医药数理统计习题及答案
(完整word版)医药数理统计习题和答案
(完整word版)医药数理统计习题和答案第一套试卷及参考答案一、选择题(40分)1、根据某医院对急性白血病患者构成调查所获得的资料应绘制( B )A 条图B 百分条图或圆图C线图D直方图2、均数和标准差可全面描述 D 资料的特征A 所有分布形式B负偏态分布C正偏态分布D正态分布和近似正态分布3、要评价某市一名5岁男孩的身高是否偏高或偏矮,其统计方法是( A )A 用该市五岁男孩的身高的95%或99%正常值范围来评价B 用身高差别的假设检验来评价C 用身高均数的95%或99%的可信区间来评价D 不能作评价4、比较身高与体重两组数据变异大小宜采用(A )A 变异系数B 方差C 标准差D 四分位间距5、产生均数有抽样误差的根本原因是( A )A.个体差异B. 群体差异C. 样本均数不同D. 总体均数不同6. 男性吸烟率是女性的10倍,该指标为(A )(A)相对比(B)构成比(C)定基比(D)率7、统计推断的内容为( D )A.用样本指标估计相应的总体指标B.检验统计上的“检验假设”C. A和B均不是D. A和B均是8、两样本均数比较用t检验,其目的是检验( C )A两样本均数是否不同B两总体均数是否不同C两个总体均数是否相同D两个样本均数是否相同9、有两个独立随机的样本,样本含量分别为n1和n2,在进行成组设计资料的t检验时,自由度是(D )(A)n1+ n2(B)n1+ n2–1(C)n1+ n2 +1(D)n1+ n2 -210、标准误反映(A )A 抽样误差的大小 B总体参数的波动大小C 重复实验准确度的高低D 数据的离散程度11、最小二乘法是指各实测点到回归直线的 (C)A垂直距离的平方和最小B垂直距离最小C纵向距离的平方和最小D纵向距离最小12、对含有两个随机变量的同一批资料,既作直线回归分析,又作直线相关分析。
令对相关系数检验的t值为tr ,对回归系数检验的t值为tb,二者之间具有什么关系?(C)A tr >tbB tr<t< bdsfid="116" p=""></t<>bC tr= tbD二者大小关系不能肯定13、设配对资料的变量值为x1和x2,则配对资料的秩和检验(D )A分别按x1和x2从小到大编秩B把x1和x2综合从小到大编秩C把x1和x2综合按绝对值从小到大编秩D把x1和x2的差数按绝对值从小到大编秩14、四个样本率作比较,χ2>χ20.05,ν可认为( A )A各总体率不同或不全相同 B各总体率均不相同C各样本率均不相同 D各样本率不同或不全相同15、某学院抽样调查两个年级学生的乙型肝炎表面抗原,其中甲年级调查35人,阳性人数4人;乙年级调查40人,阳性人数8人。
医药数理统计习题答案解析
第一章数据的描述和整理一、学习目的和要求1. 掌握数据的类型及特性;2.掌握定性和定量数据的整理步骤、显示方法;3.掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;4.能理解并熟练掌握样本均值、样本方差的计算;5.了解统计图形和统计表的表示及意义;6. 了解用Excel软件进行统计作图、频数分布表与直方图生成、统计量的计算。
二、内容提要(一)数据的分类(二)常用统计量1、描述集中趋势的统计量2、描述离散程度的统计量3、描述分布形状的统计量* 在分组数据公式中,m i , f i 分别为各组的组中值和观察值出现的频数。
三、综合例题解析例1.证明:各数据观察值与其均值之差的平方和(称为离差平方和)最小,即对任意常数C ,有2211()()n ni ii i x x x C ==-≤-∑∑ 证一:设 21()()ni i f C x C ==-∑由函数极值的求法,对上式求导数,得11()2()22, ()2 n ni i i i f C x C x nC f C n =='''=--=-+=∑∑令 f '(C )=0,得唯一驻点11= ni i C x x n ==∑由于()20f x n ''=>,故当C x =时f (C )y 有最小值,其最小值为21()()ni i f x x x ==-∑。
证二:因为对任意常数C 有22222211111222212()()(2)2(2)()0nn n n nii iii i i i i i ni i xx x C x nx x C x nC nx C x nC n x Cx C n x C ======---=---+=-+-=--+=--≤∑∑∑∑∑∑故有2211()()nni ii i x x x C ==-≤-∑∑。
四、习题一解答1.在某药合成过程中,测得的转化率(%)如下:94.3 92.8 92.7 92.6 93.3 92.9 91.8 92.4 93.4 92.6 92.2 93.0 92.9 92.2 92.4 92.2 92.8 92.4 93.9 92.0 93.5 93.6 93.0 93.0 93.4 94.2 92.8 93.2 92.2 91.8 92.5 93.6 93.9 92.4 91.8 93.8 93.6 92.1 92.0 90.8 (1)取组距为0.5,最低组下限为90.5,试作出频数分布表; (2)作频数直方图和频率折线图;(3)根据频数分布表的分组数据,计算样本均值和样本标准差。
医药数理统计习题答案
第一章数据的描述和整理一、学习目的和要求1. 掌握数据的类型及特性;2.掌握定性和定量数据的整理步骤、显示方法;3.掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;4.能理解并熟练掌握样本均值、样本方差的计算;5.了解统计图形和统计表的表示及意义;6. 了解用软件进行统计作图、频数分布表及直方图生成、统计量的计算。
二、内容提要(一)数据的分类计算各组频数,进行列联表分析、2检验等非参数方法(二)常用统计量1、描述集中趋势的统计量2、描述离散程度的统计量总体方差2总体标准差3、描述分布形状的统计量称性 0时为对称; >0时为正偏或右偏; <0时为负偏或左偏峰度4224)3)(2)(1()1(])([3)()1(S n n n n x x x x n n K i i u -------+=∑∑(原始数据)3)(414--=∑=nS f x mK ki iiu (分组数据)反映数据分布的平峰或尖峰程度 0时为标准正态; >0时为尖峰分布; <0时为扁平分布* 在分组数据公式中,, 分别为各组的组中值和观察值出现的频数。
三、综合例题解析例1.证明:各数据观察值及其均值之差的平方和(称为离差平方和)最小,即对任意常数C ,有2211()()nnii i i xx x C ==-≤-∑∑证一:设 由函数极值的求法,对上式求导数,得11()2()22, ()2 nni i i i f C x C x nC f C n =='''=--=-+=∑∑令 f (C )=0,得唯一驻点由于()20f x n ''=>,故当C x =时f (C )y 有最小值,其最小值为。
证二:因为对任意常数C 有22222211111222212()()(2)2(2)()0nn n n nii iii i i i i i ni i xx x C x nx x C x nC nx C x nC n x Cx C n x C ======---=---+=-+-=--+=--≤∑∑∑∑∑∑故有 2211()()nni i i i x x x C ==-≤-∑∑。
医药数理统计习题答案
第一章数据的描述和整理一、学习目的和要求掌握数据的类型及特性;掌握定性和定量数据的整理步骤、显示方法;掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;能理解并熟练掌握样本均值、样本方差的计算;了解统计图形和统计表的表示及意义;了解用Excel软件进行统计作图、频数分布表与直方图生成、统计量的计算。
二、内容提要〔一〕数据的分类定性数据〔品质数据〕定量数据数据类型定类数据定序数据数值数据〔计数数据〕〔等级数据〕〔计量数据〕表现形式类别类别数值〔无序〕〔有序〕(+-×÷)对应变量定类变量定序变量数值变量〔离散变量、连续变量〕计算各组频数,进行列联表分计算各种统计量,进行参数估计主要统计方法和检验、回归分析、方差分析等析、2检验等非参数方法参数方法常用统计图形条形图,圆形图〔饼图〕直方图,折线图,散点图,茎叶图,箱形图〔二〕常用统计量1、描述集中趋势的统计量文档名称公式〔原始数据〕均值x1n x n x ii1x n1,当n为奇数中位数()M e21(xn x n ),当n为偶数Me2221)()(众数数据中出现次数最多的观察值Mo 公式〔分组数据〕1 km i f ini1中位数所在组:累积频数超过n/2的那个最低组众数所在组:频数最大的组意义反映数据取值的平均水平,是描述数据分布集中趋势的最主要测度值,是典型的位置平均数,不受极端值的影响测度定性数据集中趋势,对于定量数据意义不大2、描述离散程度的统计量名称极差R总体方差2总体标准差样本方差S2样本标准差S公式〔原始数据〕R=最大值-最小值21Nx)2Ni(xi121N(x ix)2Ni1S21n(x i x)2n1i1S S21nx)2n(xi1i1公式〔分组数据〕R≈最高组上限值-最低组下限值21k (mi x)2fiNi1 21N(m i x)2f iNi1S21k(mi x)2fi 1i1n S S21k n (mix)2fi1i1意义反映离散程度的最简单测度值,不能反映中间数据的离散性反映每个总体数据偏离其总体均值的平均程度,是离散程度的最重要测度值,其中标准差具有与观察值数据相同的量纲反映每个样本数据偏离其样本均值的平均程度,是离散程度的最重要测度值,其中标准差具有与观察值数据相同的量纲变异系数CV=S反映数据偏离其均值的相对偏100%CV样本标准误S x|x|S x差,是无量纲的相对变异性测度反映样本均值偏离总体均值的平S均程度,在用样本均值估计总体n均值时测度偏差文档3、描述分布形状的统计量名称 公式〔原始数据〕公式〔分组数据〕 意义反映数据分布的非对称性偏度n(xix) 3k3S=0时为对称;(m i x) f iS kkSk1)(n2)S 3i 1Sk>0时为正偏或右偏;(nSknS3Sk<0时为负偏或左偏n(n 1)(xix)4 3[ (x i x)2]2(n 1)反映数据分布的平峰或尖K u(n1)(n 2)(n3)S 4峰程度峰度〔原始数据〕Ku=0时为标准正态;KukKu >0时为尖峰分布;(m i x)4fi〔分组数据〕i13K <0时为扁平分布K unS 4 u在分组数据公式中,mi ,fi 分别为各组的组中值和观察值出现的频数。
医药数理统计习题答案
第一章数据的描述和整理一、学习目的和要求1. 掌握数据的类型及特性;2.掌握定性和定量数据的整理步骤、显示方法;3.掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;4.能理解并熟练掌握样本均值、样本方差的计算;5.了解统计图形和统计表的表示及意义;6. 了解用Excel软件进行统计作图、频数分布表与直方图生成、统计量的计算。
二、内容提要(一)数据的分类1、描述集中趋势的统计量2i i三、综合例题解析例1.证明:各数据观察值与其均值之差的平方和(称为离差平方和)最小,即对任意常数C,有证一:设 21()()ni i f C x C==-∑ 由函数极值的求法,对上式求导数,得令 f '(C )=0,得唯一驻点由于()20f x n ''=>,故当C x =时f (C )y 有最小值,其最小值为21()()ni i f x x x ==-∑。
证二:因为对任意常数C 有 故有2211()()nnii i i xx x C ==-≤-∑∑。
四、习题一解答1.在某药合成过程中,测得的转化率(%)如下:94.3 92.8 92.7 92.6 93.3 92.9 91.8 92.4 93.4 92.6 92.2 93.0 92.9 92.2 92.4 92.2 92.8 92.4 93.9 92.0 93.5 93.6 93.0 93.0 93.4 94.2 92.8 93.2 92.2 91.8 92.5 93.6 93.9 92.4 91.8 93.8 93.6 92.1 92.0 90.8 (1)取组距为0.5,最低组下限为90.5,试作出频数分布表; (2)作频数直方图和频率折线图;(3)根据频数分布表的分组数据,计算样本均值和样本标准差。
解:(1)所求频数分布表:转化率的频数分布表转化率分组 频数 频率 累积频率90.5~ 1 0.025 0.02591.0~ 0 0.00 0.025 91.5~ 3 0.075 0.10 92.0~ 11 0.275 0.375 92.5~ 9 0.225 0.60 93.0~ 7 0.175 0.775 93.5~ 7 0.175 0.95 94.0~94.520.051.00(2)频数直方图: 频率折线图:(3)由频数分布表可得转化率分组 组中值m i 频数 90.5~ 90.75 191.0~ 91.25 0 91.5~ 91.75 3 92.0~ 92.25 11 92.5~ 92.75 9 93.0~ 93.25 7 93.5~ 93.75 7 94.0~94.594.252则 825.924040.90181===≈∑=i i i f m n x =391[(90.75-92.825)2×1+(91.25-92.825)2×0+…+(94.25-92.825)2×2] =0.584或者 )(1181222∑=--≈i i i x n f m n S 2S S ==584.0≈0.76422.测得10名接触某种病毒的工人的白细胞(109/L )如下:7.1,6.5,7.4,6.35,6.8,7.25,6.6,7.8,6.0,5.95 (1)计算其样本均值、方差、标准差、标准误和变异系数。
医药数理统计习题答案
医药数理统计习题答案第一章数据的描述和整理一、学习目的和要求1. 掌握数据的类型及特性;2.掌握定性和定量数据的整理步骤、显示方法;3.掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;4.能理解并熟练掌握样本均值、样本方差的计算;5.了解统计图形和统计表的表示及意义;6. 了解用Excel软件进行统计作图、频数分布表与直方图生成、统计量的计算。
二、内容提要(一)数据的分类数据类型定性数据(品质数据)定量数据定类数据(计数数据)定序数据(等级数据)数值数据(计量数据)表现形类别类别数值2式(无序)(有序)(+-×÷)对应变量定类变量定序变量数值变量(离散变量、连续变量)主要统计方法计算各组频数,进行列联表分析、 2检验等非参数方法计算各种统计量,进行参数估计和检验、回归分析、方差分析等参数方法常用统计图形条形图,圆形图(饼图)直方图,折线图,散点图,茎叶图,箱形图(二)常用统计量1、描述集中趋势的统计量名公式(原始数公式(分意义3称据)组数据)均值x11niix xn==∑11ki iix m fn=≈∑反映数据取值的平均水平,是描述数据分布集中趋势的最主要测度值,中位数M e⎪⎪⎩⎪⎪⎨⎧+=++为偶数当为奇数当,nxxnxMnnne),(21)12()2()21(中位数所在组:累积频数超过n/2的那个最低组是典型的位置平均数,不受极端值的影响众数M o 数据中出现次数最多的观察值众数所在组:频数最大测度定性数据集中趋势,对于定量数4的组据意义不大2、描述离散程度的统计量名称公式(原始数据)公式(分组数据)意义极差R R = 最大值-最小值R≈最高组上限值-最低组下限值反映离散程度的最简单测度值,不能反映中间数据的离散性总体方差σ2∑=-=NiixxN122)(1σ2211()ki iim x fNσ=≈-∑反映每个总体数据偏离其总体均值的平均程度,是离散程度的最重要测度值, 其中标准差具有与观察值数据相同的量纲总体标准差σ2211()Niix xNσσ===-∑2211()Ni iim x fNσσ==≈-∑56样本方差 S 2∑=--=n i i x x n S 122)(11i ki i f x m n S ∑=--=122)(11反映每个样本数据偏离其样本均值的平均程度,是离散程度的最重要测度值, 其中标准差具有与观察值数据相同的量纲样本标准差S∑=--==ni i x x n S S 122)(11i ki i f x m n S S ∑=--==122)(11 变异系数 CV CV =%100||⨯x S 反映数据偏离其均值的相对偏差,是无量纲的相对变异性测度样本标准nS S x =反映样本均值偏离总体均值的平7误x S均程度,在用样本均值估计总体均值时测度偏差3、描述分布形状的统计量名 称公 式(原始数据)公 式(分组数据)意 义 偏度S k33)2)(1()(Sn n x x n S i k ---=∑313)(nSf x mS ki iik ∑=-=反映数据分布的非对称性S k =0时为对称; S k >0时为正偏或右偏; S k <0时为负偏或左偏8峰度 K u4224)3)(2)(1()1(])([3)()1(S n n n n x x x x n n K i i u -------+=∑∑ (原始数据)3)(414--=∑=nSf x mK ki iiu (分组数据)反映数据分布的平峰或尖峰程度 K u =0时为标准正态; K u >0时为尖峰分布; K u <0时为扁平分布* 在分组数据公式中,m i , f i 分别为各组的组中值和观察值出现的频数。
医药数理统计方法试题
医药数理统计方法第四章抽样误差与假设检验一、单项选择题1. 样本均数的标准误越小说明A. 观察个体的变异越小B. 观察个体的变异越大C. 抽样误差越大D. 由样本均数估计总体均数的可靠性越小E. 由样本均数估计总体均数的可靠性越大2. 抽样误差产生的原因是A. 样本不是随机抽取B. 测量不准确C. 资料不是正态分布D. 个体差异E. 统计指标选择不当3. 对于正偏态分布的的总体, 当样本含量足够大时, 样本均数的分布近似为A. 正偏态分布B. 负偏态分布C. 正态分布D. t分布E. 标准正态分布4. 假设检验的目的是A. 检验参数估计的准确度B. 检验样本统计量是否不同C. 检验样本统计量与总体参数是否不同D. 检验总体参数是否不同E. 检验样本的P值是否为小概率5. 根据样本资料算得健康成人白细胞计数的95%可信区间为7.2×109/L~9.1×109/L,其含义是A. 估计总体中有95%的观察值在此范围内B. 总体均数在该区间的概率为95%C. 样本中有95%的观察值在此范围内D. 该区间包含样本均数的可能性为95%E. 该区间包含总体均数的可能性为95%答案:E D C D E二、计算与分析1.为了解某地区小学生血红蛋白含量的平均水平,现随机抽取该地小学生450人,算得其血红蛋白平均数为101.4g/L,标准差为1.5g/L,试计算该地小学生血红蛋白平均数的95%可信区间。
[参考答案]样本含量为450,属于大样本,可采用正态近似的方法计算可信区间。
101.4X=, 1.5S=,450n=,0.07XS===95%可信区间为下限:/2.101.4 1.960.07101.26 XX u Sα=-⨯=-(g/L)上限:/2.101.4 1.960.07101.54 XX u Sα+=+⨯=(g/L)即该地成年男子红细胞总体均数的95%可信区间为101.26g/L~101.54g/L。
《医药数理统计学》试题及答案
(一)填充题1.统计数据可以分为数据、数据、数据、据等三类,其中数据、数据属于定性数据.2.常用于表示定性数据整理结果的统计图有、;而、、、等是专用于表示定量数据的特征和规律的统计图。
3。
用于数据整理和统计分析的常用统计软件有等。
4。
描述数据集中趋势的常用测度值主要有、和等,其中最重要的是;描述数据离散程度的常用测度值主要有、、、等,其中最重要的是、。
(二)选择题1。
各样本观察值均加同一常数c后()A.样本均值不变,样本标准差改变B.样本均值改变,样本标准差不变C.两者均不变D。
两者均改变2.关于样本标准差,以下哪项是错误的()。
A.反映样本观察值的离散程度B.度量了数据偏离样本均值的大小C.反映了均值代表性的好坏D.不会小于样本均值3.比较腰围和体重两组数据变异度大小宜采用( )A.变异系数(CV)B.方差(S2)C.极差(R)D.标准差(S)(三)计算题1. 测得10名接触某种病毒的工人的白细胞(109/L)如下:7.1,6.5,7.4,6.35,6.8,7.25,6。
6,7。
8,6.0,5。
95(1)计算其样本均值、方差、标准差、标准误和变异系数。
(2)求出该组数据对应的标准化值;(3)计算其偏度.解:(1),n=10462。
35样本均值方差标准差=≈0。
609标准误变异系数CV===8.99%;(2)对应的标准化值公式为对应的标准化值为0.534,—0。
452,1.026,—0.698,0.041,0.78,-0.287,1.683,-1.273,-1。
355;(3)=0。
204。
六、思考与练习参考答案(一)填充题1. 定类,定序,数值,定类,定序2。
条形图、圆形图;直方图、频数折线图、茎叶图、箱形图3.SAS、SPSS、Excel4. 均值、众数、中位数,均值,极差、方差、标准差、变异系数,方差、标准差(二)选择题1. B;2.D;3。
A(三)、1. 测得10名接触某种病毒的工人的白细胞(109/L)如下:7.1,6.5,7.4,6.35,6。
医药数理统计习题答案解析
第一章数据的描述和整理一、学习目的和要求1. 掌握数据的类型及特性;2.掌握定性和定量数据的整理步骤、显示方法;3.掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;4.能理解并熟练掌握样本均值、样本方差的计算;5.了解统计图形和统计表的表示及意义;6. 了解用Excel软件进行统计作图、频数分布表与直方图生成、统计量的计算。
二、内容提要(一)数据的分类(二)常用统计量1、描述集中趋势的统计量2、描述离散程度的统计量3、描述分布形状的统计量* 在分组数据公式中,m i , f i 分别为各组的组中值和观察值出现的频数。
三、综合例题解析例1.证明:各数据观察值与其均值之差的平方和(称为离差平方和)最小,即对任意常数C ,有2211()()n ni ii i x x x C ==-≤-∑∑ 证一:设 21()()ni i f C x C ==-∑由函数极值的求法,对上式求导数,得11()2()22, ()2 n ni i i i f C x C x nC f C n =='''=--=-+=∑∑令 f '(C )=0,得唯一驻点11= ni i C x x n ==∑由于()20f x n ''=>,故当C x =时f (C )y 有最小值,其最小值为21()()ni i f x x x ==-∑。
证二:因为对任意常数C 有22222211111222212()()(2)2(2)()0nn n n nii iii i i i i i ni i xx x C x nx x C x nC nx C x nC n x Cx C n x C ======---=---+=-+-=--+=--≤∑∑∑∑∑∑故有2211()()nni ii i x x x C ==-≤-∑∑。
四、习题一解答1.在某药合成过程中,测得的转化率(%)如下:94.3 92.8 92.7 92.6 93.3 92.9 91.8 92.4 93.4 92.6 92.2 93.0 92.9 92.2 92.4 92.2 92.8 92.4 93.9 92.0 93.5 93.6 93.0 93.0 93.4 94.2 92.8 93.2 92.2 91.8 92.5 93.6 93.9 92.4 91.8 93.8 93.6 92.1 92.0 90.8 (1)取组距为0.5,最低组下限为90.5,试作出频数分布表; (2)作频数直方图和频率折线图;(3)根据频数分布表的分组数据,计算样本均值和样本标准差。
医药数理统计习题答案解析
第一章数据的描述和整理一、学习目的和要求1. 掌握数据的类型及特性;2.掌握定性和定量数据的整理步骤、显示方法;3.掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;4.能理解并熟练掌握样本均值、样本方差的计算;5.了解统计图形和统计表的表示及意义;6. 了解用Excel软件进行统计作图、频数分布表与直方图生成、统计量的计算。
二、内容提要(一)数据的分类(二)常用统计量1、描述集中趋势的统计量2、描述离散程度的统计量3、描述分布形状的统计量* 在分组数据公式中,m i , f i 分别为各组的组中值和观察值出现的频数。
三、综合例题解析例1.证明:各数据观察值与其均值之差的平方和(称为离差平方和)最小,即对任意常数C ,有2211()()n ni ii i x x x C ==-≤-∑∑ 证一:设 21()()ni i f C x C ==-∑由函数极值的求法,对上式求导数,得11()2()22, ()2 n ni i i i f C x C x nC f C n =='''=--=-+=∑∑令 f '(C )=0,得唯一驻点11= ni i C x x n ==∑由于()20f x n ''=>,故当C x =时f (C )y 有最小值,其最小值为21()()ni i f x x x ==-∑。
证二:因为对任意常数C 有22222211111222212()()(2)2(2)()0nn n n nii iii i i i i i ni i xx x C x nx x C x nC nx C x nC n x Cx C n x C ======---=---+=-+-=--+=--≤∑∑∑∑∑∑故有2211()()nni ii i x x x C ==-≤-∑∑。
四、习题一解答1.在某药合成过程中,测得的转化率(%)如下:94.3 92.8 92.7 92.6 93.3 92.9 91.8 92.4 93.4 92.6 92.2 93.0 92.9 92.2 92.4 92.2 92.8 92.4 93.9 92.0 93.5 93.6 93.0 93.0 93.4 94.2 92.8 93.2 92.2 91.8 92.5 93.6 93.9 92.4 91.8 93.8 93.6 92.1 92.0 90.8 (1)取组距为0.5,最低组下限为90.5,试作出频数分布表; (2)作频数直方图和频率折线图;(3)根据频数分布表的分组数据,计算样本均值和样本标准差。
数理统计习题及答案
1一批出厂半年的人参营养丸的潮解率为8%,从中抽取20丸,求恰有一丸潮解的概率。
32816.0)1()1(,20,08.0=-====-k n k kn p p C k P n p2.设X ~N (μ,σ2),试求P{ |X-μ| ≤1.96σ}=?95.0025.0975.0)96.1()96.1()96.1()96.1()96.1()96.1()96.196.1(}96.1{=-=-Φ-Φ=--Φ--+Φ=--+=+≤≤-=≤-σμσμσμσμσμσμσμσμσμF F X P X P3.已知某药品中某成份的含量在正常情况下服从正态分布,标准差σ=0.108,现测定9个样本,其含量的均数X=4.484,试估计药品中某种成份含量的总体均数μ的置信区间(α=0.05)。
3、解:置信区间为)55456.4,41344.4(9108.096.1484.42_=⨯±=±nu x σα4.某合成车间的产品在正常情况下其收率X ~N (μ,σ2),通常收率的标准差σ=5%以内就可以认为生产是稳定的,现生产9批,得收率(%)为:73.2,78.6,75.4,75.7,74.1,76.3,72.8,74.5,76.6。
问此药的生产是否稳定?(α=0.01) 4、解:H 0:σ≤5 H 1:σ>5n=9,s=1.81873,选择统计量058489.125484.26)1(222==-=σχs n令α=0.01,查临界值表得6465.1)8(201.0=χ,0902.20)8(299.0=χ比较统计量的数值和临界值,1.058489<1.6465,从而不能否定原假设H 0,即总体的标准差在5%以内,生产是稳定的。
5 中药研究所,用中药青兰试验其在改变兔脑血流图所起的作用,测得数据如下: 用药前 2.0 5.0 4.0 5.0 6.0 用药后3.06.04.55.58.0试用配对比较的t 检验说明青兰对兔脑血流图的作用(α=0.05)。
医药数理统计习题答案
第一章数据的描述和整理一、学习目的和要求1. 掌握数据的类型及特性;2.掌握定性和定量数据的整理步骤、显示方法;3.掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;4.能理解并熟练掌握样本均值、样本方差的计算;5.了解统计图形和统计表的表示及意义;6. 了解用Excel软件进行统计作图、频数分布表与直方图生成、统计量的计算。
二、内容提要(一)数据的分类(二)常用统计量1、描述集中趋势的统计量2、描述离散程度的统计量3、描述分布形状的统计量* 在分组数据公式中,m i , f i 分别为各组的组中值和观察值出现的频数。
三、综合例题解析例1.证明:各数据观察值与其均值之差的平方和(称为离差平方和)最小,即对任意常数C ,有2211()()nnii i i xx x C ==-≤-∑∑证一:设 21()()ni i f C x C ==-∑由函数极值的求法,对上式求导数,得11()2()22, ()2 n ni i i i f C x C x nC f C n =='''=--=-+=∑∑令 f '(C )=0,得唯一驻点11= ni i C x x n ==∑由于()20f x n ''=>,故当C x =时f (C )y 有最小值,其最小值为21()()ni i f x x x ==-∑。
证二:因为对任意常数C 有22222211111222212()()(2)2(2)()0nn n n nii iii i i i i i ni i xx x C x nx x C x nC nx C x nC n x Cx C n x C ======---=---+=-+-=--+=--≤∑∑∑∑∑∑故有2211()()nnii i i xx x C ==-≤-∑∑。
四、习题一解答1.在某药合成过程中,测得的转化率(%)如下:94.3 92.8 92.7 92.6 93.3 92.9 91.8 92.4 93.4 92.6 92.2 93.0 92.9 92.2 92.4 92.2 92.8 92.4 93.9 92.0 93.5 93.6 93.0 93.0 93.4 94.2 92.8 93.2 92.2 91.8 92.5 93.6 93.9 92.4 91.8 93.8 93.6 92.1 92.0 90.8 (1)取组距为0.5,最低组下限为90.5,试作出频数分布表; (2)作频数直方图和频率折线图;(3)根据频数分布表的分组数据,计算样本均值和样本标准差。
医药数理统计习题答案
第一章数据的描述和整理一、学习目的和要求1. 掌握数据的类型及特性;2.掌握定性和定量数据的整理步骤、显示方法;3.掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;4.能理解并熟练掌握样本均值、样本方差的计算;5.了解统计图形和统计表的表示及意义;6. 了解用Excel软件进行统计作图、频数分布表与直方图生成、统计量的计算。
二、内容提要(一)数据的分类(二)常用统计量1、描述集中趋势的统计量2、描述离散程度的统计量3、描述分布形状的统计量* 在分组数据公式中,m i , f i 分别为各组的组中值和观察值出现的频数。
三、综合例题解析例1.证明:各数据观察值与其均值之差的平方和(称为离差平方和)最小,即对任意常数C ,有2211()()nnii i i xx x C ==-≤-∑∑证一:设 21()()ni i f C x C ==-∑由函数极值的求法,对上式求导数,得11()2()22, ()2 n ni i i i f C x C x nC f C n =='''=--=-+=∑∑令 f '(C )=0,得唯一驻点11= ni i C x x n ==∑由于()20f x n ''=>,故当C x =时f (C )y 有最小值,其最小值为21()()ni i f x x x ==-∑。
证二:因为对任意常数C 有22222211111222212()()(2)2(2)()0nn n n nii iii i i i i i ni i xx x C x nx x C x nC nx C x nC n x Cx C n x C ======---=---+=-+-=--+=--≤∑∑∑∑∑∑故有2211()()nnii i i xx x C ==-≤-∑∑。
四、习题一解答1.在某药合成过程中,测得的转化率(%)如下:94.3 92.8 92.7 92.6 93.3 92.9 91.8 92.4 93.4 92.6 92.2 93.0 92.9 92.2 92.4 92.2 92.8 92.4 93.9 92.0 93.5 93.6 93.0 93.0 93.4 94.2 92.8 93.2 92.2 91.8 92.5 93.6 93.9 92.4 91.8 93.8 93.6 92.1 92.0 90.8 (1)取组距为0.5,最低组下限为90.5,试作出频数分布表; (2)作频数直方图和频率折线图;(3)根据频数分布表的分组数据,计算样本均值和样本标准差。
《医药数理统计方法》试题及答案-最新
单选题:1 下面的变量中是分类变量的是A.身高B.体重C.年龄D.血型E.血压2 下面的变量中是是数值变量的是A.性别B.年龄C.血型D.职业 E 疗效3.随机事件的概率P 为A.P=0B. P=1C. P=-0.5D. –0.5<P<0.5E. 0<P<14.用样本作推断, 样本应是A. 总体中典型的一部分B. 总体中任一部分C. 总体中随机抽取的一部分D. 总体中按比例分配的一部分E. 总体中信息明确的一部分5.若以发汞含量大于2.6ug/kg为异常,调查某地1000 人中多少人属于异常,这资料可看作A.计量资料 B. 计数资料 C. 等级资料D. 实验资料 E. 以上均不对6. 统计工作的步骤是:A. 作假设、计算统计量、查界值表和作结论B. 整理资料、分析资料、假设检验C. 统计设计、收集资料、整理和分析资料D. 设立对照组、估计样本、重复试验E. 统计描述、区间估计、假设检验7. 反映计量资料集中趋势的指标是____ 。
A. 标准差B. 标准误C. 率D. 全距E. 均数8. 编制频数表中错误的做法是____ 。
A. 找出最大值和最小值, 计算极差B. 定组距, 常用等组距, 一般分8~15 组为宜C. 写组段时组段可重叠,如“2~4, 4~6,…”D. 用划记法计频数E. 第一个组段应包括变量最小值,最后一个组段应包括变量最大值9. 在描述资料的变异程度时,最宽的范围是___。
A 均数 标准差B 极差C 四分位数间距D 95%的参考值范围E P5~P95 间距10.比较20 头河马体重和20 只小白鼠体重两组数据变异程度大小宜采用____A.变异系数(CV) B.方差C.极差(R) D.标准差(S) E.四份位数间距11. 对血清滴度资料表示平均水平的最常用统计量是::A .均数B .中位数C .几何均数D .全距E .标准差12.描述一组偏态分布资料的变异程度时,适宜的统计量是:A . 变异系数(CV)B . 方差C . 极差(R)D . 标准差(S)E . 四份位数间距13. 关于标准正态分布曲线下的面积,错误的是____A. -1.96 到 1.96 间曲线下面积是 95%B. 1.96 到 2.58 间曲线下面积是 2%C. 大于 1.645 的曲线下面积是 2.5%D. -1.96 到-1.645 间曲线下面积是 2.5%E. 大于 1.96 的曲线下面积为 2.5%14. 1.96μσ±范围内占正态曲线下面积的____ 。
医药-数理统计习题-答案
第一章数据的描述和整理一、学习目的和要求1. 掌握数据的类型及特性;2.掌握定性和定量数据的整理步骤、显示方法;3.掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;4.能理解并熟练掌握样本均值、样本方差的计算;5.了解统计图形和统计表的表示及意义;6. 了解用Excel软件进行统计作图、频数分布表与直方图生成、统计量的计算。
二、内容提要(一)数据的分类(二)常用统计量1、描述集中趋势的统计量2、描述离散程度的统计量3、描述分布形状的统计量* 在分组数据公式中,m i , f i 分别为各组的组中值和观察值出现的频数。
三、综合例题解析例1.证明:各数据观察值与其均值之差的平方和(称为离差平方和)最小,即对任意常数C ,有2211()()n niii i x x xC ==-≤-∑∑证一:设 21()()n i i f C x C ==-∑ 由函数极值的求法,对上式求导数,得11()2()22, ()2 n ni i i i f C x C x nC f C n =='''=--=-+=∑∑令 f '(C )=0,得唯一驻点11= ni i C x x n ==∑由于()20f x n ''=>,故当C x =时f (C )y 有最小值,其最小值为21()()ni i f x x x ==-∑。
证二:因为对任意常数C 有22222211111222212()()(2)2(2)()0nn n n nii iii i i i i i ni i xx x C x nx x C x nC nx C x nC n x Cx C n x C ======---=---+=-+-=--+=--≤∑∑∑∑∑∑故有2211()()n niii i x x x C ==-≤-∑∑。
四、习题一解答1.在某药合成过程中,测得的转化率(%)如下:94.3 92.8 92.7 92.6 93.3 92.9 91.8 92.4 93.4 92.6 92.2 93.0 92.9 92.2 92.4 92.2 92.8 92.4 93.9 92.0 93.5 93.6 93.0 93.0 93.4 94.2 92.8 93.2 92.2 91.8 92.5 93.6 93.9 92.4 91.8 93.8 93.6 92.1 92.0 90.8 (1)取组距为0.5,最低组下限为90.5,试作出频数分布表; (2)作频数直方图和频率折线图;(3)根据频数分布表的分组数据,计算样本均值和样本标准差。
医药数理统计习题答案
第一章数据的描述和整理一、学习目的和要求1. 掌握数据的类型及特性;2.掌握定性和定量数据的整理步骤、显示方法;3.掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;4.能理解并熟练掌握样本均值、样本方差的计算;5.了解统计图形和统计表的表示及意义;6. 了解用Excel软件进行统计作图、频数分布表与直方图生成、统计量的计算。
二、内容提要(一)数据的分类1、描述集中趋势的统计量2i i三、综合例题解析例1.证明:各数据观察值与其均值之差的平方和(称为离差平方和)最小,即对任意常数C,有证一:设 21()()ni i f C x C==-∑ 由函数极值的求法,对上式求导数,得令 f '(C )=0,得唯一驻点由于()20f x n ''=>,故当C x =时f (C )y 有最小值,其最小值为21()()ni i f x x x ==-∑。
证二:因为对任意常数C 有 故有2211()()nnii i i xx x C ==-≤-∑∑。
四、习题一解答1.在某药合成过程中,测得的转化率(%)如下:94.3 92.8 92.7 92.6 93.3 92.9 91.8 92.4 93.4 92.6 92.2 93.0 92.9 92.2 92.4 92.2 92.8 92.4 93.9 92.0 93.5 93.6 93.0 93.0 93.4 94.2 92.8 93.2 92.2 91.8 92.5 93.6 93.9 92.4 91.8 93.8 93.6 92.1 92.0 90.8 (1)取组距为0.5,最低组下限为90.5,试作出频数分布表; (2)作频数直方图和频率折线图;(3)根据频数分布表的分组数据,计算样本均值和样本标准差。
解:(1)所求频数分布表:转化率的频数分布表转化率分组 频数 频率 累积频率90.5~ 1 0.025 0.02591.0~ 0 0.00 0.025 91.5~ 3 0.075 0.10 92.0~ 11 0.275 0.375 92.5~ 9 0.225 0.60 93.0~ 7 0.175 0.775 93.5~ 7 0.175 0.95 94.0~94.520.051.00(2)频数直方图: 频率折线图:(3)由频数分布表可得转化率分组 组中值m i 频数 90.5~ 90.75 191.0~ 91.25 0 91.5~ 91.75 3 92.0~ 92.25 11 92.5~ 92.75 9 93.0~ 93.25 7 93.5~ 93.75 7 94.0~94.594.252则 825.924040.90181===≈∑=i i i f m n x =391[(90.75-92.825)2×1+(91.25-92.825)2×0+…+(94.25-92.825)2×2] =0.584或者 )(1181222∑=--≈i i i x n f m n S 2S S ==584.0≈0.76422.测得10名接触某种病毒的工人的白细胞(109/L )如下:7.1,6.5,7.4,6.35,6.8,7.25,6.6,7.8,6.0,5.95 (1)计算其样本均值、方差、标准差、标准误和变异系数。