2020届高考数学(文)二轮复习过关检测:统计与概率十六+Word版含答案
2020版高考数学大二轮复习课时作业16概率(文)
课时作业 16 概率1.[2019·新疆生产建设兵团二中模拟]有一枚质地均匀的骰子,抛掷两次,得到向上一面的两个点数,则下列事件中,发生的概率最大的是( )A.点数都是偶数B.点数的和是奇数C.点数的和小于13 D.点数的和小于2解析:画出树状图如下:由图可知共有36种情况,其中点数都是偶数的情况有9种,点数的和为奇数的情况有18种,点数和小于13的情况有36种,点数和小于2的情况有0种,故选C.答案:C2.[2019·湖北宜昌联考]某次下课后,某教室里还剩下2位男同学和1位女同学,若他们依次走出教室,则第2个走出的是女同学的概率是( )A.12B.13C.14D.15解析:由题意知共有6个基本事件,第2个走出的是女同学包含2个基本事件,所以第2个走出的是女同学的概率是1 3 .答案:B3.[2019·山东青岛调研]已知某运动员每次投篮投中的概率是40%.现采用随机数法估计该运动员三次投篮中,恰有两次投中的概率:先由计算器随机产生0~9中的整数,指定1,2,3,4表示投中,5,6,7,8,9,0表示未投中;再以每三个随机数为一组,代表三次投篮的结果.现产生了如下10组随机数;907 966 191 925 271 431 932 458 569 683.估计该运动员三次投篮恰有两次投中的概率为( )A.15B.35C.310D.910解析:随机模拟产生了10组随机数,在这10组随机数中,表示三次投篮恰有两次投中的有191,271,932,共3组,故所求概率为310,故选C .答案:C4.[2019·广东佛山调研]将一根长为6 m 的绳子剪成两段,则其中一段大于另一段的2倍的概率为( )A .13 B .23 C .25D .35解析:绳子的长度为6 m ,剪成两段后,设其中一段的长度为x m ,则另一段的长度为(6-x)m ,记“其中一段的长度大于另一段长度的2倍”为事件A ,则A ={x|⎩⎪⎨⎪⎧0<x<6,x>2(6-x )或6-x>2x }={x|0<x<2或4<x<6},∴P(A)=23,故选B .答案:B5.[2019·河北九校联考]如图,矩形的长为6,宽为4,在矩形内随机撒300颗黄豆,落在椭圆外的黄豆数为96,以此试验数据为依据可以估计出椭圆的面积为( )A .16.32B .15.32C .8.68D .7.68解析:由题意,可估计椭圆的面积为⎝ ⎛⎭⎪⎫1-96300×6×4=16.32.故选A . 答案:A6.[2019·河南中原名校联盟一模]市场调查发现,大约45的人喜欢在网上购买家用小电器,其余的人则喜欢在实体店购买家用小电器.经工商局抽样调查,发现网上购买的家用小电器的合格率约为1720,而实体店里的家用小电器的合格率约为910.现工商局接到一个关于家用小电器不合格的投诉,则这台被投诉的家用小电器是在网上购买的可能性是( )A .67 B .56 C .45D .25解析:∵大约45的人喜欢在网上购买家用小电器,网上购买的家用小电器的合格率约为1720,∴某家用小电器是在网上购买的,且被投诉的概率约为45×⎝ ⎛⎭⎪⎫1-1720=325,又实体店里的家用小电器的合格率约为910,∴某家用小电器是在实体店里购买的,且被投诉的概率约为⎝ ⎛⎭⎪⎫1-45×⎝ ⎛⎭⎪⎫1-910=150,故工商局接到一个关于家用小电器不合格的投诉,则这台被投诉的家用小电器是在网上购买的可能性P =325325+150=67. 答案:A7.[2019·湖北六校联考]在长为10 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于16 cm 2的概率为( )A .15B .25C .35D .45解析:设AC =x ,则BC =10-x ,由题意知x(10-x)<16,所以x <2或x >8,又0<x <10,所以该矩形的面积小于16 cm 2的概率为410=25.答案:B8.[2019·黑龙江齐齐哈尔模拟]随着计算机的出现,图标被赋予了新的含义,有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称为“黑白太阳”的图标,该图标共分为三部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3、宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,则此点取自图标第三部分的概率为( )A .π24+9πB .4π24+9πC .π18+9π D .4π18+9π解析:图标第一部分的面积为8×3×1=24,图标第二部分的面积和第三部分的面积和为π×32=9π,图标第三部分的面积为π×22=4π,故此点取自图标第三部分的概率为4π24+9π,故选B.答案:B9.[2019·河北省级示范联合体联考]袋子中有四个小球,分别写有“和”“平”“世”“界”四个字,有放回地从中任取一个小球,直到“和”“平”两个字都取到才算完成.用随机模拟的方法估计恰好取三次便完成的概率.利用电脑随机产生0到3之间取整数值的随机数,0,1,2,3代表的字分别为“和”“平”“世”“界”,以每三个随机数为一组,表示取球三次的结果,随机模拟产生了以下24组随机数组:232 321 230 023 123 021 132 220 011203 331 100 231 130 133 231 031 320122 103 233 221 020 132由此可以估计,恰好取三次便完成的概率为( )A.18B.14C.16D.524解析:由题意可知,满足条件的随机数组中,前两次抽取的数中必须包含0或1,且0与1不能同时出现,第三次必须出现前面两个数字中没有出现的1或0.易知符合条件的数组只有3组:021,130,031,故所求概率P=324=18.故选A.答案:A10.[2019·云南昆明摸底]法国学者贝特朗于1899年针对几何概型提出了贝特朗悖论,内容如下:在半径为1的圆内随机地取一条弦,问:其长超过该圆内接等边三角形的边长3的概率为多少?基于对“随机地取一条弦”的不同解释,存在着不同答案.现给出其中一种解释:固定弦的一个端点A(如图),另一端点在圆周上随机选取,其答案为( )A.12B.13C.14D.16解析:记圆内接等边三角形为△ABC,弦的另一个端点为P.如图,若弦AP 的长超过AB 的长,则点P 落在劣弧»BC 上,所以所求概率为13.故选B . 答案:B11.[2019·广东肇庆联考]已知某条线的地铁每10分钟一班,每站停1分钟,则乘客到达站台立即乘上车的概率是________.解析:由于地铁每10分钟一班,每站停1分钟,故所求概率P =1-010-0=110.答案:11012.[2019·贵州贵阳监测]甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,则甲不输的概率为________.解析:设“乙获胜”为事件A ,则P(A)=13.因为甲输便是乙获胜,所以甲不输的概率是1-P(A)=1-13=23.答案:2313.[2019·河北张家口模拟]已知四棱锥P -ABCD 的所有顶点都在球O 的球面上,PA⊥底面ABCD ,底面ABCD 为正方形,PA =AB =2.现在球O 的内部任取一点,则该点取自四棱锥P -ABCD 内部的概率为________.解析:将四棱锥P -ABCD 补形为正方体,则正方体的体对角线的长是球O 的直径,设球O 的半径为R ,则23=2R ,即R =3,则四棱锥的体积V =13×2×2×2=83,球O 的体积为43π×(3)3=43π,则该点取自四棱锥P -ABCD 的内部的概率P =8343π=239π. 答案:239π14.[2019·百校联盟培优训练]在一个正五边形的顶点中随机选取三个不同的顶点,则正五边形的中心位于所选三个点构成的三角形内部的概率为________.解析:如图,设正五边形的5个顶点分别为A ,B ,C ,D ,E 任选三个,情况有10种,为ABC ,ABD ,ABE ,ACD ,ACE ,ADE ,BCD ,BCE ,BDE ,CDE.其中符合正五边形的中心位于所选三个点构成的三角形内部的情况有ABD ,ACD ,ACE ,BCE ,BDE ,共5种,故所求的概率为510=12.答案:1215.[2019·广东汕头第一次联考]某学校有初级教师21人,中级教师14人,高级教师7人,现采用分层抽样的方法从这些教师中抽取6人对绩效工资情况进行调查.(1)求从初级教师、中级教师、高级教师中分别抽取的人数;(2)若从抽取的6名教师中随机抽取2名进行进一步分析,求抽取的2名教师均为初级教师的概率.解析:(1)抽样比为621+14+7=17,则21×17=3,14×17=2,7×17=1,所以从初级教师、中级教师、高级教师中分别抽取的人数为3,2,1.(2)在抽取的6名教师中,3名初级教师分别记为A 1,A 2,A 3,2名中级教师分别记为A 4,A 5,1名高级教师记为A 6,则抽取2名教师的所有可能结果有{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.将“从6名教师中抽取的2名教师均为初级教师”记为事件B ,则事件B 发生的所有可能结果有{A 1,A 2},{A 1,A 3},{A 2,A 3},共3种.所以P(B)=315=15.16.[2019·河南洛阳市尖子生第二次联考]某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:时),停靠时间不足半小时按半小时计,超过半小时且不足1小时按1小时计,以此类推,统计结果如下表:停靠时间/时 2.5 3 3.5 4 4.5 5 5.5 6 轮船数量/艘12121720151383(1)(2)假定某天只有甲、乙两艘轮船需要在该泊位各停靠a 小时,且在一昼夜的时间段中随机到达,求这两艘轮船有一艘在停靠时必须等待的概率.解析:(1)a =1100×(2.5×12+3×12+3.5×17+4×20+4.5×15+5×13+5.5×8+6×3)=4.(2)设甲船到达的时间为x ,乙船到达的时间为y ,则⎩⎪⎨⎪⎧0<x≤24,0<y≤24,若这两艘轮船在停靠时有一艘需要等待,则|y -x|<4, 符合题意的区域如图中阴影部分(不包括x ,y 轴)所示. 记“这两艘轮船有一艘在停靠时必须等待”为事件A , 则P(A)=24×24-2×12×20×2024×24=1136.故这两艘轮船有一艘在停靠时必须等待的概率为1136.17.[2019·黑龙江哈尔滨六中段考]如图是某市3月1日至3月14日的空气质量指数折线图.空气质量指数小于100表示空气优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天(包括到达当天).(1)求此人到达当日空气优良的概率;(2)求此人在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续3天的空气质量指数方差最大.(直接写出结论,不要求证明)解析:(1)由图看出,1日至13日这13天内,空气优良的是1日、2日、3日、7日、12日、13日,共6天.由古典概型概率计算公式得,此人到达当日空气优良的概率P =613.(2)此人在该市停留的两天的空气质量指数可能为(86,25),(25,57),(57,143),(143,220),(220,160),(160,40),(40,217),(217,160),(160,121),(121,158),(158,86),(86,79),(79,37),共13种情况.其中只有1天空气重度污染的是(143,220),(220,160),(40,217),(217,160),共4种情况,所以,此人在该市停留期间只有1天空气重度污染的概率P =413.(3)因为方差越大,3天的空气质量指数越不稳定,所以由图看出从5日开始,5,6,7连续3天的空气质量指数方差最大.18.[2019·云南曲靖统测]央视传媒为了解央视举办的《朗读者》节目的收视情况,随机抽取了某市30名观众进行调查,其中有12名男观众和18名女观众,根据这30名观众的观看时长得到如图所示的茎叶图(单位:分),每次观看时长都在35分钟以上(包括35分钟)的称为“朗读爱好者”,35分钟以下(不包括35分钟)的称为“非朗读爱好者”.(1)若采用分层抽样的方法从“朗读爱好者”和“非朗读爱好者”中抽取5名观众,再从这5名观众中任选2名,求至少选到1名“朗读爱好者”的概率;(2)若从这30名观众中观看时长在40分钟以上(包括40分钟)的男、女观众中各选1名,求选出的这2名观众观看时长相差5分钟以上的概率.解析:(1)根据茎叶图可知,“朗读爱好者”有12名,“非朗读爱好者”有18名, 易知抽样比为530=16,所以这5人中,“朗读爱好者”有12×16=2(名),分别记为B ,C ,“非朗读爱好者”有18×16=3(名),分别记为1,2,3.记事件A :至少选到1名“朗读爱好者”,基本事件有(B ,C),(B,1),(B,2),(B,3),(C,1),(C,2),(C,3),(1,2),(1,3),(2,3),共10个,满足事件A 的有(B ,C),(B,1),(B,2),(B,3),(C,1),(C,2),(C,3),共7个,所以P(A)=710.(2)观看时长在40分钟以上(包括40分钟)的观众中,男观众的观看时长分别是41,42,44,47,51,女观众的观看时长分别是40,41.现要从上述男、女观众中各选1名,则这2名观众的观看时长有(41,40),(41,41),(42,40),(42,41),(44,40),(44,41),(47,40),(47,41),(51,40),(51,41),共10种情况.观看时长相差5分钟以上的有(47,40),(47,41),(51,40),(51,41),共4种情况.故观看时长相差5分钟以上的概率P=410=25.。
2020届高考文数二轮复习常考题型大通关(全国卷):第19题+统计概率+Word版含答案
常考题型大通关:第19题统计概率1、2018年10月17日是我国第5个扶贫日,也是第26个国际消除贫困日。
射洪某企业员工共500人参加“精准扶贫”活动,按年龄分组:第一组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.(1)下表是年龄的频数分布表,求正整数a,b的值;(2)根据频率分布直方图,估算该企业员工的平均年龄及年龄的中位数;(3)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.2、某高校在2014年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示.(1)请先求出频率分布表中①、②、③、④位置相应的数据,再在答题纸上完成下列频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?3、随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查40人,并将调查情况进行整理后制成下表:年龄(岁) [15,25) [25,35) [35,45) [45,55) [55,60]频数 5 10 10 5 10赞成人数 4 6 8 4 91.完成被调查人员年龄的频率分布直方图,并求被调查人员中持赞成态度人员的平均年龄约为多少岁?15,25,45,55的被调查人员中各随机选取1人进行调查.请写出所有的基2.若从年龄在[)[)本亊件,并求选取2人中恰有1人持不赞成态度的概率.4、某中学为弘扬优良传统,展示80年来的办学成果,特举办“建校80周年教育成果展示月”活动。
现在需要招募活动开幕式的志愿者,在众多候选人中选取100名志愿者,为了在志愿者.组号分组频数频率160,165 5 0.05第1组[)第2组[165,170)0.35第3组[170,175)第4组[175,180)20 0.20第5组[180,185)10合计100 1.001.请补充频率分布表中空白位置相应数据,再完成下列频率分布直方图;2.为选拔出主持人,决定在第3、4、5组中用分层抽样抽取6人上台,求第3、4、5组每组各抽取多少人?3.在2的前提下,主持人会在上台的6人中随机抽取2人表演诗歌朗诵,求第3组至少有一人被抽取的概率?5、某中学组织了一次高三学生数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.1.若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?2.在1中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.6、某乡镇根据中央文件精神,在2014年通过精准识别确定建档立卡的贫困户共有473户,结合当地实际情况采取多项精准扶贫措施,从2015年至2018年该乡镇每年脱贫户数见下表:年份2015 2016 2017 2018 年份代码x 1 2 3 4脱贫户数y55 69 71 85(1)根据2015-2018年的数据,求出y关于x的线性回归方程$$y bx a=+$;(2)利用(1)中求出的线性回归方程,试判断到2020年底该乡镇的473户贫困户能否全部脱贫.附:$$1221,ni iiniix y nxyb a y bxx nx==-==--∑∑$$7、某农科所对冬季昼夜温差大小与某反季节大豆新品种种子发芽数之间的关系进行分析研究,他们分别记录了12月1日至12月5日每天昼夜温差大小与实验室每天每100颗种子中的发芽数,得到如下数据:该农科所确定的研究方案是:先从这5组数据中随机选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验。
2020高考数学二轮复习概率与统计.docx
2020 高考数学二轮复习 概率与统计概率内容的新概念 多,相近概念容易混淆,本 就学生易犯 作如下 :型一 “非等可能 ”与 “等可能 ”混同 例 1 两枚骰子,求所得的点数之和 6 的概率.解两枚骰子出 的点数之和2, 3, 4, ⋯ ,12 共 11 种基本事件,所以概率P=111剖析以上 11 种基本事件不是等可能的,如点数和 2 只有 (1, 1),而点数之和6 有 (1, 5)、(2, 4)、 (3, 3)、 (4,2)、 (5, 1)共 5 种.事 上, 两枚骰子共有 36 种基本事件,且是等可能的,所以“所得点数之和6”的概率 P= 5.36型二 “互斥 ”与 “ 立 ”混同例 2把 、黑、白、4 牌随机地分 甲、乙、丙、丁4 个人,每个人分得1 ,事件“甲分得 牌”与“乙分得 牌”是()A . 立事件B .不可能事件C .互斥但不 立事件D .以上均不解A剖析 本 的原因在于把 “互斥 ”与 “ 立”混同,二者的 系与区 主要体 在 :(1)两事件 立,必定互斥,但互斥未必 立; (2) 互斥概念适用于多个事件,但 立概念只适用于两个事件; (3) 两个事件互斥只表明 两个事件不能同 生,即至多只能 生其中一个,但可以都不 生;而两事件 立 表示它 有且 有一个 生.事件 “甲分得 牌 ”与 “乙分得 牌 ”是不能同 生的两个事件,两个事件可能恰有一个 生,一个不 生,可能两个都不 生,所以 C .型三 例 3解“互斥 ”与 “独立 ”混同甲投 命中率 O .8,乙投 命中率 0.7,每人投 3 次,两人恰好都命中 2 次的概率是多少 ?“甲恰好投中两次” 事件 A , “乙恰好投中两次” 事件B , 两人都恰好投中两次事件A+B , P(A+B)=P(A)+P(B): c 32 0.820.2 c 32 0.720.3 0.825剖析本 的原因是把相互独立同 生的事件当成互斥事件来考 , 将两人都恰好投中2 次理解 “甲恰好投中两次”与 “乙恰好投中两次 ”的和.互斥事件是指两个事件不可能同 生;两事件相互独立是指一个事件的 生与否 另一个事件 生与否没有影响,它 然都描 了两个事件 的关系,但所描 的关系是根本不同.解:“甲恰好投中两次 ” 事件 A ,“乙恰好投中两次” 事件 B ,且 A , B 相互独立,两人都恰好投中两次 事件A ·B ,于是 P(A ·B)=P(A) ×P(B)= 0.169类型四例 4错解“条件概率 P(B / A)”与“积事件的概率P(A·B)”混同袋中有 6 个黄色、 4 个白色的乒乓球,作不放回抽样,每次任取一球,取 2 次,求第二次才取到黄色球的概率.记“第一次取到白球”为事件A,“第二次取到黄球”为事件B,”第二次才取到黄球”为事件62C,所以 P(C)=P(B/A)=.93剖析本题错误在于 P(A B)与 P(B/A) 的含义没有弄清 , P(A B) 表示在样本空间S 中 ,A 与 B 同时发生的概率;而P( B/A )表示在缩减的样本空间S A中,作为条件的 A 已经发生的条件下事件 B 发生的概率。
【2020最新】人教版最新高考文科数学复习试卷(2)及参考答案
教学资料范本【2020最新】人教版最新高考文科数学复习试卷(2)及参考答案编辑:__________________时间:__________________(附参考答案) 数 学(文史类)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) i 是虚数单位,复数=534ii +- (A ) (B )1i -1i -+(C ) (D )1i +1i --【解析】复数,选C.i ii i i i i i +=+=+-++=-+1171717)4)(4()4)(35(435【答案】C(2)设变量x,y 满足约束条件,则目标函数z=3x-2y的最小值为⎪⎩⎪⎨⎧≤-≥+-≥-+01042022x y x y x(A )-5 (B )-4 (C )-2 (D )3【解析】做出不等式对应的可行域如图,由得,由图象可知当直线经过点时,直线的截距最大,而此时最小为,选 B.yx z 23-=223z x y -=223z x y -=)2,0(C 223zx y -=y x z 23-=423-=-=y x z 【答案】B(3)阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )8 (B )18 (C )26 (D )80【解析】第一次循环,第二次循环,第三次循环,第四次循环满足条件输出,选 C.2,2330==-=n S 3,83322==-+=n S 4,2633823==-+=n S 26=S 【答案】C(4) 已知,则a ,b ,c 的大小关系为120.2512,(),2log 22a b c -===(A )c<b<a (B )c<a<b (C )b<a<c (D )b<c<a【解析】因为,所以,,所以,选 A.122.02.022)21(<==-b a b <<114log 2log 2log 25255<===c a b c <<【答案】A(5)设xR ,则“x>”是“2x2+x-1>0”的∈12 (A ) 充分而不必要条件 (B ) 必要而不充分条件 (C ) 充分必要条件 (D ) 既不充分也不必要条件【解析】不等式的解集为或,所以“”是“”成立的充分不必要条件,选A.0122>-+x x 21>x 1-<x 21>x 0122>-+x x【答案】A(6)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(A ) cos 2y x =,xR ∈(B ) xy 2log =,xR 且x ≠0∈(C ) 2x xe e y --=,xR ∈ (D )31y x =+,xR ∈【解析】函数为偶函数,且当时,函数为增函数,所以在上也为增函数,选B.x y 2log =0>x x x y 22log log ==)2,1( 【答案】B(7)将函数(其中>0)的图像向右平移个单位长度,所得图像经过点,则的最小值是()sin f x x ω=ω4π)0,43(πω(A ) (B )1 C ) (D )21353【解析】函数向右平移得到函数,因为此时函数过点,所以,即所以,所以的最小值为2,选 D.4π)4sin()4(sin )4()(ωπωπωπ-=-=-=x x x f x g )0,43(π0)443(sin =-ππω,2)443(πωπππωk ==-Z k k ∈=,2ωω 【答案】D(8)在△ABC 中, A=90°,AB=1,设点P ,Q 满足=,=(1-), R 。
2020届高考数学(文)二轮复习专题过关检测:专题3 不等式 Word版含答案
2020届高考数学(文)二轮复习专题过关检测专题3 不等式1.不等式(x +5)(3-2x )≥6的解集是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≤-1或x ≥92 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤92 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-92或x ≥1D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-92≤x ≤1 解析:选D 不等式(x +5)(3-2x )≥6可化为2x 2+7x -9≤0,所以(2x +9)(x -1)≤0,解得-92≤x ≤1.所以不等式(x +5)(3-2x )≥6的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-92≤x ≤1.故选D. 2.设a >b ,a ,b ,c ∈R ,则下列式子正确的是( ) A .ac 2>bc 2B.ab>1 C .a -c >b -cD .a 2>b 2解析:选C 若c =0,则ac 2=bc 2,故A 错;若b <0,则a b<1,故B 错;不论c 取何值,都有a -c >b -c ,故C 正确;若a ,b 都小于0,则a 2<b 2,故D 错.于是选C.3.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b =( )A .1B .0C .-1D .-3解析:选D 由题意得,不等式x 2-2x -3<0的解集A =(-1,3),不等式x 2+x -6<0的解集B =(-3,2).所以A ∩B =(-1,2),即不等式x 2+ax +b <0的解集为(-1,2),所以a =-1,b =-2,所以a +b =-3.4.设不等式组⎩⎪⎨⎪⎧x -2y ≤0,x -y +2≥0,x ≥0表示的可行域为Ω,则( )A .原点O 在Ω内B .Ω的面积是1C .Ω内的点到y 轴的距离有最大值D .若点P (x 0,y 0)∈Ω,则x 0+y 0≠0。
2020年高考文科数学全国卷2含答案(A4打印版)
绝密★启用前2020年普通高等学校招生全国统一考试·全国Ⅱ卷文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}3A x x x =<∈,Z ,{}1B x x x =>∈,Z ,则A B =( )A .∅B .{}3223--,,, C .{}202-,, D .{}22-,2.41i =-()( )A .4-B .4C .4i -D .4i3.如图,将钢琴上的12个键依设次记为1a ,2a ,…,12a .112i j k ≤<<≤.若3k j -=且4j i -=,则称i a ,若j a ,k a 为原位大三和弦;4k j -=且3j i -=,则称i a ,j a ,k a 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( )A .5B .8C .10D .154.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作,已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A .10名B .18名C .24名D .32名5.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( )A .2+a bB .2+a bC .2-a bD .2-a b6.记n S 为等比数列{}n a 的前n 项和.若5312a a -=,6424a a -=,则nnS a = ( ) A .21n-B .122n--C .122n --D .121n--7.执行右面的程序框图,若输入的0k =,0a =,则输出的k 为( )A .2B .3C .4D .58.若过点21(,)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( ) A .5 B .25C .35D .459.设O 为坐标原点,直线x a =与双曲线C :2222x 1y a b-=(00a b >>,)的两条渐近线分别交于D ,E 两点.若ODE △的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32 10.设函数331()f x x x=-,则()f x( )A .是奇函数,且在()0+∞,单调递增 B .是奇函数,且在()0+∞,单调递减 C .是偶函数,且在()0+∞,单调递增 D .是偶函数,且在()0+∞,单调递减 11.已知ABC △是面积为934的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为 ( )A .3B .32 C .1 D .3 12.若2233x y x y ----<,则( )A .()ln 10y x -+>B .()ln 10y x -+<C .ln 0x y ->D .ln 0x y -<二、填空题:本题共4小题,每小题5分,共20分.13.若2sin 3x =-,则cos2x =________. 14.记n S 为等差数列{}n a 的前n 项和,若12a =-,262a a +=,则10S =________.15.若x ,y 满足约束条件1121x y x y x y +-⎧⎪--⎨⎪-⎩≥,≥,≤,则2z x y =+的最大值是________.16.设有下列四个命题:1P :两两相交且不过同一点的三条直线必在同一平面内. 2P :过空间中任意三点有且仅有一个平面. 3P :若空间两条直线不相交,则这两条直线平行.4p :若l α⊂直线平面,m α⊥直线平面,则m l ⊥.则下述命题中所有真命题的序号是________. ①14p p ∧②12p p ∧③23p p ⌝∨ ④34p p ⌝∨⌝三、解答题:共70分。
2020高考数学(文)专项复习《概率统计》含答案解析
概率统计统计是研究如何合理收集、整理、分析数据的学科,为人们制定决策提供依据.概率是研究随机现象规律的学科,为人们认识客观世界提供重要的思维模式和解决问题的方法. 统计一章介绍随机抽样、样本估计总体、线性回归的基本方法,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用.概率一章介绍随机现象与概率的意义、古典概型及几何概型等内容,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识.§10-1 概率(一)【知识要点】1.事件与基本事件空间:随机事件:当我们在同样的条件下重复进行试验时,有的结果始终不会发生,它称为不可能事件;有的结果在每次试验中一定会发生,它称为必然事件;在试验中可能发生也可能不发生的结果称为随机事件,随机事件简称为事件.基本事件与基本事件空间:在一次试验中我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描述,这样的事件称为基本事件.所有基本事件构成的集合叫做基本事件空间,常用 表示.2.频率与概率频率:在相同的条件S 下,重复n 次试验,观察某个事件A 是否出现,称n 次试验中事件A 的出现次数m 为事件A 出现的频数,称事件A 出现的比例nm 为事件A 出现的频率. 概率:一般的,在n 次重复进行的试验中,事件A 发生的频率nm ,当n 很大时总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记做P (A ).显然有0≤P (A )≤1.不可能事件的概率为0,必然事件的概率为1,随机事件的概率在(0,1)之间.3.互斥事件的概率加法公式事件的并:由事件A 或B 至少有一个发生构成的事件C 称为事件A 与B 的并,记做C =A ∪B .互斥事件:不可能同时发生的两个事件称为互斥事件.互斥事件加法公式:如果事件A 、B 互斥,则事件A ∪B 发生的概率等于这两个事件分别发生的概率和,即P (A ∪B )=P (A )+P (B ).如果A 1,A 2,…,A n 两两互斥,那么事件A 1∪A 2∪…∪A n 发生的概率,等于这n 个事件分别发生的概率和,即P (A 1∪A 2∪…∪A n )=P (A 1)+P (A 2)+…+P (A n ).对立事件:不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A ,满足P (A )=1-P (A ).概率的一般加法公式(选学):事件A 和B 同时发生构成的事件D ,称为事件A 与B 的交(积),记作D =A ∩B .在古典概型中,P (A ∪B )=P (A )+P (B )-P (A ∩B ).4.古典概型古典概型:一次试验有下面两个特征:(1)有限性,在一次试验中可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等可能性,每个基本事件发生的可能性是均等的,则称这个试验为古典概型.古典概型的性质:对于古典概型,如果试验的n 个基本事件为A 1,A 2,…,A n ,则有P (A 1∪A 2∪…∪A n )=1且⋅=nA P i 1)( 概率的古典定义:在古典概型中,如果试验的基本事件总数为n (Ω ),随机事件A 包含的基本事件数为n (A),则p (A)=试验的基本事件总数包含的基本事件数事件A ,即⋅=)()()(Ωn A n A P 5.几何概型几何概型:一次试验具有这样的特征:事件A 理解为区域Ω的一个子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,这样的试验称为几何概型.几何概型的特点:(1)无限性:一次试验中可能出现的结果有无穷多个;(2)等可能性,每个基本事件发生的可能性相等.几何概型中事件A 的概率定义:ΩA A P μμ=)(,其中μ Ω 表示区域Ω 的几何度量,μ A 表示子区域A 的几何度量.随机数:就是在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会均等.计算机随机模拟法(蒙特卡罗方法)是利用模型来研究某种现象的性质的一种有效方法,可以节约大量的人力物力.【复习要求】1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.了解两个互斥事件的概率加法公式.3.理解古典概型及其概率计算公式,会计算一些随机事件所含的基本事件数及事件发生的概率.4.了解随机数的意义,了解几何概型的意义.【例题分析】例1 国家射击队的某队员射击一次,命中7-10环的概率如下表:求该队员射击一次,(1)射中9环或10环的概率;(2)至少命中8环的概率;(3)命中不足8环的概率.【分析】射击运动员一次射击只能命中1个环数,命中不同的环数是互斥事件,射中9环或10环的概率等于射中9环与射中10环的概率和.命中不足8环所包含的事件较多,而其对立事件为“至少命中8环”,可先求其对立事件的概率,再通过P (A )=1-P (A )求解.解:设事件“射击一次,命中k 环”为事件A k (k ∈N ,k ≤10),则事件A k 彼此互斥.(1)记“射击一次,射中9环或10环”为事件A ,则P (A )=P (A 10)+P (A 9)=0.60.(2)记“射击一次,至少命中8环”为事件B ,则P (B )=P (A 10)+P (A 9)+P (A 8)=0.78.(3)“射击一次,命中不足8环”为事件B 的对立事件,则P (B )=1-P (B )=0.22.【评析】解决概率问题时,要先分清所求事件由哪些事件组成,分析是否是互斥事件,再决定用哪个公式.当用互斥事件的概率加法公式解题时,要学会不重不漏的将事件拆为几个互斥事件,要善于用对立事件解题.例2 现有8名奥运会志愿者,其中志愿者A 1,A 2,A 3通晓日语,B 1,B 2,B 3通晓俄语,C 1,C 2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求A 1被选中的概率;(Ⅱ)求B 1和C 1不全被选中的概率.【分析】本题是一个古典概型的问题,可以直接用概率公式)()()(Ωn A n A P =求解. 解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“A 1恰被选中”这一事件,则M ={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)}事件M 由6个基本事件组成,因而⋅==31186)(M P (Ⅱ)用N 表示“B 1,C 1不全被选中”这一事件,则其对立事件N 表示“B 1,C 1全被选中”这一事件, 由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 由3个基本事件组成, 所以61183)(==N P ,由对立事件的概率公式得⋅=-=-=65611)(1)(N P N P 【评析】古典概型解决概率问题时,选定基本事件空间并计算其所含基本事件的个数是重要的一步.本题中选定“从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果”为基本事件空间,计算时采用列举法,也可以利用乘法计数原理计算3×3×2=18.本题第一问还可以选定“从通晓日语的3人中选出1人的可能结果”为基本事件空间,共有3个基本事件,选出A 1只有一种可能,故所求概率为⋅31例3 (1)两根相距6米的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2米的概率是______.(2)甲乙两人约定在6点到7点之间在某处会面,并约好先到者等候另一人一刻钟,过时即可离去.则两人能会面的概率是______.(3)正方体内有一个内切球,则在正方体内任取一点,这个点在球内的概率为______.【分析】这三个题都可转化为几何概率问题求解.分别转化为线段长度、图形面积、几何体体积问题求解.解:(1)本题可转化为:“在长为6m 的线段上随机取点,恰好落在2m 到4m 间的概率为多少?” 易求得⋅=31P (2)本题可转化为面积问题:即“阴影部分面积占总面积的多少?”, 解得⋅=167)(A P (3)本题可转化为体积问题:即“内切球的体积与正方体体积之比是多少?”.解得⋅=6πP 【评析】几何概型也是一种概率模型,它具有等可能性和无限性两个特点.解题的关键是要建立模型,将实际问题转化为几何概率问题.基本步骤是:把基本事件空间转化为与之对应的区域Ω;把随机事件A 转化为与之对应的区域A ;利用概率公式)()()(ΩA A P μμ=计算.常用的几何度量包括:长度、面积、体积.例4 设有关于x 的一元二次方程x 2+2ax +b 2=0.(Ⅰ)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(Ⅱ)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.【分析】本题第一问是古典概型问题,第二问由于a 、b 在实数区间选取,可以转化为几何概型问题求解.解:设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .(Ⅰ)基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为⋅==43129)(A P (Ⅱ)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2}.构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }. 所以所求的概率为⋅=⨯⨯-⨯=3223221232 【评析】几何概型与古典概型的每个基本事件发生的可能性是均等的,只是几何概型的基本事件有无限个,而古典概型的基本事件有有限个.在具体问题中,不能因为古典概型的基本事件的个数多而误认为是几何概型.练习10-1一、选择题1.下列随机事件的频率和概率的关系中哪个是正确的( )A .频率就是概率B .频率是客观存在的,与试验次数无关C .随着试验次数增加,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定2.从装有2个黑球2个白球的口袋中任取2个球,那么互斥而不对立的两个事件是( )A .至少有一个白球,都是白球B .至少有一个白球,至少有一个红球C .恰有一个白球,恰有两个白球D .至少有一个白球,都是红球3.考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( )A .751B .752C .753D .754 二、填空题4.甲、乙二人掷同一枚骰子各一次.如果谁掷的点数大谁就取胜,则甲取胜的概率为______.5.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中概率为______.三、解答题6.已知集合A ={-4.-2,0,1,3,5},在平面直角坐标系中点M (x ,y )的坐标满足x ∈A ,y ∈A .计算:(1)点M 恰在第二象限的概率;(2)点M 不在x 轴上的概率;(3)点M 恰好落在区域⎪⎩⎪⎨⎧>>>-+0008y x y x 上的概率.§10-2 统 计【知识要点】1.随机抽样总体、个体、样本:把所考察对象的某一个数值指标的全体构成的集合看成总体,构成总体的每一个元素称为个体,从总体中抽出若干个体所组成的集合叫做样本.随机抽样:抽样时,保证每一个个体都可能被抽到,且每个个体被抽到的机会均等,满足这样条件的抽样为随机抽样.简单随机抽样:从元素个数为N 的总体中,不放回的抽取容量为n 的样本,如果每一次抽样时,总体中的各个个体有相同的可能性被抽到,这种抽样方法叫简单随机抽样.系统抽样:当总体个数很大时,可将总体分成均匀的若干部分,然后按照预先制定的规则从每一部分抽取一个个体得到所需要的样本,这种抽样的方式叫做系统抽样.分层抽样:当总体由有明显差异的几部分组成时,将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样.三种抽样方法的比较常用频率分布表、频率分布直方图、频率分布折线图、茎叶图等统计图表来表示样本数据,观察样本数据的特征,从而估计总体的分布情况.频率分布(表)直方图的画法步骤:(1)计算极差(用样本数据的最大值减去最小值)(2)决定组数与组距(组数×组距=极差)(3)决定分点(4)列频率分布表(5)绘制频率分布直方图易见直方图中各个小长方形面积等于相应各组的频率,所有小长方形面积之和等于1. 频率分布折线图:连结频率分布直方图各个长方形上边的中点,就得到频率分布折线图. 总体密度曲线:随着样本容量的增加,分组的组距不断缩小,相应的频率分布折线图就会越来越接近于一条光滑曲线,这条光滑曲线就叫做总体密度曲线.总体密度曲线精确地反映了一个总体在各个区域内取值的规律.茎叶图:茎指中间的一列数,叶是从茎的旁边生长出来的数.在样本数据较少时,茎叶图表示数据的效果较好.它的突出优点是:统计图中没有原始数据的损失,所有的数据信息都可以从茎叶图中得到;茎叶图可随时记录,方便表示.3.用样本的数字特征估计总体的数字特征样本数据的平均数:如果有n 个数x 1,x 2,…,x n ,那么nx x x x n +++=Λ21叫做这n 个数的平均数.标准差:样本数据到平均数的一种平均距离,一般用s 表示,其中nx x x x x x s n 22221)()()(-++-+-=Λ.方差:标准差的平方s 2叫做方差.⋅-++-+-=n x x xx x x s Zn )()()(22212¬Λ 4.两个变量间的关系散点图:两个变量的关系可通过它们所对应的点在平面上表现出来,这些点对应的图形叫做散点图.线性相关:若两个变量的散点图中所有点看上去都在一条直线附近波动,则这两个变量可近似看成具有线性相关关系.回归直线方程:从散点图上看,如果这些点从整体上看大致分布在通过散点图中心一条直线附近,则这条直线叫做这些数据点的回归直线方程,记作yˆ=bx +a ,其中b 叫回归系数.最小二乘法:假设我们已经得到两个具有线性相关关系的变量的一组数组),(11y x ,),(22y x ,…,),(33y x ,求得,)()()(ˆ2211211x n x y x n y x x x y y x x b in i i i n i ini i in i --=---=∑∑∑∑====⋅⋅⋅ x b y a ˆˆ-=,这时离差211)(2i i bx a y n Q --==最小,所求回归直线方程是a x b y ˆˆˆ+=.这种求回归直线的方法称为最小二乘法.【复习要求】1.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法.2.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.3.理解样本数据标准差的意义和作用,会计算样本数据平均数、标准差,并给出合理解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.5.会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.【例题分析】例1 某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是______,若用分层抽样方法,则40岁以下年龄段应抽取______人.【分析】由已知系统抽样的组距为5,所以相邻组间的号码相差5;由饼形图可知200名职工中,50岁以上人数:40-50岁人数:40岁以下人数=2∶3∶5,总样本为40人,分层抽样抽取每层人数比例为2∶3∶5.解:37;20【评析】系统抽样的特征是等距,也就是只要在一组内选定号码,其余各组的号码随之选定,所选相邻号码的间隔为组距.分层抽样的特征是按比例抽取,也就是每一层所选人数占总选出人数的比例与每层人数占总人数的比例相等.抽样是统计分析的重要部分,最常用的抽样方法是简单随机抽样、系统抽样和分层抽样,抽样时每个个体被抽到的可能性相等.简单随机抽样常用抽签法和随机数表法.例2 对某电子元件进行寿命追踪调查,情况如下:寿命(h) [100,200) [200,300) [300,400) [400,500) [500,600)个数(个) 20 30 80 40 30(2)画出频率分布直方图;(3)估计电子元件寿命在[100,400)以内的概率;(4)估计电子元件寿命在400h以上的概率.【分析】按要求列表、绘图,并用样本的分布估计总体的分布.解:(1)频率分布表(2)(画图);(3)P=0.10+0.15+0.40=0.65;(4)P=1-0.65=0.35.寿命(h) 频数频率[100,200) 20 0.10[200,300) 30 0.15[300,400) 80 0.40[400,500) 40 0.20[500,600) 30 0.15合计200 1.00【评析】频率分布表和频率分布直方图是用统计的方法对样本数据加以概括和总结.列频数分布表时,要区分频数和频率的意义,画频率分布直方图时要注意横、纵坐标代表的意义和单位.频率分布指的是一个样本数据在各拿小范围内所占比例的大小,常用样本数据落在某个范围的频率估计总体落在这个范围的概率.频率分布直方图中众数是最高矩形中点的横坐标,中位数为平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标.例3 (海南)从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352 乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318 320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:①___________________________________________________________________________________________________________________________________________________;②___________________________________________________________________________________________________________________________________________________.【分析】抽样数据比较分散,很难观察数据的分布特征,通过茎叶图展现了样本数据的分布.通过茎叶图可观察出平均数、众数、中位数,数据分布的对称性等等,由于茎叶图保留了原始数据,还可计算平均数、方差、标准差.解:(可任选两个作答)(1)乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度;(2)甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散(或乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中);(3)甲品种棉花的纤维长度的中位数为307mm,乙品种棉花的纤维长度的中位数为318mm;(4)乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近),甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀;【评析】茎叶图是统计图表的一种,它具有统计图表的一般功能:通过样本的数据分布推断总体的分布,通过样本的数字特征估计总体的数字特征.本题中的统计结论,是指用样本的特征估计总体特征得到的结论.例4图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1、A2、…、A m(如A2表示身高(单位:cm)在[150,155)内的学生人数).图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是______.图1 图2【分析】条形图的横坐标是身高,纵坐标为每个身高区间内的人数.条形图没有提供具体的数据信息.程序框图的算法含义是统计[160,180)内学生人数,即求A 4+A 5+A 6+A 7的和.解:i <8或i ≤7.【评析】设计算法利用计算机完成数据的统计工作,是实际统计工作中经常应用的.除了可以完成计数工作外,还可排序、求最值,利用公式进行各种计算等等.将算法和统计一起考查是新课程的一个特色.例5 甲乙两位运动员在相同的条件下分别射击10次,记录各次命中环数如下: 甲:8,8,6,8,6,5,9,10,7,4乙:9,5,7,8,7,6,8,6,8,7(1)分别计算他们射击环数的平均数及标准差;(2)判断他们设计水平谁高,谁的射击情况更稳定?【分析】平均数、标准差分别反映了两个选手的射击水平和稳定程度,平均数越高说明选手射击水平越高,标准差越小说明选手发挥越稳定.解:(1)甲的平均数为7.1,标准差为1.758;乙的平均数为7.1,标准差为1.136;(2)从平均值上看,两人的水平相当;从标准差上看,乙的情况更稳定.【评析】平均数反映的是平均水平的高低,方差和标准差反映的是数据的离散程度.如果样本数据中每个数都增加数a ,则它的平均数也增加a ,但是它的标准差不变,因为数据的离散程度没有变化.由于方差与原始数据的单位不同,而且可能夸大了偏离程度,实际解决问题中常采用标准差.例6 假定关于某设备的使用年限x 和所支出费用y (万元),有如下的统计资料 使用年限x2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.0(1)请画出上表数据的散点图;(2)根据上表数据,用最小二乘法求出线性回归方程a x by ˆˆ+=; (3)估计使用10年时,维修费用是多少?【分析】利用描点法画出散点图,用公式x by axn x yx n yx bi n i ii ni ˆˆ,ˆ2211=-=--=∑∑=⋅⋅求得回归直线方程,取x =10求得结果. 解:(1)散点图如图(2)y =0.08+1.23x (3)12.38【评析】判断两个变量有无相关关系时,散点图直观简便,这是一道应用问题,通过回归直线方程分析使用年限和维修费用的关系.例7 某工厂有工人1000名,其中250名工人参加过短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B 类工人),现用分层抽样方法(按A 类、B 类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数).(Ⅰ)求甲、乙两工人都被抽到的概率,其中甲为A 类工人,乙为B 类工人; (Ⅱ)从A 类工人中的抽查结果和从B 类工人中的抽查结果分别如下表1和表2. 生产能力分组 [100,110) [110,120) [120,130) [130,140) [140,150)人数 48x 5 3表2生产能力分组[110,120)[120,130)[130,140)[140,150)人数6y3618(i )先确定x ,y ,再在答题纸上完成下列频率分布直方图.就生产能力而言,A 类工人中个体间的差异程度与B 类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)图1 A 类工人生产能力的频率分布直方图图2 B 类工人生产能力的频率分布直方图(ii )分别估计A 类工人和B 类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).【分析】(1)相互独立事件同时发生的概率用乘法公式(2)画出直方图,从图中分析数据信息.解:(Ⅰ)甲乙被抽到的概率都是101,而且事件“甲工人被抽到”与“乙工人被抽到”相互独立,所以甲、乙两工人都被抽到的概率⋅=⨯=1001101101pA 类工人中和B 类工人中分别抽查25名和75名.(Ⅱ)(i)由4+8+x +5+3=25,得x =5;6+y +36+18=75,得y =15.频率分布直方图如下图1 A 类工人生产能力的频率分布直方图图2 B 类工人生产能力的频率分布直方图从直方图可以判断:B 类工人中个体间的差异程度更小.,123145253135255125255115258105254)ii (=⨯+⨯+⨯⋅+⨯+⨯=A x ,8.133145751813575361257515115756=⨯+⨯+⨯+⨯=B x1.1318.1331007512310025=⨯+⨯=x . A 类工人生产能力的平均数,B 类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,133.8和131.1.【评析】本题是一道综合应用题,通过语言叙述和图表给出信息.频率分布直方图反映了数据分布的情况,数据的差异大小及数据的方差大小.练习10-3一、选择题1.(08重庆)某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是( ) A .简单随机抽样法 B .抽签法 C .随机数表法 D .分层抽样法2.从容量为N 的总体中抽取容量为n 的样本,若采用系统抽样法,则抽样间隔为( ) A .nN B .n C .][nN D .1][+nN3.(08山东)下图是根据《山东统计年整2007》中的资料做成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为( )A .304.6B .303.6C .302.6D .301.6 4.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表甲的成绩乙的成绩丙的成绩环数 7 8 9 10 环数 7 8 9 10 环数 7 8 9 10 频数 55 5 5频数 6446频数 46641,2,3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( ) A .s 3>s 1>s 2 B .s 2>s 1>s 3 C .s 1>s 2>s 3 D .s 2>s 3>s 1二、填空题 5.要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,将它们编号为001,002,……800,利用随机数表抽取样本,从第7行第1个数开始,依次向右,再到下一行,继续从左到右.请问选出的第七袋牛奶的标号是______. (为了便于说明,下面摘取了随机数表的第6行至第10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28。
2020届高考数学(文)二轮复习全程方略课件:专题六 概率与统计(2) 概率 Word版含答案
[例 3] (2017·合肥质检)一企业从某条生产线上随机
抽取 100 件产品,测量这些产品的某项技术指标值 x,得
到如下的频率分布表:
x
[11, 13)
[13, 15)
[15, 17)
[17, [19, 19) 21)
[21, 23]
频 数
2
12
34
38
10
4
(1)作出样本的频率分布直方图,并估计该技术指标 值 x 的平均数和众数;
(2)若 x<13 或 x≥21,则该产品不合格.现从不合格 的产品中随机抽取 2 件,求抽取的 2 件产品中技术指标值 小于 13 的产品恰有 1 件的概率.
解:(1)频率分布直方图为如图.
估计平均数为-x =12×0.02+14×0.12+16×0.34+ 18×0.38+20×0.10+22×0.04=17.08.
由频率分布直方图知,当 x∈[17,19)时,矩形面积 最大,因此估计众数为 18.
(2)记技术指标值 x<13 的 2 件不合格产品为 a1,a2, 技术指标值 x≥21 的 4 件不合格产品为 b1,b2,b3,b4.
则从这 6 件不合格产品中随机抽取 2 件包含如下基本 事件(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2, b1),(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3),(b1, b4),(b2,b3),(b2,b4),(b3,b4),共 15 个基本事件.
[变式训练] (2017·韶关调研)某校高一年级学生全
部参加了体育科目的达标测试,现从中随机抽取 40 名学 生的测试成绩,整理数据并按分数段[40,50),[50,60), [60,70),[70,80),[80,90),[90,100]进行分组,假 设同一组中的每个数据可用该组区间的中点值代替,则 得到体育成绩的折线图如下.@
2020届高考数学(文)二轮强化专题卷:(11)概率与统计 Word版含答案
(11)概率与统计1、某班有学生52人,现用系统抽样的方法,抽取一个容量为4的样本,已知座位号3号, 29号, 42号的同学都在样本中,那么样本中还有一位同学的座位号是( ) A. 16 B. 19 C. 24 D. 362、某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组[)[)[)[)[)[]:40,50,50,60,60,70,70,80,80,90,90,100加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A.588B.480C.450D.1203、对某商店一个月内每天的顾客人数进行了统计,得到样本数据如下所示,则该样本的中位数、众数、极差分别是( )样本:12,15,20,22,23,23,31,32,34,34,38,39,45,45,45,47,47,48,48,49,50,50,51,51,54,57,59,61,67,68 A.46,45,56B.46,45,53C.47,45,56D.45,47,534、假设关于某设备的使用年限x 和所支出的维修费用y (万元),有如下的统计资料:由资料可知y 对x 呈线性相关关系,且线性回归方程为ˆ 1.2yx a =+,请估计使用年限为20年时,维修费用约为( ) A. 26.2B. 27C. 27.6D. 28.25、从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这个数大于30的概率为( ) A.25B.16 C.13 D.356、一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了x 次球,则(12)p x ==( )A. 10210123588C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭B. 1029123588C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C. 1029113588C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D. 1029113588C ⎛⎫⎛⎫⋅ ⎪ ⎪⎝⎭⎝⎭7、如图是一个中心对称的几何图形,已知大圆半径为2,以半径为直径画出两个半圆,在大圆内随机取一点,则此点取自阴影部分的概率为( )A.18B.π8C.14 D.12 8、已知X 的分布列如下,且()73Y aX E Y =+=,,则的值为( )A.1B.2C.3D.49、掷一枚硬币,记事件A = “出现正面”, B = “出现反面”,则有( ) A.A 与B 相互独立 B.()()()P AB P A P B =C.A 与B 不相互独立D.()14P AB =10、随机变量X 服从正态分布()23,σ,且()40.84P X ≤=,则()24P X <<= ( )A.0.16B.0.32C.0.68D.0.8411、某工厂对一批产品进行了抽样检测.下图是根据抽样检测后的(产品净重,单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[]96,106,样本数据分组为[)[)[)[)[]96,98,98,100,100,102,102,104,104,106,已知样本中产品净重小于100?克的个数是36,下列命题中:①样本中净重大于或等于98?克并且小于102克的产品的个数是60。
2020年高考数学(文数)解答题强化专练——概率与统计含答案
(文数)解答题强化专练——概率与统计一、解答题(本大题共10小题,共120.0分)1.党中央、国务院历来高度重视青少年的健康成长.“少年强则国强”,青少年身心健康、体魄强健、意志坚强、充满活力,是一个民族旺盛生命力的体现,是社会文明进步的标志,是国家综合实力的重要方面.全面实施《国家学生体质健康标准》,把健康素质作为评价学生全面健康发展的重要指标,是新时代的要求.《国家学生体质健康标准》有一项指标是学生体质指数(BMI),其计算公式为:,当BMI>23.5时认为“超重”,应加强锻炼以改善BMI.某高中高一、高二年级学生共2000人,人数分布如表(a).为了解这2000名学生的BMI指数情况,从中随机抽取容量为160的一个样本.性别男生女生合计年级高一年级5506501200高二年级425375800合计97510252000表()(1)为了使抽取的160个学生更具代表性,宜采取分层抽样,试给出一个合理的分层抽样方案,并确定每层应抽取出的学生人数;2160BMI值,统计出“超重”的学生人数分布如表(b).性别男生女生年级高一年级46高二年级24表(b)(i)试估计这2000名学生中“超重”的学生数;(ii)对于该校的2000名学生,应用独立性检验的知识,可分析出性别变量比年级变量与“是否超重”关联性更强.应用卡方检验,可依次得到K2的观察值k1,k2,是判断k1和k2的大小关系.(只需写出结论)2.“公平正义”是社会主义和谐社会的重要特征,是社会主义法治理念的价值追求.“考试”作为一种公平公正选拔人才的有效途径,正被广泛采用.每次考试过后,考生最关心的问题是:自己的考试名次是多少?自已能否被录取?能获得什么样的职位?某单位准备通过考试(按照高分优先录取的原则)录用300名,其中275个高薪职位和25个普薪职位.实际报名人数为2000名,考试满分为400分.考试后对部分考生考试成绩进行抽样分析,得到频率分布直方图如下:试结合此频率分布直方图估计:(1)此次考试的中位数是多少分(保留为整数)?(2)若考生甲的成绩为280分,能否被录取?若能被录取,能否获得高薪职位?(分数精确到个位,概率精确到千分位)3.纪念币是一个国家为纪念国际或本国的政治、历史,文化等方面的重大事件、杰出人物、名胜古迹、珍稀动植物、体育赛事等而发行的法定货币.我国在1984年首次发行纪念币,目前已发行了115套纪念币,这些纪念币深受邮币爱好者的喜爱与收藏.2019年发行的第115套纪念币“双遗产之泰山币”是目前为止发行的第一套异形币,因为这套纪念币的多种特质,更加受到爱好者追捧.某机构为调查我国公民对纪念币的喜爱态度,随机选了某城市某小区的50位居民调查,调查结果统计如下:喜爱不喜爱合计年龄不大于40岁24年龄大于40岁20合计2250(Ⅰ)根据已有数据,把表格数据填写完整,判断能否在犯错误的概率不超过1%的前提下认为不同年龄与纪念币的喜爱无关?(Ⅱ)已知在被调查的年龄不大于40岁的喜爱者中有5名男性,其中3位是学生,现从这5名男性中随机抽取2人,求至多有1位学生的概率.附:,n=a+b+c+d.P(K2≥k)0.1000.0500.0250.010k 2.706 3.841 5.024 6.6354.某市一水电站的年发电量y(单位:亿千瓦时)与该市的年降雨量x(单位:毫米)有如下统计数据:2013年2014年2015年2016年2017年降雨量x (毫米) 1 500 1 400 1 900 1 600 2 100发电量y (亿千瓦7.4 7.0 9.2 7.9 10.0时)(1)若从统计的5年中任取2年,求这2年的发电量都高于7.5 亿千瓦时的概率;(2)由表中数据求得线性回归方程为=0.004x+,该水电站计划2019年的发电量不低于8.6 亿千瓦时,现由气象部门获悉2019年的降雨量约为1 800 毫米,请你预测2019年能否完成发电任务?5.2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间X(单位:小时)并绘制如图所示的频率分布直方图.(1)求这200名学生每周阅读时间的样本平均数和中位数a(a的值精确到0.01);(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为[6.5,7,5),[7.5,8.5)的学生中抽取9名参加座谈会.(i)你认为9个名额应该怎么分配?并说明理由;(ii)座谈中发现9名学生中理工类专业的较多.请根据200名学生的调研数据,填写下面的列联表,并判断是否有95%的把握认为学生阅读时间不足(每周阅读时8.5阅读时间不足8.5小时阅读时间超过8.5小时理工类专业4060非理工类专业附:.临界值表:P(K2≥k0)0.150.100.050.0250.0100.0050.001k0 2.072 2.706 3.841 5.024 6.6357.87910.8286.2017年3月郑州市被国务院确定为全国46个生活垃圾分类处理试点城市之一,此后由郑州市城市管理局起草公开征求意见,经专家论证,多次组织修改完善,数易其稿,最终形成《郑州市城市生活垃圾分类管理办法》(以下简称《办法》).《办法》已于2019年9月26日被郑州市人民政府第35次常务会议审议通过,并于2019年12月1日开始施行.《办法》中将郑州市生活垃圾分为厨余垃圾、可回收垃圾、有害垃圾和其他垃圾4类为了获悉高中学生对垃圾分类的了解情况,某中学设计了一份调查问卷,500名学生参加测试,从中随机抽取了100名学生问卷,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如图频率分布直方图:(Ⅰ)从总体的500名学生中随机抽取一人,估计其分数不低于60的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的学生人数;(Ⅲ)学校环保志愿者协会决定组织同学们利用课余时间分批参加“垃圾分类,我在实践”活动,以增强学生的环保意识.首次活动从样本中问卷成绩低于40分的学生中随机抽取2人参加,已知样本中分数小于40的5名学生中,男生3人,女生2人,求抽取的2人中男女同学各1人的概率是多少?7.某汽车公司生产新能源汽车,2019年3-9月份销售量(单位:万辆)数据如表所示:月份x3456789销售量y(万辆) 3.008 2.401 2.189 2.656 1.665 1.672 1.368(1)某企业响应国家号召,购买了6辆该公司生产的新能源汽车,其中四月份生产的4辆,五月份生产的2辆,6辆汽车随机地分配给A,B两个部门使用,其中A 部门用车4辆,B部门用车2辆.现了解该汽车公司今年四月份生产的所有新能源汽车均存在安全隐患,需要召回.求该企业B部门2辆车中至多有1辆车被召回的概率;(2)经分析可知,上述数据近似分布在一条直线附近.设y关于x的线性回归方程为,根据表中数据可计算出,试求出的值,并估计该厂10月份的销售量.8.某商家在某一天统计前5名顾客扫微信红包所得金额分别为5.9元,5.7元,4.7元,3.3元,2.1元,商家从这5名顾客中随机抽取3人赠送礼品.(Ⅰ)求获得礼品的3人中恰好有2人的红包超过5元的概率;(Ⅱ)商家统计一周内每天使用微信支付的人数x与每天的净利润y(单位:元),得到如表:x12162225262930y60100210240150270330根据表中数据用最小二乘法求y与x的回归方程=(,的计算结果精确到小数点后第二位)并估计使用微信支付的人数增加到36人时,商家当天的净利润为多少(计算结果精确到小数点后第二位)?参考数据及公式:①=22.86,=194.29;=268.86;=3484.29,②回归方程:=(其中=,=-)9.某医学院欲研究昼夜温差大小与患感冒人数多少之间的关系,该院派出研究小组分别到气象局与某医院,抄录了1到6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到数据资料见表:月份123456昼夜温差(℃)1011131286就诊人数(个)232630271713该研究小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻的两个月的概率;(2)已知选取的是1月与6月的两组数据.(i)请根据2到5月份的数据,求就诊人数y关于昼夜温差x的线性回归方程:(ii)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该研究小组所得的线性回归方程是否理想?(参考公式==,=-)10.某学校有40名高中生参加足球特长生初选,第一轮测身高和体重,第二轮足球基础知识问答,测试员把成绩(单位:分)分组如下:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100),得到频率分布直方图如图所示.(1)根据频率分布直方图估计成绩的平均值(同一组中的数据用该组区间的中点值作代表);(2)用分层抽样的方法从成绩在第3,4,5组的高中生中6名组成一个小组,若6人中随2人担任小组负责人,求这2人来自3,4组各1人的概率.答案和解析1.【答案】解:(1)考虑到BMI应与年龄或性别均有关,最合理的分层应为以下四层:高一男生、高一女生、高二男生、高二女生;则高一男生抽取×160=44(人),高一女生抽取×160=52(人),高二男生抽取×160=34(人),高二女生抽取×160=30(人);(2)(i)160人中,“超重”人数为4+6+2+4=16(人),“超重”发生的频率为0.1,用样本的频率估计总体的频率,估计这2000名学生中“超重”的学生数为2000×0.1=200(人);(ii)应用独立性检验的知识,分析出性别变量与年级变量哪一个与“是否超重”的关联性更强,得出K2的观察值k1,k2,则k1和k2的大小关系为k1>k2.【解析】(1)考虑到BMI与年龄或性别均有关,最合理的分层为高一男生、女生,高二男生、女生;分别求出每层所抽取的人数即可;(2)(i)计算样本中“超重”的人数和频率,用样本的频率估计总体的频率,计算即可;(ii)应用独立性检验的知识分析出性别变量与年级变量哪一个与“是否超重”的关联性更强,得出K2的观察值k1应大于k2.本题考查了分层抽样原理与独立性检验的问题,也考查了用样本估计总体的问题,是基础题.2.【答案】解:(1)设(0.002+0.0029+x)×100=0.5,解得:x=0.0001.∴可得其中位数为:200+×(300-200)≈202.(2)300~400分的人数为:0.001×100×2000=200.280~300分的人数为:0.0041×100×2000×=164.而164+200>300.∴考生甲的成绩为280分,不能被录取.【解析】(1)设(0.002+0.0029+x)×100=0.5,解得:x.可得其中位数.(2)300~400分的人数为:0.001×100×2000=200.280~300分的人数为:0.0041×100×2000×=164.进而判断出结论.本题考查了频率分布直方图的性质及其应用,考查了推理能力与计算能力,属于中档题.喜爱不喜爱合计年龄不大于40岁a b24年龄大于40岁20c d 合计e225024+d=50,则d=26,a+20=e=28,则a=8,a+b=24,则b=16,b+c=22,则c=6;故列联表为:喜爱不喜爱合计年龄不大于40岁81624年龄大于40岁20626合计282250则有≈9.623>6.635.故能在犯错误的概率不超过1%的条件下认为不同年龄与纪念币的喜爱无关.(2)根据题意,记不大于40岁的5位喜爱者中的3位学生记为a,b,c,非学生记为A,B,则从5人中任取2人,共有(a,b),(a,c),(a,A),(a,B),(b,c),(b,A),(b,B),(c,A),(c,B),(A,B)10种结果.其中至多有1位学生的有7种,∴至多有1位学生的概率.【解析】(1)根据题意,由列联表的结构分析可得其他数据,即可完善列联表,进而计算K2的值,据此分析可得答案;(2)根据题意,记不大于40岁的5位喜爱者中的3位学生记为a,b,c,非学生记为A,B;由列举法分析“从这5名男性中随机抽取2人”和“至多有1位学生”的情况数目,由古典概型公式计算可得答案.本题考查独立性检验的应用,涉及古典概型的计算,属于基础题.4.【答案】解:(1)从统计的5年发电量中任取2年,基本事件为:(7.4,7.0},{7.4,9.2},{7.4,7.9},{7.4,10.0},{7.0,9.2},{7.0,7.9},{7.0,10.0},{9.2,7.9},{9.2,10.0},{7.9,10.0},共10个;其中这2年的发电量都高于7.5亿千瓦时的基本事件为:{9.2,7.9},{9.2,10.0},{7.9,10.0},共3个.所以这2年的发电量都高于7.5亿千瓦时的概率为.(2)因为.,又直线过点,所以,解得,所以.当x=1800时,.所以预测该水电站2019年能完成发电任务.【解析】本题考查回归直线方程,概率中的基本事件,属于中档题.(1)确定从统计的5年发电量中任取2年的基本事件、2年发电量都低于8.0(亿千瓦时)的基本事件,即可求出这2年的发电量都低于8.0(亿千瓦时)的概率;(2)先求出线性回归方程,再令x=1800,即可得出结论.5.【答案】解:(1)该组数据的平均数因为0.03+0.1+0.2+0.35=0.68>0.5,所以中位数a∈[8.5,9.5),由0.03+0.1+0.2+(a-8.5)×0.35=0.5,解得;(2)(i)每周阅读时间为[6,5,7.5)的学生中抽取3名,每周阅读时间为[7.5,8.5)的学生中抽取6名.理由:每周阅读时间为[6,5,7.5)与每周阅读时间为[7.5,8.5)是差异明显的两层,为保持样本结构与总体结构的一致性,提高样本的代表性,宜采用分层抽样的方法抽取样本;因为两者频率分别为0.1,0.2,所以按照1:2进行名额分配.(ii)由频率分布直方图可知,阅读时间不足8.5小时的学生共有200×(0.03+0.1+0.2)=66人,超过8.5小时的共有200-66=134人.于是列联表为:阅读时间不足8.5小时阅读时间超过8.5小时理工类专业4060非理工类专业2674K2的观测值,所以有95%的把握认为学生阅读时间不足与“是否理工类专业”有关.【解析】本题主要考查独立性检验的应用,根据数据计算出K2的观测值是解决本题的关键.考查学生的计算能力.(1)根据平均数,中位数的定义进行求解即可,(2)完成列联表,计算K2的观测值,结合独立性检验的性质进行判断即可.6.【答案】解:(Ⅰ)根据频率分布直方图可知,样本中分数高于60的频率为:(0.02+0.04+0.02)×10=0.8,所以样本中分数高于60的概率为0.8.故从总体的500名学生中随机抽取一人,其分数高于60的概率估计为0.8.(Ⅱ)根据题意,样本中分数不小于50的频率为:(0.01+0.02+0.04+0.02)×10=0.9,分数在区间[40,50)内的人数为100-100×0.9-5=5,所以总体中分数在区间[40,50)内的人数估计为500×=25,(Ⅲ)设3名男生分别为A,B,C,2名女生分别为1,2,则从这5名同学中选取2人的结果为:{A,B},{A,C},{A,1},{A,2},{B,C},{B,1},{B,2},{C,1},{C,2},{1,2}共10种情况.其中2人中男女同学各1人包含结果为:{A,1},{A,2},{B,1},{B,2},{C,1},{C,2},共6种,设事件A={抽取的2人中男女同学各1人},则P(A)=,所以,抽取的2人中男女同学各1人的概率是.【解析】(1)由直方图求出分数高于60的频率,计算出分数高于60的概率,(2)先计算出分数不小于50的频率,再算出分数在区间[40,50)内的人数,再估算出总体中分数在区间[40,50)内的人数.(3)先计算出从这5名同学中选取2人的事件,再算出抽取的2人中男女同学各1人的事件,再求抽取的2人中男女同学各1人的概率.本题考查频率直方图,通过频率估算整体,以及求频率,属于基础题.7.【答案】解:(1)设某企业购买的6辆新能源汽车,4月份生产的4辆车为C1,C2,C3,C4;5月份生产的2辆车为D1,D2,6辆汽车随机地分配给A,B两个部门.B部门2辆车可能为(C1,C2),(C1,C3),(C1,C4),(C1,D1),(C1,D2),(C2,C3),(C2,C4),(C2,D1),(C2,D2),(C3,C4),(C3,D1),(C3,D2),(C4,D1,(C4,D2),(D1,D2)共15种情况;其中,至多有1辆车是四月份生产的情况有:(C1,D1),(C1,D2),(C2,D1),(C2,D2),(C3,D1),(C3,D2),(C4,D1),(C4,D2),(D1,D2)共9种,所以该企业B部门2辆车中至多有1辆车被召回的概率为;(2)由题意得,.因为线性回归方程过样本中心点,所以,解得.当x=10时,,即该厂10月份销售量估计为1.151万辆.【解析】(1)用列举法,求出个数,根据概率公式求出即可;(2)求出线性回归方程过样本中心点,代入求出a,再代入x=10即可.考查古典概型求概率,线性回归方程的性质及其应用,中档题.8.【答案】解:(Ⅰ)记“5名顾客扫微信红包所得金额超过5元的2人”为A1,A2,“不超过5元的3人”为B1,B2,B3,“获得礼品的3人中恰好有2人的红包超过5元”为事件M,则所有的基本事件有:A1A2B1,A1A2B2,A1A2B3,A1B1B2,A1B1B3,A1B2B3,A2B1B2,A2B1B3,A2B2B3,B1B2B3共10种,其中事件M包含的基本事件有共3种,为A1A2B1,A1A2B2,A1A2B3,∴P(M)=;(Ⅱ)∵==,∴=-=194.29-12.9622.86=-101.98.∴y与x的回归方程为=12.96x-101.98,当x=36时,.故估计使用微信支付的人数增加到36人时,商家当天的净利润约为364.58元.【解析】(Ⅰ)利用古典概型的概率公式求获得礼品的3人中恰好有2人的红包超过5元的概率;(Ⅱ)利用最小二乘法求y与x的回归方程为=12.96x-101.98,把x=36代入方程,即可得解.本题考查古典概型的概率的计算,考查线性回归方程的求法,考查利用回归方程进行预测,意在考查学生对这些知识的理解掌握水平和分析推理计算能力,是中档题.9.【答案】解:(1)设选取的2组数据恰好是相邻两个月为事件A,因为从6组数据中选取2组数据共有15种情况,每种情况都是等可能出现的,其中选取的2组数据恰好是相邻两个月的情况有5种,所以P(A)=,(2)=(11+13+12+8)=11,=(26+30+27+17)=25,===,=-=25-=,得到y关于x的回归直线方程为y=(2)当x=10时,y=同样,当x=6时,y=,估计数据与所选出的检验数据的误差均不超过2人,∴该小组所得线性回归方程是理想的.【解析】(1)本题是一个古典概型,试验发生包含的事件是从6组数据中选取2组数据共有15种情况,满足条件的事件是抽到相邻两个月的数据的情况有5种,根据古典概型的概率公式得到结果.(2)根据所给的数据,求出x,y的平均数,根据求线性回归方程系数的方法,求出系数a,b,写出线性回归方程;(3)将x的值代入回归方程检验即可.考查古典概型求概率,求线性回归方程和应用,考查运算能力,中档题.10.【答案】解:(1)因为(0.01+0.07+0.06+x+0.02)×5=1,所以x=0.04,所以成绩的平均值为+0.10×=87.25;(2)第3组学生人数为0.06×5×40=12,第4 组学生人数为0.04×5×40=8,第5组学生人数为0.02×5×40=4,所以抽取的6人中第3,4,5组的人数分别为3,2,1.第3组的3人分别记为A1,A2,A3,第4 组的2人分别记为B1,B2,第5 组的1 人记为C,则从中选出2人的基本事件为共15个,记“从这6人中随机选出2人担任小组负责人,这2人来自第3,4组各1人”为事件M,则事件M包含的基本事件为(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),共6个,所以P(M)=.【解析】(1)根据频率分布直方图求出x的值,再利用同一组中的数据用该组区间的中点值作代表估计平均数即可;(2)先求出抽取的6人中第3,4,5组的人数,再利用古典概型的概率公式求解即可.本题考查由频数分布直方图,以及古典概型,属于基础题.。
2020年高考文科数学全国2卷(word版,含答案)
1.【ID:4005113】已知集合,,则()A.B.C.D.【答案】D【解析】解:集合,,.故选:D.2.【ID:4005114】()A.B.C.D.【答案】A【解析】解:.故选:A.3.【ID:4005115】如图,将钢琴上的个键依次记为,,,.设.若且,则称,,为原位大三和弦;若且,则称,,为原位小三和弦.用个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.B.C.D.【答案】C【解析】解:若且,则,,为原位大三和弦,即有,,;,,;,,;,,;,,,共个;若且,则,,为原位小三和弦,可得,,;,,;,,;,,;,,,共个,总计个.故选:C.4.【ID:4002671】在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压份订单未配货,预计第二天的新订单超过份的概率为.志愿者每人每天能完成份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于,则至少需要志愿者()A. 名B. 名C. 名D. 名【答案】B【解析】解:第二天的新订单超过份的概率为,就按份计算,第二天完成积压订单及当日订单的配货的概率不小于就按份计算,因为公司可以完成配货份订单,则至少需要志愿者为名,故选:B.5.【ID:4005117】已知单位向量,的夹角为,则在下列向量中,与垂直的是()A.B.C.D.【答案】D【解析】解:单位向量,,对于A,,所以与不垂直;对于B,,所以与不垂直;对于C,,所以与不垂直;对于D,,所以与垂直.故选:D.6.【ID:4005118】记为等比数列的前项和,若,,则()A.B.C.D.【答案】B【解析】解:设等比数列的公比为,,,,,,,,,,故选:B.7.【ID:4005119】执行如图的程序框图,若输入的,,则输出的为()A.B.C.D.【答案】C【解析】解:模拟程序的运行,可得,,执行循环体,,;执行循环体,,;执行循环体,,;执行循环体,,;此时,满足判断框内的条件,退出循环,输出的值为.故选:C.8.【ID:4002673】若过点的圆与两坐标轴都相切,则圆心到直线的距离为()A.B.C.D.【答案】B【解析】解:由题意可得所求的圆在第一象限,设圆心为,则半径为,.故圆的方程为,再把点代入,求得或,故要求的圆的方程为或.故所求圆的圆心为或;故圆心到直线的距离或;故选:B.9.【ID:4002676】设为坐标原点,直线与双曲线:的两条渐近线分别交于,两点,若的面积为,则的焦距的最小值为()A.B.C.D.【答案】B【解析】解:由题意可得双曲线的渐近线方程为,分别将,代入可得,即,,则,,当且仅当时取等号,的焦距的最小值为,故选:B.10.【ID:4005120】设函数,则()A. 是奇函数,且在单调递增B. 是奇函数,且在单调递减C. 是偶函数,且在单调递增D. 是偶函数,且在单调递减【答案】A【解析】解:因为,则,即为奇函数,根据幂函数的性质可知,在为增函数,故在为减函数,在为增函数,所以当时,单调递增,故选:A.11.【ID:4002678】已知是面积为的等边三角形,且其顶点都在球的球面上,若球的表面积为,则到平面的距离为()A.B.C.D.【答案】C【解析】解:由题意可知图形如图:是面积为的等边三角形,可得,,可得:,球的表面积为,外接球的半径为:,解得,所以到平面的距离为:.故选:C.12.【ID:4002679】若,则()A.B.C.D.【答案】A【解析】解:由,可得,令,则在上单调递增,且,所以,即,由于,故,故选:A.13.【ID:4005121】若,则________.【答案】【解析】解:,.故答案为:.14.【ID:4005122】记为等差数列的前项和.若,,则________.【答案】【解析】解:因为等差数列中,,,所以,,即,则.故答案为:.15.【ID:4005123】若,满足约束条件,则的最大值是________.【答案】【解析】解:作出不等式组对应的平面区域如图:由得,平移直线由图象可知当直线经过点时,直线的截距最大,此时最大,由,解得,此时,故答案为:.16.【ID:4002684】设有下列四个命题::两两相交且不过同一点的三条直线必在同一平面内.:过空间中任意三点有且仅有一个平面.:若空间两条直线不相交,则这两条直线平行.:若直线平面,直线平面,则.则下述命题中所有真命题的序号是________.①②③④【答案】①③④【解析】解:设有下列四个命题::两两相交且不过同一点的三条直线必在同一平面内.根据平面的确定定理可得此命题为真命题,:过空间中任意三点有且仅有一个平面.若三点在一条直线上则有无数平面,此命题为假命题,:若空间两条直线不相交,则这两条直线平行,也有可能异面的情况,此命题为假命题,:若直线平面,直线平面,则.由线面垂直的定义可知,此命题为真命题;由复合命题的真假可判断①为真命题,②为假命题,③为真命题,④为真命题,故真命题的序号是:①③④,故答案为:①③④,17. 的内角,,的对边分别为,,,已知.(1)【ID:4005124】求.【答案】【解析】解:由已知得,即.所以,,由于,故.(2)【ID:4005125】若,证明:是直角三角形.【答案】见解析【解析】解:由正弦定理及已知条件可得.由知,所以,即,.由于,故,从而是直角三角形.18. 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的个地块,从这些地块中用简单随机抽样的方法抽取个作为样区,调查得到样本数据,其中和分别表示第个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,.(1)【ID:4002687】求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数).【答案】【解析】由已知得样本平均数为,,该地区这种野生动物数量的估计值为.(2)【ID:4002688】求样本的相关系数(精确到).【答案】【解析】.(3)【ID:4002689】根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数,.【答案】见解析【解析】分层抽样.根据植被覆盖面积分层再随机抽样.理由:由于植被覆盖面积差异较大,即总体由差异明显的几个部分组成,分层抽样有利于保持样本结构与总体结构的一致性,提高样本代表性.19. 已知椭圆:的右焦点与抛物线的焦点重合,的中心与的顶点重合.过且与轴垂直的直线交于、两点,交于,两点,且.(1)【ID:4005126】求的离心率.【答案】【解析】解:解法一:右焦点与右焦点与重合,设抛物线方程为,则,设抛物线方程为.在椭圆中,当时,,解得:,,在抛物线中,当时,,,又,,①又,②联立①②可得:,解得:或(舍去),的离心率.解法二:由已知可设的方程为,其中.不妨设,在第一象限,由题设得,的纵坐标分别为,;,的纵坐标分别为,,故,.由已知得,即,解得(舍去),,所以的离心率为.(2)【ID:4005127】若的四个顶点到的准线距离之和为,求与的标准方程.【答案】,【解析】解:由知,,故:.所以的四个顶点坐标分别为,,,,的准线方程为.由已知得,即,所以的标准方程为,的标准方程为.20. 如图,已知三棱柱的底面是正三角形,侧面是矩形,,分别为,的中点,为上一点,过和的平面交于,交于.(1)【ID:4005128】证明:,且平面平面.【答案】见解析【解析】解:解法一:三棱柱,故,由矩形,为中点,为中点,.平行四边形,.矩形,.平行四边形,矩形,.等边中,为中点,.,面.又,面.又面,面面.解法二:因为,分别为,的中点,所以,又由已知得,故.因为是正三角形,所以.又,故平面.所以平面平面.(2)【ID:4005129】设为的中心,若,平面,且,求四棱锥的体积.【答案】【解析】解:平面,平面,平面平面,设,又,故四边形是平行四边形,所以,,,,因为平面,所以四棱锥的顶点到底面的距离等于点到底面的距离.作,垂足为,则由知,平面,故.故面的面积为,所以四棱锥的体积为.21. 已知函数.(1)【ID:4005130】若,求的取值范围.【答案】【解析】解:设,则,其定义域为,.当时,;当时,.所以在区间单调递增,在单调递减,从而当时,取得最大值,所以.故当且仅当,即时,.所以的取值范围为.(2)【ID:4005131】设,讨论函数的单调性.【答案】在,单调递减.【解析】解:,,.取得,,则由知,当时,即,故当时,,从而.所以在,单调递减.22. 已知曲线,的参数方程分别为:(为参数),:(为参数).(1)【ID:4002697】将,的参放方程化为普通方程.【答案】:,,,:【解析】解::,,,由的参数方程得,,则:.(2)【ID:4002698】以坐标原点为极点,轴正半轴为极轴建立极坐标系,设,的交点为.求圆心在极轴上,且经过极点和的圆的极坐标方程.【答案】【解析】解:,,,设,,满足题意,则,即,,:,即,极坐标方程为,即.23. 已知函数.(1)【ID:4002699】当时,求不等式的解集.【答案】【解析】当时,,不等式的解集为.(2)【ID:4002700】若,求的取值范围.【答案】【解析】,,当时,等号成立,,,,,.。
2020大二轮高考总复习文数文档:自检16概率Word版含解析.doc
1 10自检16:概率A 组高考真题集中训练•町白」古典概型1. (2017全国卷H )从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽 取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )解析:从5张卡片中随机抽取1张,放回后再随机抽取 1张的情况如图:木、第二张 1 23 4 5 I 23 4 5 1234512345 I 23 45基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为 10,•••所求概率P = 10 =三故选D .25 5 答案:D2. (2016全国丙卷)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M , I, N 中的一个字母,第二位是 1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()C . 1^5解析:•/ Q= {(M,1), (M,2), (M,3), (M,4),(M,5), (I,1), (I,2), (I,3), (I,4) , (I,5) , (N,1), (N,2) , (N,3) , (N,4) , (N,5)}, •事件总数有 15 种.1•••正确的开机密码只有 1种,• P=±. 15答案:C3. (2015全国卷I )如果3个正整数可作为一个直角三角形三条边的边长,则称这 3个 数为一组勾股数,从 1,2,3,4,5中任取3个不同的数,则这 3个数构成一组勾股数的概率为3_ 10 1 20.1-5 2-5 • •B D1 30C . A C解析:从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4), (1,3,5), (1,4,5), (2,3,4), (2,3,5), (2,4,5), (3,4,5),其中勾股数只有(3,4,5),所以概1率为10•故选C.答案:C4. (2013全国卷I )从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )11A. 2 B -1D■1C. 4解从1,2,3,4 中任取2 个不同的数,有(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), 析:(3,2), (3,4), (4,1), (4,2), (4,3),共12种情形,而满足条件“2个数之差的绝对值为2”的只有(1,3),(2,4), (3,1), (4,2),共4种情形,所以取出的2个数之差的绝对值为2的概率为4 112= 3.答B案:5. (2014全国卷H )甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为____________ .解析:甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种的所有可能情况为(红,白),(白,红),(红,蓝),(蓝,红),(白,蓝),(蓝,白),(红,红),(白, 白),(蓝,蓝),共9种,他们选择相同颜色运动服的所有可能情况为(红,红),(白,白),(蓝,3 1蓝),共3种.故所求概率为P= 3=-.9 3答案:-6. (2013全国卷n )从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_________ .解析:从五个数中任意取出两个数的可能结果有:(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5),共10个,其中“和为5”的结果有(1,4), (2,3),共2个,故所求2 1概率为一=-10 5.答案:-5无心?几何概型1. (2017全国卷I )如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称. 在正方形内随机取一点,则此点取自黑色部分的概率是()1C.解析:不妨设正方形ABCD的边长为2,则正方形内切圆的半径为1,可得S正方形=4. 由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S黑=S白=寺圆=n ,nS黑 2 n所以由几何概型知所求概率p= =-=-.S正方形4 8故选B .答案:B2. (2016全国甲卷)从区间[0,1]随机抽取2n个数x i, x?,…,x n, y?,…,构成n个数对(X1 , y”,(X2, y2),…,(x n, y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率n的近似值为()A. 4nB. 2nm m4m2mC. D.n n解析:因为X1, X2,…,X n, y1, y2,…,y n者E在区间[0,1]内随机抽取,所以构成的n 个数对(X1, y” , (X2, y2),…,(X n, y n)都在边长为1的正方形OABC内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC内的数对有m个.用随机模拟的方法可得旦-=m,即n=m,所以nS正方形n 4 n _4m=n .答案:C13. (2016全国乙卷)某公司的班车在7:30,8: 00,8:30发车,小明在7:50至8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()解析:如图,7:5& B:tM8:108:20 8:30■ ■ !■ ■ ■7: 50至& 30之间的时间长度为 40分钟,而小明等车时间不超过10分钟是指小明在7: 50至& 00之间或8: 20至& 30之间到达发车站,此两种情况下的时间长度之和为 20 120分钟,由几何概型概率公式知所求概率为P = 40 = ?•故选B .答案:B14. (2015湖北高考)在区间[0, 1]上随机取两个数 x , y ,记p i 为事件“ x + y >才’的概率, P 2为事件“ X -yS 1”的概率,P 3为事件“ xy w 1 ”的概率,贝U ()A . P 1< P 2< P 3B . P 2< P 3< P 1C . P 3< P 1< P 2D . P 3< P 2< P 1解析:满足条件的x , y 构成的点(x , y)在正方形OBCA 及其边界上. 1事件“x + y >扌”对应的图形为图①所示的阴影部分; 事件“x -yS2”对应的图形为图②所示的阴影部分; 1事件“xy w 扌”对应的图形为图③所示的阴影部分.答案:B13 2 - 3 • •A C2答案:26. _________________ (2017江苏卷)记函数f(x)= 6 + X-x2的定义域为D.在区间[—4,5]上随机取一个数x, 则x€ D的概率是.解析:由 6 + x-x2> 0,解得一2< x w 3,••• D = [ - 2,3].如图,区间[—4,5]的长度为9,定义域D的长度为5,答案:5B组高考对接限时训练(十六)(时间:35分钟满分70分)解析:当AA'的长度等于半径长度时,AOA ' = n A'点在A点左右都可取得,故32n3 1由几何概型的概率计算公式得P =—=-.2 n 3答案:C2. 在集合A ={2,3}中随机取一个元素到点P(m, n),则点P在圆x2+ y2= 9内部的概率为(、选择题:本大题共10个小题,每小题5分,共50分.A是圆上一定点,在圆上其他位置任取一点 A ',连接AA ',得到一条弦,则此弦的长度小于或等于半径长度的概率为1 •如图所示,()D. 1故所求概率P =+ 5—2 23.m,在集合B= {1,2,3}中随机取一个元素n,得A. 1B. 1解析:点 P(m , n)共有(2,1), (2,2), (2,3), (3,1), (3,2), (3,3)6 种情况,只有(2,1), (2,2) 2 1这2个点在圆x 2+ — 9的内部,所求概率为6= 1.答案:B3. (2017江门一模)某 ABCD — A 1B 1C 1D 1是棱长为2的正方体,AC 1、BD j 相交于O ,在 正方体内(含正方体表面)随机取一点 M , OM < 1的概率p =(3 C . n答案:A4. (2017莆田一模)从区间(0,1)中任取两个数,作为直角三角形两直角边的长,则所得 的两个数使得斜边长不大于1的概率是()a 2 +b 2< 1,14 n则由几何概型的概率可知所求的概率 P =——1 X 1 4 答案:B个小球,则这2个小球中既有红球也有白球的概率为7 10解析:设2个红球分别为a , b,3个白球分别为A , B , C ,从中随机抽取2个,则有(a ,解析: 由题意可知总的基本事件为正方体内的点, 可用其体积23= 8,满足0M < 1的 基本事件为O 为球心1为半径的球内部在正方体中的部分,其体积为V =£nX 13= 4 n 故概3 343n 率P =?n 6.故选A .解析:设两个直角边长为 a, b ,则由条件可知O v a v 1 ,则斜边长不大于1的事件为,0v b v 15•袋子中装有大小相同的 5个小球,分别有 2个红球、3个白球.现从中随机抽取 2b), (a . A), (a , B), (a , C), (b . A), (b , B), (b , C), (A , B), (A , C), (B , C),共 10 个 基本事件,其中既有红球也有白球的基本事件有答案:D6. (2017宁德一模)若在区间[0, e ]内随机取一个数x ,则代表数x 的点到区间两端点距 离均大于e 的概率为()3C .解析:•••区间[0 , e ]的长度为e — 0= e , x 的点到区间两端点距离均大于 寻 长度为寻二e 1 在区间[0, e ]内随机取一个数x ,则代表数x 的点到区间两端点距离均大于 3的概率为P = 1 3 3故选C .答案:C7•已知向量a = (x , y ), b = (1,— 2),从6张大小相同分别标有号码 1,2,3,4,5,6的卡片 中,有放回地抽取两张,x , y 分别表示第一次、第二次抽取的卡片上的号码,则满足 ab > 0的概率是()解析:设(x , y )表示一个基本事件,则两次抽取卡片的所有基本事件有6X 6= 36个.a b> 0,即 x — 2y > 0,满足 x — 2y > 0 的基本事件有(3,1), (4,1), (5,1), (6,1), (5,2), (6,2),共 6个,所以所求概率P=36=1.故选D .答案:DP(a , b)满足 0W OP oA < 2,且 0W OP OB1w 2,则点P 到点C 的距离大于4的概率为()5 A. 1 — 64nn16解析:■/ O)P oA = 2a + b , O )P 0B = a — 2b , 又 0W O )P OA W 2,且 0W O )P OB w 2,.・.6个,则所求概率为 P = _6 = 3 10 5.5 64nO w 2a + b w 2, 表示的区域如图阴影部分所示,点C在阴影区域内到各边界的距离大于1 0< a —2b w 2"L.答案:A1 32 29. 已知函数f(x)= 3X + ax + b x+ 1,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为()C.解析:对函数f(x)求导可得f' (x)= x2+ 2ax+ b2,要满足题意需x2+ 2ax+ b2= 0有两个不等实根,即△= 4(a2—bj>0,即a>b.又(a, b)的取法共有9 种,其中满足a>b 的有(1,0), (2,0), (2,1), (3,0), (3,1) , (3,2),共6种,故所求的概率p= 6= |.答案:D10. (2017商丘模拟)已知P是厶ABC所在平面内一点,PB + PC+ 2PA= 0,现将一粒豆随机撒在厶ABC内,则黄豆落在△ PBC内的概率是()6 已知A(2,1) , B(1, —2), C 3,—5,动点又|OM| =孚,•••所求概率51O w 2a + b w 2, 表示的区域如图阴影部分所示,点C在阴影区域内到各边界的距离大于1解析:如图所示,设点M是BC边的中点,因为PB + PC + 2PA = 0,所以点P是中线AM的中点,所以黄豆落在△ PBC内的概率P =主^ =1故选C.S A ABC 2答案:C二、填空题:本大题共4小题,每小题5分•共20分.11. (2016四川高考)从2,3,8,9中任取两个不同的数字,分别记为a, b,贝U log a b为整数的概率是_________ .解析:从2,3,8,9中任取两个不同的数字,分别记为a,b,则(a, b)的所有可能结果为(2,3), (2,8), (2,9), (3,8), (3,9) , (8,9), (3,2), (8,2), (9,2) , (8,3) , (9,3), (9,8),共12 种取法,其中log a b为整数的有(2,8), (3,9)两种,2 1故12 6.1答案:16x-y+1>0,12. 在不等式组』x+ y- 2<0, 所表示的平面区域内随机地取一点P,则点P恰好落在第二象限的概率为__________x-y+1> 0,解析:画出不等式组x+ y-2< 0 ,y> 01 3 9 1 1ABC=尹3X 2= 9, S AAOD =尹1 X 1 = 2,所以点P恰好洛在第二象限的概率为1S A AOD 2 2 S A ABC 9 9.4■1百(70/Zs-y*i=0X严)/ °囂二0表示的平面区域(如图中阴影部分所示),因为S AA13.某同学同时掷两颗骰子, 2 2得到点数分别为a, b,则双曲线予一器=1的离心率e> 5的概率是_________2 ,5. (2015重庆高考)在区间[0,5]上随机地选择一个数 p ,贝U 方程x + 2px + 3p — 2= 0有两个负根的概率为 __________ .解析:•••方程x 2+ 2px + 3p — 2 = 0有两个负根,△= 4p 2— 4 3p — 2 > 0, 峽 + x 2=—2p <0,解得 |<p < 1 或 p > 2.1x1X 2= 3p — 2>0,解析:由e =____ D乙1 + 孑〉.5,得 b>2a.当a = 1时,b = 3,4,5,6四种情况; 当a = 2时,b = 5,6两种情况,总共有 6种情况•又同时掷两颗骰子,得到的点数 (a, b )共有36种结果. .••所求事件的概率p =36=-. 14.(2017双鸭山一模)从圆x 2 + y 2 = 4内任取一点p,则p 到直线x + y = 1的距离小于 卡的概率 解析:由点到直线的距离公式得点 O 到直线x + y = 1的距离为寸2 =¥,故到直线x + y =1距离为 孑的点在直线x + y = 0和x + y — 2= 0上,满足P 到直线x + y = 1的距离小于 孑的 点位于两直线之间的弧上,且两段弧度和为 才. 故概率P =1 1X 4n+丄X 2X 2 4 2 4 n n+ 2 4 n . 答案:n+ 2。
高考文科数学(2卷):答案详细解析(最新)
2020年普通高等学校招生全国统一考试文科数学(II 卷)答案详解一、选择题1.(集合)已知集合A ={}3,x x x Z <∈,B ={}1,x x x Z >∈,则A B =A.∅B.{}3,2,2,3-- C.{}2,0,2- D.{}2,2-【解析】∵{}2,1,0,1,2A x =--,∴{2,2}A B =- .【答案】D2.(复数)41i -=()A.-4 B.4C.-4iD.4i【解析】[]224221(1)244i i i i ⎡⎤=-=-=-⎣⎦-=().【答案】A3.(概率统计)如图,将钢琴上的12个键依次记为1a ,2a ,…,12a .设112i j k ≤<<≤.若3k j -=且4j i -=,则称i a ,j a ,k a 为原位大三和弦;若4k j -=且3j i -=,则称i a ,j a ,k a 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A.5B.8C.10D.15【解析】原位大三和弦:1,5,8i j k ===;2,6,9i j k ===;3,7,10i j k ===;4,8,11i j k ===;5,9,12i j k ===;共5个.原位小三和弦:1,4,8i j k ===;2,5,9i j k ===;3,6,10i j k ===;4,7,11i j k ===;5,8,12i j k ===;共5个.总计10个.【答案】C4.(概率统计)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作,已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。
志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名【解析】该超市某日积压500份订单未配货,次日新订单不超过1600份的概率为0.95,共2100份,其中1200份不需要志愿者,志愿者只需负责900份,故需要900÷50=18名志愿者.【答案】B5.(平面向量)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是A.2a b+ B.2a b+ C.2a b- D.2a b -【解析】解法一(待定系数法):设()ma nb b +⊥,则有21()02ma nb b ma b nb m n +⋅=⋅+=+=,即2m n =-,故选D.解法二:2o(2)2211cos6010a b b a b b -⋅=⋅-=⨯⨯⨯-= ,故选D.特殊法:如图A5所示,画单位圆,作出四个选项的向量,只有2a b -与b 垂直.图A5【答案】D6.(数列)记n S 为等比数列{n a }的前n 项和.若5a -3a =12,6a -4a =24,则nnS a =A .21n -B .122n-- C.122n --D .121n --【解析】设{}n a 的公比为q ,∵6453()1224a a a a q q -=-==,∴2q =,∵22253311(1)(1)1212a a a q a q q a -=-=-==,∴11a =,∴111111(1)2111=22222n n n n n n n n a q S q a a q -------==-=-.【答案】B7.(算法框图)执行右面的程序框图,若输入的k =0,a =0,则输出的k 为A.2B.3C.4D.5【解析】①输入00k a ==,,得211a a =+=,11k k =+=,10a >否,继续;②输入11k a ==,,得213a a =+=,12k k =+=,10a >否,继续;③输入23k a ==,,得217a a =+=,13k k =+=,10a >否,继续;④输入37k a ==,,得2115a a =+=,14k k =+=,10a >是,程序退出循环,此时4k =.【答案】C8.(解析几何)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为A.5B.5C.5D.5【解析】如图A8所示,设圆的方程为222()()x a y b r -+-=,∵圆过点(2,1)且与两坐标轴都相切,∴222(2)(1)a b r a b r ==⎧⎨-+-=⎩,解得1a b r ===或5a b r ===,即圆心坐标为(1,1)或(5,5),圆心到直线230x y --=5或=5.图A8【答案】B9.(解析几何)设O 为坐标原点,直线x a =与双曲线C :22221x y a b-=(a >0,b >0)的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为A .4B .8C .16D .32【解析】如图A9所示,双曲线C :22221x y a b-=(a >0,b >0)的渐近线为b y x a =±,由题意可知,(,)D a b ,(,)E a b -,∴1282ODE S a b ab ∆=⋅==,∴焦距2248c ==≥⨯=,当且仅当a =等号成立.故C 的焦距的最小值为8.图A9【答案】B10.(函数)设函数331()f x x x =-,则()f x A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减【解析】∵333311()()()()f x x x f x x x-=--=-+=--,∴()f x 是奇函数,243()3f x x x'=+,当x >0,()0f x '>,∴()f x 在(0,+∞)单调递减.【答案】A11.(立体几何)已知△ABC 是面积为4的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为A B .32C .1D .32【解析】由题意可知244ABC S AB ∆==,∴3AB =,如图A11所示,设球O 的半径为R ,则24π16πR =,∴2R =,设O 在△ABC 上的射影为O 1,则O 1是△ABC 的外接圆的圆心,故1232O A =⨯=,∴O 到平面ABC 的距离11OO ==.图A11【答案】C12.(函数)若2233x y x y ---<-,则A.ln(1)0y x -+> B.ln(1)0y x -+<C.ln ||0x y -> D.ln ||0x y -<【解析】2233xyxy---<-可化为2323xxyy---<-,设1()2323xxxxf x -⎛⎫=-=- ⎪⎝⎭,由指数函数的性质易知()f x 在R 上单调递增,∵2323x x y y ---<-,∴x y <,∴0y x ->,∴11y x -+>,∴In(1)0y x -+>.【答案】A二、填空题:本题共4小题,每小题5分,共20分。
2020高考二轮复习概率与统计
专题四概率与统计第1讲概率、随机变量与其分布列[全国卷3年考情分析]年份全国卷Ⅰ全国卷Ⅱ全国卷Ⅲ2019古典概型·T6互斥事件、独立事件、离散型随机变量·T18独立重复试验的概率·T15随机变量的分布列、等比数列·T212018几何概型·T10古典概型·T8相互独立事件与二项分布·T8二项分布、导数的应用与变量的数学期望、决策性问题·T202017数学文化、有关面积的几何概型·T2二项分布的方差·T13频数分布表、概率分布列的求解、数学期望的应用·T18正态分布、二项分布的性质与概率、方差·T19(1)概率、随机变量与其分布是高考命题的热点之一,命题形式为“一小一大”,即一道选择题或填空题和一道解答题.(2)选择题或填空题常出现在第4~10题或第13~15题的位置,主要考查随机事件的概率、古典概型、几何概型,难度一般.考点一古典概型与几何概型1.(2019·全国卷Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516 B.1132 C.2132 D.11162.(2019·市模拟考试)2019年1月1日,轨道交通1号线试运行,轨道交通集团面向广大市民开展“参观体验,征求意见”活动.市民可以通过地铁APP 抢票,小抢到了三体验票,准备从四位朋友小王、小、小、小中随机选择两位与自己一起去参加体验活动,则小王和小至多一人被选中的概率为( )A.16 B.13 C.23 D.563.(2019·市质量检测)如图,线段MN 是半径为2的圆O 的一条弦,且MN 的长为2.在圆O ,将线段MN 绕点N 按逆时针方向转动,使点M 移动到圆O 上的新位置,继续将新线段NM 绕新点M 按逆时针方向转动,使点N 移动到圆O 上的新位置,依此继续转动,……点M 的轨迹所围成的区域是图中阴影部分.若在圆O 随机取一点,则该点取自阴影部分的概率为( )A.4π-6 3B.1-332πC.π-332D.332π4.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34考点二 互斥事件、相互独立事件的概率1.(2019·市调研测试)已知甲袋中有1个黄球和1个红球,乙袋中有2个黄球和2个红球,现随机从甲袋中取出1个球放入乙袋中,再从乙袋中随机取出1个球,则从乙袋中取出的球是红球的概率为( )A.13B.12C.59D.292.(2019·市模拟(一))袋子中装有大小、形状完全相同的2个白球和2个红球,现从中不放回地摸取2个球,已知第二次摸到的是红球,则第一次摸到红球的概率为( )A.16B.13 C.12 D.153.(2019·全国卷Ⅰ)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.4.(2019·全国卷Ⅱ)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.考点三随机变量的分布列、均值与方差题型一超几何分布与其均值与方差[例1](2019·模拟)某市某超市为了回馈新老顾客,决定在2019年元旦来临之际举行“庆元旦,迎新年”的抽奖派送礼品活动.为设计一套趣味性抽奖送礼品的活动方案,该超市面向该市某高中学生征集活动方案,该中学某班数学兴趣小组提供的方案获得了征用.方案如下:将一个4×4×4的正方体各面均涂上红色,再把它分割成64个相同的小正方体.经过搅拌后,从中任取两个小正方体,记它们的着色面数之和为ξ,记抽奖一次中奖的礼品价值为η.(1)求P(ξ=3).(2)凡是元旦当天在该超市购买物品的顾客,均可参加抽奖.记抽取的两个小正方体着色面数之和为6,设为一等奖,获得价值50元的礼品;记抽取的两个小正方体着色面数之和为5,设为二等奖,获得价值30元的礼品;记抽取的两个小正方体着色面数之和为4,设为三等奖,获得价值10元的礼品,其他情况不获奖.求某顾客抽奖一次获得的礼品价值的分布列与数学期望.题型二相互独立事件的概率与均值与方差[例2](2019·市模拟(一))商店欲购进某种食品(保质期两天),此商店每两天购进该食品一次(购进时,该食品为刚生产的).根据市场调查,该食品每份进价8元,售价12元,如果两天无法售出,则食品过期作废,且两天的销售情况互不影响,为了解市场的需求情况,现统计该食品在本地区100天的销售量如下表:销售量/份15161718天数20304010(视样本频率为概率)(1)根据该食品100天的销售量统计表,记两天中一共销售该食品份数为ξ,求ξ的分布列与数学期望;(2)以两天该食品所获得的利润期望为决策依据,商店一次性购进32或33份,哪一种得到的利润更大?题型三二项分布与其均值与方差[例3](2019·模拟)前不久,省社科院发布了2017年度“城市居民幸福排行榜”,市成为本年度“最幸福城市”.随后,师大附中学生会组织部分同学,用“10分制”随机调查“”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)记录了他们的幸福度分数.(1)指出这组数据的众数和中位数;(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”,求从这16人中随机选取3人,至多有1人的幸福度是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示选到幸福度为“极幸福”的人数,求ξ的分布列与数学期望.(2019·市调研测试)某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,若该项质量指标值落在[20,40)的产品视为合格品,否则为不合格品,下图是设备改造前样本的频率分布直方图,下表是设备改造后样本的频数分布表.设备改造前样本的频率分布直方图设备改造后样本的频数分布表质量指标[15,20)[20,25)[25,30)[30,35)[35,40)[40,45) 值频数218481416 2(2)该企业将不合格品全部销毁后,对合格品进行等级细分,质量指标值落在[25,30)的定为一等品,每件售价240元;质量指标值落在[20,25)或[30,35)的定为二等品,每件售价180元;其他的合格品定为三等品,每件售价120元.根据上表的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为X(单位:元),求X的分布列和数学期望.考点四正态分布[例4]为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X 表示一天抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P (X ≥1)与X 的数学期望;(2)一天抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性; ②下面是检验员在一天抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95用样本平均数x —作为μ的估计值μ^,用样本标准差s 作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-3σ<Z <μ+3σ)=0.997 4.0.997 416≈0.959 2,0.008≈0.09.已知某厂生产的电子产品的使用寿命X(单位:小时)服从正态分布N(1 000,σ2),且P(X<800)=0.1,P(X≥1 300)=0.02.(1)现从该厂随机抽取一件产品,求其使用寿命在[1 200,1 300)的概率;(2)现从该厂随机抽取三件产品,记抽到的三件产品使用寿命在[800,1 200)的件数为Y,求Y的分布列和数学期望E(Y).考点五概率问题中的交汇与创新[例5](2019·全国卷Ⅰ)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.①证明:{p i+1-p i}(i=0,1,2,…,7)为等比数列;②求p4,并根据p4的值解释这种试验方案的合理性.1.已知某种植物的种子每粒发芽的概率都为13,某实验小组对该种植物的种子进行发芽试验,若该实验小组共种植四粒该植物的种子(每粒种子的生长因素相同且发芽与否相互独立),用ξ表示这四粒种子中发芽的种子数与未发芽的种子数的差的绝对值.(1)求随机变量ξ的概率分布和数学期望;(2)求不等式ξx2-ξx+1>0的解集为R的概率.2.某网络广告公司计划从甲、乙两个中选择一个拓展公司的广告业务,为此该公司随机抽取了甲、乙两个某月中10天的日访问量(单位:万次),整理后得到如图所示的茎叶图.(1)请说明该公司应该选择哪个;(2)根据双方规定,该公司将根据所选的日访问量进行付费,付费标准如下:日访问量n (单位:万次) n <25 25≤n ≤35n >35 付费标准(单位:元/日)5007001 000哪个?【课后专项练习】A 组一、选择题1.(2019·省适应性考试)在2018中国国际大数据产业博览会期间,有甲、乙、丙、丁4名游客准备到的黄果树瀑布、梵净山、万峰林三个景点旅游,其中每个人只能去一个景点,每个景点至少要去一个人,则游客甲去梵净山旅游的概率为( )A.14B.13C.12D.232.(2019·八所重点中学联考)小华的爱好是玩飞镖,现有如图所示的由两个边长都为2的正方形ABCD 和OPQR 构成的标靶图形,如果O 正好是正方形ABCD 的中点,而正方形OPQR 可以绕O 点旋转.若小华随机向标靶投飞镖,一定能射中标靶,则他射中阴影部分的概率是( )A.13B.14C.16D.173.小、小钱、小、小到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点不相同”,事件B =“小独自去一个景点”,则P (A |B )=( )A.29B.13C.49D.594.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )5.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX =2.4,P (X =4)<P (X =6),则p =( )6.(2019·市调研测试)为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,他前一球投进则后一球投进的概率为34,他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第2球投进的概率为( )A.34B.58 C.716 D.916二、填空题7.(2019·市模拟(一))已知实数x ∈[0,10],则x 满足不等式x 2-4x +3≤0的概率为________.8.我国数学家景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是________.9.(2019·期中)为了解高三复习备考情况,某校组织了一次阶段考试.若高三全体考生的数学成绩近似服从正态分布N (100,17.52).已知成绩在117.5分以上(含117.5分)的学生有80人,则此次参加考试的学生成绩不超过82.5分的概率为________;如果成绩大于135分的为特别优秀,那么本次数学考试成绩特别优秀的大约有________人.(若X ~N (μ,σ2),则P (μ-σ<X <μ+σ)≈0.68,P (μ-2σ<X <μ+2σ)≈0.96)三、解答题10.(2019·模拟)甲、乙两位工人分别用两种不同工艺生产同一种零件,已知尺寸在[223,228](单位:mm)的零件为一等品,其余为二等品.甲、乙当天生产零件尺寸的茎叶图如图所示:(1)从甲、乙两位工人当天所生产的零件中各随机抽取1个零件,求抽取的2个零件等级互不相同的概率;(2)从工人甲当天生产的零件中随机抽取3个零件,记这3个零件中一等品数量为X,求X的分布列和数学期望.11.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从某市大学生中随机抽取300位同学进行调查,结果如下:微信群数量0至5个6至10个11至15个16至20个20个以上合计频数09090x 15300频率00.30.3y z 1(2)以这300人的样本数据估计该市的总体数据且以频率估计概率,若从全市大学生(数量很大)中随机抽取3人,记X表示抽到的是微信群个数超过15的人数,求X的分布列、数学期望和方差.12.(2019·市第二次质量检测)某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出2种超过质保期后2年的延保维修优惠方案,方案一:交纳延保金7 000元,在延保的2年可免费维修2次,超过2次每次收取维修费2 000元;方案二:交纳延保金10 000元,在延保的2年可免费维修4次,超过4次每次收取维修费1 000元.某医院准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保2年维修的次数,得下表:以这50X表示这2台机器超过质保期后延保的2年共需维修的次数.(1)求X的分布列;(2)以方案一与方案二所需费用(所需延保金与维修费用之和)的期望值为决策依据,医院选择哪种延保方案更合算?B组1.(2019·市综合检测(一))为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).梯超出第二阶梯的部分每度0.8元,试计算某居民用电户用电410度时应交电费多少元?(2)现要从这10户家庭中任意选取3户,求取到第二阶梯电量的户数的分布列与期望.(3)以表中抽到的10户作为样本估计全市居民用电,现从全市中依次抽取10户,若抽到k户用电量为第一阶梯的可能性最大,求k的值.2.(2019·市质量检测)某地区为贯彻总书记关于“绿水青山就是金山银山”的理念,鼓励农户利用荒坡种植果树.某农户考察三种不同的果树苗A,B,C,经引种试验后发现,引种树苗A的自然成活率为0.8,引种树苗B,C的自然成活率均为p(0.7≤p≤0.9).(1)任取树苗A,B,C各一棵,估计自然成活的棵数为X,求X的分布列与数学期望E(X).(2)将(1)中的E(X)取得最大值时p的值作为B种树苗自然成活的概率.该农户决定引种n棵B种树苗,引种后没有自然成活的树苗中有75%的树苗可经过人工栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活.①求一棵B种树苗最终成活的概率;②若每棵树苗最终成活后可获利300元,不成活的每棵亏损50元,该农户为了获利不低于20万元,问至少引种B种树苗多少棵?3.(2019·市高三模拟)某客户准备在家中安装一套净水系统,该系统为三级过滤,使用寿命为十年.如图所示,两个一级过滤器采用并联安装,二级过滤器与三级过滤器为串联安装.其中每一级过滤都由核心部件滤芯来实现,在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立),三级滤芯无需更换,若客户在安装净水系统的同时购买滤芯,则一级滤芯每个80元,二级滤芯每个160元.若客户在使用过程中单独购买滤芯,则一级滤芯每个200元,二级滤芯每个400元.现需决策安装净水系统的同时购滤芯的数量,为此参考了根据100套该款净水系统在十年使用期更换滤芯的相关数据制成的图表,其中图是根据200个一级过滤器更换的滤芯个数制成的柱状图,表是根据100个二级过滤器更换的滤芯个数制成的频数分布表.二级滤芯更换频数分布表二级滤芯更换的个数5 6频数6040以200以100个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.(1)求一套净水系统在使用期需要更换的各级滤芯总个数恰好为30的概率;(2)记X表示该客户的净水系统在使用期需要更换的一级滤芯总数,求X的分布列与数学期望;(3)记m,n分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.若m+n=28,且n∈{5,6},以该客户的净水系统在使用期购买各级滤芯所需总费用的期望为决策依据,试确定m,n的值.4.(2019·四大名校模拟)超级病菌是一种耐药性细菌,产生超级细菌的主要原因是用于抵抗细菌侵蚀的药物越来越多,但是由于滥用抗生素的现象不断的发生,很多致病菌也对相应的抗生素产生了耐药性,更可怕的是,抗生素药物对它起不到什么作用,病人会因为感染而引起可怕的炎症,高烧、痉挛、昏迷直到最后死亡.某药物研究所为筛查某种超级细菌,需要检验血液是否为阳性,现有n(n∈N*)份血液样本,每个样本取到的可能性均等,有以下两种检验方式:(1)逐份检验,则需要检验n次;(2)混合检验,将其中k(k∈N*且k≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p<1).(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;(2)现取其中k(k∈N*且k≥2)份血液样本,记采用逐份检验方式,样本需要检验的总次数为ξ1,采用混合检验方式,样本需要检验的总次数为ξ2.(ⅰ)试运用概率统计的知识,若E(ξ1)=E(ξ2),试求p关于k的函数关系式p=f(k);(ⅱ)若p=1-13e,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k的最大值.参考数据:ln 2≈0.693 1,ln 3≈1.098 6,ln 4≈1.386 3,ln 5≈1.609 4,ln 6≈1.791 8.第2讲统计、统计案例[全国卷3年考情分析](1)统计与统计案例在选择题或填空题中的命题热点主要集中在随机抽样、用样本估计总体以与变量间的相关性判断等,难度较低,常出现在3~4题的位置.(2)统计与统计案例在解答题中多出现在第18或19题位置,考查茎叶图、直方图、数字特征与统计案例,多以计算为主.考点一抽样方法1.福利彩票“双色球”中红球的可以从01,02,03,…,32,33这33个两位中选取,小明利用如下所示的随机数表选取红色球的6个,选取方法是从第1行第9列的数字开始,从左到右依次读取数据,则第四个被选中的红色球为()A.12B.33C.06D.16解析:选C被选中的红色球依次为17,12,33,06,32,22.所以第四个被选中的红色球为06,故选C.2.利用系统抽样法从编号分别为1,2,3,…,80的80件不同产品中抽出一个容量为16的样本,如果抽出的产品中有一件产品的编号为13,则抽到产品的最大编号为( )A .73 B.78 C .77D.76解析:选B 样本的分段间隔为8016=5,所以13号在第三组,则最大的编号为13+(16-3)×5=78.故选B.3.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20 000人,其中各种态度对应的人数如下表所示:电视台为了了解观众的具体想法和意见,打算从中抽选100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中应抽选的人数分别为( )A.25,25,25,25B.48,72,64,16C.20,40,30,10D.24,36,32,84.某班共有学生56人,学号依次为1,2,3,…,56,现用系统抽样的方法抽取一个容量为4的样本,已知学号为2,30,44的同学在样本中,则样本中还有一位同学的学号为________.考点二用样本估计总体[例1](2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).[解](1)由已知得0.70=a+0.20+0.15,1.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量/度120140160180200户数2358 2则这20户家庭该月用电量的众数和中位数分别是()A.180,170 B.160,180C.160,170 D.180,1602.(2019·模拟)如图的折线图是某超市2018年一月份至五月份的营业额与成本数据,根据该折线图,下列说确的是()A.该超市2018年的前五个月中三月份的利润最高B.该超市2018年的前五个月的利润一直呈增长趋势C.该超市2018年的前五个月的利润的中位数为0.8万元D.该超市2018年前五个月的总利润为3.5万元3.(2019·武昌区调研考试)对参加某次数学竞赛的1 000名选手的初赛成绩(满分:100分)作统计,得到如图所示的频率分布直方图.(1)根据直方图完成以下表格;成绩[50,60)[60,70)[70,80)[80,90)[90,100] 频数(2)求参赛选手初赛成绩的平均数与方差(同一组中的数据用该组区间的中点值作代表);(3)如果从参加初赛的选手中选取380人参加复赛,那么如何确定进入复赛选手的成绩?考点三 统计案例题型一 回归分析在实际问题中的应用[例2] (2018·全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^=-30.4+13.5t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t .(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.题型二 独立性检验在实际问题中的应用[例3](2019·市调研测试)2019年,在庆祝中华人民国成立70周年之际,又迎来了以“创军人荣耀,筑世界和平”为口号的第七届世界军人运动会(以下简称“军运会”).据悉,这次军运会将于2019年10月18日至27日在美丽的江城举行,届时将有来自100多个国家的近万名军人运动员参赛.相对于奥运会、亚运会等大型综合赛事,军运会或许对很多人来说还很陌生,所以某高校为了在学生中更广泛地推介普与军运会相关知识容,特在网络上组织了一次“我所知晓的军运会”知识问答比赛.为便于对答卷进行对比研究,组委会抽取了1。
2020大二轮高考总复习文数文档:解答题3 概率与统计 Word版含解析.doc
第一单元高考中档大题突破解答题03:概率与统计基本考点——古典概型、互斥与对立事件的概率、统计、统计案例考向01:古典概型、互斥与对立事件的概率1.古典概型的概率P (A )=m n =A 中所含的基本事件数基本事件总数.2.互斥事件的概率加法公式(1)如果事件A 与B 互斥,那么P (A ∪B )=P (A )+P (B );(2)一般地,如果事件A 1,A 2,…,A n 彼此互斥,那么P (A 1∪A 2∪…∪A n )=P (A 1)+P (A 2)+…+P (A n ).3.对立事件及其概率公式若事件B 与事件A 互为对立事件,则P (A )+P (B )=1,即P (A )=1-P (B ). [提醒] (1)两个事件互斥未必对立,但对立一定互斥.(2)只有事件A ,B 互斥时,才有公式P (A ∪B )=P (A )+P (B ),否则公式不成立.1.有编号为1,2,3的三个白球,编号为4,5,6的三个黑球,这六个球除编号和颜色外完全相同,现从中任意取出两个球.(1)求取得的两个球颜色相同的概率; (2)求取得的两个球颜色不相同的概率.解:从六个球中取出两个球的基本事件:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共计15个基本事件.(1)记事件A 为取出的两个球是白球,则这个事件包含的基本事件的是(1,2),(1,3),(2,3),共计3个基本事件,故P (A )=315=15.记取出的两个球是黑球为事件B ,同理可得P (B )=15.记事件C 为取出的两个球的颜色相同,则C =A +B ,且A ,B 互斥,根据互斥事件的概率加法公式,得P (C )=P (A +B )=P (A )+P (B )=25.(2)记事件D 为取出的两个球的颜色不相同,则事件C ,D 是对立事件,根据对立事件概率之间的关系,得P (D )=1-P (C )=1-25=35.2.(2016·山东卷)某儿童乐园在“六一”儿童节推出了一项趣味活动,参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数,设两次记录的数分别为x ,y .奖励规则如下:①若xy ≤3,则奖励玩具一个; ②若xy ≥8,则奖励水杯一个; ③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域分布均匀,小亮准备参加此项活动. (1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解:用数对(x ,y )表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S ={(x ,y )|x ∈N ,y ∈N,1≤x ≤4,1≤y ≤4}一一对应.因为S 中元素的个数是4×4=16,所以基本事件总数n =16.(1)记“xy ≤3”为事情A ,则事件A 包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1),所以P (A )=516,即小亮获得玩具的概率为516.(2)记“xy ≥8”为事件B ,“3<xy <8”为事件C , 则事件B 包含的基本事件数共6个, 即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4), 所以P (B )=616=38.事件C 包含的基本事件数共5个,即(1,4),(2,2),(2,3),(3,2),(4,1). 所以P (C )=516,因为38>516,所以小亮获得水杯的概率大于获得饮料的概率. 考向02:统计1.频率分布直方图中横坐标表示组距,纵坐标表示频率组距,频率=组距×频率组距.2.频率分布直方图中各小长方形的面积之和为1.3.利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者的含义:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.1.(2016·北京卷)某市民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.解:(1)如题图所示,用水量在[0.5,3)的频率的和为:(0.2+0.3+0.4+0.5+0.3)×0.5=0.85.∴用水量小于等于3立方米的频率为0.85,又w为整数,∴为使80%以上的居民在该月的用水价格为4元/立方米,w至少定为3.(2)当w=3时,该市居民该月的人均水费估计为:(0.1×1+0.15×1.5+0.2×2+0.25×2.5+0.15×3)×4+0.15×3×4+[0.05×(3.5-3)+0.05×(4-3)+0.05×(4.5-3)]×10=7.2+1.8+1.5=10.5(元).即该市居民该月的人均水费估计为10.5元.2.(2017·合肥模拟)为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?解:(1)设A 药观测数据的平均数为x ,B 药观测数据的平均数为y -,由观测结果可得 x -=120(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y -=120(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x ->y -,因此可看出A 药的疗效更好. (2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎2.,3.上,而B 药疗效的试验结果有710的叶集中在茎0.,1.上,由此可看出A 药的疗效更好.考向03:统计案例1.回归分析方程y ^=b ^x +a ^称为线性回归方程,其中b ^=Σni =1x i y i -n x -y -Σni =1x 2i -n x -2,a ^=y --b ^x -;(x -,y -)称为样本点的中心. 2.独立性检验K 2=(a +b +c +d )(ad -bc )2(a +b )(c +d )(a +c )(b +d ),若k 0>3.841,则有95%的把握认为两个事件有关; 若k 0>6.635,则有99%的把握认为两个事件有关.1.某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的回归直线方程预测该地2018年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来配回归直线方程,为此对数据预处理如下:对预处理后的数据,容易算得,x =0,y =3. 2,b ^=(-4)×(-21)+(-2)×(-11)+2×19+4×29-5×0×3.2(-4)2+(-2)2+22+42-5×02=26040=6.5,a ^=y --b ^x -=3.2. 由上述计算结果知,所求回归直线方程为 y ^-257=b ^(x -2 012)+a ^=6.5(x -2 012)+3.2, 即y ^=6.5×(x -2 012)+260.2.(2)利用(1)中所求回归直线方程,可预测2018年的粮食需求量为6.5×(2 018-2 012)+260.2=6.5×6+260.2=299.2(万吨).2.(2017·九江模拟)某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在40分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生的成绩分为6组,得到如下所示的频数分布表.数学成绩与性别是否有关;(2)规定80分以上为优分(含80分),请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”.附表及公式:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ).解:(1)x -男=45×0.05+55×0.15+65×0.3+75×0.25+85×0.1+95×0.15=71.5, x -女=45×0.15+55×0.1+65×0.125+75×0.25+85×0.325+95×0.05=71.5, 从男、女生各自的平均分来看,并不能判断数学成绩与性别有关.(2)由频数分布表可知,在抽取的100名学生中,“男生组”中的优分有15人,“女生组”中的优分有15人,据此可得2×2列联表如下:可得K 2=100×(15×25-15×45)60×40×30×70≈1.79,因为1.79<2.706,所以没有90%以上的把握认为“数学成绩与性别有关”.常考热点——统计与概率的交汇问题概率与统计题已经发展成为高考解答题的“盘中菜”,难度一般为中档. 概率与统计的交汇题常以生活中的问题为背景,命题重点有以下两种类型:一是“双图(频率分布直方图、茎叶图)”与古典概型的相交汇;二是统计与独立性检验的交汇问题.(2017·晋城一模)某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;(2)用分层抽样的方法在分数段为[60,80)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[70,80)的概率.【解】(1)分数在[70,80)内的频率为1-(0.01+0.015+0.015+0.025+0.005)×10=0.3,故分数在[70,80)上的频率是0.3,频率分布直方图如图.(2)由题意,[60,70)分数段的人数为0.15×60=9,[70,80)分数段的人数为0.3×60=18.∵分层抽样在分数段为[60,80)的学生中抽取一个容量为6的样本,∴[60,70)分数段抽取2人,分别记为m,n;[70,80)分数段抽取4人,分别记为a,b,c,d.设从中任取2人,至多有1人在分数段[70,80)为事件A,则基本事件空间包含的基本事件有(m,n),(m,a),(m,b),(m,c),(m,d),…,(c,d),共15种,则基本事件A包含的基本事件有(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d),共9种,∴P(A)=915=35.破解频率分布直方图与古典概型相交汇问题的关键:一是观图得数据,会利用频率分布直方图,求出相应区间的频率与频数;二是会用公式,即会利用古典概型的概率计算公式,要特别注意利用列表法、画图法、列举法、列式计算等方法求基本事件的个数.(2017·全国卷Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3)附:,K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).【解】(1)旧养殖法的箱产量低于50 kg的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62.因此,事件A的概率估计值为0.62.(2)根据箱产量的频率分布直方图得列联表K 2的观测值=200×(62×66-34×38)2100×100×96×104≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg 到55 kg 之间,旧养殖法的箱产量平均值(或中位数)在45 kg 到50 kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.破解此类问题的关键:一是会应用公式作出统计推断,把所给数据代入独立性检验公式求出K 2的观测值K ,并与临界值进行对比,进而作出统计推断;二是利用古典概型的概率公式求概率.1.(2017·济宁二模)某地政府拟在该地一水库上建造一座水电站,用泄流水量发电.图是根据该水库历年的日泄流量的水文资料画成的日泄流量X (单位:万立方米)的频率分布直方图(不完整),已知X ∈[0,120],历年中日泄流量在区间[30,60)的年平均天数为156,一年按364天计.(1)请把频率分布直方图补充完整;(2)已知一台小型发电机,需30万立方米以上的日泄流量才能运行,运行一天可获利润为4000元,若不运行,则每天亏损500元;一台中型发电机,需60万立方米以上的日泄流量才能运行,运行一天可获利10000元,若不运行,则每天亏损800元;根据历年日泄流量的水文资料,水电站决定安装一台发电机,为使一年的日均利润值最大,应安装哪种发电机?解:(1)在区间[30,60)的频率为156364=37,频率组距=37×30=170,设在区间[0,30)上,频率组距=a ,则⎝⎛⎭⎫a +170+1105+1210×30=1,解得a =1210, 补充频率分布直方图如下图:(2)当日泄流量X ≥30(万立方米)时,小型发电机可以运行,则一年中一台小型发电机可运行的天数为:364-1210×30×364=312(天);当日泄流量X ≥60(万立方米)时,中型发电机可以运行,则一年中一台中型发电机可运行的天数为:⎝⎛⎭⎫1105+1210×30×364=156(天); ①若运行一台小型发电机,则一年的日均利润值为: 1364×(312×4000-52×500)=335717(或235007)(元) ②若运行一台中型发电机,则一年的日均利润值为: 1364×(156×10000-208×800)=382847(或268007)(元) 因为382847>335717,故为使水电站一年的日均利润值最大,应安装中型发电机.2.(2017·上饶二模)据统计,2015年“双11”天猫总成交金额突破912亿元.某购物网站为优化营销策略,对11月11日当天在该网站进行网购消费且消费金额不超过1000元的1000名网购者(其中有女性800名,男性200名)进行抽样分析.采用根据性别分层抽样的方法从这1000名网购者中抽取100名进行分析,得到下表:(消费金额单位:元)女性消费情况:选出两名发放网购红包,求选出的两名网购者恰好是一男一女的概率;(2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’与性别有关?”附:(K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d)解:(1)依题意,女性应抽取80名,男性应抽取20名,∴x=80-(5+10+15+47)=3,y=20-(2+3+10+2)=3.设抽出的100名且消费金额在[800,1000)(单位:元)的网购者中有三位女性记为A、B、C;两位男性记为a、b,从5人中任选2人的基本事件有:(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b)共10个;设“选出的两名网购者恰好是一男一女”为事件M,事件M包含的基本事件有:(A,a),(A,b),(B,a),(B,b),(C,a),(C,b)共6件,∴P(M)=610=35;(2)根据题意,填写2×2列联表如下表所示:则K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d)=100×(50×15-30×5)280×20×55×45≈9.091,因为9.091>6.635,所以能在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’与性别有关”.1.(2016·全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)记A )的估计值; (2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P (B )的估计值;(3)求续保人本年度的平均保费的估计值.解:(1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55.故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3. 故P (B )的估计值为0.3. (3)由所给数据得调查的0.85a ×0. 30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.192 5a . 因此,续保人本年度平均保费的估计值为1.192 5a .2.(2017·山西四校联考)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A 配方的频数分布表(1)分别估计用A 配方,B 配方生产的产品的优质品率;(2)已知用B 配方生产的一件产品的利润y (单位:元)与其质量指标值t 的关系式为y =⎩⎪⎨⎪⎧-2,t <94,2,94≤t <102,4,t ≥102.估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润.解:(1)由试验结果知,用A 配方生产的新产品中优质品的频率为22+8100=0.3,所以用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32+10100=0.42,所以用B 配方生产的产品的优质品率的估计值为0.42.(2)由条件知,用B 配方生产的一件产品的利润大于0当且仅当其质量指标值t ≥94,由试验结果知,质量指标值t ≥94的频率为12+42+32+10100=0.96,所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96.用B 配方生产的产品平均一件的利润为 1100×[4×(-2)+54×2+42×4]=2.68(元). 3.(2017·玉林、贵港联考)某市地铁即将于2018年8月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:与“认为价格偏高者”的月平均收入的差距是多少(结果保留2位小数);(2)由以上统计数据填写下面的2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K 2=n (ad-bc )(a +b )(c +d )(a +c )(b +d ).解:(1)“赞成定价者x -1=20×1+30×2+40×3+50×5+60×3+70×41+2+3+5+3+4≈50.56.“认为价格偏高者”的月平均收入为x -2=20×4+30×8+40×12+50×5+60×2+70×14+8+12+5+2+1=38.75,∴“赞成定价者”与“认为价格偏高者”的月平均收入的差距是x -1-x -2=50.56-38.75=11.81(百元).(2)根据条件可得2×2列联表如下:K 2=50×(7×29-3×11)10×40×18×32≈6.27<6.635,∴没有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”. 4.(2017·开封模拟)甲、乙两人参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,画出茎叶图如图所示,乙的成绩中有一个数的个位数字模糊,在茎叶图中用c 表示.(1)假设c =5,现要从甲、乙两人中选派一人参加数学竞赛,从统计学的角度,你认为派哪位学生参加比较合适?(2)假设数字c 的取值是随机的,求乙的平均分高于甲的平均分的概率.(把频率当作概率)解:(1)若c =5,则派甲参加比较合适,理由如下:x -甲=18(70×2+80×4+90×2+9+8+8+4+2+1+5+3)=85,x -乙=18(70×1+80×4+90×3+5+3+5+2+5)=85,s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41.∵x -甲=x -乙,s 2甲<s 2乙,∴两人的平均成绩相等,但甲的成绩比较稳定,派甲参加比较合适. (2)由(1)知若x -乙>x -甲,则c >5,∴c =6,7,8,9, 又c 的所有可能取值为0,1,2,3,4,5,6,7,8,9, ∴乙的平均分高于甲的平均分的概率为25.(2017·唐山模拟)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d).解:(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A1,A2,A3;25周岁以下组工人有40×0.05=2(人),记为B1,B2.从中随机抽取2名工人,所有的可能结果共有10种,它们是(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).故所求的概率P=710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手有60×0.25=15(人),“25周岁以下组”中的生产能手有40×0.375=15(人),据此可得2×2列联表如下:所以K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d)=100×(15×25-15×45)260×40×30×70=2514≈1.79.因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.6.(2017·全国卷Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:∑i =116(i -8.5)2≈18.439,∑i =116(x i -x -)(i -8.5)=-2.78,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)(1)求(x i ,i )(i =1,2,…,16)的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r |<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(x --3s ,x -+3s )之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(x --3s ,x -+3s )之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(x i ,y i )(i =1,2,…,n )的相关系数r =∑i =1n(x i -x -)(y i -y -)∑i =1n(x i -x -)2∑i =1n(y i -y -)2,0.008≈0.09.解:(1)由样本数据得(x i ,i )(i =1,2,…,16)的相关系数r =∑i =116(x i -x -)(i -8.5)∑i =116(x i -x -)2∑i =116(i -8.5)2≈-2.780.212×16×18.439≈-0.18.由于|r |<0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(ⅰ)由于x -=9.97,s ≈0.212,因此由样本数据可以看出抽取的第13个零件的尺寸在(x --3s ,x -+3s )以外,因此需对当天的生产过程进行检查.(ⅱ)剔除离群值,即第13个数据,剩下数据的平均数为115(16×9.97-9.22)=10.02,这条生产线当天生产的零件尺寸的均值的估计值为10.02.∑i =116x 2i ≈16×0.2122+16×9.972≈1 591.134, 剔除第13个数据,剩下数据的样本方差为 115(1 591.134-9.222-15×10.022)≈0.008,这条生产线当天生产的零件尺寸的标准差的估计值为0.008≈0.09.。
2020新高考数学二轮冲刺概率与统计全归纳(基础中档拔高题全解析)
统计与统计案例
一、考纲解读
1. 理解随机抽样的必要性和重要性。 2. 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。 3. 了解分布的意义和作用,会列频率分布表,会画出频率分布直方图、频率折 线图、茎叶图,理解它们各自的特点。 4. 理解样本数据标准差的意义和作用,会计算数据标准差。 5. 能从样本的频率分布估计总体分布,会用样本的基本数字牲估计总体的基本 数字特征,理解用样本估计总体的思想。 6. 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。 7. 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系。 8. 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归 方程。 9. 了解常见的统计方法,并能应用这些方法解决一些实际问题。 (1)独立性检验 了解独立性检验(只要求 2×2 列联表)的基本思想、方法及其简单应用。 (2)回归分析 了解回归分析的基本思想、方法及其简单应用。
个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为
A. 1 3
B. 1 2
C. 2 3
D. 3 4
答案:
1.D【解析】将 2 名男同学分别记为 x , y ,3 名女同学分别记为 a ,b ,c .设 “选中的 2 人都是女同学”为事件 A ,则从 5 名同学中任选 2 人参加社区服务的所 有可能情况有 (x, y) ,(x, a) ,(x,b) ,(x, c) ,( y, a) ,( y,b) ,( y, c) ,(a,b) ,(a, c) , (b, c) 共 19 种,其中事件 A 包含的可能情况有 (a,b) , (a, c) , (b, c) 共 3 种,故 P(A) 3 0.3,故选 D.
2020高考文科数学二轮分层特训卷:主观题专练 概率与统计(16) Word版含解析
概率与统计(16)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.[2019·山东滨州模考]若复数(1-a i)2-2i 是纯虚数,则实数a =( )A .0B .±1C .1D .-1答案:C解析:(1-a i)2-2i =1-a 2-2a i -2i =1-a 2-(2a +2)i.∵(1-a i)2-2i 是纯虚数,∴⎩⎨⎧1-a 2=0,2a +2≠0,解得a =1,故选C.2.[2019·广东广州执信中学测试]从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,应采用的最佳抽样方法是( )A .系统抽样B .分层抽样C .简单随机抽样D .各种方法均可答案:B解析:因为社会购买力的某一项指标受到家庭收入的影响,而社区中各个家庭收入差别明显,所以应采用分层抽样的方法,故选B.3.用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实根C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根答案:A解析:因为“方程x3+ax+b=0至少有一个实根”等价于“方程x3+ax+b=0的实根的个数大于或等于1”,因此,要做的假设是“方程x3+ax+b=0没有实根”.4.[2019·山东烟台模拟]将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽到的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8 B.25,17,8C.25,16,9 D.24,17,9答案:B解析:由题意知间隔为60050=12,故抽到的号码为12k+3(k=0,1,…,49),列出不等式可解得:第Ⅰ营区抽25人,第Ⅱ营区抽17人,第Ⅲ营区抽8人.5.[2019·重庆市学业质量调研]甲、乙、丙、丁四位同学参加奥赛,其中只有一位获奖,有人走访了四位同学,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”已知四位同学的话只有一句是对的,则获奖的同学是()A.甲B.乙C.丙D.丁答案:D解析:假设获奖的同学是甲,则甲、乙、丙、丁四位同学的话都不对,因此甲不是获奖的同学;假设获奖的同学是乙,则甲、乙、丁的话都对,因此乙也不是获奖的同学;假设获奖的同学是丙,则甲和丙的话都对,因此丙也不是获奖的同学.从前面推理可得丁为获奖的同学,此时只有乙的话是对的,故选D.6.[2019·重庆巴蜀中学一模]执行如图所示的程序框图,若输入的a为24,c为5,输出的数为3,则输入的b有可能为()A.11 B.12C.13 D.14答案:B解析:结合程序框图,若输出的数为3,则经过循环之后的b=a+3=27,由27÷5=5……2,并结合循环结构的特点可得,输入的b除以5的余数为2,结合选项可得,b有可能为12,故选B.7.[2019·福建泉州泉港一中模考]若1路、2路公交车的站点均包括泉港一中,且1路公交车每10分钟一趟,2路公交车每20分钟一趟,则某学生去坐这2趟公交车回家,等车不超过5分钟的概率是()A.18 B.35C.58 D.78答案:C 解析:设1路公交车到达的时间为x,2路公交车到达的时间为y.(x,y)可以看成平面上的点,则可设Ω={(x,y)|0≤x≤10且0≤y≤20},表示的是一个长方形区域,如图,其面积S=10×20=200.若某学生等车时间不超过5分钟,则其构成的平面区域为图中的阴影部分,面积S′=125,故所求概率P=S′S =125200=58,故选C.8.[2019·东莞测试]为了解工厂的1 000名工人的生产情况,从中抽取100名工人进行统计,得到如下频率分布直方图,由此可估计该工厂产量在75件以上(含75件)的工人数为()A.50 B.100C .150D .250答案:C解析:根据频率分布直方图可知工厂产量在75件以上的频率为0.010×10+0.005×10=0.15,∴工人数为1 000×0.15=150,故选C.9.从甲、乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲、乙两组数据的平均数分别为x -甲、x -乙,中位数分别为m 甲、m 乙,则( )A.x -甲<x -乙,m 甲>m 乙B.x -甲<x -乙,m 甲<m 乙C.x -甲>x -乙,m 甲>m 乙D.x -甲>x -乙,m 甲<m 乙答案:B 解析:由茎叶图知m 甲=22+182=20,m 乙=27+312=29,所以m 甲<m 乙,x -甲=116(41+43+30+30+38+22+25+27+10+10+14+18+18+5+6+8)=34516,x -乙=116(42+43+48+31+32+34+34+38+20+22+23+23+27+10+12+18)=45716,所以x -甲<x -乙.10.[2019·合肥市高三第二次教学质量检测]某公司某种型号的产品近期的销售情况如下表:根据上表可得到回归方程y =0.75x +a ,据此估计,该公司7月份这种型号的产品的销售额为( )A .19.5万元B .19.25万元C .19.15万元D .19.05万元答案:D解析:由题意可得x -=2+3+4+5+65=4,y -=15.1+16.3+17.0+17.2+18.45=16.8,∴由回归直线恒过点(x -,y -),得16.8=0.75×4+a ^,解得a ^=13.8,∴当x =7时,y ^=0.75×7+13.8=19.05,故选D.11.[2019·四川内江一模]如图是某部门统计的某年春运期间12个城市售出的往返机票的平均价格以及相比上一年同期平均价格的变化幅度的数据统计图,根据统计图,下面叙述不正确的是( )A .深圳的变化幅度最小,北京的平均价格最高B.深圳和厦门的平均价格同上一年相比有所下降C.平均价格从高到低排列,居于前三位的城市为北京、深圳、广州D.平均价格的涨幅从高到低排列,居于前三位的城市为天津、西安、厦门答案:D解析:由图可知,选项A,B,C都正确,对于D,因为要判断涨幅从高到低排列的前三位,而不是判断变化幅度从高到低排列的前三位,所以错误.故选D.12.[2019·福建永春调研]在平面几何里有射影定理:设三角形ABC的两边AB⊥AC,D是A点在BC上的射影,则AB2=BD·BC.拓展到空间,在四面体ABCD中,AD⊥平面ABC,点O是A在平面BCD内的射影,且O在△BCD内,类比平面三角形射影定理,得出正确的结论是()A.S2△ABC=S△BCO·S△BCDB.S2△ABD=S△BOD·S△BOCC.S2△ADC=S△DOC·S△BOCD.S2△BDC=S△ABD·S△ABC答案:A解析:由已知,在平面几何中,若△ABC中,AB⊥AC,AD⊥BC,D是垂足,则AB2=BD·BC.可以类比这一性质,推理出:若三棱锥D-ABC中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,如图所示,则S2△ABC=S△BCO·S△BCD.故选A.二、填空题(本题共4小题,每小题5分,共20分)13.[2017·江苏卷]某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.答案:18解析:∵样本容量总体个数=60200+400+300+100=350,∴应从丙种型号的产品中抽取350×300=18(件).14.[2019·江苏苏锡常镇调研]假设要考察某公司生产的狂犬疫苗的剂量是否达标,现从500支疫苗中抽取50支进行检验,利用随机数表抽取样本时,先将500支疫苗按000,001,…,499进行骗号,如果从随机数表第7行、第8列的数开始向右读(每三个连续数字组成一个编号),请写出第3支疫苗的编号________.(下面摘取了随机数表第7行至第9行)84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 7933 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 54答案:068解析:由题意,知从第7行、第8列开始向右读取,得到的疫苗的编号依次为331,455,068,……所以第3支疫苗的编号为068.15.[2019·江西上饶市民校联盟阶段测试]如果数据x1,x2,…,x n的平均数为x-,方差为82,则5x1+2,5x2+2,…,5x n+2的方差为________.答案:1 600解析:∵数据x 1,x 2,…,x n 的平均数为x -,方差为82,∴5x 1+2,5x 2+2,…,5x n +2的平均数为5x -+2,方差为25×82=1 600.16.[2019·东北三省四市教研联合体高考模拟试卷(一)]为了解天气转冷时期居民电量使用情况,某调查人员由下表统计数据计算出的回归方程为y^=-2.11x +61.13,现表中一个数据被污损,则被污损的数据为________.(结果保留整数)答案:38解析:x -=18+13+10-14=10,代入回归方程y ^=-2.11x +61.13得y -=40.03,设污损的数据为a ,则24+34+a +64=4×40.03,得a =38.12≈38.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过关检测(十六)1.(2019·东北三省联考)树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占80%.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65],得到的频率分布直方图如图所示.(1)求a 的值;(2)求这200人年龄的平均数( 同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);(3)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.解:(1)由10×(0.010+0.015+a +0.030+0.010)=1,得a =0.035. (2)平均数为20×0.1+30×0.15+40×0.35+50×0.3+60×0.1=41.5(岁); 设中位数为x ,则10×0.010+10×0.015+(x -35)×0.035=0.5, 解得x ≈42.1.(3)200人中第1,2组的人数分别为20,30,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2,3,分别记为a 1,a 2,b 1,b 2,b 3.从5人中随机抽取3人,有(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,b 3),(a 1,b 1,b 2),(a 1,b 1,b 3),(a 1,b 2,b 3),(a 2,b 1,b 2),(a 2,b 1,b 3),(a 2,b 2,b 3),(b 1,b 2,b 3),共10个基本事件,其中第2组恰好抽到2人,包含(a 1,b 1,b 2),(a 1,b 1,b 3),(a 1,b 2,b 3),(a 2,b 1,b 2),(a 2,b 1,b 3),(a 2,b 2,b 3),共6个基本事件.从而第2组恰好抽到2人的概率为610=35.2.(2019·吉林三调)“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,在交通拥堵不严重的A 城市和交通拥堵严重的B 城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图所示.(1)根据茎叶图,比较两城市满意度评分的平均值的大小及方差的大小(不要求计算出具体值,给出结论即可);(2)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据样本完成2×2列联表,并据此分析是否有95%的把握认为城市拥堵与认可共享单车有关;A 城市B 城市总计 认可 不认可 总计(3)在A ,B 城市对此种交通方式“认可”的用户中按照分层抽样的方法抽取6人,若在此6人中推荐2人参加“单车维护”志愿活动,求A 城市中至少有1人的概率.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .P (K 2≥k 0)0.10 0.05 0.025 0.010 0.005 0.001 k 02.7063.8415.0246.6357.87910.828解:(1)由茎叶图可得,A 城市评分的平均值小于B 城市评分的平均值;A 城市评分的方差大于B 城市评分的方差.(2)由题意可得2×2列联表如下:A 城市B 城市总计 认可 5 10 15 不认可 15 10 25 总计202040故K 2=40×(5×10-10×15)220×20×15×25≈2.667<3.841,所以没有95%的把握认为城市拥堵与认可共享单车有关.(3)由题意得在A 城市抽取55+10×6=2人,设为x ,y ;在B 城市抽取105+10×6=4人,设为a ,b ,c ,d .则从6人中推荐2人的所有基本事件有(x ,y ),(x ,a ),(x ,b ),(x ,c ),(x ,d ),(y ,a ),(y ,b ),(y ,c ),(y ,d ),(a ,b ),(a ,c ),(a ,d ),(b ,c ),(b ,d ),(c ,d ),共15个.设“A 城市中至少有1人”为事件M ,则事件M 包含的基本事件有(x ,y ),(x ,a ),(x ,b ),(x ,c ),(x ,d ),(y ,a ),(y ,b ),(y ,c ),(y ,d ),共9个.由古典概型概率计算公式可得P (M )=915=35,故A 城市中至少有1人的概率为35.3.(2020届高三·深圳调研)某网店经销某商品,为了解该商品的月销量y (单位:千件)与当月售价x (单位:元/件)之间的关系,收集了5组数据进行了初步处理,得到如下表:(1)统计学中用相关系数r 来衡量两个变量之间线性相关关系的强弱,若|r |∈[0.75,1],则认为相关性很强;若|r |∈[0.3,0.75),则认为相关性一般;若|r |∈[0,0.25],则认为相关性较弱.请计算相关系数r ,并说明y 与x 之间的线性相关关系的强弱(精确到0.01);(2)求y 关于x 的线性回归方程;(3)根据(2)中的线性回归方程,估计当售价x 定为多少时,月销售金额最大?(月销售金额=月销售量×当月售价)附注:参考数据:165≈12.85.参考公式:相关系数r =∑i =1n(x i -x )(y i -y)∑i =1n(x i -x)2∑i =1n(y i -y)2,线性回归方程y ^=b ^x +a ^中,b ^=∑i =1n(x i -x )(y i -y)∑i =1n(x i -x)2,a ^=y -b ^x .解:(1)由表中数据和附注中的参考数据得,x =7,y =5,∑i =15(x i -x )2=10,∑i =15(y i -y )2=16.5.∑i =15(x i -x )(y i -y )=-12.5,r ≈-12.510×16.5≈-0.97.因为|r |≈|-0.97|∈[0.75,1], 所以说明y 与x 的线性相关关系很强.(2)由(1)可知b ^=∑i =1n(x i -x )(y i -y)∑i =1n(x i -x)2=-12.510=-1.25,∴a ^=y -b ^x =5-(-1.25)×7=13.75, ∴y ^=-1.25x +13.75.(3)由题意可知,月销售额的预报值z ^=1 000·y ^·x =-1 250x 2+13 750x (元)或者z ^=y ^·x =-1.25x 2+13.75x (千元).则当x =5.5时,z ^取到最大值,∴该店主将售价定为5.5元/件时,可使网店的月销售额最大.4.(2019·河南名校联考)随着智能手机的普及,手机计步软件迅速流行开来,这类软件能自动记载每个人每日健步的步数,从而为科学健身提供一定的帮助.某市工会为了解该市市民每日健步走的情况,从本市市民中随机抽取了2 000名市民(其中不超过40岁的市民恰好有1 000名),利用手机计步软件统计了他们某天健步的步数,并将样本数据分为[3,5),[5,7),[7,9),[9,11),[11,13),[13,15),[15,17),[17,19),[19,21]九组(单位:千步),将抽取的不超过40岁的市民的样本数据绘制成频率分布直方图如图,将40岁以上的市民的样本数据绘制成频数分布表如下,并利用该样本的频率分布估计总体的概率分布.(1)现规定,日健步步数不低于13 000步的为“健步达人”,填写下面列联表,并根据列联表判断能否有99.9%的把握认为是不是“健步达人”与年龄有关;健步达人非健步达人总计 40岁以上的市民 不超过40岁的市民总计(2)利用样本平均数和中位数估计该市不超过40岁的市民日健步步数(单位:千步)的平均数和中位数;(3)若日健步步数落在区间(x -2s ,x +2s )内,则可认为该市民“运动适量”,其中x ,s 分别为样本平均数和样本标准差,计算可求得频率分布直方图中数据的标准差s 约为3.64.若一市民某天的健步步数为2万步,试判断该市民这天是否“运动适量”.参考公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .参考数据:P (K 2≥k 0)0.15 0.10 0.05 0.025 0.010 0.001 k 02.0722.7063.8415.0246.63510.828解:(1)列联表为健步达人 非健步达人总计 40岁以上的市民 520 480 1 000 不超过40岁的市民400 600 1 000 总计9201 0802 000则K 2=2 000×(520×600-480×400)2920×1 080×1 000×1 000≈29>10.828,所以有99.9%的把握认为是不是“健步达人”与年龄有关.(2)样本平均数为x =4×0.04+6×0.06+8×0.1+10×0.1+12×0.3+14×0.2+16×0.1+18×0.08+20×0.02=12.16.由前4组的频率之和为0.04+0.06+0.10+0.10=0.30,前5组的频率之和为0.30+0.30=0.6,知样本中位数落在第5组,设样本中位数为t ,则(t -11)×0.15=0.5-0.3,解得t =373,故可以估计,该市不超过40岁的市民日健步步数的平均数为12.16,中位数为373. (3)因为(x -2s ,x +2s )=(4.88,19.44), 所以可据此判断该市民这天“运动不适量”.。