第6-7章 光检测器
光检测器工作原理
光检测器工作原理
光检测器是一种用来测量光的强度、波长、频率和相位等参数的仪器。
它的工作原理可以分为两种类型:光电效应和光学效应。
一、光电效应
光电效应是指光照射到特定材料表面时,会产生光电子的释放现象。
光检测器利用光电效应来测量光的强度或波长。
其中一种常见的光电效应是光电子效应,即光照射到金属表面时,金属中的电子会被激发并从金属表面解离出来。
光检测器中的金属接收到光信号后,激发的电子会产生电流或电压,通过测量电流或电压的大小就可以知道光的强度或波长。
另一种光电效应是光致电离效应,即光照射到半导体材料表面时,会产生电子-空穴对,从而产生电流。
光检测器中的半导体材料接收到光信号后,电子-空穴对的产生会引起电流的变化,通过测量电流的变化就可以得到光的强度或波长。
二、光学效应
光学效应是指光在材料中的传播和衍射现象。
光检测器利用光学效应来测量光的频率、相位或其他参数。
其中一种常见的光学效应是干涉现象,即光在多个光学路径上相遇时会产生干涉,干涉现象与光的波长和相位有关。
光检测器中的光信号经过光学路径后,会产生干涉现象,通过测量干涉现象的变化就可以得到光的频率、相位或其他参数。
另一种光学效应是衍射现象,即光通过细缝或光栅等物体时会发生弯曲和扩散现象。
光检测器中的光信号经过细缝或光栅等物体后,会发生衍射现象,通过测量衍射的模式和角度就可以得到光的波长或其他参数。
综上所述,光检测器的工作原理主要包括光电效应和光学效应。
通过利用这些效应,可以实现对光的强度、波长、频率和相位等参数的测量。
光纤(带答案)
第一章:光纤通讯1、什么是光纤通讯光纤通讯及系统的构成光纤通讯使用光导纤维作为传输光波信号的通讯方式。
光纤通讯系统往常由电发射机、光发射机、光接收机、电接收机和由光纤构成的光缆等构成。
2、什么事光通讯光通讯就是以光波为载波的通讯。
3、光纤通讯的长处①传输频带宽,通讯容量大。
② 传输衰减小,传输距离长。
③ 抗电磁扰乱,传输质量好。
④ 体积小、重量轻、便于施工。
⑤ 原资料丰富,节俭有色金属,有益于环保4、光纤通讯的工作波长光源:近红外区波长:—μm频次:167—375THz5 、 WDM是指什么DWDM指什么WDM:波分复用DWDM:密集波分复用6、光纤从资料上能够分为哪几种从资料上分为石英光纤、多组份玻璃光纤、氟化物光纤、塑料光纤等7、光纤活动连结器从连结方式来看分为哪几种常有的插针端面有哪几种PC、 APC、 SPC(球面、斜面、超级抛光端面呈球面的物理接触)8、按缆芯构造分,光缆分为哪几种层绞式、单位式、骨架式、带状式9、光芒的制造分哪几个步骤I资料准备与提纯II制棒III拉丝、涂覆IV塑套此中制棒分为:( 1) MCVD改良的化学气相积淀法(2)PCVD等离子化学气相积淀法10 、按资料光纤分几种同611、无源器件的种类连结器、分路器与耦合器、衰减器、隔绝器、滤波器、波分复用器、光开关和调制器等第二章:光纤通讯的物理学基础1、经过哪些现象能够证明光拥有颠簸性光的颠簸性能够从光的干涉、光的衍射和光的偏振等现象证明2、什么叫光电效应光电效应拥有哪些试验规律因为光的照耀使电子从金属中溢出的现象称为光电效应⑴每种金属都有一个确立的截止频次γ0,当入射光的频次低于γ 0时,无论入射光多强,照耀时间多长,都不可以从金属中开释出电子。
⑵关于频次高于γ 0的入射光,从金属中开释出的电子的最大动能与入射光的强度没关,只与光的频次相关。
频次越高开释出的电子的动能就越大。
⑶关于频次高于γ 0的入射光,即便入射光特别轻微,照耀后也能立刻开释出电子。
光纤通信复习(各章复习要点)
光纤通信复习(各章复习要点)光纤通信复习(各章复习要点)第⼀章光纤的基本理论1、光纤的结构以及各部分所⽤材料成分2、光纤的种类3、光纤的数值孔径与相对折射率差4、光纤的⾊散5、渐变光纤6、单模光纤的带宽计算7、光纤的损耗谱8、多模光纤归⼀化频率,模的数量第⼆章光源和光发射机1、光纤通信中的光源2、LD的P-I曲线,测量Ith做法3、半导体激光器的有源区4、激光器的输出功率与温度关系5、激光器的发射中⼼波长与温度的关系6、发光⼆极管⼀般采⽤的结构7、光源的调制8、从阶跃响应的瞬态分析⼊⼿,对LD数字调制过程出现的电光延迟和张弛振荡的瞬态性质分析(p76)9、曼彻斯特码10、DFB激光器第三章光接收机1、光接收机的主要性能指标2、光接收机主要包括光电变换、放⼤、均衡和再⽣等部分3、光电检测器的两种类型4、光电⼆极管利⽤PN结的什么效应第四章光纤通信系统1、光纤通信系统及其⽹管OAM2、SDH系统3、再⽣段距离的设计分两种情况4、EDFA第五章⽆源光器件和WDM1、⼏个常⽤性能参数2、波分复⽤器的复⽤信道的参考频率和最⼩间隔3、啁啾光纤光栅4、光环形器的各组成部分的功能及⼯作原理其他1、光孤⼦2、中英⽂全称:DWDM 、EDFA 、OADM 、SDH 、SOA第⼀章习题⼀、单选题1、阶跃光纤中的传输模式是靠光射线在纤芯和包层的界⾯上(B)⽽是能量集中在芯⼦之中传输。
A、半反射B、全反射C、全折射D、半折射2、多模渐变折射率光纤纤芯中的折射率是(A)的。
A、连续变化B、恒定不变C、间断变换D、基本不变3、⽬前,光纤在(B)nm处的损耗可以做到0.2dB/nm左右,接近光纤损耗的理论极限值。
A、1050B、1550C、2050D、25504、普通⽯英光纤在波长(A)nm附近波导⾊散与材料⾊散可以相互抵消,使⼆者总的⾊散为零。
A、1310B、2310C、3310D、43105、⾮零⾊散位移单模光纤也称为(D)光纤,是为适应波分复⽤传输系统设计和制造的新型光纤。
_第六章 光扫描技术
说明F数大于100,则(R-x)值急剧增大,对应平面波失真越小。 因此,对激光扫描系统,一般取F>100为好。 现代光学测试技术
激光束经过扫描系统后的光斑直径,由式(6-27),即 f d 1.27 1.27 Fs (6-28) d0 式中:λ为激光束波长;f为扫描物镜的焦距; FS为扫描物镜的焦距与激光束腰直径的比数。 另一方面,再从衍射角度,即镜框存在的情况下,衍射光斑 的直径是 f (6-29) d k kFD D 式中:f为扫描物镜的焦距;D为扫描物镜的口径; FD为扫描物镜的F数。 由式(6-28)及式(6-29),使d相等,在 D / d 0 2 时,则有
一、计量原理
当扫描反射镜以ω的角速度转动时,激光束的角扫描运动是
t
扫描光束通过物镜3后,形成线扫描运动,扫描线速度是
dh d 2 f 2 f d 2 f v dt dt dt
设被测件尺为D,则
dh D vt t 2 ft dt
当已知ω,测定t,由式(6-1)就可求出D。这就是光扫描计 量的基本关系式。
现代光学测试技术
为保证测量的高精度,光扫描计量系统,必须满足三点基本要 求: (1)激光束应垂直照射被测表面; (2)光束必须对物面作匀速直线扫描运动,即 v (3)扫描时间必须测得很准确。 为保证激光束扫描时始终垂直于被测表面,可采用物体表面 相对激光束作匀速运动。但这种方法,对机构要求很高, 实现困难。所以一般不采用被测物体运动的方式。
后臵扫描 图6-7光扫描的两种基本形式
前臵扫描
现代光学测试技术
目前大多数采用前臵扫描的形式。设光束扫描的长度为L, 扫描光束的光斑直径为d,那么,扫描分辨率N的定义是 L (6-25) N d 对激光来说,高斯光束的束腰直径是 4x d 2 d 02 [1 ( 2 ) 2 ] (6-26) d 0 式中:d为距束腰中心x处的光束直径; d0为初始激光束的束腰直径。 式(6-26)其符号意义示于图6-8。
光电子技术复习提纲(含标准答案)要点
光电⼦技术复习提纲(含标准答案)要点第1章绪论1.半导体光电器件是利⽤什么效应制作的器件?答:利⽤半导体光电效应制成的器件。
2.半导体光电器件是哪两种粒⼦相互作⽤的器件?答:是⼀种利⽤光⼦与电⼦相互作⽤所具有的特性来实现某种功能的半导体器件。
3.半导体发光器件主要包括哪两种?答:(1)发光⼆极管;(2)半导体激光器。
4.光电器件主要有利⽤哪些效应制作的器件?答:光电器件主要有利⽤半导体光敏特性⼯作的光电导器件,利⽤半导体光伏打效应⼯作的光电池和半导体发光器件等。
5.什么是半导体发光器件?答:利⽤半导体PN结正向通过电时载流⼦注⼊复合发光的器件称为半导体发光器件。
6.光电探测器件是如何转换信号的器件?答:通过电⼦过程探测光信号的器件,即将射到它表⾯上的光信号转换为电信号。
7.光电检测器⼯作在反向偏置状态。
8.光电池是利⽤什么效应制作的?答:光伏打效应。
9. 光纤通信的两个重要窗⼝是哪些?答:1.55um和1.3um。
第2章1. 光信号的频率在哪个频段?需要⽤什么器件检测?答:光信号的频率在1014 Hz以上,常⽤的电⼦器件⽆法对这⼀频率段产⽣良好的响应,必须使⽤光电⼦器件。
2. 常⽤的光电检测器:PIN、APD3. 光电检测器的⼯作过程?答:光电检测器件的⼯作过程:(1)光吸收——(2)电⼦-空⽳对产⽣——(3)载流⼦扩散和漂移——(4)检测4. 光信号(光束)⼊射到半导体材料后,如何产⽣电⼦空⽳对?答:光信号(光束)⼊射到半导体材料后,⾸先发⽣的过程就是半导体材料对光⼦的吸收,吸收光⼦以后才能产⽣价带电⼦的跃迁,从⽽产⽣电⼦空⽳对。
5. 半导体材料中的吸收过程可以分为哪两⼤类?答:本征吸收和⾮本征吸收6. 本征吸收⼜包括哪些?答:(1)直接吸收;(2)间接吸收7. ⾮本征吸收包括哪些?答:(1)激⼦吸收;(2)带内吸收;(3)杂质吸收8.本征吸收的必要条件?9.直接吸收中参与的粒⼦是什么?遵守哪两种守恒?答:只有电⼦和光⼦的参与,没有第3种粒⼦的参与。
光电子各章复习要点
各章复习要点第1章 激光原理概论1.光的波粒二相性,光子学说光是由一群以光速 c 运动的光量子(简称光子)所组成 2三种跃迁过程(自发辐射、受激辐射 和受激吸收)• 3.自发辐射和受激辐射的本质区别?• 4.在热平衡状态下,物质的粒子数密度按能级分布规律(正常分布)• 5.激光产生的必要条件:实现粒子数反转分布 • 6.激光产生的阈值条件:增益大于等于损耗 •7.激光的特点?•(1)极好的方向性(θ≈10-3rad)•(2)优越的单色性(Δν=3.8*108Hz,是单色 性最好的普通光源的线宽的105倍.•(3)极好的相干性(频率相同,传播方向同,相位差恒定)•(4)极高的亮度•光亮度:单位面积的光源,在其法向单位立体角内传送的光功率.•8激光器构成及每部分的功能νh E =λνc h c h c E m ///22===1激光工作物质提供形成激光的能级结构体系,是激光产生的内因2.)泵浦源提供形成激光的能量激励,是激光形成的外因3.)光学谐振腔①提供光学正反馈作用②控制腔内振荡光束的特性•9激光产生的基本原理(以红宝石激光器为例)•⑴Cr3+的受激吸收过程.•⑵无辐射跃迁•⑶粒子数反转状态的形成•⑷个别的自发辐射 •⑸受激发射 •⑹激光的形成 •10.模式的概念及分类11.纵模的谐振条件的推导及纵模间隔的计算。
第2章 激光谐振腔技术、选模及稳频技术 • 1.掌握三个评价谐振腔的重要指标•最简单的光学谐振腔是在激活介质两端适当的位置放置两个具有高反射率的反射镜来构成的,与微波相比,采用开腔。
1)平均单程功率损耗率πλπφ222⋅=⋅=∆q nL qnL q 2=λnLcqv q 2=反射损耗:衍射损耗:(圆形平行平面腔)2)谐振腔寿命3)谐振腔Q 值• 2.了解横模选择的两种方法(1)只改变谐振腔的结构和参数,使高阶模具有大的衍射损耗(2)腔内插入附加的选模器件 3两种常用的抑制高阶横模的方法 1.调节反射镜 ✓ 优点:方法简单易行 ✓ 缺点:输出功率显著降低 2.腔内加光阑高阶横模的光束截面比基横模大,减小增益介质的有效孔径,可大大增加高阶横模的衍射损耗• 4.理解三种单纵模输出的方法 •1)短腔法10ln21I I =δ4.12)(207.0aLd λδ=)1(R c Lt c -=dr L L R c L cQ δδλπλδπλπ+==-=1.22)1(.221210010ln 21ln 21ln21r r r r I I I I -===δ•2)法布里-珀罗标准距法•3)复合腔选纵模第5章 光电子显示技术• 1.黑白CRT 的构成及每部分的功能? • 电子枪、偏转系统和荧光屏三部分构成• 2.黑白CRT 的基本工作原理?ndc m 2=∆ν•电子枪发射出电子束,电子枪受阴极或栅极所加的视频信号电压的调制,电子束经过加束极的加速,聚焦极的聚焦,偏转磁场的偏转扫描到屏幕前面的荧光涂层上,产生复合发光,最终形成满足人眼视觉特性要求的光学图像。
(光学测量技术)第7章光学系统像质检验与评价
第7章 光学系统像质检验与评价
一、 检验光学系统的共轴性 检验前,应调节待测系统光轴与平行光管光轴准确一致。 在此基础上,用白光照明,如果所观察到的衍射环不同心, 或同一环上光能分布不一致,或颜色不一样,则表明待测系 统的共轴性遭到破坏。共轴性检验在多组分离物镜的装配过 程中使用最多,也非常重要,由此可将各组间的光轴调到严 格同轴。
为了便于观察,一般取人眼的分辨角 α =2 ' ~4 ' ,代入上式 则有
当显微镜的数值孔径选定后,其垂轴放大率 β 也就确定 了。因此,只要合理选择目镜的放大率,即可满足显微镜总 放大倍率的要求。
第7章 光学系统像质检验与评价
三、 前置镜参数的选择 若对望远系统或其它平面光学元件做星点检验,则应采 用前置镜进行放大观察。对前置镜除要求像质好外,还应使 其入瞳直径大于待测系统出瞳直径,放大率满足人眼分辨星 点像细节的要求。第一、二衍射亮环经待测望远系统后的角 距离 Δ θ' =Δ θΓ =1.044 λ / D' 。显然,前置镜放大率应为
第7章 光学系统像质检验与评价 上式所代表的几何图形及各量物理意义如图 7.1 所示。
图 7.1 衍射受限系统参量与艾里班光强分布
第7章 光学系统像质检验与评价
艾里斑是由中央亮斑及若干亮度迅速减弱的同心外环组 成的。艾里斑各极值点的相关数据见表 7-1 。
第7章 光学系统像质检验与评价
计算表明,理想星点像的光强分布不仅是轴对称的,而 且最佳像面前、后对称截面上,其星点衍射像的光强分布也 是对称的。
第7章 光学系统像质检验与评价 7. 1. 2 星点检验装置
对于透镜型的光学系统或零件,星点检验的装置主要由 焦面上装有星孔光阑的平行光管和观察显微镜组成,如图 7. 2 所示。
第6、7章-胆碱受体激动药、抗胆碱酯酶药及胆碱酯酶复活药本科
治疗:每隔30 min,肌内注射1~2 mg阿托品
试问:若误食了有毒的野蘑菇中毒后, 可能出现 哪些症状,怎样处理?
N胆碱受体激动药
烟碱(nicotine,尼古丁) 烟草提取。 癌症、冠心病、消化性溃疡、呼吸系统疾患 与之有关。 吸烟毒理研究 新用途
Chapter6 Cholinoceptor agonists 胆碱受体激动药
是一类通过和胆碱受体结合并激动受体, 发挥与递质ACh相似作用的药物
胆碱受体激动药分类
胆碱受体 激动药
M胆碱受体激动药:
临床药物较多,具有较好 的临床实用价值。
N胆碱受体激药:
主要有尼古丁,对 N1、N2 体均有激动作用,无实价值, 仅具有毒理学上的意义。
交感 神 经节 和 肾 兴奋 上腺髓质
骨骼肌神经肌肉接头 (包括肢体、肋间 肌、膈肌等)
先兴奋 后麻痹
症状体征 出汗 流涎 流泪 流涕
分泌多,肺湿罗音 胸闷、气短、呼吸困难 恶心、呕吐、腹痛、腹泻、肠鸣亢
进、大便失禁 尿频 尿失禁
眼痛、视力模糊 缩瞳
心动徐缓、血压下降
皮肤苍白、心率快、轻度血压 增高
胃肠道作用:↑收缩和频率、↑分泌 恶心,呕吐,嗳气,腹痛,排便
泌尿道:逼尿肌收缩、括约肌舒张, 膀胱排空↑
眼: 瞳孔缩小、调节痉挛(近视) 腺体:分泌增加
2.N 样作用:
1) 兴奋N1胆碱受体
交感N节后纤维兴奋
副交感N节后纤维兴奋
2)兴奋N2胆碱受体: 表现肌肉收缩,甚 至颤动
乙酰胆碱(acetylcholine, ACh)
对心血管系统作用明显,副作用多。 临床主要用于口腔粘膜干燥。
第7章光外差检测系统
第7章 光外差检测系统光电直接检测的光强信号及光电探测器转换后的电信号通常情况下是直流量。
而直流漂移是形成误差的重要原因,信号处理及细分都比较困难。
光外差检测采用两束具有微小频率差的光产生干涉,产生的信号为交流电,不仅克服了上述光电直接检测的漂移问题,而且使细分变得更容易,显著提高了抗干扰性能。
光外差检测(Optical heterodyne detection )广泛应用于激光通信、干涉测长、测角、激光雷达和测速等当面。
光外差检测与光直接检测比较,其测量精度要高7-8个数量级。
它的灵敏度接近了量子噪声限,可以检测单个光子,进行光子计数。
使用外差技术的双频激光干涉仪早已实现商品化,大量用于长度、位移、速度等的超精密测量,相对测量精度可优于百万分之一。
使用外差检测通信技术的工作距离比直接检测远的多,在外层空间特别是卫星之间通信联系已达到实用阶段,能够做到上万公里的通信距离和1Gbps 以上的通信速率。
7.1 光外差检测原理光外差检测是将包含有被测信息的相干光调制波和作为基准的本机振荡光波在满足波前匹配的条件下,在光电探测器上进行光学混频(相乘)。
由于光电探测器的响应远远低于光波频率,其输出是频率为二光波的差频电信号。
这个输出信号包含有调制信号的振幅、频率和相位特征。
显然,外差检侧也是相干检测.与非相干检测的直接检测法相比,外差检测具有灵敏度高、输出信噪比高、精度高、探测目标的作用距高远等优点。
因而在精密测量中得到了广泛的应用。
如图7-1所示,考虑频率为νM 和νL 两束互相平行的平面光,其空间任意点P 的电分量分别表示为:)2cos()(M M M M t a t E ϕπν+= (7.1) 和)2cos()(L L L L t a t E ϕπν+= (7.2)图7-1外差检测原理示意图其中,a M 和a L 分别表示两光束的振幅,φM 和φL 分别表示两光束在P 点的相位。
则两光束相叠加所得到的光强为:)2cos()2cos(2)2(cos )2(cos )]()([)(22222L L L M M M L L L M M M L M t a t a t a t a t E t E t I ϕπνϕπνϕπνϕπν++++++=+= (7.3)使用三角函数对上述表达式进行变换可得:)]()(2cos[)]()(2cos[)]24cos()24cos([2/12/2/)(2222L M L M L M L M L M L M L L L M M M L M t a a t a a t a t a a a t I ϕϕννπϕϕννπϕπνϕπν-+-++++++++++= (7.4) 上式共分5项,其中前两项组成了光强的直流部分,我们注意到第3项和第4项的频率在光频量级(1014Hz ),现有的光探测器都无法达到这么高的响应速度(通常在1010Hz 以下),故这两项不对探测器产生影响,而最后一项为光强信号的交流部分,其信号振幅为a M a L ,频率νM - νL 为两束相干光的频率差,也叫拍频。
光纤通信期末考试资料-书本整理
★★第一章★★★光纤通信:是利用光导纤维传输光波信号的通信方式。
★光纤通信工作在什么区,其波长和频率:目前使用的通信光纤大多数采用基础材料为SiO2的光纤。
它是工作在近红外区,波长为0.8~1.8μm,对应的频率为167~375THz。
★光纤通信的主要优点:1 通信容量大;2 中继距离远;3 抗电磁干扰能力强,无串话;4 光纤细,光缆轻;5 资源丰富,节约有色金属和能源。
光纤还具有均衡容易、抗腐蚀、不怕潮湿的优点。
因而经济效益非常显著。
★光纤通信系统:光发送设备、光接收设备、光传输设备。
1 光发送设备:主要有驱动器和光源,其作用试吧店端机输入的信号对光源进行调制,使光源产生出与电信号相对应的光信号进入光纤。
2 光接收设备:主要有光检测器和光放大器,3 光传输设备:短距离的是电缆,长距离时要加中继器。
4 中继器:由光检测器、电信号放大器、判决再生电路、驱动器和光源等组成。
作用是将光信号变成电信号。
★★第二章★★★光与物质的作用实质上就是光与原子的相互作用,这种相互作用有三种主要过程:自发辐射、受激辐射、受激吸收。
自发辐射:该过程与外界作用无关,各个原子的辐射是自发地、独立地进行,彼此毫无关联。
(LED)受激辐射:在受激辐射中,通过一个光子的作用,可以得到两个特征完全相同的光子,如果这两个光子再引起其他原子产生受激辐射,就可以得到四个特征完全相同的光子,…,如此进行下去,将形成“雪崩”反应。
(LD)受激吸收:该过程对外来光有严格的频率选择性。
★形成粒子反转的条件:首先要有能实现粒子数反转分布的物质,也就是激光器的工作物质,它具有对光信号放大的能力;其次,要实现粒子数反转,还必须从外界输入能量,使工作物质中有尽可能多的粒子吸收能量后从低能级跃迁到高能级上去。
这一过程也称为激励。
当激励强度足够大时,便可在一堆激光能级之间实现粒子数反转。
★★第三章★★★通信光纤的纤芯通常是折射率为n1的高纯度SiO2,并有少量掺杂剂,以提高折射率。
光电检测技术知到章节答案智慧树2023年哈尔滨工程大学
光电检测技术知到章节测试答案智慧树2023年最新哈尔滨工程大学第一章测试1.对于下列器件,其所使用波长范围主要是红外线的是哪种仪器?()参考答案:数字体温计2.下列日常所用器件中,哪种应用属于光电变换?()。
参考答案:电视3.下列应用中需要光电跟踪控制的是?()。
参考答案:光纤通信;武器制导;红外遥感;工业产品的在线检测4.下列检测过程中,可以实现非接触检测的是?()。
参考答案:汽车行驶速度检测;火灾现场温度检测;大气污染程度检测5.光电传感器是将被测量的量转换成光信号的变化,然后通过光电元件转换成电信号。
()参考答案:对第二章测试1.下列哪种噪声属于非白噪声?()参考答案:产生-复合噪声;温度噪声;1/f噪声2.光电倍增管的工作原理是基于下列哪种物理效应?()参考答案:光电发射效应3.对于光电倍增管,产生光电效应的部位是?()参考答案:阴极4.对于光电倍增管,假设阴极灵敏度为5 μA/lm,阳极灵敏度为50 A/lm,阳极允许的最大输出电流为 A,那么阴极允许的最大光通量为多少?()参考答案:2x lm5.假设光电倍增管输入电路的电阻和电容分别是R=2 kΩ和C=0.1 μF,那么其带宽是多少?()参考答案:1250 Hz6.下列光电检测器件中,可以用于位置检测的器件是?()参考答案:楔环检测器;光电位置传感器;光电编码器;象限检测器7.下列光电检测器件中,其基本结构属于电容器结构的器件是?()参考答案:CCDD的工作频率与下列哪些因素有关?()参考答案:载流子迁移率;温度;少数载流子的寿命;电极长度;掺杂浓度9.在利用光电位置传感器进行检测时,光斑位置越远离器件中心,测量误差越小。
()参考答案:错10.光电位置传感器与象限检测器件相比,光敏面不需要分割,可以消除盲区的影响,可以连续测量。
()参考答案:对D的电极间隙越小,电荷越容易转移。
()参考答案:对D的像元间距越大,分辨率越高。
()参考答案:错第三章测试1.热电检测器件的噪声主要是下列哪种噪声?()参考答案:温度噪声2.下列哪种电阻的电阻值随着温度的升高而升高?()参考答案:合金电阻;白金电阻3.下列热电检测器件中,只能在交变热辐射条件下工作的热电检测是哪种?()参考答案:热释电检测器4.参考答案:54 s5.热交换能量的方式有传导、辐射、对流三种。
第六章光电检测电路的设计
S max /[U b (1 G / G0 ) S max / G0 ]
当
R
=1/
L
G
L
已知时,可计算偏置电源
电压 U b为
用解析法计算输入电路
U b S max(GL G0 ) / GL (G0 G)
a) 确定线性区 b) 计算输出信号
3)计算输出电压幅度 由图b,当输入光通量由Φmin变化到Φmax时,输出电压
b) 相对探测灵敏度曲线 1-检测型Si光电二极管
2-照相用Si光电二极管 3-平面型Si光电池 4-光电三极管
5-台面型光电二极管 6-视见函数
7-CdS光敏电阻
2)探测器的光电转换特性和入射辐射能量的大小相匹配
根据光电系统辐射源的发光强度、传输介质和目标的传输 及调制损耗、接收光学系统接收孔径的限制及反射吸收等损失 的影响,可以计算出入射到探测器光敏面上的实际辐射能量, 通常它们是很微弱的,探测器的选择应充分利用这些有用的信 号能量,为此要考虑:
为了提高传输效率,无畸变地变换光电信号,光电检测器 件不仅要和被测辐射源及光学系统,而且要和后续的电子系统 在特性和工作参数上相匹配,使每个相互连接的器件都处于最 佳的工作状态。光电检测器件和光路的匹配是在对辐射源和光 路进行光谱分析和能量计算的基础上,通过合理选择光路和器 件的光学参数来实现的,这要涉及到工程光学的内容。而光电 检测器件和电路的匹配则应根据选定的光电检测器件的参数, 通过正确选择和设计电路来完成。
载电阻RL的减小会增大输出信号电流 而使输出电压减小。但RL的减小会受 到最大工作电流和功耗的限制。为了
提高输出信号电压应增大RL ,但过大 的RL会使负载线越过特性曲线的转折 点M进入非线性区,而在这个范围内
仪器分析考试练习题和答案(2)
仪器分析考试练习题和答案第5章紫外-可见吸收光谱法【5-1】 分子吸收光谱是如何产生的?它与原子光谱的主要区别是什么?答:分子光谱是由分子中电子能级、振动和转动能级的变化产生的,表现形式为带光谱。
它与原子光谱的主要区别在于表现形式为带光谱。
原子光谱是由原子外层或内层电子能级的变化产生的,它的表现形式为线光谱。
【5-2】 有机化合物分子的电子跃迁有哪几种类型?哪些类型的跃迁能在紫外-可见吸收光谱中反映出来? 答:有机分子电子跃迁类型有σ→σ*跃迁,n →σ*跃迁,π→π*跃迁,n →π*跃迁,其中π→π*跃迁,n →π*跃迁对应的波长在紫外光区。
【5-3】 无机化合物分子的电子跃迁有哪几种类型?为什么电荷转移跃迁常用于定量分析,而配体场跃迁在定量分析中却很少使用?【5-4】 何谓生色团和助色团?请举例说明?答:生色团:分子中含有非键或π键的电子体系,能吸收外来辐射时并引起π–π*和n –π*跃迁,可产生此类跃迁或吸收的结构单元,称为生色团。
主要的生色团有–C=O 、–N=N –、–N=O 等。
助色团:含有孤对电子(非键电子对),可使生色团吸收峰向长波方向移动并提高吸收强度的一些官能团,称之为助色团,如–OH 、–OR 、–NHR 、–SH 、–Cl 、–Br 、–I 等。
【5-5】 何谓溶剂效应?为什么溶剂极性增强时,π→π*跃迁的吸收峰发生红移而n →π*跃迁的吸收峰发生蓝移?答:溶剂效应指由于溶剂极性的不同所引起某些化合物的吸收峰发生红移或蓝移的作用。
溶剂极性增强时π→π*跃迁红移,n →π*跃迁蓝移。
这是因为在π→π*跃迁中,激发态的极性大于基态,当溶剂的极性增强时,由于溶剂与溶质相互作用,溶质的分子轨道π*能量下降幅度大于成键轨道,使得π*与π间的能量差减少,导致吸收峰max λ红移。
但n →π*跃迁中,溶质分子的n 电子与极性溶剂形成氢键,降低了n 轨道的能量,n 与π*轨道间能力差增大,引起吸收带max λ蓝移。
光纤通信技术(第2版)答案
(2) NA n12 n22 n1 2
代入(1)中的 可得: NA 0.3873
16.已知阶跃光纤纤芯的折射指数为n1=1.5,相对折
射指数差 0.01、纤芯半径a=25μm,若
引起脉冲波形的形状发生变化。从波形在时间上展宽的角度去理解,也就是光脉冲在光纤中传输,随
着传输距离的加大,脉冲波形在时间上发生了展宽,这种现象称为光纤的色散
10.什么是模式色散?材料色散?波导色散?
答:模式色散:光纤中的不同模式,在同一波长下传输,各自的相位常数βmn不同所引起的色散
材料色散:由于光纤材料本身的折射指数n和波长λ呈非线性关系,从而使光的传播速度随波长 而变化所引起的色散
18.渐变型光纤的折射指数分布为 1
n(r
)
n(0)
1
2(
r a
)
a
2
求出光纤的本地数值孔径
解: NA(r) n2 (r) n2 (a)
得: NA(r)
n
2
(0)
1
2(
a r
)
n
2
(0)
1
2(
a r
)a
12.什么是受激拉曼散射和受激布里渊散射? 答:如设入射光的频率为f0,介质分子振动频率为fv,则散射光的频率为:fs=f0士fv,这种现象称为 受激拉曼散射
受激布里渊散射与受激拉曼散射相比较物理过程很相似,都是在散射过程中通过相互作用,光波 与介质发生能量交换,但受激布里渊散射所产生的斯托克斯波在声频范围,其波的方向和泵浦光波方 向相反,而受激拉曼散射所产生的斯托克斯波在光频范围,其波的方向和泵浦光波方向一致
《光纤通信》习题解答
第1章1.光通信的优缺点各是什么?答:优点有:通信容量大;传输距离长;抗电磁干扰;抗噪声干扰;适应环境;重量轻、安全、易敷设;;寿命长。
缺点:接口昂贵;强度差;不能传送电力;需要专用的工具、设备以及培训;未经受长时间的检验。
2.光通信系统由哪几部分组成,各部分功能是什么?答:通信链路中最基本的三个组成部分是光发射机、光接收机和光纤链路。
各部分的功能参见1.3节。
3.假设数字通信系统能够在载波频率1%的比特率下工作,试问在5GHz的微波载波和1.55μm的光载波上能传输多少路64kb/s的音频信道?答:5GHz×1%/64k=781路(3×108/1.55×10-6)×1%/64k=3×107路4.SDH体制有什么优点?答:主要为字节间插同步复用、安排有开销字节用于性能监控与网络管理,因此更加适合高速光纤线路传输。
5.简述未来光网络的发展趋势及关键技术。
答:未来光网络的发展趋势为全光网,关键技术为多波长传输和波长交换技术。
6.简述WDM的概念。
答:WDM的基本思想是将工作波长略微不同,各自携带了不同信息的多个光源发出的光信号,一起注入同一根光纤,进行传输。
这样就充分利用光纤的巨大带宽资源,可以同时传输多种不同类型的信号,节约线路投资,降低器件的超高速要求。
7.解释光纤通信为何越来越多的采用WDM+EDFA方式。
答:WDM波分复用技术是光纤扩容的首选方案,由于每一路系统的工作速率为原来的1/N,因而对光和电器件的工作速度要求降低了,WDM合波器和分波器的技术与价格相比其他复用方式如OTDM等,有很大优势;另一方面,光纤放大器EDFA的使用使得中继器的价格和数量下降,采用一个光放大器可以同时放大多个波长信号,使波分复用(WDM)的实现成为可能,因而WDM+EDFA方式是目前光纤通信系统的主流方案。
8.WDM光传送网络(OTN)的优点是什么?答:(1)可以极提高光纤的传输容量和节点的吞吐量,适应未来高速宽带通信网的要求。
光纤通信第三版pdf完全版本光纤通信原理与技术
光纤通信第三版pdf完全版本光纤通信原理与技术光纤通信第三版pdf完全版本提供下载,来⾃⽹络。
相关信息:【作者】(美)Gerd Keiser【格式】超星转成的pdf【译者】李⽟权等【 ISBN 】7-5053-7637-3【出版社】电⼦⼯业出版社【系列名】国外电⼦通信教材【出版⽇期】2002年7⽉【版别版次】2002年7⽉第⼀版第⼀次印刷【简介】本书是⼀本系统介绍光纤通信知识的专著。
全书共分为13章,内容涉及光纤传输原理和传输特性、半导体光源和光检测器的⼯作原理及⼯作特性、数字光纤通信系统和模拟光纤通信系统、光放⼤器的⼯作原理和性能、WDM系统原理、光⽹络以及光纤通信系统测量。
本书理论体系严谨,内容深⼊浅出,并且紧密联系实际,是通信⼯程及相关专业⾼年级本科⽣、研究⽣的⼀本好教材,也是通信⼯程师的⼀本很好的参考书。
【⽬录】第1章光纤通信总览1.1 基本的⽹络信息速率1.2 光纤光学系统的演进1.3 光纤传输链路的基本单元1.4 仿真与建模⼯具1.4.1 仿真和建模⼯具的特征1.4.2 编程语⾔1.4.3 PTDS仿真和建模⼯具1.5 本书的使⽤和扩展1.5.1 参考资料1.5.2 CD—ROM中的仿真程序1.5.3 光⼦学实验室1.5.4 基于Web的资源参考⽂献第2章光纤:结构、导波原理和制造2.1 光的特性2.1.1 线偏振2.1.2 椭圆偏振和圆偏振2.1.3 光的量⼦特性2.2 基本的光学定律和定义2.3 光纤模式和结构2.3.1 光纤分类2.3.2 射线和模式2.3.3 阶跃折射率光纤结构2.3.4 射线光学表述2.3.5 介质平板波导中的波动解释2.4 圆波导的模式理论2.4.1 模式概述2.4.2 对关键的模式概念的归纳2.4.3 麦克斯韦⽅程2.4.4 波导⽅程式2.4.5 阶跃折射率光纤中的波动⽅程2.4.6 模式⽅程2.4.7 阶跃折射率光纤中的模式2.4.8 线偏振模2.4.9 阶跃折射率光纤中的功率流2.5 单模光纤2.5.1 模场直径2.5.2 单模光纤中的传播模2.6 梯度折射率光纤的结构2.7 光纤材料2.7.1 玻璃纤维2.7.2 卤化物玻璃纤维2.7.3 有源玻璃纤维2.7.4 硫属化合物玻璃纤维2.7.5 塑料光纤2.8 光纤制造2.8.1 外部汽相氧化法2.8.2 汽相轴向沉积法2.8.3 改进的化学汽相沉积法2.8.4 等离⼦体活性化化学汽相沉积法2.8.5 双坩埚法2.9 光纤的机械特性2.10 光缆习题参考⽂献第3章光纤中的信号劣化3.1 损耗3.1.1 损耗单位3.1.2 吸收损耗3.1.3 散射损耗3.1.4 弯曲损耗3.1.5 纤芯和包层损耗3.2 光波导中的信号失真3.2.1 信息容量的确定3.2.2 群时延3.2.3 材料⾊散3.2.4 波导⾊散3.2.5 单模光纤中的信号失真3.2.6 偏振模⾊散3.2.7 模间⾊散3.3 梯度折射率光波导中的脉冲展宽3.4 模式耦合3.5 单模光纤的优化设计3.5.l 折射率剖⾯3.5.2 截⽌波长3.5.3 ⾊散计算3.5.4 模场直径3.5.5 弯曲损耗习题参考⽂献第4章光源4.1 半导体物理学专题4.1.1 能带4.1.2 本征材料和⾮本征材料4.1.3 pn结4.1.4 直接带隙和间接带隙4.1.5 半导体器件的制造4.2 发光⼆极管(LED)4.2.1 LED的结构4.2.2 光源材料4.2.3 量⼦效率和LED的功率4.2.4 LED的调制4.3 半导体激光器4.3.1 半导体激光器的模式和阈值条件4.3.2 半导体激光器的速率⽅程4.3.3 外量⼦效率4.3.4 谐振频率4.3.5 半导体激光器结构和辐射⽅向图4.3.6 单模激光器4.3.7 半导体激光器的调制4.3.8 温度特性4.4 光源的线性特性4.5 模式噪声、模分配噪声和反射噪声4.6 可靠性考虑习题参考⽂献第5章光功率发射和耦合5.1 光源⾄光纤的功率发射5.1.1 光源的输出⽅向图5.1.2 功率耦合计算5.1.3 发射功率与波长的关系5.1.4 稳态数值孔径5.2 改善耦合的透镜结构5.2.1 ⾮成像微球5.2.2 半导体激光器与光纤的耦合5.3 光纤与光纤的连接5.3.1 机械对准误差5.3.2 光纤相关损耗5.3.3 光纤端⾯制备5.4 LED与单模光纤的耦合5.5 光纤连接5.5.1 连接⽅法5.5.2 单模光纤的连接5.6 光纤连接器5.6.1 连接器的类型5.6.2 单模光纤连接器5.6.3 连接器回波损耗习题参考⽂献第6章光检测器6.1 光电⼆极管的物理原理6.1.1 pin光电⼆极管6.1.2 雪崩光电⼆极管6.2 光检测器噪声6.2.1 噪声源6.2.2 信噪⽐6.3 检测器响应时间6.3.1 耗尽层光电流6.3.2 响应时间6.4 雪崩倍增噪声6.5 InGaAsAPD结构6.6 温度对雪崩增益的影响6.7 光检测器的⽐较习题参考⽂献第7章光接收机7.1 接收机⼯作的基本原理7.1.1 数字信号传输7.1.2 误码源7.1.3 接收机结构7.1.4 傅⾥叶变换表⽰7.2 数字接收机性能7.2.1 误码概率7.2.2 量⼦极限7.3 接收机性能的详细计算7.3.1 接收机噪声7.3.2 散弹噪声7.3.3 接收机灵敏度计算7.3.4 性能曲线7.3.5 ⾮零消光⽐7.4 前置放⼤器的类型7.4.1 ⾼阻抗FET放⼤器7.4.2 ⾼阻抗双极晶体管放⼤器7.4.3 互阻抗放⼤器7.4.4 ⾼速电路7.5 模拟接收机习题参考⽂献第8章数字传输系统8.1 点到点链路8.1.1 系统考虑8.1.2 链路的功率预算8.1.3 展宽时间预算8.1.4 第⼀窗⼝传输距离8.1.5 单模光纤链路的传输距离8.2 线路编码8.2.1 NRZ码8.2.2 RZ码8.2.3 分组码8.3 纠错8.4 噪声对系统性能的影响8.4.1 模式噪声8.4.2 模分配噪声8.4.3 凋嗽8.4.4 反射噪声习题参考⽂献第9章模拟系统9.1 模拟链路概述9.2 载噪⽐9.2.1 载波功率9.2.2 光检测器和前置放⼤器的噪声9.2.3 相对强度噪声(RIN)9.2.4 反射对RIN的影响9.2.5 极限条件9.3 多信道传输技术9.3.1 多信道幅度调制9.3.2 多信道频率调制9.3.3 副载波复⽤习题参考⽂献第10章 WDM概念和器件10.1 WDM的⼯作原理10.2 ⽆源器件10.2.1 2x 2光纤耦合器10.2.2 散射矩阵表⽰法10.2.3 2x 2波导辊合器10.2.4 星形精合器10.2.5 马赫—曾德尔⼲涉仪复⽤器10.2.6 光纤光栅滤波器10.2.7 基于相位阵列的WDM器件10.3 可调谐光源10.4 可调谐滤波器10.4.1 系统考虑10.4.2 可调谐滤波器的类型习题参考⽂献第11章光放⼤器11.1 光放⼤器的基本应⽤和类型11.1.1 ⼀般应⽤11.1.2 放⼤器的类型11.2 半导体光放⼤器11.2.1 外泵浦11.2.2 放⼤器增益11.3 掺饵光纤放⼤器11.3.1 放⼤机制11.3.2 EDFA的结构11.3.3 EDFA的功率转换效率及增益11.4 放⼤器噪声11.5 系统应⽤11.5.1 功率放⼤器11.5.2 在线放⼤器11.5.3 前置放⼤器11.5.4 多信道运⽤11.5.5 在线放⼤器增益控制11.6 波长变换器11.6.1 光栅波长变换器11.6.2 光波混合波长变换器习题参考⽂献第12章光⽹络12.1 基本⽹络12.1.1 ⽹络拓扑12.1.2 ⽆源线形总线的性能12.1.3 星形结构的性能12.2 SONET/SDH12.2.1 传输格式和速率12.2.2 光接⼝12.2.3 SONET/SDH环12.2.4 S0NET/SDH⽹络12.3 ⼴播选择WDM⽹络12.3.1 ⼴播选择单跳⽹12.3.2 ⼴播选择多跳⽹12.3.3 洗牌⽹多跳⽹12.4 波长路由⽹12.4.1 光交叉连接12.4.2 波长变换器的性能评估12.5 ⾮线性对⽹络性能的影响12.5.1 有效长度与⾯积12.5.2 受激拉曼散射12.5.3 受激布⾥渊散射12.5.4 ⾃相位调制和交叉相位调制12.5.5 四波混频12.5.6 ⾊散管理12.6 WDM⼗EDFA系统的性能12.6.1 链路带宽12.6.2 特定BER所需的光功率12.6.3 串扰12.7 孤⼦12.7.1 孤⼦脉冲12.7.2 孤⼦参数12.7.3 孤⼦宽度和间隔12.8 光CDMA12.9 超⾼容量⽹络12.9.1 超⼤容量WDM系统12.9.2 ⽐特间插光TDM12.9.3 时隙光TDM习题参考⽂献第13章测量13.1 测量标准和测试过程13.2 测试设备13.2.1 光功率计13.2.2 光衰减器13.2.3 可调谐激光器13.2.4 光谱分析仪13.2.5 光时域反射仪13.2.6 多功能光测试系统13.3 损耗测量13.3.1 截断法13.3.2 插⼊损耗法13.4 ⾊散的测量13.4.1 模间⾊散13.4.2 模间⾊散的时域测量13.4.3 模问⾊散的频域测量13.4.4 ⾊度⾊散13.4.5 偏振模⾊散13.5 0TDR的场地应⽤13.5.1 0TDR轨迹13.5.2 损耗测量13.5.3 光纤故障定位13.6 眼图13.7 光谱分析仪的应⽤13.7.1 光源特性13.7.2 EDFA增益与噪声系数的测试习题参考⽂献附录A 国际单位制附录B 常⽤的数学关系附录C 贝塞⽿函数附录D 分贝附录E 通信理论专题附录F ⾊散因⼦。
光波导理论与技术说明书
图书基本信息书名:<<光波导理论与技术>>13位ISBN编号:978711510700810位ISBN编号:7115107009出版时间:2002-12出版时间:人民邮电出版社作者:李玉权,崔敏页数:343字数:538000版权说明:本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。
更多资源请访问:内容概要本书系统地讲述了目前发展比较迅速的光波导传输理论和光通信器件的工作原理。
本书的第1章是对光通信及相应的器件的一个概略介绍。
第2章是电磁场理论基础,介绍经典电磁理论的主要结论。
第3章是几何光学分析方法,讲述光波导中光的传播规律。
第4章讲述平面波导及条形波导的模式理论。
第5章介绍光纤的模式理论。
第6章讲述光纤的色散特性和色散补偿技术。
第7章是光纤的非线性传输理论,讲述光纤中重要的非线性效应。
第8章介绍光通信系统中常用的无源光器件的结构、工作原理和特性。
第9章讲述有源光器件的结构、工作原理及特性。
本书的作者长年为本科生和研究生讲授《光纤通信》、《光纤传输理论》课程,因此本书可以作为相关专业的本科生和研究生的教材。
对于从事与光纤通信相关工作的工程技术人员,本书也可以提供有益的参考。
书籍目录第1章 绪论1.1 通信历史的回顾1.2 光纤通信的产生和发展1.3 光通信关键技术1.3.1 光纤1.3.2 光源和光发送机1.3.3 光检测器和光接收端机1.3.4 光电集成和光集成技术1.4 光波技术的发展第2章 电磁场理论基础2.1 电磁场基本方程2.1.1 麦克斯韦方程组2.1.2 电磁场边界条件2.1.3 波动方程和亥姆霍兹方程2.1.4 柱型波导中的场方程2.2 各向同性媒质中的平面电磁波2.2.1 无界均匀媒质中的均匀平面电磁波2.2.2 平面电磁波的偏振状态2.2.3 平面波的反射和折射2.2.4 非理想媒质中的平面电磁波2.3 各向异性媒质中的平面电磁波2.3.1 电各向异性媒质2.3.2 电各向异性媒质中的平面波2.4 电磁波理论的短波长极限--几何光学理论2.4.1 几何光学的基本方程--eikonal方程2.4.2 光线传播的路径方程2.4.3 路径方程解的两个特例2.4.4 折射定律与反射定律第3章 光波导的几何光学分析方法3.1 均匀介质薄膜波导中光线的传播3.1.1 光线的传播路径及光线分类3.1.2 传播时延及时延差3.2 芯层折射率渐变的介质薄膜波导中光线的传播3.2.1 传播路径及光线分类3.2.2 传播时延及时延差3.2.3 举例3.3 阶跃光纤中光线的传播3.3.1 传播路径及光线分类3.3.2 数值孔径3.3.3 传播时延和时延差3.4 梯度光纤中光线的传播3.4.1 路径方程和光线不变量3.4.2 光线路径及光线分类3.4.3 本地数值孔径3.4.4 传播时延3.4.5 举例3.5 光纤与光源的耦合3.5.1 照射光源3.5.2 耦合效率3.5.3 提高光源耦合效率的措施第4章 薄膜波导和带状波导的模式理论4.1 均匀薄膜波导4.1.1 TE 模4.1.2 TM模4.1.3 传播模和辐射模4.1.4 截止参数4.1.5 单模传输和模数量4.1.6 导波场分布4.1.7 导波的传输功率和有效厚度4.1.8 对称薄膜波导4.1.9 本地平面波解释4.2 渐变薄膜波导4.2.1 无界的抛物线型折射率分布光波导的解析解??4.2.2 有界的抛物线型折射率分布光波导的解析解??4.3 条形光波导4.3.1 条形光波导的结构4.3.2 分析条形波导的马卡梯里方法4.3.3 Emn模4.3.4 Emn模4.3.5 截止条件与单模传输4.4 带状波导的近似分析方法?第5章 光纤的模式理论5.1 光纤中的电磁场方程 5.2 阶跃光纤的严格解--矢量模解 5.2.1 阶跃光纤的电磁场解 5.2.2 导波模的特征方程 5.2.3 导波模分类 5.2.4 导波模的截止参数和单模传输条件 5.2.5 远离截止状态时导波模的性态 5.2.6 色散曲线 5.2.7 导波模的场型图 5.3 阶跃光纤中的线偏振模5.3.1 线偏振模场解及特征方程 5.3.2 线偏振模特性5.3.3 LPmn模与矢量模之间的对应关系 5.3.4 LPmn 模的功率分布5.3.5 多模光纤中的模数量5.4 梯度光纤的解析解法5.4.1 抛物线型折射率分布光纤中的标量近似解5.4.2 相位常数5.4.3 模式群和模式数量5.5 光波导的数值分析方法5.5.1 有限元方法概要5.5.2 边界条件 5.5.3 计算举例5.6 模式的正交性和完备性 5.6.1 模式的完备性 5.6.2 模式的正交性5.7 微扰法 5.7.1 弱导光纤的微扰解 5.7.2 折射率分布有一均匀变化的情形5.8 模式的横向耦合理论 5.8.1 耦合模方程 5.8.2 耦合模方程的形式解 5.8.3 耦合系数的计算5.9 模式的纵向耦合理论 5.9.1 耦合模方程 5.9.2 纵向耦合特点5.10 单模光纤 5.10.1 阶跃型单模光纤 5.10.2 梯度型单模光纤 5.10.3 单模光纤的双折射和偏振演化 第6章 光纤的色散特性6.1 色散概述6.1.1 波长色散6.1.2 模式色散6.2 材料色散6.3 单模光纤的色散及单模光纤的分类6.3.1 色散系数6.3.2 单模光纤分类6.3.3 偏振模色散6.4 多模光纤的模式色散6.4.1 群时延差6.4.2 最佳折射率指数αopt?6.5 色散导致的光信号畸变及其对通信的影响6.5.1 光脉冲传播方程6.5.2 传播方程的形式解6.5.3 高斯光脉冲在色散介质中的展宽6.5.4 色散对通信容量的限制6.6 色散补偿6.6.1 后补偿技术6.6.2 预补偿技术6.6.3 在线补偿技术6.6.4 光均衡滤波6.6.5 偏振模色散的补偿第7章 单模光纤的非线性传输特性7.1 光波与媒质的非线性互作用7.1.1 电介质的极化7.1.2 媒质的非线性响应7.1.3 光纤的非线性折射率7.2 光信号的非线性传播方程7.2.1 光信号传播方程7.2.2 传播方程的数值解法7.3 自相位调制(SPM)7.3.1 非线性相移及频率啁啾7.3.2 群速度色散的影响7.3.3 SPM对通信的影响7.4 交叉相位调制(XPM)7.4.1 不同频率光波之间的耦合7.4.2 正交偏振模之间的耦合7.4.3 XPM对通信系统的影响7.5 光孤子传输7.5.1 孤子方程和孤子解7.5.2 暗孤子7.5.3 基态光孤子的传播特性7.5.4 光孤子通信7.6 四波混频(FWM)7.6.1 四波混频的形成机理7.6.2 参量增益7.6.3 四波混频的相位匹配条件7.6.4 四波混频对通信的影响及其可能的应用7.7 受激拉曼散射(SRS)7.7.1 受激拉曼散射的物理机理7.7.2 拉曼增益7.7.3 拉曼阈值7.7.4 短脉冲修正7.7.5 拉曼光纤放大器7.7.6 拉曼串扰7.8 受激布里渊散射(SBS)7.8.1 SBS的物理机理和布里渊频偏7.8.2 布里渊增益7.8.3 布里渊阈值7.8.4 SBS对通信的影响第8章 无源光器件8.1 光纤连接器8.1.1 光纤的连接损耗8.1.2 光纤连接器8.2 光耦合器8.2.1 全光纤耦合器的耦合原理8.2.2 光纤耦合器的性能参数8.2.3 耦合器的分类8.3 光波复用、解复用器8.3.1 光波复用、解复用器的性能参数8.3.2 复用、解复用器的结构原理8.4 光调制器8.4.1 电光调制8.4.2 声光调制8.4.3 磁光调制8.4.4 波导调制器和电吸收式调制器8.5 光滤波器、光开关、光隔离器、光衰减器8.5.1 光滤波器8.5.2 光开关8.5.3 光隔离器8.6 光纤光栅8.6.1 光纤光栅的写入技术8.6.2 掺杂光纤光敏性机理8.6.3 均匀周期光栅光学特性8.6.4 线性啁啾光栅光学特性8.6.5 非线性效应8.6.6 光纤光栅的应用第9章 有源光器件9.1 半导体激光器的工作原理9.1.1 半导体中光发射的物理机理9.1.2 半导体PN结及其能带结构9.1.3 异质结及直接带隙半导体材料9.1.4 半导体激光器的基本结构及阈值条件9.1.5 激光器的谱宽和线宽9.2 半导体激光器的结构及工作特性9.2.1 条形结构半导体激光器9.2.2 单纵模激光器9.2.3 半导体激光器的工作特性9.3 半导体光电检测器9.3.1 光检测的原理9.3.2 PIN光电二极管9.3.3 雪崩光电二极管(APD)9.3.4 响应度和量子效率9.3.5 光检测器的响应时间9.3.6 光检测器的噪声9.4 光放大器9.4.1 半导体激光放大器9.4.2 非线性光纤放大器9.4.3 掺铒光纤放大器9.4.4 掺铒光纤激光器9.4.5 掺镨光纤放大器(PDFA)参考文献版权说明本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。
SDH与数字光纤传输系统
PDH 预留的插入比特(开销字节)较少,这也就是为
什么在设备进行光路上的线路编码时,要通过增加冗余 编码来完成线路性能监控功能的原因
开销字节少,对完成传输网的分层管理、性能监控、业
务的实时调度、传输带宽的控制、告警的分析定位很不 利 使得网络的运行、管理和维护(OAM)较困难
PDH传输体制的缺陷
(1) 接口方面
只有地区性的电接口规范。我国和欧洲、北美、日本各
自有不同的 PDH 数字体系,这些体系互不兼容,造成 国际互通的困难
没有统一的光接口规范。为了完成设备对光路上的传输
性能进行监控各厂家各自采用自行开发的线路码型,不 同厂家同一速率等级的光接口码型和速率不一样,致使 不同厂家的设备无法实现横向兼容
PDH主要适用于中、低速率点对点的传输
7.1 PDH准同步数字体系
PDH的复用方式很明显不能满足大容量信息传输 的要求
另外 PDH体制的地区性规范也使网络互连增加了
难度 PDH不能适应现代通信网对信号宽带化、多样化 的要求 制约了传输网向更高的速率发展
PDH传输体制的缺陷
PDH传输体制的缺陷体现在以下几个方面:
SDH的这些优点是以牺牲其它方面为代价的
(2) 指针调整机理复杂
指针的作用就是时刻指示低速信号的位置,以便在拆包
时能正确地拆分出所需的低速信号,实现从高速信号中 直接分/插出低速支路信号
指针的使用是 SDH 的一大特色,但指针功能的实现增
加了系统的复杂性,并使系统产生 SDH 的一种特有抖 动-由指针调整引起的结合抖动
2.SDH的不足
SDH的这些优点是以牺牲其它方面为代价的
(3) 软件的大量使用对系统安全性的影响
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fig. 6-4: Photodiode Responsivities
精品课件
三、响应时间(响应速度)
――指光电二极管产生的光电流跟随入射光信号变 化快慢的状态。一般用响应时间(上升时间和下降 时间)表示。
精品课件
四、暗电流I0
精品课件
二、响应度:
I p q P0 h
(6.6)
Ip q M 对雪崩二极管 P0 h
响应度是单位光功率产生的光电流的大小。
光子能量一定时,二极管的量子效率和入射光功率无关。 响应度是光功率的线性函数。光电流Ip正比于光功率P0。
精品课件
对于给定的波长(给 定的光子能量hv), 响应度 是一个常 数。
1~10
50~500 0.5~2.0
0.5~1.0 0.1~0.5 0.05~0.5
0.3~0.7 0.5~3.0 1.0~2.0
5
5~10
5
精品课件
光检测器的比较
表2. Si、Ge、InGaAs 雪崩光电二极管的通用工作特性参数
参数 波长范围 雪崩增益 暗电流 上升时间 增益带宽积 偏置电压
光电二极管的另一个重要参数是它的暗电流。 暗电流是指无光照时,光电二极管的反向电流
。
理想情况下,当没有光照时,光电检测器无光电 流输出。暗电流将引起光接收机噪音增大。
所以I0 越小 越好
Si制作的PIN
I0<l nA
长波长波段 lnGaAs 光电二极管,I0较小 <几个 nA
精品课件
五、雪崩倍增因子G
精品课件
2. 雪崩光电二极管(APD)
在长途光纤通信系统中仅有毫瓦级的光功率从光发射机 输出,经过几十KM光纤的传输衰减,到达光接收机处的 光信号将变得十分微弱。为了能使光纤接收机的判决电 路正常工作,就需要采用多级放大。放大器将引入噪声 。从而,使光接收机的信噪比降低,灵敏度降低。
如果能先在光电二极管内部进行放大,就能克服PIN管 的上述缺点。雪崩光电二极管具有放大功能,类似光电 倍增管。
第6章 光检测器
在光纤接收端,首先需要将光信号转换成 电信号,并把光功率的变化转换成相应变 化的电流。其首要部件就是光检测器。
精品课件
光纤通信中对光检测器的最重要的几点要求:
对所用光源的波长范围内有较高的响应度或灵 敏度
较小的噪声 响应速度快 对温度变化不敏感 与光纤尺寸匹配 工作寿命长
产生的电子-空穴 =对 Ip /数 q
入射光子数 P0 /h
(6.5)
Ip:入射在光电二极管上的稳态平均光功率P0所产生的平均光电流。 q: 电子电荷 在光电二极管的实际应用,100个光子会产生30~95个电子
-空穴对,因此,检测器的量子效率范围为30%~95%。加大耗尽区 的厚度,使得可以吸收大部分的光子,提高量子效率。但是耗尽区越 厚,光生载流子越过反向偏置结的时间就越长,影响了光电二极管的 响应速度。
精品课件
拉通(reach-through)型的APD 结构
精品课件
倍增因子M
光电二极管中所有载(6.7)
IM :雪崩增益后输出电流的平均值 Ip :未倍增时的初级光电流
精品课件
光电二极管性能参数
一、量子效率η和响应度
――每个能量为hv的入射光子所产生的电子-空穴对数
偏置电压
精品课件
光生载流子在外加负偏压和内建电场的作用下,在外电路中出现了光电
流,从而在电阻R上有信号电压输出。这样就实现了输出电压跟随输入光信号
变化的光电转换作用。
负偏压:P接负,N接正。由图可见,外加负偏压产生的电场方向与内建电
场方向一致,有利于耗尽区的加宽。(耗尽区的加宽可以改善光电检测器响应
精品课件
工作原理
在二极管的P-N结上加反向电压(一般 为几十伏或几百伏),在结区形成一个强电场 。在高场区内光生载流子被强电场加速,获得 高的动能,与晶格的原子发生碰撞,使价带的 电子得到能量越过禁带到导带,产生了新的电 子-空穴对,新产生的电子-空穴对在强电场 中又被加速,再次碰撞,又激发出新的电子- 空穴对,…,如此循环下去,像雪崩一样的发 展,从而使光电流获得了倍增。
精品课件
结论:
• 外界的光子(也就是光)射入半导体,分离 出电子和空穴,这些自由的载流子的流动 形成电流,外部的电压(反向偏压)会增强 这种效果。
精品课件
实际工作原理
光照射到半导体的P-N结 上,若光子的能量足够大 (即hν>Eg),则半导体 材料中价带的电子吸收光 子的能量,从价带越过禁 带到达导带,在导带中出 现光电子,在价带中出现 光空穴,即产生光电子- 空穴对。称为光生载流子 。
精品课件
光检测器的比较
表1. Si、Ge、InGaAs pin光电二极管的通用工作特性参数
参数 波长范围 响应度 暗电流 上升时间
带宽 偏置电压
符号
λ
I0 τr B VB
单位 nm A/W nA ns GHz V
Si
Ge
InGaAs
400~1100 800~1650 1100~1700
0.4~0.6 0.4~0.5 0.75~0.95
—雪崩倍增过程是一个复杂的随机过程,每一个
初始的光生的电子—空穴对在什么位置发生碰
撞电离,总共激发出多少对二次电子—空穴对
M
,这些都是随机的。
p
G M p
IM:雪崩倍增时光电流的平均值
Ip:无雪崩倍增时光电流的平均值 往往用平均雪崩增益G来表示APD的倍增大小,一般APD的倍 增因子G在40~100之间。
光电二极管:尺寸小、灵敏度高、响应速度快、材料合 适
精品课件
6.1 光电二极管的物理原理
6.1.1. pin光电二极管
P+
I
N+
偏置电压
本征层
光电二极 管
P型材料区和n型材料区由轻微掺杂n型材料的本征(i)区隔开。正 常工作时,器件加上足够大的反向偏置电压。
精品课件
1. 基于能带的观点
Ephc/Eg
速度和转换效率)
耗尽区
扩散电子
n型区
p型区
pn结 Emax
精品课件
当入射光子的能量小于Eg时,不论入射光多强,光电效
应也不会发生。 所以光电效应必须满足:
hν>Eg 或 λ<hc/ Eg
(∵λ=c/ν)
精品课件
输入输出特性
波长响应:
c(m)EhgcE1g.(2e4V)
(6.2)
当入射光波的波长λ<λc的光,才能使这种材料产生光 生载流子。λc称为截止波长。