(整理)3D显示技术全面解析
三维立体显示技术
对观察者头部旳位置和观察角度有较严格旳限制 ;
不能显示或只能显示很有限旳运动视差图片 ;
水平辨别率损失,画面亮度较低 。
研究方向
更精确旳深度图;
区域移动补点研究 ;
运动视差图像旳研究 ;
新型构造和器件旳研究 。
返回
集成显示技术(Integral Imaging )
• 集成显示技术又称全景显示,于 1923年由 Lippmann发明。
体显示:G体像素
T体像素;
自动立体显示:到达上K旳可视区域;
MEMS器件在三维立体显示中旳应用;
全运动视差旳实现;
谢谢各位老师同学, 请提出宝贵意见。
被动发光旋转扫描体显示系统
Felix3D三维显示系统
可显示物体旳体像素数目10k。
被动发光旋转扫描体显示系统
Perspecta 3d显示屏
辨别率:768*768*192; 色彩格式:24bit RGB; 旋转屏转速:730rad; 体像素数:100M; 帧频:2409FPS; 接口数据率:4.68GB; 显示范围:10英寸; 可视角度:360°。
静态体三维显示技术
基于空间等离子体旳三维显示技术
静态体三维显示技术
DepthCube三维显示系统
体三维显示系统
最新进展
南加州大学研制旳三维显示系统
体三维显示系统
南加州大学研制旳三维显示系统旳 创新之处:
使用与水平成45度旳旋转镜来替代平面漫反射屏幕 。 研制了基于DLP旳帧频可高达5000fps旳超高速彩色投影机
体三维显示系统旳分类
目前,体三维显示系统从显示空间旳形成上划分可分为两
类:
•主动发光旋转扫描体 三维显示
•螺旋屏
3d显示原理
3d显示原理
3D显示原理是指通过技术手段模拟人眼对物体深度感知的能力,使平面画面立体化的过程。
一般来说,3D显示技术可分为以下几种类型:
1. 眼镜式3D显示技术
这种技术需要观众佩戴特制的3D眼镜,其中左眼和右眼的视角有所不同,使得观众可以感受到立体效果。
这种技术主要有红蓝、偏振和活性式等不同的实现方式。
2. 自动视差3D显示技术
这种技术利用了人眼对视差的敏感度,通过控制不同区域对应的视差,使得观众可以感受到立体效果。
这种技术主要有亮度差异、颜色差异等不同实现方式。
3. 光栅式3D显示技术
这种技术利用了光栅在人眼中产生的扭曲效应,通过控制光栅的形状和运动,使得观众可以感受到立体效果。
这种技术主要有交叉式、线条式等不同实现方式。
总的来说,不同的3D显示技术都是通过模拟人眼的深度感知机制,从而实现平面画面的立体化。
未来,随着技术的不断进步,3D
显示技术将会更加完善和普及。
- 1 -。
3d 显示 原理
3d 显示原理
3D显示原理是通过在屏幕上创建一种立体效果,使画面看起来具有深度和逼真感。
它基于人眼的立体视觉原理,利用左右眼分别接收到的略有差异的图像来产生立体感。
首先,3D显示技术需要一个特殊的屏幕。
这种屏幕通常是采用了透镜或者劈棱镜的材料制成,能够将左眼和右眼的图像分别传递到观察者的眼睛中。
接下来,图像数据会通过电子信号传递给显示屏。
同传统2D 显示不同,3D显示需要两个图像,一个是左眼图像,一个是右眼图像。
因此,显示屏会在同一时间将两个图像显示出来,每个图像占据屏幕的一半。
当观察者戴上特殊的眼镜,比如红蓝或偏振眼镜时,左眼只能看到屏幕上的左图像,右眼只能看到右图像。
这种眼镜会过滤掉相应眼睛不应看到的图像,确保每只眼睛只能接收到特定的图像。
这时,观察者的大脑会将两只眼睛接收到的图像进行组合,并确定物体在空间中的位置。
由于左眼和右眼接收到的图像略有差异,大脑会根据这种差异来感知物体的深度和距离。
总结起来,3D显示的原理就是通过将左眼和右眼的图像分离并在观察者的眼睛分别显示,利用人眼和大脑的合作来产生立体效果。
这种技术使得观众能够感受到物体的立体感,提供更加逼真、沉浸的视觉体验。
3dled显示屏原理
3dled显示屏原理3D LED显示屏原理引言:随着技术的不断进步,3D LED显示屏已经成为现代社会中不可或缺的一部分。
它不仅广泛应用于户外广告牌、体育场馆、舞台演出等领域,还逐渐进入到家庭娱乐和教育等领域。
本文将介绍3D LED显示屏的原理,从硬件和软件两个方面进行详细阐述。
一、硬件原理1. LED基础LED(Light Emitting Diode)即发光二极管,是一种能够将电能转化为光能的电子器件。
它由P型半导体和N型半导体组成,当施加正向电压时,电子会从N型半导体向P型半导体流动,当电子与空穴相遇时,会发生复合,释放出能量,产生可见光。
2. 3D技术3D技术是指根据人眼的视觉特点,通过给左右眼分别显示不同的图像,使观众产生立体效果的一种显示技术。
常用的3D技术包括被动式和主动式两种。
在3D LED显示屏中,一般采用被动式3D技术,即通过左右眼分别观看不同的图像。
3. 空间分布技术为了实现3D效果,3D LED显示屏通常采用的是空间分布技术。
具体来说,LED显示屏的像素点会根据一定的规律进行排列,从而形成左右眼分别观看的图像。
一般情况下,左眼看到的图像被放置在偶数列,右眼看到的图像被放置在奇数列,通过这种空间分布,观众就能够获得立体的视觉效果。
二、软件原理1. 3D图像处理在3D LED显示屏中,为了显示出立体效果的图像,需要进行3D 图像处理。
首先,需要获取原始的3D图像,然后通过算法将其分割为左右眼分别观看的图像。
接下来,使用图像处理技术对分割后的图像进行相应的调整,以保证在3D LED显示屏上呈现出最佳的效果。
2. 数据传输为了将经过处理后的图像传输到3D LED显示屏上,需要使用特定的数据传输协议。
常用的协议包括HDMI、DVI等,这些协议能够保证图像的高清传输,并且支持3D效果的显示。
同时,为了保证图像的流畅播放,还需要合理设置数据传输的带宽和速率。
3. 控制系统3D LED显示屏的控制系统起着至关重要的作用。
3d视觉技术的原理和应用有哪些
3D视觉技术的原理和应用有哪些1. 前言3D视觉技术是一种能够使图像或视频以立体感显示的技术,它通过模拟人眼的视觉机制,使观察者感受到真实的三维空间。
本文将介绍3D视觉技术的原理以及其在不同领域的应用。
2. 原理2.1 距离感知原理3D视觉技术最核心的原理是通过模拟人眼的视觉机制来感知物体的距离和深度。
人眼通过两只眼睛的视差效应来感知物体的远近,这种效应是指当物体离眼睛越近时,两只眼睛看到的图像差异就越大。
基于这个原理,3D视觉技术通过给观察者提供两个视角的图像,再结合适当的技术手段,使观察者感受到物体的远近和深度。
2.2 感知效果原理除了距离感知,3D视觉技术还依赖于其他视觉效果,如立体感和运动感。
立体感是指物体在三维空间中的真实感,通过透视原理和真实纹理来实现。
运动感是指物体在三维空间中的动态表现,通过快速切换图像来实现。
综合利用距离感知、立体感和运动感等原理,3D视觉技术能够创造出逼真的立体效果,使观察者获得沉浸式的视觉体验。
3. 应用领域3.1 电影和娱乐3D视觉技术在电影和娱乐领域有着广泛的应用。
当观众配戴3D眼镜观看电影时,画面中的场景和角色会以立体感呈现,给人一种身临其境的感觉。
此外,游戏和虚拟现实技术也采用了3D视觉技术,使玩家可以沉浸在虚拟世界中。
3.2 工业设计和制造在工业设计和制造中,3D视觉技术可以帮助设计师和制造商更好地展示产品原型和模型。
通过使用3D建模和渲染技术,设计师可以创建逼真的产品模型,并通过3D视觉技术向客户展示产品的外观和功能。
3.3 医学和生物科技在医学和生物科技领域,3D视觉技术被广泛应用于医学影像学、手术模拟和生物分析。
医生和研究人员可以通过3D视觉技术获得更清晰、更准确的医学影像,进一步诊断疾病和进行手术规划。
此外,生物科技领域也可以使用3D视觉技术对生物分子、细胞和组织进行可视化分析。
3.4 建筑和房地产在建筑和房地产领域,3D视觉技术常用于建筑设计的可视化和室内外环境的模拟。
三维显示技术介绍
三维显示技术介绍目前的三维立体显示技术共可以分为分光立体眼镜 (Glasses-based Stereoscopic)、自动分光立体显示 (Autostereoscopic Displays)、全息术 (Hologram)和体三维显示(V olumetric 3-D Display)4大类。
其中的前两类应该都是大家很熟悉的技术了,它们都采用了视差的方式来给人以3D显示的感觉:分别为左眼和右眼显示稍有差别的图像,从而欺骗大脑,令观察者产生3D的感觉。
由于人为制造视差的方式所构造的3D景象并不自然,它加重了观察者的脑力负担,因此看久了会令人头痛。
而全息术则利用的并不是数字化的手段,而是光波的干涉和衍射,它一般只能生成静态的三维光学场景,并且对观察角度还有要求,所以就目前而言,它对于人机交互应用而言还并不适合。
体三维显示则与前三者不同,它是真正能够实现动态效果的3D技术,它可以让你看到科幻电影中一般“悬浮”在半空中的三维透视图像。
体三维显示技术目前大体可分为扫描体显示 (Swept-V olume Display)和固态体显示 (Solid-V olume Display)两种。
其中,前者的代表作是Felix3D和Perspecta,而后者的代表作则名为DepthCube。
Felix3D拥有一个很直观的结构框架,它是一个基于螺旋面的旋转结构,如下图所示,一个马达带动一个螺旋面高速旋转,然后由R/G/B三束激光会聚成一束色度光线经过光学定位系统打在螺旋面上,产生一个彩色亮点,当旋转速度足够快时,螺旋面看上去变得透明了,而这个亮点则仿佛是悬浮在空中一样,成为了一个体象素(空间象素,V oxel),多个这样的voxel便能构成一个体直线、体面,直到构成一个3D物体,过程很直观,不是么?Perspecta可能是扫描体3D显示领域最令人瞩目的成就了,它采用的是一种柱面轴心旋转外加空间投影的结构,如下图所示,与Felix3D不同,它的旋转结构更简单,就一个由马达带动的直立投影屏,这个屏的旋转频率可高达730rpm,它由很薄的半透明塑料做成。
3D技术的原理
3D技术的原理3D技术是指通过模拟真实世界的三维空间,并以此为基础创建虚拟对象或场景的技术。
它主要通过感知和模拟人眼视觉机制来实现。
3D技术在许多领域得到应用,如电影、游戏、建筑设计等。
下面将详细介绍3D技术的原理。
一、人眼视觉机制要理解3D技术的原理,我们首先需要了解人眼的视觉机制。
人眼通过两只眼睛同时观察物体,每只眼睛看到的画面略有不同。
这种略微的差异通过大脑进行处理,从而让我们感知到深度和立体效果。
二、立体成像原理3D技术就是利用立体成像原理来模拟这种人眼立体视觉效果。
立体成像可以分为主动式和被动式两种方式。
1. 主动式立体成像主动式立体成像是指通过特殊的眼镜或其他装置来实现立体效果。
这种方法要求观众佩戴特殊的眼镜,其中一只眼镜会屏蔽或过滤掉画面中的特定部分。
当观众通过这种眼镜观看画面时,两只眼睛会看到不同的画面,从而产生立体效果。
常见的主动式立体成像技术包括偏振成像、快门式成像和红蓝绿成像。
其中,偏振成像是利用偏光片来过滤不同方向的光线,使得观众通过左眼和右眼看到的画面有所差异;快门式成像是通过快速切换显示左右两个画面的方式,要求观众佩戴配对眼镜,左眼只能看到左画面,右眼只能看到右画面;红蓝绿成像则是通过过滤红色、蓝色和绿色光线的方式,使得观众通过左右眼分别看到不同颜色的画面。
2. 被动式立体成像被动式立体成像是指无需佩戴特殊眼镜,通过分别投射不同图像给左右眼来实现立体效果。
常见的被动式立体成像技术有自动立体成像和云台立体成像。
自动立体成像是利用特殊的光栅片或面板将左右眼的图像进行分离并分别投射给左右眼。
观众无需佩戴任何眼镜,就可以通过裸眼观看画面,获得立体效果。
云台立体成像是通过将左右眼的图像投射到偏振滤光器上,观众佩戴带有偏振滤光器的眼镜,通过不同的滤光器过滤掉其中的一种偏振光,从而实现不同眼睛看到不同的画面。
这种技术多用于电影院等特定场合。
三、3D建模和渲染除了立体成像之外,3D技术还需要进行3D建模和渲染。
详解主动3D、被动3D、裸眼3D技术特点
详解主动3D、被动3D、裸眼3D技术特点详解主动3D、被动3D、裸眼3D技术特点实现3D效果分三种,一是主动式3D技术,二是被动式3D技术,三是技术。
(1)主动式3D主动式3D的先决条件首先是需要本身就带有3D功能,且观看者需要配戴主动式3D立体眼镜。
主动式3D主要是通过提高画面的刷新率来实现3D效果的,通过把图像按帧一分为二,形成对应左眼和右眼的两组画面,连续交错显示出来,同时红外信号发射器将同步控制快门式3D眼镜的左右镜片开关,使左、右双眼能够在正确的时刻看到相应画面,让观众看到3D 的立体效果。
主动式3D优点:◆画面残影少、3D效果突出。
◆实现相对较容易,屏幕成本低。
◆设备一次性投入相对低。
主动式3D缺点:◆主动式3D价格比普通高。
◆主动式3D眼镜价格偏高,每幅大概在200、300元左右,并且眼镜是需要充电的,镜片每秒各要开合50/60次,即使是如此快速,用户眼镜仍然是可以感觉得到,如果长时间观看,眼球的负担将会增加。
◆亮度大大折扣,带上这种加入黑膜的3D眼镜以后,每只眼睛实际上只能得到一半的光,因此主动式快门看出去,就好像戴了墨镜看电视一样,并且眼镜很容易疲劳。
◆角度倾斜时得不到3D画面。
(2)被动式3D被动式3D就是用两台仪实现,分别播放左右眼的片源,并且在仪前加上偏振片或者红绿、红蓝的玻璃等,配合合适的眼镜,从而使左右眼只能分别看到各自的片源,而达到3D 效果,这种眼镜就相对便宜了,红绿眼镜也就几十元。
被动式3D优点:◆3D眼镜价格相对便宜,长时间配戴没有疲劳感,不用充电。
◆可视角度大,亮度好。
被动式3D缺点:◆设备一次性投入高,单个画面需要用两台实现双击叠加,如果画面大则实现技术难度增大。
◆对屏幕增益要求很高,目前市面上的屏幕能实现3D效果的只有高金属的硬幕或者软幕。
(3)祼眼3D技术,也就是不通过任何工具就让左右两只眼睛从显示屏幕上看到两幅具有视差、有所区别的画面,将他们发射到大脑,人就会产生立体感。
3D电视的原理与技术
3D电视原理与技术一.立体电视的发展1.3D成像技术的发展随着科技的发展,人民生活水准的提高,3D电视的普及必将是一个不可阻挡的历史趋势。
正如时代华纳公司的副总裁艾尔沃斯所言,3D将是下一个电视圈盛事。
3D电视节目以更加多元化、更具真实感的内容必将吸引更多的观众。
拍下最早3D照片的立体镜最早的3D电影3D影像原理,最早是1839年由英国科学家温特斯顿发现的。
人的两眼间距约5公分,看任何物体时,两只眼睛的角度不尽相同,即存在两个视角。
要证明这点很简单,请举起右手,做“阿弥陀佛”姿势,将拇指紧贴鼻尖,其余四指抵住眉心。
闭上左眼,只见手背不见手心;而闭上右眼则恰恰相反。
这种细微的角度差别经由视网膜传至大脑里,就能区分出景物的前后远近,进而产生强烈的立体感。
这就是3D的秘密———“偏光原理”。
并于1922年,世界上第一部3D电影《爱情的力量》诞生了,遗憾的是,影片很早之前就已经遗失了。
MJ主演的3D影片3D巨作《阿凡达》80年代中期,IMAX开始制作首部3D纪实片。
1986年,迪士尼主题公园和环球影城上映了迈克尔杰克逊的3D影片。
2008年,日本有线BS 11频道开始播送3D节目,3D高清电视业务进入实用化。
2009年耗资5亿美元的电影巨作《阿凡达》同时以2D、3D、3D IMAX等多种版本在全球公映。
2010年,天空传媒开办3D电视频道。
2010年,ESPN开设3D体育频道,一年内进行85项赛事的3D转播。
2010年6月,南非世界杯称为史上首次进行3D转播的世界杯比赛。
2012年1月,由央视牵头,联合多家电视台开办的国内首个3D电视试验频道正式开始播出节目。
国内首个3D频道3D成像技术发展史从1890年第一份3D电影的专利的出现,到现在的上百年间里,3D技术逐渐发展壮大,已经受到越来越多人的欢迎。
索尼公司预计,2014年所生产的一般的电视都将会支持3D模式。
2010年,3D电视浪潮开始席卷全球。
从最初的3D 科幻电影《阿凡达》引爆,到年初的美国电子展,各大彩电厂家竞相亮相3D电视,再到年中的世界杯和近期的3D亚运营销,彩电厂家们各显神通上演3D电视的大战,可以把2010年定义为“3D电视元年”。
3d显示屏原理
3d显示屏原理3D显示屏原理引言:在现代科技发展的今天,3D显示技术已经逐渐成为人们生活中不可或缺的一部分。
无论是电影院还是电视机,我们都可以看到栩栩如生的3D影像。
那么,3D显示屏背后的原理是什么呢?一、3D显示屏的基本原理3D显示屏的基本原理是通过在屏幕上投射出两个不同的图像,让人眼产生立体感。
这需要借助于特殊的技术和装置来实现。
二、立体成像原理立体成像是3D显示屏最核心的部分,它是实现立体感的关键。
立体成像原理主要有两种:主动式和被动式。
1. 主动式立体成像原理主动式立体成像利用特殊的眼镜,通过快速切换屏幕上两个不同图像的显示,使每只眼睛只能看到其中一个图像。
在眼镜上有一个快速切换的装置,配合屏幕上的两个图像切换,以达到立体效果。
常见的主动式3D显示技术有LCD分屏和快速液晶切换技术。
2. 被动式立体成像原理被动式立体成像主要是利用特殊的滤光器,将屏幕上的两个图像分别投射到左右眼上。
被动式3D显示技术主要有偏振光技术和交错扫描技术。
其中,偏振光技术是通过屏幕上的特殊偏振滤光器,将左右眼的图像分别偏振,再通过佩戴特殊的偏振眼镜,使每只眼睛只能看到对应偏振方向的图像,从而产生立体效果。
交错扫描技术则是通过屏幕上的特殊线条或格子结构,将左右眼的图像分别交错显示,再通过佩戴特殊的眼镜,使每只眼睛只能看到对应的图像,从而产生立体效果。
三、3D显示屏的应用3D显示屏的应用非常广泛,在电影院、电视机、游戏设备等等领域都有涉及。
1. 电影院在电影院中,3D显示屏可以给观众带来更加真实的观影体验。
观众可以通过佩戴特殊的3D眼镜,享受到电影中栩栩如生的立体画面和身临其境的感觉。
2. 电视机3D显示技术已经逐渐应用到家庭电视机上。
通过佩戴3D眼镜,观众可以在家中享受到电影院般的3D观影体验,更加真实地感受到影像的立体效果。
3. 游戏设备游戏设备中的3D显示屏可以让玩家更加沉浸在游戏世界中。
玩家可以透过屏幕看到游戏中真实的立体画面,增强游戏的乐趣和体验感。
3D立体显示技术的研究与应用
3D立体显示技术的研究与应用随着科技的不断发展,3D立体显示技术已经成为互联网发展中的一个热门领域,越来越多的人们将其应用于娱乐、教育、医疗等领域。
3D立体显示技术的应用涵盖面广,成为了各行各业竞相探索的领域,由此发展起了一个完整的产业链。
本文将介绍3D立体显示技术的研究与应用。
一、3D立体显示技术的发展历程3D立体显示技术的源起可以追溯到19世纪50年代,最初主要应用于印刷、摄影等领域。
20世纪80年代,3D技术得到了巨大的发展,电影、游戏、广告等行业开始采用3D技术,开启了3D技术在娱乐领域的广泛应用。
随着经济社会的不断发展,3D立体显示技术的应用领域不断扩大,进入了医疗、教育、智能交互等多个领域,而且一些公司也在不断尝试将3D技术与实际生产和生活融合。
二、3D立体显示技术的原理3D立体显示技术主要是基于视差原理实现的。
我们生活中所见到的物体就是以双眼观察到的不同视角融合后的图像。
3D立体显示技术就是将双眼观看的图像通过特殊的技术分别传递到左右眼,然后两幅图像在人的大脑中形成一个立体效果,从而突破平面的视觉显示效果,形成一种立体的效果。
三、3D立体显示技术的应用1、娱乐领域电影、游戏、VR等娱乐领域是3D立体显示技术最为广泛的应用领域之一。
电影作为传统的应用领域,3D电影也受到越来越多的观众欢迎。
3D电影依靠特殊的眼镜,将左右两侧影像投射在大银幕上,使观众感受到真实的立体感。
同时,随着VR技术的不断完善,将3D立体显示技术应用于游戏和VR已经不再成为梦想。
2、医疗领域3D立体显示技术在医学领域也具有广泛的应用前景。
3D打印技术通过扫描患者身体的CT或MRI扫描结果,将其转化为3D模型,再通过3D打印技术处理出病灶的立体模型,使医生可以更直观地进行手术操作,提高手术成功率,减少手术时间和难度,并能提高患者的治疗体验。
3、教育领域3D立体显示技术也是教育领域的一个重要应用方向。
在生物、地理、历史等学科中应用3D打印技术,可以将抽象的概念物体化,让学生更加直观地感受学科内容。
3d全息显示原理
3d全息显示原理3D全息显示是指通过透视原理,将物体的三维立体形象以全息形式呈现在观察者面前的一种显示技术。
与传统二维显示技术相比,3D全息显示能够提供更加真实、逼真的观察体验。
下面将详细介绍3D全息显示的原理。
首先,我们需要了解全息的基本概念。
全息是指根据物体结构的特点,通过一种光学记录过程,将物体的全部信息保存在一张特殊的全息照片中,包括物体的形状、颜色、纹理等。
通过观察这张全息照片,我们可以感受到被记录物体的三维立体效果。
在3D全息显示中,最常用的记录过程是利用激光作为光源,将物体反射的光和同步引入的参考光交叉干涉,形成了全息照片。
具体步骤如下:1.激光记录:首先,利用激光器发射一束单色强度均匀的激光光束,作为全息图的光源。
这束激光光束经过透镜系统的聚焦后,照射到待记录物体的表面。
物体上的微小波纹结构通过反射激光光束,形成了物体的图像信息。
2.参考光束:同时,一部分激光光束被分离出来,作为参考光束。
这个光束经过准直和扩束后,与物体反射的光束相干叠加。
3.干涉记录:物体反射的光束和参考光束在全息板上交叉干涉。
全息板是一种具有高频率光学覆盖层的透明介质,可以将交叉干涉产生的干涉花样保留下来。
全息板上的每个像素都代表了物体表面一个微小区域的光学特征。
4.显示:全息板被照射时,根据横向和纵向的扩展参数,整个全息图像会被立体再现出来。
观察者可以从各个角度观察到物体的真实三维形象。
此时,光源可以是一束激光光束,也可以是一束白光,以产生彩色的3D 全息图像。
在3D全息显示中,为了提高全息图像的清晰度和亮度,还需要借助衍射光学和光学信息处理技术。
衍射光学可以通过改变全息板的参数来调整光束的方向和形状,以获得更好的观察效果。
光学信息处理技术可以对全息图像进行数字化处理,进一步提高显示效果。
未来,随着科技的不断进步,3D全息显示技术将会得到更广泛的应用。
例如,全息显示可以应用于医学图像、建筑设计、虚拟现实等领域,为人们提供更加真实、逼真的观察体验。
三维显示技术介绍
三维显示技术介绍目前的三维立体显示技术共可以分为分光立体眼镜 (Glasses-based Stereoscopic)、自动分光立体显示 (Autostereoscopic Displays)、全息术 (Hologram)和体三维显示(V olumetric 3-D Display)4大类。
其中的前两类应该都是大家很熟悉的技术了,它们都采用了视差的方式来给人以3D显示的感觉:分别为左眼和右眼显示稍有差别的图像,从而欺骗大脑,令观察者产生3D的感觉。
由于人为制造视差的方式所构造的3D景象并不自然,它加重了观察者的脑力负担,因此看久了会令人头痛。
而全息术则利用的并不是数字化的手段,而是光波的干涉和衍射,它一般只能生成静态的三维光学场景,并且对观察角度还有要求,所以就目前而言,它对于人机交互应用而言还并不适合。
体三维显示则与前三者不同,它是真正能够实现动态效果的3D技术,它可以让你看到科幻电影中一般“悬浮”在半空中的三维透视图像。
体三维显示技术目前大体可分为扫描体显示 (Swept-V olume Display)和固态体显示 (Solid-V olume Display)两种。
其中,前者的代表作是Felix3D和Perspecta,而后者的代表作则名为DepthCube。
Felix3D拥有一个很直观的结构框架,它是一个基于螺旋面的旋转结构,如下图所示,一个马达带动一个螺旋面高速旋转,然后由R/G/B三束激光会聚成一束色度光线经过光学定位系统打在螺旋面上,产生一个彩色亮点,当旋转速度足够快时,螺旋面看上去变得透明了,而这个亮点则仿佛是悬浮在空中一样,成为了一个体象素(空间象素,V oxel),多个这样的voxel便能构成一个体直线、体面,直到构成一个3D物体,过程很直观,不是么?Perspecta可能是扫描体3D显示领域最令人瞩目的成就了,它采用的是一种柱面轴心旋转外加空间投影的结构,如下图所示,与Felix3D不同,它的旋转结构更简单,就一个由马达带动的直立投影屏,这个屏的旋转频率可高达730rpm,它由很薄的半透明塑料做成。
3D显示器技术简介
缺點
特殊材料
LC Shutter Glasses 、120Hz系統、高速 GPU、Dual-link DVI 1.6X LCD監視器、NB 、 LCD TV
成本乘數 應用
南亞導入3D產品以開發液晶快門眼鏡及投影機液晶光閘產品最合適。
3D液晶光閘產品規格
項次 1 2 3 4 5 6 項目 Frame frequency Reflash Shutter Tr Tf NLK(三星) 120Hz 240Hz 60Hz 120Hz 0.3ms 3.5ms 4um 9v 40% 300 0° 7 視角 (Deg) 25 0.3ms 1.7ms 2um 10v 70% 1000 40 愛爾得 240Hz 120Hz 0.3ms 1.7ms 2um 10v 35% 1000 — 台達電(#174) 120 Hz 60Hz 1ms 2.5ms 4um 20v 90% (無偏光片) — —
•1.空間多工平面裸眼立體顯示系統: 視差遮蔽立體顯示 (Parallax Barrier) 柱狀透鏡立體顯示(Lenticular Lens) •2.時間多工平面裸眼立體顯示系統: 指向性背光3D膜
24
空間多工顯示系統
25
裸眼式視差屏障 ( Parallax Barrier,光柵式)
• 技術原理: 顯示器同時播放左、右眼影像畫素交叉,再藉由顯示器表面貼附 具柵欄結構的屏障片(Barrier)限制光的行進路線,觀賞者於左、右 眼影像畫素光線集中之設定區域達到立體視覺感受,若觀賞者於 非設定區域會有明顯的畫面干涉(Crosstalk)。
Wheatstone’s Mirror Stereoscope Viewer(1835)
3
3D立體影像原理
3D基础知识介绍PPT课件
2021/3/9
20 20
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
2021/3/9
21
优点:分辨率、透光率方面能保证,不会影响既有的设计架构,3D显示效果出色 缺点:技术尚在开发,产品不成熟
2021/3/9
16
3
主动快门式3D技术介绍
2021/3/9
17
主动快门式3D技术介绍
常见问题
CROSSTALK(鬼影):由于受液晶响应速度的影响,如左眼在观看左眼图像时, 会同时看到上一场残留的部分右眼图像,导致左右眼图像重叠,形成重影, 叫crosstalk,任何基于液晶显示的快门式3D电视都存在crosstalk现象。
2021/3/9
5
实现3D显像的技术概述
三、全息技术:
•全息技术是利用光波的干涉和衍射原理记录并再现物体的真实感的一种成像技术。 •全息技术再现的图像立体感强,具有真实的视觉效应。除用光波产生全息图外, 现在已发展到可用计算机产生全息图,然而需要的计算量极其巨大。 •全息术应该是3D显示的终极解决方案,但目前还有很多技术问题有待解决,短期 内难有成熟产品量产。
优点:与既有的LCD液晶工艺兼容,因此在量产性和成本上较具优势 缺点:画面亮度低,分辨率会随着显示器在同一时间播出影像的增加呈反比降低
2021/3/9
14
裸眼式3D技术
柱状透镜(Lenticular Lens)技术
柱状透镜(Lenticular Lens)技术也被称为双凸透镜或微柱透镜3D技术,其最大 的优势便是其亮度不会受到影响。柱状透镜3D技术的原理是在液晶显示屏的前面加 上一层柱状透镜,使液晶屏的像平面位于透镜的焦平面上,这样在每个柱透镜下面 的图像的像素被分成几个子像素,这样透镜就能以不同的方向投影每个子像素。于 是双眼从不同的角度观看显示屏,就看到不同的子像素。不过像素间的间隙也会被 放大,因此不能简单地叠加子像素。让柱透镜与像素列不是平行的,而是成一定的 角度。这样就可以使每一组子像素重复投射视区,而不是只投射一组视差图像。
立体显示技术介绍
3、立体显示分类
透镜成图像对于大的视场要求高分辨率。对两个视场必须实时显示, 而且图像被切片并放在透镜后面的垂直条中。可显示的视场的数目受 到圆柱透镜聚焦能力不完善性的限制。透镜畸变和光的绕射减少了透 镜方向性,于是由背面屏幕聚焦的图像,不是以平行射线出现,而是 以某种角度散布。这种散布限制了彼此区分的子区域数目。透镜面显 示的另一个关键问题是背部屏幕图像必须对准缝口或透镜,否则子区 域图像将不会导向合适的子区域。
2、3D立体显示技术的原理
人眼的另一种工作方式是注视近处的固定点F。这时两眼的光轴的交 角就是图中的会聚角。因为两眼的光轴都通过点F,所以F点在两个 视图中都在中心点。这时,与F相比距离人眼更远或更近的其他点, 会存在视差。人眼也可以利用这种视差,判断物体的远近,产生深度 感。 目前市场上的3D立体技术的产品主要围绕着裸眼立体和非裸眼立体 两种方式,其中涉及的主要产品有:液晶显示设备、等离子显示设备、 便携式显示终端设备、投影设备等。
3、立体显示分类
切片堆积显示技术
切片堆积方法描绘一个照亮的体积,使物体是透明的,而被遮档的物 体不能消隐。对空间数据集和固体建模问题这可能是理想的。但它不 适于有消隐表面的照片和真实图像。增加头部跟踪就允许消隐表面在 绘制步骤对一个观看者近似地去掉。然而,不是所有表面都可以正确 绘制,因为两眼可能由不同位置观看。
3、立体显示分类
视差挡板显示技术
3、立体显示分类
切片堆积显示技术
切片堆积显示也称为多平面显示。它由多层二维 图像(切片)构成三维体积。正如发光二极管 (LED)的旋转线可以产生平面图像感,LED的 旋转平面可以产生体图像。运动镜面必须以高频 运动很大距离,所以也可以用变焦距镜面。一般 用30Hz声音信号振动反射膜片。在镜面振动时, 聚焦长度改变,反射的监示器在截断的金字塔型 观看体积中形成图像。镜面连续改变其放大率, 使随时间扫描的图像连续改变其深度。
裸眼3D技术原理全解析
裸眼3D技术原理全解析常见的3D显示设备都是需要眼镜的,眼镜的作用就是通过技术手段让左眼看到左图像、右眼看到右图像,根据两幅图像之间微小的视察,就能给人脑模拟出立体的感觉。
裸眼3D要做的就是把眼镜所实现的功能转移到屏幕上,下面就来详细解读。
我们知道3D眼镜有红蓝、快门、偏振这几种技术,而裸眼3D同样分为三种技术:视差屏障、柱状透镜、指向光源。
一.视差障碍:视差屏障技术利用液晶层和偏振膜制造出一系列明暗相间的条纹(视差栅栏)。
在立体显示模式下视差栅栏会被激活,双眼的间距产生的微小视差会导致不透光条纹遮挡左右眼,使得左眼和右眼看到的像素并不相同视差屏障技术与既有的LCD液晶工艺兼容,只在自屏幕表面额外镀一层膜,再对屏幕驱动电路做一些改造与匹配即可,因此在量产性和成本上较具优势,但由于挡光,其画面亮度只有2D屏的1/4。
二.柱状透镜柱状透镜技术的原理是在液晶显示屏的前面加上一层柱状透镜,并使液晶屏的像平面位于透镜的焦平面上,这样柱状透镜就能以不同的方向投影每个子像素。
于是双眼从不同的角度观看显示屏,就看到不同的子像素柱状透镜屛竄右影像F其实柱状透镜技术我们小时候就体验过了,那种从不同角度可以看到不同图案的塑料直尺,他们的原理是基本相同的。
柱状透镜技术的画面亮度基本不受到影响,3D显示效果更好,但其相关制造与现有LC D液晶工艺不兼容,需要投资新的设备和生产线,生产成本比较高。
三.指向光源指向光源3D技术搭配分布在左右两侧的两组不同角度的LED,配合高刷新率的LCD面板和反射棱镜模块,让画面以奇偶帧交错排序方式,分别反射给左右眼。
场序3D显示光学膜指向光源技术中最表层的汇聚透镜与柱状透镜类似,但内层还设有三棱镜、导光板和两组不同的光源,因此结构更加复杂成本也很高,目前还停留在研究室当中。
三种裸眼三D技术总结:视差屏障与柱状透镜技术上类似于偏振式3D眼镜,都是通过将液晶面板的不同区域显示不同内容,然后各自输出给左右眼来实现,也叫空间多功裸眼3D技术。
3D显示技术简介
★★
优点:不需配戴眼镜
缺点:3D 效果差, 难以实现大屏幕
柱状透镜式
3D 电视机 和显示器
★★
优点:不需配戴眼镜
缺点:3D 效果差, 难以实现大屏幕
全息照相
优点:从各个角度观
/
★
看皆可
缺点:不成熟
3D 显示方式对比表
快门式 时 式
快门式 显示 眼眼
驱动信号
左眼 右眼
显示
门
镜
第三章 主流 3D 电视技术对比.......................................................................16 第一节 裸眼式 vs. 眼镜式 ......................................................................16 第二节 主动式 vs. 被动式 ......................................................................18 第三节 PDP vs. LCD ................................................................................19
第二章 主要 3D 显示技术及其原理.................................................................7 第一节 现有 3D 显示方式对比 ..................................................................7 第二节 主动快门式(时分式)原理介绍 .................................................8 第三节 光分式原理介绍 .............................................................................9 第四节 波分式原理介绍 ........................................................................... 11 第五节 色分式原理介绍 ...........................................................................12 第六节 光栅式原理介绍 ...........................................................................13 第七节 全息照相式原理介绍 ...................................................................14
裸眼3D技术原理全解析
常见的3D显示设备都是需要眼镜的,眼镜的作用就是通过技术手段让左眼看到左图像、右眼看到右图像,根据两幅图像之间微小的视察,就能给人脑模拟出立体的感觉。
裸眼3D要做的就是把眼镜所实现的功能转移到屏幕上,下面就来详细解读。
我们知道3D眼镜有红蓝、快门、偏振这几种技术,而裸眼3D同样分为三种技术:视差屏障、柱状透镜、指向光源。
一. 视差障碍:视差屏障技术利用液晶层和偏振膜制造出一系列明暗相间的条纹(视差栅栏)。
在立体显示模式下视差栅栏会被激活,双眼的间距产生的微小视差会导致不透光条纹遮挡左右眼,使得左眼和右眼看到的像素并不相同。
视差屏障技术与既有的液晶工艺兼容,只在自屏幕表面额外镀一层膜,再对屏幕驱动电路做一些改造与匹配即可,因此在量产性和成本上较具优势,但由于挡光,其画面亮度只有2D屏的1/4。
二.柱状透镜柱状透镜技术的原理是在液晶显示屏的前面加上一层柱状透镜,并使液晶屏的像平面位于透镜的焦平面上,这样柱状透镜就能以不同的方向每个子像素。
于是双眼从不同的角度观看显示屏,就看到不同的子像素。
其实柱状透镜技术我们小时候就体验过了,那种从不同角度可以看到不同图案的塑料直尺,他们的原理是基本相同的。
柱状透镜技术的画面亮度基本不受到影响,3D显示效果更好,但其相关制造与现有液晶工艺不兼容,需要投资新的设备和生产线,生产成本比较高。
三.指向光源指向光源3D技术搭配分布在左右两侧的两组不同角度的,配合高刷新率的面板和反射棱镜模块,让画面以奇偶帧交错排序方式,分别反射给左右眼。
指向光源技术中最表层的汇聚透镜与柱状透镜类似,但内层还设有三棱镜、导光板和两组不同的光源,因此结构更加复杂成本也很高,目前还停留在研究室当中。
三种裸眼三D技术总结:视差屏障与柱状透镜技术上类似于偏振式3D眼镜,都是通过将液晶面板的不同区域显示不同内容,然后各自输出给左右眼来实现,也叫空间多功裸眼3D技术。
这种技术的缺点是会牺牲分辨率,如果液晶面板的物理分辨率是1920x1080,那么透过偏振式3D眼镜看到的实际分辨率是1920x540(横向拆分),而视差屏障与柱状透镜裸眼3D的实际分辨率是960x1080(纵向拆分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
未来行业发展趋势 3D显示技术全面解析2009年02月18日 09时09分作者:ZOL 编辑:天雅● 由来已久的3D显示技术在春节后,三星和优派分别结合NVIDIA最新的3D Stereo技术推出了新款3D液晶显示器(请详见《游戏视觉革命优派发布全球首款3D液晶》和《画面有何不同?三星 3D显示器全国首测》),很多网友都开始对这两款3D显示器产生了浓厚的兴趣,并且引发了新一轮3D显示的狂潮。
3D显示器一展出就受到了很多人的关注事实上,3D显示技术并不是第一次和广大消费者见面。
在三星 2233RZ和优派VX2265wm发布之前,已经有不少支持3D显示的设备问世,不过它们和前两者采用的是完全不同的3D显示解决方案。
不少厂商已经推出了3D显示器事实上早在十几年前,3D立体显示技术雏形就已经被开发出来,以达到在2D显示设备上显示3D 立体画面的效果。
在随后的时间内,很多厂商都推出了自己的3D显示解决方案,它们在显示原理以及实际效果上都有很大的区别。
大部分3D技术都需要专用眼镜的辅助在三星和优派分别推出3D显示器后,一部分网友并不以为然,认为它们所使用的3D技术和之前推出的相同。
但事实上并非如此。
接下来,我们就对目前常见的几种3D技术进行介绍,看看各种3D显示技术的优点和存在的问题。
3D显示技术的总体分类早期不论是使用显示器还是电影院中的大屏幕来作为显示设备,人们都需要佩戴特制的专用眼镜才能看到3D立体效果,不过随着技术的不断改进,一些厂商推出了不需要佩戴3D眼镜,就能够观察到立体画面的显示设备,因此总体上,3D显示设备可以分为需要佩戴3D眼镜和不需要佩戴3D眼镜这两大类。
接下来,我们分别按照这两大类技术进行一一介绍,首先我们来看看不需要佩戴专用眼镜的裸眼3D技术。
三星推出的无需佩戴专用眼镜的大尺寸3D显示器目前已经有包括三星在内的多家显示器厂商都推出了免佩戴专业眼镜就能看到3D 立体画面的显示设备,它们最大的优势就是可以人们完全不需要佩戴眼镜就能体验到身临其境的效果。
免专用眼镜3D显示技术成像方式这项技术一般被称为“裸眼多视点”技术,也就是不通过任何工具就能让左右两只眼睛从显示屏幕上看到两幅具有视差的、有所区别的画面,将它们反射到大脑,人就会产生立体感。
它也利用了人眼的视差原理,通过给观看者左右两眼分别送去不同的画面,从而达到立体的视觉效果。
由于观察着可以不佩戴眼镜,因此这些技术非常适合在公共场所展示的大屏幕显示器,便于多人观赏。
不过,裸眼3D显示技术的缺点也非常明显:人们在观看屏幕时,必须位于一定的范围内才能观察到立体画面,若距离屏幕位置太远,或观察角度太大的时候,3D效果并不明显。
此外,若离屏幕距离太紧,人会有明显的头晕现象,因此该技术暂时还不适合在小尺寸显示器上使用。
此外,这种技术在显示效果方面相对较差。
最近,柯达宣布推出了一种新的裸眼3D显示技术,和上文中提到不同的是,柯达发布的这项技术使用了两个高清晰度LCD显示屏的广视域和虚拟影像,这种台式显示器视域范围为45°×36°,分辨率为1280×1024。
不过这种技术用于制作视频游戏、分子和化学模型等许多方面,更加注重专业级用户。
由于显示效果和尺寸上的因素,在目前的3D技术中,绝大多数技术都通过专用3D眼镜的辅助,这样能够将3D技术应用在小尺寸桌面液晶显示器上,并且能够保证3D画面的效果。
● 传统的3D立体电影成像原理相信大多数读者最开始接触立体影像是在电影院中欣赏3D电影。
亲自观看过立体电影的读者都知道,若在观看时把眼镜拿掉,仅使用肉眼来观看,会发现电影画面十分模糊,似乎画面由两个不同的影像所跌价而成,而戴上眼镜之后,这种现象也会消失,这是为何呢?不佩戴3D眼镜时,通常看到的是模糊的画面电影荧幕中的光线透过立体眼镜对光的选择,而分别呈现在人的左眼和右眼中,使人体产生立体影像的感觉。
从技术原理来看,3D立体电影一般采用两种成像原理,一种是红蓝滤光成像技术,这种电影需要搭配专门的红蓝滤色镜才可以观看;而另一种是偏光滤光成像技术,如IMAX电影,它只有使用偏振光眼镜才能看到立体效果。
采用红蓝滤镜的3D眼镜我们现在以偏振光滤光成像技术为例,在拍摄立体影片时,同时使用两台摄影机从不同的角度同时拍摄下景物的图像,在放映时,通过两个加装偏正镜片的放映机,把用两个摄影机拍下的两组胶片同步放映,使这略有差别的两幅图像重叠在银幕上。
电影放映机输出的光线在通过偏振镜片后,就成为了偏振光,而观众使用的偏振光眼镜其实是一个还原过程。
而对于红蓝滤光成像技术而言,该技术不会不受现有影像设备的限制,只要搭配一副红蓝滤色镜就可以体验到3D立体效果。
在播放电影时,实际上是通过插值运算的方法来实现立体效果。
这两项技术更多的出现在电影院等公共场所中。
3D显示器成像原理之前我们介绍的3D原理大多应用于公共场所的展示以及电影院等场合。
除此之外,目前也有不少针对个人显示设备推出的3D技术。
这些技术原理大致相同,总体上分为两大部分:主动3D成像和被动3D成像。
而大多数厂商都采用被动3D成像这一解决方案。
iZ3D推出的3D液晶显示器使用的是被动式3D成像首先我们来看看被动式3D成像的原理,很多桌面级3D显示器都采用的是这种解决方案,原理也大致相同,如iZ3D推出的3D液晶显示器便是如此。
3D影像成像原理从上面的原理图中,我们看到人眼之所以能够看到3D影像,可以简单的理解为影像是通过水平交错、曲折传递到人眼中,再由大脑重新排列组合成3D立体影像的。
3D眼镜则可被看成是偏光膜,在画面通过第一层偏光膜之前,就要对画面进行处理。
而影像的处理,是使用加载在显卡驱动程序内的插件进行调整的。
这种技术只需要一台3D显示器和专用眼镜就能够实现3D画面,不过其游戏分辨率相对而言并不高,并且支持的游戏数量非常有限。
除了上文中所表述的被动式3D显示外,接下来我们介绍主动式3D显示。
三星 2233RZ 和优派VX2265wm都采用的是这种解决方案。
这两款液晶显示器要呈现出3D画面就必须得到NVIDIA 3D Stereo技术的支持。
究竟3D Stereo是一个怎样的技术,为何人们必须在拥有120Hz刷新率的液晶显示器上才能看到3D画面呢?NVIDIA 3D Stereo技术工作原理NVIDIA 3D Stereo技术虽然并没有增加显卡的3D性能,但也不会给显卡带来过多的负担。
通过安装最新的驱动程序,我们就能够在一块NVIDIA GeForce 8600GT或更高级别的显卡上实现这项技术,并且通过NVIDIA专用的3D眼镜观看液晶显示器上的3D画面。
NVIDIA专用的3D眼镜套装和之前3D显示器解决方案相似的是,我们依然需要佩戴专用的3D眼镜才能够看得到3D立体画面。
3D成像说明:左右眼信号频繁切换,通过人体大脑计算形成3D图像NVIDIA 3D Stereo采用的是画面交换(Page Flipping)的方式在2D环境下来实现3D 效果的。
画面交换的工作原理是将左右眼图像交互显示在屏幕上的方式,使用专用的立体眼镜来进行搭配,将垂直同步讯号作为快门切换同步讯号即可达成立体显像的目的。
通过液晶显示器将左右眼图像(以垂直同步讯号分隔的画面)分别传输到左、右眼显示设备上,这样我们就能够看到完整的3D立体画面了。
根据这个特点,我们在不佩戴专用的3D眼镜,或者是遮住其中的一只眼睛时,都不会看到3D的立体效果。
此外,NVIDIA这项技术还支持多个3D眼镜同时工作,这样用户可以和他的亲朋好友来一起同时玩3D游戏。
这个3D解决方案的优点是拥有较好的画面表现效果,并且支持较高的游戏分辨率,和目前大多数3D游戏都拥有很好的兼容性,并且可以随时切换2D和3D画面。
不过缺点是只能使用图形芯片为NVIDIA的显卡和眼镜,才能输出3D画面。
上文所述的是我们常见的3D显示技术。
随着科学技术的不断发展,还有很多厂商都在研发新的3D显示技术,下面,我们就来进行简单的介绍。
● 透镜3D液晶显示技术该技术是由飞利浦和夏普共同创导,其不需要佩戴眼镜,它是利用在液晶的最表层添加了数组透镜,而在这层凸透镜数组上形成影像。
其中每个透镜以液晶像素成一个小的角度摆放,并且对应了7个液晶Cell,每一个液晶像素有3个液晶Cell组成,具备呈现RGB三色的功能,再加上根据特殊的算法,在液晶Cell中形成不同颜色,而最终形成影像,确保让观看者在左、右眼上形成不同的图像,这样就可以看到逼真的三维效果,缺点是如果观看液晶的角度不同,因为Barrier的效果减弱,而无法看到三维效果,而且多焦点影像极易造成眼睛疲劳。
● DFD立体显示技术DFD(Depth-Fused 3D)是日本NTT根据全新的错视原理开发的景深融合型立体影像技术,其利用两片液晶显示器与half mirror,开发不需特殊眼镜就可以观赏的立体影像的技术,这种立体影像制作原理称为REAL。
REAL立体影像的制作过程是先利用一般摄影机、相机、闪光灯摄影等方式拍摄影像,然后取一般摄影与闪光灯摄影拍摄影像灰色度两者的差分,再与一定峰值比较藉此获得二值化(0与1的数字元元化)的影像,接着抽出所谓的近影像领域,最后再将Relief状景深添加至近影像领域内。
被照物景深形状除了球体比较接近真实景深外,其它物体都会出现某种程度的差异,只要近影像与远影像两者前后关系维持正确,且景深为连续性平滑状的话,通常利用肌理描绘(texture)作补正,就可以获得非常协调的立体影像。
三星针对手机设备开发的3D OLED面板● 手机3D显示技术除了桌面显示器外,手机、PDA等掌上设备的显示屏幕也将会采用3D显示技术。
近期,三星为我们展示了一款针对手机设备开发的3D OLED面板。
考虑到便携性,这类手机3D屏幕不会要求人们佩戴专用的3D眼镜。
除了三星外,如东芝等厂商也推出了相关的技术,其原理是通过覆盖在屏幕上的一层特殊的“透镜”实现的。
它可以把小型显示屏中显示的图像“分开”称两幅略微不同的画面,并分别送入左右眼中,让画面变得立体有深度。
由于该“透镜”的厚度极薄,人的肉眼甚至无法直接看到它的存在,不会影响到画面的正常显示。
3D液晶显示器有望占领高端游戏市场除了本文所说的在普通的2D屏幕中实现立体的画面的3D技术外,几年前国外有厂商推出了如地球仪似的球体显示设备,它能够真正显示出立体的3D效果,人们在不同的角度观察,能够看到不同的影像。
不过这种显示设备更多的是用在医学或天文研究中,而不会作为消费类产品进行销售。
随着技术的进步,3D显示技术和普通消费者的距离已经越来越近,它不再是行业用户的专利。
在三星和优派均推出游戏性3D显示器后,人们可以将3D显示器搬到卧室内,而不用和其他人一起挤在电影院中观看。