y1的另一方程,联立即可求得A的坐标.得到直线AB 的方程,与椭圆方程联立即可求得B的坐标;(3)设A(x1,y1),B(x2,y2),M(0,y3),N(0,y4),直线l:x=my+2(斜率不存在时不满足题意),联立直线方程与椭圆方程,结合S=S,得2|y 1﹣y2|=|y3﹣y4|,再由直线AF1的方程:,得M纵坐标,由直线BF1的方程:,得N的纵坐标,结合根与系数的关系,得||=4,解得m值,从而得到直线方程.【解答】解:(1)依题意,F2(2,0),当AB⊥x轴时,则A(2,),B(2,﹣),得|AB|=2;(2)设A(x1,y1),∵∠F1AB=90°(∠F1AF2=90°),∴=,又A在椭圆上,满足,即,∴,解得x1=0,即A(0,2).直线AB:y=﹣x+2,联立,解得B(,﹣);(3)设A(x1,y1),B(x2,y2),M(0,y3),N(0,y4),直线l:x=my+2(斜率不存在时不满足题意),则,.联立,得(m2+2)y2+4my﹣4=0.则,.由直线AF1的方程:,得M纵坐标;由直线BF1的方程:,得N的纵坐标.若S=S,即2|y 1﹣y2|=|y3﹣y4|,|y3﹣y4|=||=||=||=2|y1﹣y2|,∴|(my1+4)(my2+4)|=4,|m2y1y2+4m(y1+y2)+16|=4,代入根与系数的关系,得||=4,解得m=.∴存在直线x+或满足题意.【点评】本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查计算能力,属难题.21.(18分)数列{a n}(n∈N*)有100项,a1=a,对任意n∈[2,100],存在a n=a i+d,i∈[1,n﹣1],若a k与前n项中某一项相等,则称a k具有性质P.(1)若a1=1,d=2,求a4所有可能的值;(2)若{a n}不为等差数列,求证:数列{a n}中存在某些项具有性质P;(3)若{a n}中恰有三项具有性质P,这三项和为c,使用a,d,c表示a1+a2+…+a100.【分析】(1)根据a1=1,d=2逐一求出a2,a3,a4即可;(2){a n}不为等差数列,数列{a n}存在a m使得a m=a m﹣1+d不成立,根据题意进一步推理即可证明结论;(3)去除具有性质P的数列{a n}中的前三项后,数列{a n}的剩余项重新排列为一个等差数列,且该数列的首项为a,公差为d,求a1+a2+…+a100即可.【解答】解:(1)∵数列{a n}有100项,a1=a,对任意n∈[2,100],存在a n=a i+d,i∈[1,n﹣1],∴若a1=1,d=2,则当n=2时,a2=a1+d=3,当n=3时,i∈[1,2],则a3=a1+d=3或a3=a2+d=5,当n=4时,i∈[1,3],则a4=a1+d=3或a4=a2+d=5或a4=a3+d=(a1+d)+d =5或a4=a3+d=(a2+d)+d=7∴a4的所有可能的值为:3,5,7;(2)∵{a n}不为等差数列,∴数列{a n}存在a m使得a m=a m﹣1+d不成立,∵对任意n∈[2,10],存在a n=a i+d,i∈[1,n﹣1];∴存在p∈[1,n﹣2],使a m=a p+d,则对于a m﹣q=a i+d,i∈[1,n﹣q﹣1],存在p=i,使得a m﹣q=a m,因此{a n}中存在具有性质P的项;(3)由(2)知,去除具有性质P的数列{a n}中的前三项,则数列{a n}的剩余项均不相等,∵对任意n∈[2,100],存在a n=a i+d,i∈[1,n﹣1],则一定能将数列{a n}的剩余项重新排列为一个等差数列,且该数列的首项为a,公差为d,∴a1+a2+…+a100==97a+4656d+c.【点评】本题考查了等差数列的性质和前n项和公式,考查了逻辑推理能力和计算能力,关键是对新定义的理解,属难题.。
高考数学(全国卷)分析
2019高考数学(全国卷)分析6月7日数学考试结束后,很多考生对本次全国二卷高考数学题难易程度有着不同的看法,以下通过2019年文、理试题的对比和2019年与2019年高考试题的对比对此次高考考题进行简洁分析。
一、2019年试题文、理差异扩大纵观2019全国二卷文、理两套题,理科卷的整体难度明显高于文科卷,文、理科考查的程度和思维类型显著不同,文科偏重于计算的条理性,大都是基础学问,通性通法,而理科侧重于运算的严谨性,在通法的基础上对抽象思维要求更高些。
第一,对同一学问点考查理科难于文科,如文科对于平面对量的考查仅仅是简洁的计算模长的问题,出现在试卷的第三题;而理科卷中平面对量则是作为选择的压轴题出现,不仅考查了平面对量数量积运算、向量加减法,而且与函数结合考查最值问题。
其次,我们还可以从题目设置可以看出文、理卷的难易,理科卷中的第3、4、5、6、9、11题在文科卷中的位置要靠后,从某种意义上来讲,理科要难于文科。
第三,今年全国二卷一个很大的亮点就是近几年首次出现了三角函数大题不一样的状况,这就说明文科、理科差异越来越大,这些差异说明白高考的试题的确是紧扣考纲的,也是紧承中学课程教化理念的,这不仅有利于树立文科学生学好数学的信念,也是对理科学生的一种思维促进。
二、高考试卷结构分析对比2019年考题从整体上来讲出题结构与历年一样,相对比较平稳,16道小题依旧考查了各个小点,6道大题依旧考查解三角形、数列、概率、立体几何、圆锥曲线和导数。
就题目本身来说,难易程度较去年有所下降,但是考查方式变得更加敏捷,让不少考生有一种上手简洁答对难的感觉。
如理科第7题排列组合问题,以往在考查此类安排问题的时候给出的是不同的元素,而2019年给出的却是相同的元素,就题目本身而言并不是很难,就是因为考生在形式某种定势思维后,突然遇到这种敏捷多变题型就会很简洁出错。
理科三角函数大题,其实从思路上来讲不并难,但是当依据已知条件找到想要的关系时,最终化简成为广阔考生的障碍,此时对考生的计算实力的要求就比较高了。
2019年高考数学试题(附答案)
2019年高考数学试题(附答案)2019年高考数学试题在考试结束后,引起了广泛的讨论和关注。
数学试题一直是高考的难点之一,也是考生和家长们关注的焦点。
在这篇文章中,我们将对2019年高考数学试题进行分析和讨论,帮助读者更好地理解试题内容和解题思路。
首先,让我们来看一下2019年高考数学试题的整体情况。
2019年高考数学试题分为选择题和非选择题两部分,其中选择题包括了单选题和多选题,非选择题包括了填空题和解答题。
整体难度较大,涉及的知识点比较广泛,考查了考生对数学知识的掌握和运用能力。
接下来,我们将对2019年高考数学试题的一些典型题目进行分析和解答,帮助读者更好地理解试题内容和解题思路。
1. 选择题。
单选题,已知函数$f(x)=\log_a(x-2)+\log_a(x+2)-2\log_a(x)$,其中$a>0$且$a\neq1$,则$f(x)$的定义域是(A)$(-\infty,-2)\cup(2,+\infty)$ (B)$(-2,2)$ (C)$(-\infty,-2)\cup(2,+\infty)$ (D)$(-\infty,-2)\cup(-2,2)\cup(2,+\infty)$。
解答,首先,我们要确定函数的定义域,即确定$x$的取值范围。
由于对数函数的定义域是正实数,所以我们要求$x-2>0$,$x+2>0$,$x>0$,即$x>2$。
所以函数的定义域是$(2,+\infty)$。
因此,答案为(C)。
多选题,已知集合$A=\{x|x^2-3x+2=0\}$,$B=\{x|x^2-4x+3=0\}$,则$A\capB=$(A)$\{1\}$ (B)$\{2\}$ (C)$\{1,3\}$ (D)$\{2,3\}$。
解答,首先,我们要求出集合$A$和$B$的元素,即方程$x^2-3x+2=0$和$x^2-4x+3=0$的解。
通过解方程,我们可以得出$A=\{1,2\}$,$B=\{1,3\}$。
2019高考数学【全国I】卷试卷解析(2)
D. A=1+ 1 2A
此时,不满足条件 k 2 ,退出循环,输出 A 的值为 1 , 2+ 1 2+ 1 2
观察 A 的取值规律可知图中空白框中应填入 A = 1 . 2+ A
9.记 Sn 为等差数列{an}的前 n 项和.已知 S4 = 0,a5 = 5,则( )
A. an = 2n - 5
【答案】A
分, 2R = 2 + 2 + 2 = 6 ,即 R = 6 , \V = 4 pR3 = 4 p ´ 6 6 = 6p ,故选 D.
2
3
38
二、填空题: 本题共 4 小题,每小题 5 分,共 20 分。
13.曲线 y = 3(x2 + x)ex在点 (0, 0)处的切线方程为
.
【答案】 3x - y = 0
B. an = 3n -10
C. Sn = 2n2 - 8n
D.
Sn
=
1 2
n2
ቤተ መጻሕፍቲ ባይዱ
-
2n
【考点】等差数列通项公式及其前 n 项和基本公式
【解析】
⎧ ⎪ ⎨ ⎪ ⎩
S4
= 4a1 +
a5 = a1
d 2
+
´4´3 =
4d = 5
0
,解得% a1
d
= -3
,∴
=2
an
=
2n
- 5 ,故选
A.
10.已知椭圆 C 的焦点为 F1( -1, 0),F2(1, 0),过 F2 的直线与 C 交于 A,B 两点.若
由椭圆的定义有 2a = BF1 + BF2 = 4n ,\ AF1 = 2a - AF2 = 2n .
高考数学题型特点
2019年高考数学题型特点数学在人类文明的发展中起着非常重要的作用,以下是查字典大学网为大家整理的高考数学题型特点,希望可以解决您所遇到的相关问题,加油,查字典大学网一直陪伴您。
1.选择题——“不择手段”题型特点(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。
(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。
作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。
思辨性的要求充满题目的字里行间。
(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。
这个特色在高中数学中已经得到充分的显露。
因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。
因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。
(5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。
2019年高考数学全国卷和北京卷试题对比分析及2020届高三复习策略
备考建议
1. 重视基础知识、基本技能和基本思想方法的复习
概念的理解要准确而且深刻 基本解题技巧的掌握要精确而且熟练 基本思想方法的渗透要立足于课堂
2. 突出重点,抓住知识之间的相互联系
函数内容仍然占据主体地位 函数与方程、数列与不等式、向量与立体几何等内容的结合
①函数内容占比最高 ②线性规划、三视图等内容删去
学生得分情况分析-本科
理科 要求:80分
选择题:40分 填空题:10分
17题: 12分 18题: 8分 19题: 6分 解答题 20题: 2分 21题: 1分 选做题:3分 容错分:2分
文科 要求:90分
选择题:45分 填空题:10分
17题: 12分 18题: 12分 19题: 6分 解答题 20题: 2分 21题: 1分体几何:圆柱
圆锥曲线:双曲线
6
统计:系统抽样
函数与导数:切线方程 立体几何:点线面关系
7
三角函数
向量:向量的线性运算 不等式:线性规划
8
向量的数量积
三角函数图像的性质
函数:函数的图像
9
程序框图
立体几何:三视图
函数:函数的性质
10
圆锥曲线:双曲线
立体几何:线面夹角
程序框图
11
解三角形
三角函数的定义
题序 1-12 13-16
题型
选择题 填空题
分值
单题:5分 一共60分
单题:5分 一共20分
17-21
解答题(必做)
单题:12分 一共60分
22-23
解答题(选做)
单题:10分 一共10分
难度设置
基础题×6 中档题×5 高档题×1 基础题×1 中档题×2 高档题×1
2019年江苏省高考数学试卷(含答案解析)
2019年江苏省高考数学试卷一.填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号产品,产量分别为200,400,300,100件.为检验产品质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是.5.(5分)若tan(α﹣)=.则tanα=.6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.9.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x 的值是.11.(5分)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f (a﹣1)+f(2a2)≤0.则实数a的取值范围是.12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且t anα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=.13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.18.(16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l 没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l 没入水中部分的长度.19.(16分)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.[选修4-2:矩阵与变换]22.已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【必做题】25.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.2017年江苏省高考数学试卷参考答案与试题解析一.填空题1.(5分)(2017•江苏)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用.2.(5分)(2017•江苏)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.(5分)(2017•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取18件.【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件,而抽取60辆进行检验,抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取.4.(5分)(2017•江苏)如图是一个算法流程图:若输入x的值为,则输出y 的值是﹣2.【分析】直接模拟程序即得结论.【解答】解:初始值x=,不满足x≥1,所以y=2+log2=2﹣=﹣2,故答案为:﹣2.【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.5.(5分)(2017•江苏)若tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.【点评】本题考查了两角差的正切公式,属于基础题6.(5分)(2017•江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力.7.(5分)(2017•江苏)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0,得﹣2≤x≤3,则D=[﹣2,3],则在区间[﹣4,5]上随机取一个数x,则x∈D的概率P==,故答案为:【点评】本题主要考查几何概型的概率公式的计算,结合函数的定义域求出D,以及利用几何概型的概率公式是解决本题的关键.8.(5分)(2017•江苏)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=,双曲线渐近线方程为:y=x,所以P(,),Q(,﹣),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线简单性质的应用,考查计算能力.9.(5分)(2017•江苏)等比数列{a n}各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.10.(5分)(2017•江苏)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是30.【分析】由题意可得:一年的总运费与总存储费用之和=+4x,利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.【点评】本题考查了基本不等式的性质及其应用,考查了推理能力与计算能力,属于基础题.11.(5分)(2017•江苏)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1,] .【分析】求出f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在R 上递增;再由奇偶性的定义,可得f(x)为奇函数,原不等式即为2a2≤1﹣a,运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1,].【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题.12.(5分)(2017•江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n (m,n∈R),则m+n=3.【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得c osα=,sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m,n∈R),∴=m﹣n,=0+n,解得n=,m=.则m+n=3.故答案为:3.【点评】本题考查了向量坐标运算性质、和差公式,考查了推理能力与计算能力,属于中档题.13.(5分)(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是[﹣5,1] .【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].【点评】本题考查数量积的运算以及直线与圆的位置关系,关键是利用数量积化简变形得到关于x0、y0的关系式.14.(5分)(2017•江苏)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是8.【分析】由已知中f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},分析f(x)的图象与y=lgx 图象交点的个数,进而可得答案.【解答】解:∵在区间[0,1)上,f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x)=,此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8【点评】本题考查的知识点是根的存在性及根的个数判断,函数的图象和性质,转化思想,难度中档.二.解答题15.(14分)(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC,AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,所以FG∥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题.16.(14分)(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【分析】(1)根据向量的平行即可得到tanx=﹣,问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最大值﹣2.【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质,属于基础题17.(14分)(2017•江苏)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.【分析】(1)由椭圆的离心率公式求得a=2c,由椭圆的准线方程x=±,则2×=8,即可求得a和c的值,则b2=a2﹣c2=3,即可求得椭圆方程;(2)设P点坐标,分别求得直线PF2的斜率及直线PF1的斜率,则即可求得l2及l1的斜率及方程,联立求得Q点坐标,由Q在椭圆方程,求得y02=x02﹣1,联立即可求得P点坐标;方法二:设P(m,n),当m≠1时,=,=,求得直线l 1及l1的方程,联立求得Q点坐标,根据对称性可得=±n2,联立椭圆方程,即可求得P点坐标.【解答】解:(1)由题意可知:椭圆的离心率e==,则a=2c,①椭圆的准线方程x=±,由2×=8,②由①②解得:a=2,c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)方法一:设P(x 0,y0),则直线PF2的斜率=,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x﹣1),直线PF 1的斜率=,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x+1),联立,解得:,则Q(﹣x0,),由P,Q在椭圆上,P,Q的横坐标互为相反数,纵坐标应相等,则y0=,∴y02=x02﹣1,则,解得:,则,又P在第一象限,所以P的坐标为:P(,).方法二:设P(m,n),由P在第一象限,则m>0,n>0,当m=1时,不存在,解得:Q与F 1重合,不满足题意,当m≠1时,=,=,由l 1⊥PF1,l2⊥PF2,则=﹣,=﹣,直线l1的方程y=﹣(x+1),①直线l2的方程y=﹣(x﹣1),②联立解得:x=﹣m,则Q(﹣m,),由Q在椭圆方程,由对称性可得:=±n2,即m2﹣n2=1,或m2+n2=1,由P(m,n),在椭圆方程,,解得:,或,无解,又P在第一象限,所以P的坐标为:P(,).【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的斜率公式,考查数形结合思想,考查计算能力,属于中档题.18.(16分)(2017•江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l 没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l 没入水中部分的长度.【分析】(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM=,由此能求出玻璃棒l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,在平面ACM中,过N作NP∥MC,交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD,又∵AC⊂平面ABCD,∴CC1⊥AC,∴NP⊥AC,∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm,∵NP∥MC,∴△ANP∽△AMC,∴=,,得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,在平面E1EGG1中,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台,∴EE1=GG1,EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形,画出平面E1EGG1的平面图,∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=,sin∠EGM=sin∠EE1G1=,cos,根据正弦定理得:=,∴sin,cos,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=,∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.【点评】本题考查玻璃棒l没入水中部分的长度的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.19.(16分)(2017•江苏)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.【分析】(1)由题意可知根据等差数列的性质,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1)═2×3a n,据“P(k)数列”的定义,可得数列{a n}是“P(3)数列”;(2)由“P(k)数列”的定义,则a n﹣2+a n﹣1+a n+1+a n+2=4a n,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,变形整理即可求得2a n=a n﹣1+a n+1,即可证明数列{a n}是等差数列.【解答】解:(1)证明:设等差数列{a n}首项为a1,公差为d,则a n=a1+(n﹣1)d,则a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(2)证明:由数列{a n}是“P(2)数列”则a n﹣2+a n﹣1+a n+1+a n+2=4a n,①数列{a n}是“P(3)数列”a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,②+a n﹣2+a n+a n+1=4a n﹣1,③由①可知:a n﹣3a n﹣1+a n+a n+2+a n+3=4a n+1,④由②﹣(③+④):﹣2a n=6a n﹣4a n﹣1﹣4a n+1,整理得:2a n=a n﹣1+a n+1,∴数列{a n}是等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.20.(16分)(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.【分析】(1)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣,从而f(﹣)=0,整理可知b=+(a>0),结合f(x)=x3+ax2+bx+1(a>0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.(2)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),结合a>3可知h(a)>0,从而可得结论;(3)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣,利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2,进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣,因式分解即得结论.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣+>0,解得a>3,所以b=+(a>3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].【点评】本题考查利用导数研究函数的单调性、极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.(2017•江苏)如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB,即可证明.【解答】证明:(1)∵直线PC切半圆O于点C,∴∠ACP=∠ABC.∵AB为半圆O的直径,∴∠ACB=90°.∵AP⊥PC,∴∠APC=90°.∴∠PAC=90°﹣∠ACP,∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2 =AP•AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似判定与性质定理,考查了推理能力与计算能力,属于中档题.[选修4-2:矩阵与变换]22.(2017•江苏)已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律,代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x,y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0,y0),则=,即x0=2y,y0=x,∴x=y0,y=,∴,即x02+y02=8,∴曲线C2的方程为x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换,属于中档题.[选修4-4:坐标系与参数方程]23.(2017•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【分析】求出直线l的直角坐标方程,代入距离公式化简得出距离d关于参数s 的函数,从而得出最短距离.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.【点评】本题考查了参数方程的应用,属于基础题.[选修4-5:不等式选讲]24.(2017•江苏)已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd ≤8.【分析】a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.代入ac+bd 化简,利用三角函数的单调性即可证明.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2),即可得出.【解答】证明:∵a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64,当且仅当时取等号.∴﹣8≤ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.【必做题】25.(2017•江苏)如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【分析】在平面ABCD内,过A作Ax⊥AD,由AA1⊥平面ABCD,可得AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A,B,C,D,A1,C1的坐标,进一步求出,,,的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量,再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值,进一步得到正弦值.【解答】解:在平面ABCD内,过A作Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax⊂平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1=,∠BAD=120°,∴A(0,0,0),B(),C(,1,0),D(0,2,0),A1(0,0,),C1().=(),=(),,.(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由,得,取x=,得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为,则二面角B﹣A1D﹣A的正弦值为.【点评】本题考查异面直线所成的角与二面角,训练了利用空间向量求空间角,是中档题.26.(2017•江苏)已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.【分析】(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A 1)+P(A2|)P(),由此能求出编号为2的抽屉内放的是黑球的概率.(2)X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,从而E(X)=()=,由此能证明E (X)<.【解答】解:(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A 2)=P(A2|A1)P(A1)+P(A2|)P()===.证明:(2)∵X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,∴E(X)=()==<==•()==,∴E(X)<.【点评】本题考查概率求法,考查离散型随机变量的分布列、数学期望等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.。
2019年全国统一高考数学试卷(理科)真题解析(解析版)
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =A. (-∞,1)B. (-2,1)C. (-3,-1)D. (3,+∞)【答案】A 【解析】 【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}2,3,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .【点睛】本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2.设z =-3+2i ,则在复平面内z 对应的点位于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】C 【解析】 【分析】本题考查复数的共轭复数和复数在复平面内的对应点位置,渗透了直观想象和数学运算素养.采取定义法,利用数形结合思想解题.【详解】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C .【点睛】本题考点为共轭复数,为基础题目,难度偏易.忽视共轭复数的定义致错,复数与共轭复数间的关系为实部同而虚部异,它的实部和虚部分别对应复平面上点的横纵坐标.3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A. -3 B. -2 C. 2 D. 3【答案】C 【解析】 【分析】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.【详解】由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为A.B.C.D.【答案】D 【解析】 【分析】本题在正确理解题意的基础上,将有关式子代入给定公式,建立α的方程,解方程、近似计算.题目所处位置应是“解答题”,但由于题干较长,易使考生“望而生畏”,注重了阅读理解、数学式子的变形及运算求解能力的考查. 【详解】由rRα=,得r R α= 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得3α=所以3.r R α==【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形出错.5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A. 中位数B. 平均数C. 方差D. 极差【答案】A 【解析】 【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案. 【详解】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x <<<,中位数仍为5x ,∴A 正确. ②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数234817x x x x x '=<<<()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确③()()()22221119q S x x x x x x ⎡⎤=-+-++-⎢⎥⎣⎦ ()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 显然极差变小,D 不正确. 【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.6.若a >b ,则 A. ln(a −b )>0B. 3a <3bC. a 3−b 3>0D. │a │>│b │【答案】C 【解析】 【分析】本题也可用直接法,因为a b >,所以0a b ->,当1a b -=时,ln()0a b -=,知A 错,因为3xy =是增函数,所以33a b >,故B 错;因为幂函数3y x =是增函数,a b >,所以33a b >,知C 正确;取1,2a b ==-,满足a b >,12a b =<=,知D 错.【详解】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.7.设α,β为两个平面,则α∥β的充要条件是 A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. α,β平行于同一条直线 D. α,β垂直于同一平面 【答案】B 【解析】 【分析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.【详解】由面面平行的判定定理知:α内两条相交直线都与β平行是//αβ的充分条件,由面面平行性质定理知,若//αβ,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是//αβ的必要条件,故选B .【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A. 2B. 3C. 4D. 8【答案】D 【解析】 【分析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D .【详解】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.9.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是 A. f (x )=│cos 2x │ B. f (x )=│sin 2x │ C. f (x )=cos│x │ D. f (x )= sin│x │【答案】A 【解析】 【分析】本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象,即可做出选择.【详解】因为sin ||y x =图象如下图,知其不是周期函数,排除D ;因为cos cos y x x ==,周期为2π,排除C ,作出cos2y x =图象,由图象知,其周期为2π,在区间单调递增,A 正确;作出sin 2y x =的图象,由图象知,其周期为2π,在区间单调递减,排除B ,故选A .【点睛】利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数;10.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=A.15B.5C. D.【答案】B 【解析】 【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. 【详解】2sin 2cos21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,sin α∴=B .【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.11.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 A.B. C. 2 D.【答案】A 【解析】 【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A. 9,4⎛⎤-∞ ⎥⎝⎦B. 7,3⎛⎤-∞ ⎥⎝⎦ C. 5,2⎛⎤-∞ ⎥⎝⎦ D. 8,3⎛⎤-∞ ⎥⎝⎦【答案】B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98. 【解析】 【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=. 【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.14.已知()f x 是奇函数,且当0x <时,()e axf x =-.若(ln 2)8f =,则a =__________.【答案】-3【解析】 【分析】本题主要考查函数奇偶性,对数的计算.渗透了数学运算、直观想象素养.使用转化思想得出答案. 【详解】因为()f x 是奇函数,且当0x <时,()ax f x e -=-.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 28a e --=-,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即3π. 【点睛】本题主要考查函数奇偶性,对数的计算.15.V ABC 的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则V ABC 的面积为__________.【答案】【解析】 【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查. 【详解】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=, 即212c =解得c c ==-所以2a c ==11sin 222ABC S ac B ∆==⨯= 【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.【答案】 (1). 共26个面. (2). 1. 【解析】 【分析】第一问可按题目数出来,第二问需在正方体中简单还原出物体位置,利用对称性,平面几何解决. 【详解】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则A B B E x ==,延长BC 与FE 交于点G ,延长BC 交正方体棱于H ,由半正多面体对称性可知,BGE ∆为等腰直角三角形,,21)122BG GE CH x GH x x x ∴===∴=⨯+==,1x ∴==.【点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.三、解答题:共70分。
2019年全国高考数学一卷总体分析
2019年全国高考数学一卷总体分析与2019年高考备考建议株洲县第五中学阳志长2019年湖南高考数学使用新课标高考全国数学一卷.与往年相比,2019年高考全国一卷数学试题,试卷结构保持不变,考查内容基本一致,体现了高考的稳定性与延续性;注重基础知识,体现数学思想,考查数学运算、应用、创新等能力.突出对数学抽象、逻辑推理、数据分析等核心素养的重视和“回归教材”,以及文理合卷等特点.2019年高考湖南省阅卷结果:文科数学平均分55分,比2019年湖南省文科数学平均分67.96分下降12.96分;理科数学79.9,比去年78.82升了1.08分,这是预料中的事情.今结合2019年高考试题、在权衡2019年上期所做《2019-2019年全国高考数学试卷(I)总体综合分析》(以下简称《分析报告》)报告得失的基础上,我们试图为大家提供备考2019年数学高考的方略,供一线数学教师参考.一、考点分布2019年全国高考数学一卷考点分布是按照所考的主要知识点分类、有交汇,分值不能严格区分时、是按照大题分值标注的.二、考查分析(一)常考知识点在《分析报告》中,我们列出常考知识点:集合运算、复数的代数计算、函数基本性质(单调性、奇偶性、周期性等)、导数及其运用、三角函数(恒等变换、图像及性质、解三角形)、平面向量的计算、数列(等差、等比的相关知识)、线性规划、二项式定理(理)、程序框图、概率(古典概型)、统计的基本知识、立体几何(空间点、线、面的位置关系)、圆锥曲线(定义、性质)等.从上面列表可以看出,2019年高考全国一卷基本上覆盖了高中数学的所有重要的知识点,预测是准确的.2019年高考数学全国一卷命题的基本思路仍然是:以选择题、填空题“小题”的形式覆盖知识点,引导高中数学教师落实《课程标准》的基本要求,做好“保底”工作;以解答题“大题”的形式着重考查综合素养,提高区分度、强化选拔功能;文理同题(同宗题或姊妹题)略有增加,为高考数学文理合卷进一步创造条件.(二)板块分析1.三角函数该知识点在整个试卷中理科占有17分、文科占有20分,文科以四道小题、理科以一道小题一道大题的形式呈现.题目之间互补,形成纵向“问题链”,主要考查三角恒等变换、三角函数图象与性质、解三角形,估计2019年不会有大的变化.2.数列该知识点在整个试卷中理科占有10分、文科占有12分,理科以两道小题,文科以一道大题的形式呈现.以特殊数列(等差数列、等比数列)为载体,考查求解数列的通项公式、前n项和,在解答题中靠前,属于容易题,在小题中靠后,属于较难题.与三角“嵌套”,理科在解答题中考查三角、文科在解答题中考查数列.考查风格与2019年相同,估计2019年也不会有大的变化.3.概率统计该知识点在整个试卷中文理都占有17分的分值,试题以一大一小的形式呈现.文科小题考查古典概型,大题以实际问题为背景,考查函数解析式、频率、数字特征等知识;理科小题考查几何概型,大题与文科同宗同源,考查离散型随机变量的分布列、数学期望等知识.文理均重统计,考查风格与2019年基本相同,估计2019年会有些变化,具体见后面专项分析.4.立体几何该知识点在整个试卷中文理科都占有22分的分值,试题以一大两小的形式呈现.小题考查三视图、空间线、面关系.大题分两小题设问,文科第1问证明线段相等,第2问求体积;理科第1问证明面面垂直,第二问求二面角的余弦值.理科考查风格与2019年相同,文科考查风格与2019年有点不同,大题“正投影”难住了较多考生,2019年备考还要关注折叠问题.5.解析几何该知识点在整个试卷中文理都占有22分的分值,试题以一大两小的形式呈现.小题考查圆、圆锥曲线定义、标准方程、简单几何性质.大题分两小题设问,文科第1问考查坐标法,求线段的比值;第2问为存在性问题、考查直线与抛物线的位置关系.理科第1问为定值问题,求轨迹方程;第2问考查直线与圆锥曲线的位置关系,与函数、不等式交汇在一起,属于较难题.考查风格与2019年相同,估计2019年不会有大的变化.6. 函数与导数该知识点在整个试卷中理科占有22分,试题以一大两小的形式呈现;文科占有27分,试题以一大三小的形式呈现.与导数相关的知识,小题中有一题也有涉及(理科第7题、文科第9题和12题).大题分两小题设问,文科第1问考查定义域、单调性;第2问考查函数零点的相关知识;理科题考查函数零点的相关知识;文理科都与不等式等知识交汇在一起,考查分类讨论、综合运用知识的能力,属于难题.文理科此题属于姊妹题,考查风格与2019年相同,估计2019年不会有大的变化.三、热点透视(一)三角问题三角为数学的主干知识之一,一般情况下应该得满分.纵观近5年全国卷,不确定因素较多、难度较大、综合性较强,超出考生的想象.例1(2019高考全国卷1文科第14题)已知θ是第四象限角,且3sin45πθ⎛⎫+=⎪⎝⎭,则tan ____4πθ⎛⎫-= ⎪⎝⎭ .分析1:由tan tansin cos 4tan 4sin cos 1tan tan 4πθπθθθπθθθ--⎛⎫-== ⎪+⎝⎭+,为求tan 4πθ⎛⎫- ⎪⎝⎭的值,可从题目条件出发,求出sin cos θθ+、sin cos θθ-的值.解法1:因为3sin 45πθ⎛⎫+= ⎪⎝⎭,所以sin cos 5θθ+=,且72sin cos 25θθ=- .又因为θ是第四象限角,所以sin cos 0θθ-<,且()()22sin cos sin cos θθθθ-=+-324sin cos 25θθ=,故sin cos θθ-=,结果填43-.本题考查三角函数的定义、符号和同角公式、和差角公式等知识,以及化归与转化、平方与开方等思想方法.考生的思维障碍是不知由sin cos θθ+的值可以求出sin cos θθ-的值;错点是sin cos θθ-的符号.其实,sin cos θθ+、sin cos θθ-、sin cos θθ“知一求二”;由单位圆和三角函数线容易判断sin cos θθ+或sin cos θθ-的符号.单位圆是三角函数的“原点”,“能力立意”的基本点是回归“原点”,按照数学家当初建构数学概念那样广开思路,备考时需要重建、理解三角公式体系:利用单位圆定义三角函数的坐标表示(数)和几何表示(形);由它的坐标表示可以概括得到符号规律、特殊角的三角函数值;由它的几何表示可以简单推出同角公式;由单位圆的对称性和它的坐标表示可以直接得到诱导公式;由向量的数量积和它的坐标表示可以简单推导和差角公式、二倍角公式的“母公式”()cos cos cos sin sin αβαβαβ-=+.抓住了单位圆,就等于抓住了三角公式的“命门”:公式记不清时,可以利用单位圆简单推出;符号拿不准时,可以利用单位圆作出判断;特别是由单位圆推导公式的思路和方法,是解决相关问题的思想武器.分析2 :由()444πππθθ-=+-,为求tan 4πθ⎛⎫- ⎪⎝⎭的值,可从题目条件出发,求出tan 4πθ⎛⎫+ ⎪⎝⎭的值.解法2:因为()222k k k Z ππθπ-<<∈ ,所以22444k k ππππθπ-<+<+.又因为3sin 45πθ⎛⎫+= ⎪⎝⎭,所以4cos 45πθ⎛⎫+= ⎪⎝⎭,且3tan 44πθ⎛⎫+= ⎪⎝⎭ .故tan 4πθ⎛⎫-= ⎪⎝⎭tan 42ππθ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦=tan 24ππθ⎡⎤⎛⎫--+ ⎪⎢⎥⎝⎭⎣⎦=1tan 4πθ-⎛⎫+ ⎪⎝⎭,结果填43-. 这种解法明显优于第一种,更能体现命题者的意图.课本在章头指出:“三角变换包括变换的对象,变换的目标,以及变换的依据和方法等要素”.另解盯住角,从未知与已知关系中寻求突破,用已知角表示未知角、从中寻求三角变换的依据和方法,获得题目的更优解法.“角”是自变量,是三角变换的根本所在,因此三角变换思维起点是角:盯住未知与已知角的关系(互余、互补、和、差、倍、分),以及角的取值范围;三角变换的基本思想是转化与化归思想;三角变换的基本策略是:找“差异”,立足“化异为同”、消除差异找方法,正用、逆用、变用、联用以至活用公式.备考时,要结合具体题目的解答过程,回归课本,把握三角变换的特点和本质,实行方法创新,以“不变”驭“变”.例2 (2019高考全国卷1理科第12题)已知函数()()sin f x x ωϕ=+(0ω> ,2πϕ≤),4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5,1836ππ⎛⎫⎪⎝⎭ 单调,则ω的最大值为A.11B. 9C. 7D. 5分析:为求ω的最大值,可从题目条件出发,得到关于ω、ϕ的方程和不等式,再从特殊值、一个周期内的图象特征出发筛选答案.解法1:因为4,42m m n πωϕπππωϕπ⎧-+=⎪⎪⎨⎪+=+⎪⎩、n Z ∈,所以()()1242n m n m ωππϕ⎧=+-⎪⎨=++⎪⎩.由2πϕ≤得 10n m -≤+≤.由0ω>得,0n m -≥且ω为奇数.当0n m +=即4πϕ=时,取11ω=,这时()sin 114f x x π⎛⎫=+⎪⎝⎭,由311242x πππ<+<得,54444x ππ<<.因为55184436πππ<<,所以()f x 在区间5,1844ππ⎛⎫⎪⎝⎭上是单调递减函数、在区间55,4436ππ⎛⎫ ⎪⎝⎭上是单调递增函数,不合题意.同理,ω=7、5不合题意,只有9ω=符合题意. 当1n m +=-即4πϕ=-时,验算知11ω=、9、7不合题意,只有5ω=符合题意.综上所述,ω的最大值为9,结果选B .解法2:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z .()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤.接下来用排除法若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调;若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减,故选B .本题考查正弦函数图象和零点、对称性、单调性等性质,以及数形结合、函数与方程、化归与转化等思想方法.考生的思维障碍不是列方程组、求ω和ϕ的表述式,而是处理整数n m +、n m -,以及验算()f x 在5,1836ππ⎛⎫⎪⎝⎭上的单调性.其实,确定n m +的取值后,取ω的值验算时,为了减少字母运算带来的不便,可以考查函数在一个周期内的单调增区间或减区间,按照周期进行拓展、作出判断;作为一个选择题,本题只需对0n m +=取11ω=、9和对1n m +=-取11ω=三种情况作出判断就可以作出选择.无论是正弦型函数,还是余弦型、正切型函数,无论是奇偶性、单调性、对称性,还是求最值、解方程、不等式,都可以按照三角函数曲线、从一个周期出发按照周期进行拓展.课本是按照从一个周期出发进行拓展的思路探讨三角函数图象的,但是在后续例题列式、求解中带入了“k ”,备考时,要进行两种解题方式的比照,把握其共性,明确从三角函数图象出发、从一个周期出发思考解决问题的道理,化解难点,达到必要的复习深度.理科第17题考查三角形的内角和、周长、面积和正弦定理、余弦定理、诱导公式等知识,以及配方、函数与方程、化归与转化等思想方法.属于中低档题,思路不是问题,影响考生得分主要是表述规范和隐含条件运用等问题.其实,在三角形中常隐含了“内角和为π”、“两边之和大于第三边”、“大边对大角”等条件,解三角形时要特别注意发掘这些隐含条件,建构相应的“条件反射”.备考时,建议还要关注向量与三角的结合问题,以及建构三角函数模型解决“测量”、“潮汐”等问题.不管是哪一类问题,最终往往归结为“化一”、求三角函数在给定区间的最值问题,而隐含在其中的条件“给定区间”,测量着备考高度.模拟训练 1.已知点33sin,cos 44P ππ⎛⎫⎪⎝⎭是以x 轴正半轴为始边的角α的终边上一点,且[)0,2απ∈,则α=A.4πB. 34πC. 54πD. 74π2. 要得到函数)42sin(3π+=x y 的图象,只需将函数x y 2sin 3=的图象A.向左平移4π个单位B.向右平移4π个单位C.向左平移8π个单位D.向右平移8π个单位3.在ABC ∆中,已知︒=45B ,22=c ,334=b ,则=C _____. 4. 设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______.5.如图,平面四边形ABCD中,AB =AD =CD =,30CBD ∠=,120BCD ∠=.求(Ⅰ)ADB ∠;(Ⅱ)四边形ABCD 的面积S . (二)数学思想数学思想和方法是数学知识在更高层次上的抽象和概括,蕴涵在数学知识发生、发展和应用的过程中,能够迁移并广泛用于相关学科和社会生活.因此,对数学思想和方法的考查必然要与数学知识的考查结合进行,通过对数学知识的考查,反映考生对数学思想和方法理解和掌握的程度.考查时要从学科整体意义和思想价值立意,要有明确的目的,加强针对性,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.1. 数形结合的思想方法 (1)具体特征从“形”入手,直观助思;从“数”突破,验证直觉. (2)考题解析例 3 (2019高考全国卷1文理科第11题)平面α过正方体1111ABCD A B C D -的顶点A ,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为ABDCA.2B.2C.3D.13解法1:如图所示:因为//α平面11CB D ,设平面11CB D 平面1ABCD m =,则1//m m .又因为平面//ABCD 平面1111A B C D , 平面11B D C平面111111A B C D B D =,所以111//B D m ,故11//B D m .同理,1//CD n .故m 、n 的所成角的大小与11B D 、1CD 所成角的大小相等,即11CD B ∠的大小. 而1111B C B D CD ==,因此113CD B π∠=,即11sin CD B ∠. 解法2:如图,在正方体ABCD -1111A B C D 的下方补两个相同的正方体.因为11//AR B D ,1//AF D C ,可得平面ARF //平面11B CD .由题设可知AR 、AF 分别为m 、n .故m 、n 所成的角即为1B C 、11B D 所成的角,其角度为60.故m 、n 所本题考查线线、线面、面面关系,两异面直线所成角等知识,以及数形结合、化归与转化等思想方法.考生的思维障碍在于根据题意作出图形助思.显然,解2的图形更有利于考生思考、解决问题.求空间角包括求两条异面直线所成角、线面角和面面角,求解的基本路径是:“找(作)——说——求”.“找”是关键,没有现成的就需要“作”,作线线角重点是“平移直线”;作线面角重点是“线面垂直”;作面面角重点也是“线面垂直”.(3)基本类型与学生问题按照题目问题状态,可以分为“题给图形”和“自构图形”两种基本类型.学生的主要问题是:一是没有想到数形结合;二是构图马虎,不能达到“助思”效果;三是构图不够“常态”,产生误导.(4)方法分析数形结合是高中数学的核心思想方法之一.从“形”入手、用数形结合的思想方法,是解答选择、111nm SQ PR H G FE D 1C 1B 1A 1DCBA填空题的重要策略;而由“数”联想到“形”,是一种创造、创新,对学生本身是一个“坎”.建议高三复习时选用恰当的问题进行数形结合的思想立意;同时,结合距离、斜率等数式的几何意义,创造机会让学生思“形”,增长数形结合、由“数”思“形”的见识,激活学生的创新思维.(5)模拟训练① 一个棱锥的三视图如图,则该棱锥的表面积为 ( ) A.722cm B. 482cm C. ()248122cm + D. ()235122cm +② 将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,则二面角A -BC -D 的正切值为______.③函数()222548f x x x x x =-++++的最小值为 .④已知函数()y f x =是定义域为R 的偶函数. 当0x ≥时,5sin()0142()1()14x x x f x x π⎧≤≤⎪⎪=⎨⎪>⎪⎩ ,若关于的方程2[()]()0f x af x b ++=(,a b R ∈),有且仅有6个不同实数根,则实数a 的取值范围是( ) A .59(,)24-- B .9(,1)4-- C .59(,)24--9(,1)4-- D .5(,1)2-- 2. 转化与化归的思想方法 (1)具体特征归是归宿、目标,转化是为了达到目标所调用的一切手段和方法. (2)考题解析例4 (2019年文科12题)若函数()1sin 2sin 3f x x x a x =-+在(),-∞+∞上单调递增,则a 的取值范围是A.[]1,1-B. 11,3⎡⎤-⎢⎥⎣⎦C.11,33⎡⎤-⎢⎥⎣⎦D. 11,3⎡⎤--⎢⎥⎣⎦解法1:()21cos 2cos 3f x x a x '=-+=245cos cos 033x a x -++≥在(),-∞+∞上恒成立.令cos t x =,则()[]245,1,133h t t at t =-++∈-,只需()h t 的最小值不小于0即可.因为抛物线开口向下,对称轴为38t a =,当308a <时,最小值为()1103h a =+≥,解得103a -≤<;同理可得103a ≤≤.x综上,a 的取值范围是11,33⎡⎤-⎢⎥⎣⎦.解法2:同解法1,因为抛物线()y h t =开口向下,所以()()1010h h -≥⎧⎪⎨≥⎪⎩,解得1133a -≤≤,故选C.触发点:①为求a 的取值范围,需要将条件化归为不等式、转化为不等式恒成立问题;②为求函数的导数,需要将sin 2x 转化为2sin cos x x 、运用积的导数法则求导;③可将问题转化为求函数的最小值;④为求函数()y h t =的最小值,运用两种手段:分类讨论、各个击破;“同时限制”、转化为解不等式组.先有化归方向,再有化归方法.(3)基本类型与学生问题为了将生疏问题化归为熟悉问题,常用转化方法有数形转化法,数列中有并项公式法求和、裂项相消法求和、错位相减法求和,恒成立、能成立有更替主元法、分离参变法,转化为求函数的最值等等.学生的主要问题是:一是缺少积累,以致常规的转化方法能够达到什么目标不够清晰;二是审题意识不强,不能预测到目标、找不到方向,转化方法失灵.(4)方法分析转化与化归也是高中数学的核心思想方法之一.归根结底,数学解题就是转化与化归,由题目的初始状态向目标状态转化.转化与化归的思想方法是解答“小题”的利器,特别是一些较难的“小题”,常常转化为利用图形直观去考察,即转化与化归思想方法常与其他数学思想方法结合运用.建议高三复习时,加强预测、估算方面的训练.(5)模拟训练①已知函数12,1()tan(),13x x f x x x π-⎧>⎪=⎨≤⎪⎩,则1()(2)f f =A .3-3②已知各项均为正数的等比数列}{n a 中,465=⋅a a ,则数列{}2log n a 的前10项和为 (A)5 (B)6 (C)10 (D)12③若向量b a ,的夹角为3π11==,则向量a 与向量b a -的夹角为( ) A.6π B.3πC.32πD.65π④由不等式组⎪⎩⎪⎨⎧≤≤≥-≥+1001x y e y x x确定的平面区域为M ,由不等式组⎩⎨⎧≤≤≤≤e y x 010确定的平面区域为N ,在N 内随机的取一点P ,则点P 落在区域M 内的概率为( )A.e 231-B. 231e- C. e 11- D. e 21-3. 函数与方程的思想方法: (1)具体特征函数思想集中体现在变量思想、对应与依存关系、运动与变化观点、数形结合观点,函数是特殊的方程;方程不一定是函数,但是大多数方程问题可以转化为函数问题、利用其图象直观求解.(2)考题解析例5 (2019理科21题)已知函数()()2()21xf x x e a x =-+-有两个零点.(I )求a 的取值范围;(II )设12,x x 是()f x 的两个零点,证明:122x x +<.解析:(Ⅰ)当1x =时,()10f e =-<,所以1x =不是函数零点.当1x ≠时,由()0f x =得()()221x x e a x -=-.设()()()221x x e g x x -=-,则()()()23451x e x x g x x --+'=-. 当1x <时,()0g x '>;当1x >时,()0g x '<.故函数()g x 在(),1-∞上单调递增、在()1,+∞上单调递减.在同一坐标系中画出函数()y g x =、y a =的图象可知,当0a >时两函数图象必有两个交点,故所求a 的取值范围为()0,+∞.(Ⅱ)设()()()11F x f x f x =+--,则()()()1111x x F x x xex e --=-++,且()()11x x F x x e e --'=-.当0x >时,110x x e e --->,()0F x '>.故函数()F x 在()0,+∞上单调递增.又()00F =,所以当0x >时,()()00F x F >=,即当0x >时,()()11f x f x +>-.设12x x <,由(I )知函数()f x 的极值点为1,则有121,1x x <>.又()20f a =>,所以212x <<.因为()()()()()1222112f x f x f x f x ==+->-.又121,21x x <-<,由(I )知函数()f x 的单调递减区间为(),1-∞,所以122x x <-,即122x x +<.触发点:第(I )中,在函数与方程思想的导引下,“一分为二”、将一个函数分解为两个函数,在同一坐标系中画出函数()y g x =、y a =的图象,通过函数图象直观助思,将图形关系转化为数量关系,得到a 的取值范围为()0,+∞.第(II )中,由()()112x x ++-=、与所要证明结果结构相似,构造函数()()()11F x f x f x =+--,按照函数单调性的定义,沟通函数值大小与自变量大小的关系, 实现“方程(不等式)——函数——图象——方程(不等式)”的相互转化.(3)基本类型与学生问题学生在学习指、对、幂函数的图象和性质的过程中,利用函数的单调性比较相关函数值的大小,使学生第一次接触到构造函数;在学习“函数与方程”时,为了解决函数零点的相关问题,常需要将一个复杂函数的零点问题,通过方程转化为两个较简单函数图象交点的问题,或将两个函数交点的问题,通过方程转化为一个函数的零点问题;在解答恒成立、能成立、最值等问题时,常需要将问题转化为求函数的最值,函数思想、运用构造函数的方法将问题转化为考查函数的最值就成为常态的方法.学生的主要问题:一是缺少函数思想、看不到问题的本质;二是不能把“方程——函数——不等式”联系起来,缺少解决相关问题的经验积累;三是转化的方向感不强,有时甚至将问题复杂化.(4)方法分析函数与方程的思想方法也是高中数学的核心思想方法之一.既常态又习以为常,建议高三复习时,结合具体问题,从易到难,开展小专题研究,对学生进行函数与方程的思想立意,并且与数形结合、化归与转化等数学思想融会,提高学生运用函数与方程思想的水平.至于其他的思想方法,教师可以根据学生的需求、进行合理提升.(5)模拟训练 ①若函数)()(R b xbx x f ∈+=的导函数在区间(1,2)上有零点,则)(x f 在下列区间上单调递增的是A.(]1,-∞-B. ()0,1-C. ()1,0D. ()+∞,2②定义一种新运算:a ⊗b=,已知函数f (x )=(1+)⊗x 2log,若函数g (x )=f (x )﹣k 恰有两个零点,则k 的取值范围为( )A .(1,2]B .(1,2)C .(0,2)D .(0,1) ③已知函数()()()=,ln 24x aa x f x x eg x x e --+=+-,其中e 为自然对数的底数,若存在实数0x ,使()()00-3f x g x =成立,则实数a 的值为( )A. -ln 21-B. -1+ln2C. -ln 2D. ln 2④已知函数x e e x f x 2)(-=,方程01)()(2=-++a x af x f 有四个不同的实数根,则a 的取值范围为( )A. )1,(2ee +--∞ B. )1,1(2e - C. ),(2e -∞ D. )1,2(22e e -- (三)应用意识与应用能力 1. 考查情况2019年高考数学全国一卷很明显带有注重实际运用的特征.文理的第16题线性规划,以生产利润为模型,考查线性规划;文理的第19题,以成本控制为模型,考查概率统计(分布列)和决策问题;理科的第4题,以乘车上班为模型,考查几何概型.从2019年的全国新课标一卷来看,在数学的应用问题上,试题体现的应用意识大幅增强,除概率统计问题这个常见的实际问题外,在若干个小题中,也都能见到它实际应用的这种意识,在很多的问题中多有体现,考查考生的应用意识,这一点也充分地体现了新课程的理念.另外,对于概率统计的应用问题,全国新课标一卷着重考核统计方面的知识,有注重考查学生“用数据说话”的倾向,这与我们已经进入大数据时代有关.2.考题解析例6(2019高考全国卷1理科第19题)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得柱状图(如图).以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?解析:(I )每台机器更换的易损零件数为8,9,10,11,记事件i A 为第一台机器3年内换掉7i +个零件()1,2,3,4i =,记事件i B 为第二台机器3年内换掉7i +个零件()1,2,3,4i =,由题知()()()()()()1341340.2P A P A P A P B P B P B ======,()()220.4P A P B ==.设2台机器共需更换的易损零件数为X ,则X 的可能的取值为16,17,18,19,20,21,22,且()()()11160.20.20.04P X P A P B ===⨯=,()()()()()1221170.20.40.40.20.16P X P A P B P A P B ==+=⨯+⨯=,()()()()()()()132231180.20.20.20.20.40.40.24P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=,()()()()()()()()()14233241190.20.20.20.2P X P A P B P A P B P A P B P A P B ==+++=⨯+⨯0.40.2+⨯0.20.40.24+⨯=,()()()()()()()243342200.40.20.20.40.20.20.2P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=,()()()()()3443210.20.20.20.20.08P X P A P B P A P B ==+=⨯+⨯=, ()()()44220.20.20.04P X P A P B ===⨯=.所以X 的分布列为(II )因为0.04)0.5X n ≤≥知n 的最小值为19.(III )购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用.当19n =时,费用的期望为192005000.210000.0815000.044040⨯+⨯+⨯+⨯=; 当20n =时,费用的期望为202005000.0810000.044080⨯+⨯+⨯=. 综上所述,应选用19n =比较恰当.本试题为“概率统计”类型,属于中档试题,考查频率、概率、分布列、数学期望等基础知识,以及统计思想的应用和数据处理、分析等方面的能力.本试题背景公平,叙述简明易懂;情境新颖,不落俗套,由文字语言和“柱状图”共同提供数据和信息,考查应用意识和解决实际问题的能力.本试题分小题设问,前问的数据既是解答本问的依据,又是解答后问的依据;密切结合教材,既在情理之中,又有意料之外,考查数学的重点内容,以及基本的数学思想方法.本试题问题所涉及的数学知识和方法有一定的深度和广度.对于随机变量X 的每个取值,事件可以分解为独立事件的“积事件”,以及互斥事件的“和事件”,考生的错误在于缺少“基本事件”意识,概率计算公式列错,考查考生提取有价值数据的意识,以及化繁为简的解题策略;对于费用的期望,考生的错误在于按照思维惯性、列出费用的分布列后按照通常求期望的方法求解,考查考生挖掘数据价值、按照数学期望的本质含义求解的创新意识和能力.本试题立意深刻,突出数学在解决实际问题时的价值取向和应用价值.试题中以“现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图”诱导考生的数据思维,向他们传递面对实际问题时的基本做法、基本态度和基本观点,进行“数学育人”;试题中“以频率代替概率”、“以购买易损零件所需费用的期望值为决策依据”导引考生的价值取向,引导他们按照数据处理的结果展开分析,用“数学的方式”,用数据说话、作出统计推断、进行科学决策.3.考纲解读应用意识体现在:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.象前面的题目一样,核心在“建模”、“说明”上.应用能力不但强调“建模”、“说明”,而且强调“解模”:如湖南2019年理科第20题“L 路径”问题,建立的函数模型含有多个绝对值,对考生分类整合、解模能力要求相当高,令绝大多数考生望而止步 .4.备考建议:(1)顺应心理诉求,建构数据相关知识.近年来,随着互联网、云计算、手持及移动技术等现代信息技术的飞速发展及应用,人类进入大数据时代.数学高考按照“数学考试的内容和形式都应当有利于中学数学课程改革”的命题思路,2019年高考数学全国新课标试卷加大了“数据分析”的考查力度.上述试题,300多个字符,另加“柱状图”,要求考生能够从给定的大量信息材料中提取有用、有价值的数据,运算求解,分类整合,分析概括一些结论,并能将其应用于解决问题或做出新的判断.“数据分析”是我国高中数学课程标准在修订中提出的六大核心素养(数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析)之一,它包括“数据获取、数据分析、知识建构”三个维度.“数据”不仅指数字,而且指事实或观察的结果,是信息的表现形式和载体,可以是符号、文字、数字、语音、图像、视频等;数据和信息是不可分离的,数据是信息的表达,信息是数据的内涵.“大数据”是从信息量考虑的,具有规模大 (大量:Volume)、类型多 (多样:Variety)、速度快 (高速:Velocity)、价值密度低 (价值:Value)的“4V”特征.尽管新授课关注不够,但在高考复习中,教师还是应该顺应大数据时代学生的心理诉求,关注象上述试题那样“背景新颖、信息量大”的试题或模考题,让学生有机会经历“从大量数据中抽取对研究问题有用的信息”的全过程,建构数据的相关知识.(2)搭建互动平台,培养数据分析能力.数据分析能力集中体现在会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断等方面.其中收集、存储数据是基础,抽取、。
2019年浙江省高考数学试卷以及答案解析
绝密★启用前2019年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A,B互斥,则若事件A,B相互独立,则若事件A在一次试验中发生的概率是p,则n次独立重复试验中事件A恰好发生k次的概率台体的体积公式其中分别表示台体的上、下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高锥体的体积公式其中表示锥体的底面积,表示锥体的高球的表面积公式球的体积公式其中表示球的半径一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(4分)已知全集U={﹣1,0,1,2,3},集合A={0,1,2},B={﹣1,0,1},则(∁U A)∩B=()A.{﹣1}B.{0,1}C.{﹣1,2,3}D.{﹣1,0,1,3} 2.(4分)渐近线方程为x±y=0的双曲线的离心率是()A.B.1C.D.23.(4分)若实数x,y满足约束条件则z=3x+2y的最大值是()A.﹣1B.1C.10D.124.(4分)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.3245.(4分)若a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.(4分)在同一直角坐标系中,函数y=,y=1og a(x+)(a>0且a≠1)的图象可能是()A.B.C.D.7.(4分)设0<a<1.随机变量X的分布列是X0a1P则当a在(0,1)内增大时,()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大8.(4分)设三棱锥V﹣ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P ﹣AC﹣B的平面角为γ,则()A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β9.(4分)设a,b∈R,函数f(x)=若函数y=f(x)﹣ax﹣b恰有3个零点,则()A.a<﹣1,b<0B.a<﹣1,b>0C.a>﹣1,b<0D.a>﹣1,b>0 10.(4分)设a,b∈R,数列{a n}满足a1=a,a n+1=a n2+b,n∈N*,则()A.当b=时,a10>10B.当b=时,a10>10C.当b=﹣2时,a10>10D.当b=﹣4时,a10>10二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2019年上海高考数学真题试卷及答案解析
绝密★启用前 2019年普通高等学校招生全国统一考试(上海卷)数学试卷(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置. 3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、选择题:(本大题共12题,1-6题每题4分,7-12题每题5分,共54分) 1. 已知集合()(),32,A B =−∞=+∞、,则=B A ________. 2. 已知C z ∈且满足i z=−51,求=z ________. 3. 已知向量)2,0,1(=a ,)0,1,2(=b ,则a 与b 的夹角为________. 4. 已知二项式()521x +,则展开式中含2x 项的系数为________.5. 已知x 、y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,求23z x y =−的最小值为________.6. 已知函数()f x 周期为1,且当01x <≤,()2log f x x =−,则=)23(f ________.7. 若x y R +∈、,且123y x +=,则yx的最大值为________. 8. 已知数列{}n a 前n 项和为n S ,且满足2n n S a +=,则5S =______.9. 过24y x =的焦点F 并垂直于x 轴的直线分别与24y x =交于A B 、,A 在B 上方,M 为抛物线上一点,OM OA λ=+()2OB λ−,则λ=______.10. 某三位数密码锁,每位数字在90−数字中选取,其中恰有两位数字相同的概率是_______.11. 已知数列{}n a 满足1n n a a +<(*∈N n ),(),n n P n a 在双曲线12622=−y x 上,则1lim n n n P P +→∞=_______.12. 已知()()21,01f x a x a x =−>>−,若0a a =,()f x 与x 轴交点为A ,()f x 为曲线L ,在L 上任意一点P ,总存在一点Q (P 异于A )使得AP AQ ⊥且AP AQ =,则0a =__________.二.选择题(本大题共4题,每题5分,共20分)13. 已知直线方程02=+−c y x 的一个方向向量d 可以是( )A. )1,2(−B. )1,2(C. )2,1(−D. )2,1(14. 一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为( )A. 1B. 2C. 4D. 815. 已知R ∈ω,函数()()()26sin f x x x ω=−⋅,存在常数R a ∈,使得()f x a +为偶函数,则ω可能的值为( )A.2π B. 3π C. 4π D. 5π16. 已知)tan(tan tan βαβα+=⋅.①存在α在第一象限,角β在第三象限; ②存在α在第二象限,角β在第四象限;A. ①②均正确;B. ①②均错误;C. ①对,②错;D. ①错,②对;三.解答题(本大题共5题,共76分)17. (本题满分14分)如图,在长方体1111ABCD A B C D −中,M 为1BB 上一点,已知2BM =,4AD =,3CD =,15AA =.(1)求直线1AC 与平面ABCD 的夹角; (2)求点A 到平面1A MC 的距离.18.(本题满分14分)已知()11f x ax x =++)(R a ∈. (1)当1a =时,求不等式()()11f x f x +<+的解集; (2)若[]1,2x ∈时,()f x 有零点,求a 的范围.19.(本题满分14分)如图,A B C −−为海岸线,AB 为线段,BC 为四分之一圆弧,39.2BD km =,22BDC ∠=,68CBD ∠=,58BDA ∠=.(1)求BC 长度;(2)若40AB km =,求D 到海岸线A B C −−的最短距离.(精确到0.001km )20.(本题满分16分)已知椭圆22184x y +=,12,F F 为左、右焦点,直线l 过2F 交椭圆于A 、B 两点. (1)若AB 垂直于x 轴时,求AB ;(2)当190F AB ∠=时,A 在x 轴上方时,求,A B 的坐标;(3)若直线1AF 交y 轴于M ,直线1BF 交y 轴于N ,是否存在直线l ,使MN F AB F S S 11△△=,若存在,求出直线l 的方程;若不存在,请说明理由.21.(本题满分18分)数列{}n a 有100项,1a a =,对任意[]2,100n ∈,存在[],1,1n i a a d i n =+∈−,若k a 与前n 项中某一项相等,则称k a 具有性质P .(1)若11a =,求4a 可能的值;(2)若{}n a 不为等差数列,求证:{}n a 中存在满足性质P ;(3)若{}n a 中恰有三项具有性质P ,这三项和为C ,使用,,a d c 表示12100a a a +++.上海市2019届秋季高考数学考试卷参考答案与试题解析一、选择题:(本大题共12题,1-6题每题4分,7-12题每题5分,共54分) 1.已知集合()(),32,A B =−∞=+∞、,则=B A ________. 【思路分析】然后根据交集定义得结果. 【解析】:根据交集概念,得出:)3,2(.【归纳与总结】本题主要考查集合的基本运算,比较基础. 2.已知C z ∈且满足i z=−51,求=z ________. 【思路分析】解复数方程即可求解结果.【解析】:i z +=51,i i i i i z 261265)5)(5(551−=−+−=+=. 【归纳与总结】本题主要考查复数的基本运算,比较基础. 3.已知向量)2,0,1(=a ,)0,1,2(=b ,则a 与b 的夹角为________.【思路分析】根据夹角运算公式b a =θcos 求解.【解析】:52552cos =⋅==θ. 【归纳与总结】本题主要考查空间向量数量积,比较基础. 4.已知二项式()521x +,则展开式中含2x 项的系数为________.【思路分析】根据二项式展开式通项公式求出取得含2x 项的的项,再求系数.【解析】:r r rr r r r x C x C T −−−+⋅⋅=⋅⋅=55555121)2(令25=−r ,则3=r ,2x 系数为402235=⋅C . 【归纳与总结】本题主要考查项式展开式通项公式的应用,比较基础.5.已知x 、y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,求23z x y =−的最小值为________.【思路分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【解析】:线性规划作图:后求出边界点代入求最值,当0=x ,2=y 时,6min −=z .【归纳与总结】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题. 6.已知函数()f x 周期为1,且当01x <≤,()2log f x x =−,则=)23(f ________. 【思路分析】直接利用函数周期为1,将转23到已知范围01x <≤内,代入函数解析式即可. 【解析】:121log )21()23(2=−==f f . 【归纳与总结】本题考查函数图像与性质,是中档题.7.若x y R +∈、,且123y x +=,则yx的最大值为________. 【思路分析】利用已知等式转化为一个变量或者转化为函有yx的式子求解【解析】:法一:y x y x 212213⋅≥+=,∴892232=⎪⎪⎭⎫ ⎝⎛≤x y ; 法二:由y x 231−=,y y y y x y 32)23(2+−=⋅−=(230<<y ),求二次最值89max =⎪⎭⎫⎝⎛x y .【归纳与总结】本题考查基本不等式的应用,是中档题.8.已知数列{}n a 前n 项和为n S ,且满足2n n S a +=,则5S =______.【思路分析】将和的关系转化为项的递推关系,得到数列为等比数列. 【解析】:由⎩⎨⎧≥=+=+−−)2(2211n a S a S n n n n 得:121−=n n a a (2≥n )∴ {}n a 为等比数列,且11=a ,21=q ,∴ 1631211])21(1[155=−−⋅=S . 9.过24y x =的焦点F 并垂直于x 轴的直线分别与24y x =交于A B 、,A 在B 上方,M 为抛物线上一点,OM OA λ=+()2OB λ−,则λ=______.【思路分析】根据等式建立坐标方程求解 【解析】:依题意求得:)2,1(A ,)2,1(−B ,设M 坐标),(y x M有:)4,22()2,1()2()2,1(),(−=−⋅−+=λλλy x ,代入x y 42=有:)22(416−⋅=λ 即:3=λ.【归纳与总结】本题考查直线与抛物线的位置关系,考查数形结合的解题思想方法,是中档题.10某三位数密码锁,每位数字在90−数字中选取,其中恰有两位数字相同的概率是_______. 【思路分析】分别计算出总的排列数和恰有两位数字相同的种类求解.【解析】:法一:100271031923110=⋅⋅=C C C P (分子含义:选相同数字×选位置×选第三个数字) 法二:100271013310110=+−=P C P (分子含义:三位数字都相同+三位数字都不同) 【归纳与总结】本题考查古典概型的求解,是中档题.11.已知数列{}n a 满足1n n a a +<(*∈N n ),(),n n P n a 在双曲线12622=−yx 上,则1lim n n n P P +→∞=_______.【思路分析】利用点在曲线上得到1n n P P +关于n 的表达式,再求极限.【解析】:法一:由12822=−na n 得:)16(22−=n a n ,∴))16(2,(2−n n P n ,))16)1((2,1(21−+++n n P n ,利用两点间距离公式求解极限。
关注核心素养 凸显五育并举——2019年全国高考数学试题评析与教学建议
2019年第12期福建中学数学 1关注核心素养凸显五育并举——2019年全国高考数学试题评析与教学建议陈雄福建省福安市高级中学(355000)2019年全国高考数学试卷全面贯彻党的教育方针与高考综合改革的精神,落实构建“德智体美劳”全面培养教育体系的要求,以《2019年普通高等学校招生全国统一考试大纲》,《2019年普通高等学校招生全国统一考试大纲的说明》为依据,凸显数学学科特色,全面覆盖基础知识,注重关键能力考查,突出学科素养导向,将考试内容和素质教育要求有机结合,体现高考数学科的育人价值.1 试题特点分析1.1 指向核心素养,落实五育并举2019年高考数学科结合学科特点,在学科考查中体现“五育”要求,整份试卷站在落实“五育”方针的高度进行整体设计.高考数学试卷每一道题的设计都会立足于知识与能力的有机结合与运用,通过对不同程度思维能力的考查,体现数学科对智育的重要考查要求.就2019年高考试卷而言,我们还容易注意到试题对德、体、美、劳的考查予以了足够的关注,如:(1)理科Ⅱ卷第4题结合“嫦娥”四号实现人类历史首次月球背面软着陆的技术突破考查近似估算的能力,第13题以我国高铁列车的发展成果为背景设计问题,反映我国科技取得的成就;文科Ⅱ卷第5题以“一带一路”知识测试为情境进行设计,引导学生关注和平发展的外交理念.这些试题都发挥了思想教育功能,体现了对考生德育的渗透和引导.(2)理科Ⅱ卷第18题、理科Ⅰ卷第15题分别引入了非常普及的乒乓球和篮球运动,以其中普遍存在的比赛结果的预估和比赛场次的安排提出问题,要求考生应用数学方法分析、解决体育问题.文科Ⅰ卷第6题以学校对学生体质状况进行调查的情境设计问题.这些试题在考查学生数学知识的同时,引导学生加强体育锻炼,体现了对体育的渗透和普及.(3)文、理科Ⅰ卷第4题以著名的雕塑“断臂维纳斯”为例,探讨人体黄金分割之美,将美育教育融入数学教育.(4)文科Ⅰ卷第17题以商场服务质量管理为背景设计,体现对服务质量的要求,倡导高质量的劳动成果.文、理科Ⅲ卷第16题再现了学生到工厂劳动实践的场景,引导学生尊重劳动、参加劳动、热爱劳动,体现了劳动教育的要求.1.2 强调基础知识,凸显通法通性试卷注重对高中基础内容的全面考查,集合、复数、逻辑推理、平面向量、正余弦定理、三角恒等变换、线性规划等内容在选择、填空题中得到了有效的考查.在此基础上,试卷强调对主干内容的重点考查,体现了全面性、基础性和综合性的考查要求.在解答题中重点考查了函数与导数、三角函数、解析几何、立体几何、数列、概率统计等主干内容.例如,理科Ⅰ卷的第7题,直接考查了平面向量的基本运算;理科Ⅱ卷第10题,考查了三角函数的公式计算,以及理科Ⅲ卷的第4题,均为常见的二项式定理指定项系数的考查.可见,考查的知识面非常广泛.“双基”的落实,这一点在今年的考试题目中体现得非常明显.1.3 依托知识交汇,强调融会贯通高考是选拔性考试.除了考查“双基”以外,在一定程度上,它还要考查综合性内容.比如理科Ⅰ卷的第11题,在三角函数知识的基础之上,对函数图形、奇偶性、单调性、零点以及最值问题等深刻考查.考题依托交汇,考查知识的左联右拓、融会贯通,如立体几何经常会与平面几何结合在一起;解析几何与平面向量、以及函数的最值问题放在一起考查.概率统计和排列组合放在一起考查.考导数,少不了函数、不等式的身影.数列本来就是函数的一部分,在考查数列,往往也是和函数、不等式结合.这些都是高考综合性问题考查的方向.1.4 设置真实情境,彰显应用能力数学试题注重考查数学应用素养,体现应用性的考查要求.试题设置的情境真实,贴近生活,同时具有深厚的文化底蕴,体现数学原理和方法在解决问题中的价值和作用.理科Ⅰ卷第6题以我国古代典籍《周易》中描述事物变化的“卦”为背景设置了排列组合试题,体现2 福建中学数学 2019年第12期了中国古代的哲学思想.理科Ⅲ卷第3题,以学生阅读“四大名著”的调查数据为背景设计,理科Ⅱ卷第5题以学生熟悉的演讲比赛评分制度为背景设计,情境贴近实际,为考生所熟悉.文科Ⅱ卷第4题以生物实验中抽取标本为背景设置了概率试题,文、理科Ⅲ卷第17题以离子在生物体内残留情况为背景设计,反映了数学知识和方法在其他学科的应用.这些情境来源于不同领域,结合社会现实,贴近生活,反映了数学应用的广阔领域,让学生感受有用的数学,提高对数学价值的认识,提升数学素养,体现了数学的应用价值.1.5 合理规避模式,有效导向教学在试题顺序编排上依然是循序渐进、由易到难.在整体平稳的基础上,在主观题的设计上进行了适当的调整.主观题在各部分内容的布局和考查难度上进行动态设计,打破了过去压轴题的惯例.近年全国理科Ⅰ卷首次以概率统计作为压轴题,文科Ⅰ卷解答题以统计案例开场.这些改革释放了一个明显的信号,试卷在各部分内容的布局和考查难度上都可能进行调整和改变,这在一定程度上有助于考查考生灵活应变的能力和主动调整适应的能力,有助于学生全面学习掌握重点知识和重点内容,同时有助于破解僵化的应试教育.2 备考建议2.1 优化教学行为,发展核心素养数学试题的不断发展,越来越多元化,越来越富有时代内涵,对学生的数学学科核心素养提出了更高要求.课堂是培养数学学科核心素养的主渠道,因此,优化教学行为,树立以发展学生数学学科核心素养为导向的教学意识,让数学学科核心素养在课堂落地,并最终落实到学生身上是教育教学的关键.2.2 立足基础知识,完善知识体系试题全面体现以学科素养为导向,需要考生具备更为扎实的知识基础.试题对主干章节全覆盖式的考查在题量与难易方面有明显倾斜,需要考生对其章节内容有较深刻的系统认识,因而,高三复习教学中不仅要引导学生掌握基础知识与基本方法,还要引导学生突出主干知识,提高基础能力,加强知识间的纵横联系,构建完整的知识体系,进一步领悟章节知识所蕴含的主要思想,促使知识融会贯通.2.3 依据课标课本,深研高考试题高考考什么?怎么考?多少师生在考试前惴惴不安,考试后扑朔迷离.遭遇无数次失败后暮然回首,才发现“题在书外,根在书中”.作为数学教师,要对课标与课本、考纲与考题的特点以及高考考查的知识点做到心中有数,避免盲目备考,既不能随意降低要求,也不能盲目拔高,加重学生负担,以致偏离了高考数学备考的轨道.2.4 关注数学实践,加强数学应用数学来源于生活,生活中也充满了数学,关注数学实践活动与应用,培养学生用数学眼光观察世界,用数学思维思考世界,用数学语言表达世界,加强数学知识和方法在其他学科的应用,在社会生活实践中感知、发现、实践数学.2.5 培养解题能力,提升应试水平拼命刷题,不做总结与优化解题思路,你可能永远也不会明白解题本质与内涵.因此,培养合理而灵活的解题能力,需要优化解题,找到合理灵活的解题路径.以考代练,提高解题速度,加强应试技巧,培养挫折考试是提高解题能力重要途径.3 结束语今后的高考将更加凸显“五育”并举的教育功能,数学学科将以素养导向加强理性思维考查.数学复习应在高考的价值取向下,以数学知识为载体,培养学生缜密思维、严格推理的能力,突出知识的综合贯通,促使学生领悟数学思想方法,通过真实的数学情境,揭示知识的产生背景和形成过程,落实“五育”方针,并最终实现提升学生的数学素养.参考文献[1]中华人民共和国教育部考试中心.2019年普通高等学校招生全国统一考试大纲[M].北京:高等教育出版社,2018[2]教育部考试中心.以真情实景落实“五育并举”以理性思维践行“立德树人”[J].中国考试,2019(7):7-10[3]丘远青.明确目标精选例题高效备考[J].数学通报,2018(9):46-49 (本文系福建省教育科学“十三五”规划2018年度立项课题《新高考背景下高中数学“三年一体化”教学规划实践研究》(立项批准号:FJJKCG18-640)阶段成果)。
2019年全国高考数学试题及解析-江苏卷
2019年全国高考数学试题及解析-江苏卷数学Ⅰ试题参考公式圆柱旳体积公式:V 圆柱=Sh ,其中S 是圆柱旳底面积,h 为高. 圆锥旳体积公式:V 圆锥13Sh ,其中S 是圆锥旳底面积,h 为高. 一、填空题:本大题共14个小题,每题5分,共70分.请把【答案】写在答题卡相应位置上。
1.集合{1,2,3,6},{|23},A B x x =-=-<<那么=A B ﹏﹏﹏﹏﹏﹏﹏﹏▲﹏﹏﹏﹏﹏﹏﹏﹏.2.复数(12i)(3i),z =+-其中i 为虚数单位,那么z 旳实部是﹏﹏﹏﹏﹏﹏﹏﹏▲﹏﹏﹏﹏﹏﹏﹏﹏.3.在平面直角坐标系xOy 中,双曲线22173x y -=旳焦距是﹏﹏﹏﹏﹏﹏﹏﹏▲﹏﹏﹏﹏﹏﹏﹏﹏.4.一组数据4.7,4.8,5.1,5.4,5.5,那么该组数据旳方差是﹏﹏﹏﹏﹏﹏﹏﹏▲﹏﹏﹏﹏﹏﹏﹏﹏.5.函数y 旳定义域是▲.6.如图是一个算法旳流程图,那么输出旳a 旳值是▲.7.将一颗质地均匀旳骰子〔一种各个面上分别标有1,2,3,4,5,6个点旳正方体玩具〕先后抛掷2次,那么出现向上旳点数之和小于10旳概率是▲.8.{a n }是等差数列,S n 是其前n 项和.假设a 1+a 22=-3,S 5=10,那么a 9旳值是▲. 9.定义在区间[0,3π]上旳函数y =sin2x 旳图象与y =cos x 旳图象旳交点个数是▲.10.如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0旳右焦点,直线2b y =与椭圆交于B ,C 两点,且90BFC ∠=,那么该椭圆旳离心率是▲.(第10题)11.设f 〔x 〕是定义在R 上且周期为2旳函数,在区间[−1,1)上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 假设59()()22f f -=,那么f 〔5a 〕旳值是▲.12.实数x ,y 满足240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,那么x 2+y 2旳取值范围是▲.13.如图,在△ABC 中,D 是BC 旳中点,E ,F 是AD 上旳两个三等分点,4BC CA ⋅=,1BF CF ⋅=-,那么BE CE ⋅旳值是▲.14.在锐角三角形ABC 中,假设sin A =2sin B sin C ,那么tan A tan B tan C 旳最小值是▲.【二】解答题〔本大题共6小题,共90分.请在答题卡制定区域内作答,解答时应写出文字说明、证明过程或演算步骤.〕 15.〔本小题总分值14分〕 在ABC △中,AC =6,4πcos .54B C ==, 〔1〕求AB 旳长; 〔2〕求πcos(6A -)旳值. 16.(本小题总分值14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 旳中点,点F在侧棱B 1B 上,且11B D A F ⊥,1111A C A B ⊥. 求证:〔1〕直线DE ∥平面A 1C 1F ;〔2〕平面B 1DE ⊥平面A 1C 1F . 17.〔本小题总分值14分〕现需要设计一个仓库,它由上下两部分组成,上部分旳形状是正四棱锥1111P A B C D -,下部分旳形状是正四棱柱1111ABCD A B C D -(如下图),并要求正四棱柱旳高1O O 是正四棱锥旳高1PO 旳四倍.(1) 假设16m,2m,AB PO ==那么仓库旳容积是多少?(2) 假设正四棱锥旳侧棱长为6m,那么当1PO 为多少时,仓库旳容积最大?18.〔本小题总分值16分〕如图,在平面直角坐标系xOy 中,以M 为圆心旳圆M :221214600x y x y +--+=及其上一点A (2,4)(1) 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 旳标准方程; (2) 设平行于OA 旳直线l 与圆M 相交于B 、C 两点,且BC =OA ,求直线l 旳方程; (3) 设点T 〔t ,0〕满足:存在圆M 上旳两点P 和Q ,使得,TA TP TQ +=,求实数t 旳取值范围。
2019年全国Ⅰ卷高考理科数学试题及答案详细解析
17. 的内角A,B,C的对边分别为a,b,c,设 .
(1)求A;
(2)若 ,求sinC.
解:(1)
即:
由正弦定理可得:
(2) ,由正弦定理得:
又 ,
整理可得:
解得: 或
因为 所以 ,故 .
(2)法二: ,由正弦定理得:
又 ,
整理可得: ,即
或
且
考点:正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.
解:
由 知 是 的中点, ,又 是 的中点,所以 为中位线且 ,所以 ,因此 ,又根据两渐近线对称, ,所以 , .
考点: ,双曲线及其渐近线的对称性.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
A. B.
C. D.
解:由 ,得 是奇函数,其图象关于原点对称.又 .故选D.
考点:本题考查函数的性质与图象,利用函数奇偶性和特殊点即可解决这类问题.
6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是
2019年普通高等学校招生全国统一考试
理科数学
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 ,则 =
A. B. C. D.
解: , .故选C.
考点:一元二次不等式解法,集合的交集.
2019年高考数学北京卷的试题特点及其教学建议
(A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充分必要条件 (D) 既不充分也不必要条件 该题重点考查了向量的夹角、向量的模、向量的 数量积、向量的加减、充要条件等重点概念,考查了 数学运算、直观想象、逻辑推理等核心素养,是选择 题中得分率最低的一道题,区分度良好 . 学生常见的错误如下. (1) 学生审题时没有注意到“点 A,B,C 不共线” 这个重要条件,导致判断必要条件出错 . (2) 部分学生通过画出图形很快判断出充分条 件,但是判断必要条件时,如果根据图形判断,则缺 少数量标准,于是凭感觉判断不成立,从而错选 A.
中国数学教育·下半月(高中版) 2020 年第 1—2 期 (总第 207—208 期)
2019 年高考数学北京卷的试题特点及其教学建议
唐绍友,黄富国 (北京市第四中学;重庆市合川中学)
摘 要:2019 年高考数学北京卷的试题有五个特点:试题的素材丰富多彩,既充满时代特色,又 蕴含传统文化的光辉;试题的选拔功能在核心素养与核心价值的考查中得以实现;试题的考查目标在 数学思维与数学思想方法的考查中实现;试题的设问形式灵活开放,旨在积极引导教学;试题的覆盖 面广,有利于促进“四基”“四能”教学的落实 . 基于此,提出相应的四点教学建议:强化基础,构建 完整的知识体系;统一要求,关注核心素养;方法为纲,构建数学能力与数学素养的发展支点;突出 应用与文化,逐步实现“立德树人”的育人价值 .
的联系,提升学生应用数学解决实际问题的能力,同 顾客网上支付成功后,李明会得到支付款的80% .
时注重数学文化的渗透 . 2019 年高考数学北京卷的试
① 当x = 10时,顾客一次购买草莓和西瓜各1盒,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019全国高考数学试题评价与特点分析一、试题总体评价特点1:考查基础知识试题(2019全国Ⅰ卷理2)设复数z 满足=1i z -,z 在复平面内对应的点为(,)x y ,则A .22+11()x y += B .221(1)x y +=- C .22(1)1y x +-= D .22(+1)1y x +=试题(2019全国Ⅱ卷文9、理8) 若抛物线22(0)y px p =>的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .8试题(2019全国Ⅰ卷理7)已知非零向量,a b 满足||2||=a b ,且()-⊥a b b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π6试题(2019全国Ⅱ卷理10)已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos21αα=+,则sin α=A .15B .5C .3D .5特点2:考查重点内容试题(2019全国Ⅲ卷文12、理11)设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A . 233231(log )(2)(2)4f f f -->>B .233231(log )(2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->>D .233231(2)(2)(log )4f f f -->>试题(2019全国Ⅰ卷理12) 设函数()f x 的定义域为R ,满足(1)2()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x -…,则m 的取值范围是A .(-∞,9]4B .(-∞,7]3C .(-∞,5]2D .(-∞,8]3试题(2019全国Ⅲ卷文、理8)如图,点N 为正方形ABCD 的中心,ECD △为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线试题(2019全国Ⅰ卷理16)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B =,则C 的离心率为 .试题(2019全国Ⅰ卷理17)ABC △的内角,,A B C 的对边分别为,,a b c ,设22(sin sin )sin sin sin B C A B C -=-.(Ⅰ)求A ;2b c +=,求sin C .试题(2019全国Ⅱ卷理19)已知数列{}n a 和{}n b 满足111,0a b ==,1434n n n a a b +-=+,1434n n n b b a +-=-.(Ⅰ)证明:{}n n a b +是等比数列,{}n n a b -是等差数列; (Ⅱ)求{}n a 和{}n b 的通项公式.特点3:考查数学思想试题(2019全国Ⅱ卷理9)下列函数中,以2π为周期且在区间(,)42ππ上单调递增的是 A .()cos2f x x = B .()sin 2f x x = C .()cos f x x = D .()sin f x x =试题(2019全国Ⅰ卷文、理5)函数sin ()cos x+xf x x+x=2在[,]-ππ的图象大致为 A .B .C .D .特点4:考查数学应用试题(2019全国Ⅱ卷文14、理13)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.试题(2019北京卷文、理14)李明自主创业,在网上经营一家水果店,销售的水果有草莓、京白梨、西瓜、桃,价格依次为60元盒/、65元盒/、80元盒/、95元盒/.为了增加销售量,李明对着四种水果进行促销:依次购买达到120元,顾客就少付x 元.每笔订单顾客网上付款成功后,李明会得到支付款的80%.①当10x =时,顾客一次购买草莓和西瓜各1盒,需要支付__________元; ②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总额的七折,则x 的最大值为__________.特点5:考查核心素养试题(2019全国Ⅲ卷理19)图 1 是由矩形ADEB ,R t ABC △和菱形BFGC 组成的一个平面图形,其中1AB =,2BE BF ==,60FBC ∠=,将其沿,AB BC 折起使得BE 与BF 重合,连结DG ,如图 2.(Ⅰ)证明:图2中的,,,A C G D 四点共面,且平面ABC ⊥平面BCGE ; (Ⅱ)求图2中的二面角B CG A --的大小.试题(2019全国Ⅰ卷理20)已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(Ⅰ)()f x '在区间(1,)2π-存在唯一极大值点;(Ⅱ)()f x 有且仅有2个零点.试题(2019全国Ⅱ卷理21)已知点(2,0),(2,0)A B -,动点(,)M x y 满足直线AM 与BM的斜率之积为12-.记M 的轨迹为曲线C . (Ⅰ)求C 的方程,并说明C 是什么曲线;(Ⅱ)过坐标原点的直线交C 于,P Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交C 于点G .(1)证明:PQG △是直角三角形; (2)求PQG △面积的最大值.试题(2019全国Ⅰ卷理21)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (Ⅰ)求X 的分布列;(Ⅱ)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(1)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列; (2)求4p ,并根据4p 的值解释这种试验方案的合理性.特点6:考查创新意识 试题(2019江苏卷20(Ⅰ))定义首项为1且公比为正数的等比数列为“M -数列”.已知等比数列*{}()n a n N ∈满足:245a a a =,321440a a a -+=,求证:数列{}n a 为“M -数列”.试题(2019上海卷21)数列{}n a 有100项,1a a =,对任意[]2,100n ∈,存在[],1,1n i a a d i n =+∈-,若k a 与前n 项中某一项相等,则称k a 具有性质P .(Ⅰ)若11a =,2d =,求4a 可能的值;(Ⅱ)若{}n a 不为等差数列,求证:{}n a 中存在满足性质P 的项;(Ⅲ)若{}n a 中恰有三项具有性质P ,这三项和为c ,试用,,a d c 表示12100a a a +++.特点7:考查传统文化试题(2019全国Ⅲ卷文4、理3)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A .0.5B .0.6C .0.7D .0.8 试题(2019全国Ⅱ卷文、理16)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________. (本题第一空2分,第二空3分.)试题(2019全国Ⅰ卷理6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132 C .2132D .1116特点8:体现“五育”方针试题(2019全国Ⅱ卷文5)在“一带一路”知识测试后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同,且只有一人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙试题(2019全国Ⅰ卷文、理4)古希腊时期,人们认为最美人体的头顶至肚脐的长度10.6182≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm试题(2019全国Ⅱ卷理18)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (Ⅰ)求(2)P X =;(Ⅱ)求事件“4X =且甲获胜”的概率.试题(2019全国Ⅲ卷文、理16)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为30.9 g /cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .。