《正弦定理》 评课

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《正弦定理》视频课堂评课

高三年曾灿波

本节课基本上实现了教学目标,从正弦定理的发现、向量法证明及正弦定理的简单应用实现了知识目标,并在教学过程中培养学生观察、分解和应用所学知识解决问题的能力。通过设置情境,培养学生的独立探究意识,激发学生的学习兴趣。下面就该教师的教学过程谈几点个人体会:

在引入阶段,教师通过PPT展示了学生熟知的三国人物及一个小故事,由此引入分别在河两岸的两点间的距离的测量问题。由此激发学生对于本节课所学内容的期待,教师的表情,肢体语言丰富,拉近了师生间的距离。

在新课阶段,通过教师的引导与学生的探究发现:正弦定理在直角三角形中是成立的。由此提出了一个问题:任意三角形中,这一结论是否成立。

在探究一般结论的过程中,教师把主要精力集中在锐角三角形的情形,通过向量工具证明了正弦定理在锐角三角形中也成立。

对于钝角三角形的情形,教师稍做提示,留有余地,给学生课后思考、探究的空间。

整个教学过程体现了由特殊到一般的思想,符合学生的认识规律。

教师通过引入三角形的外接圆,用几何法证明了正弦定理中式子的比值等于该三角形个接圆半径的两倍。由此体现了数形结合的思想,证明过程直观明了。

在板书写出正弦定理后,教师与同学一起分析了正弦定理的两个简单应用

1、已知三角形两角及任一边,求其它几何要素;

2、已知两边及其中一边的对角,求其它几何要素。

本节课的第一个例子实际上是第1种类型的应用,在分析完第一个例题之后,教师回归引入中的问题,让学生设计一个方案测量不可到达两点间的距离,愚以为这个环节可放到本节课最后再来进行。

第二个例题就是第2种类型的应用,也是本节课的难点所在。在第二例的解决过程中会碰到三角形有两解的问题。在本例的教学过程,愚认为应该在适当的提示之后给学生充分的思考和解决问题的时间,在学生充分思考并有部分同学犯了错之后,再来展示解题过程并强调最后的三角形两解问题可能会给学生留下更深刻的印象。而这样的处理方法同样适用于本例的变式。

本例变式1仍然是第2种类型的应用,而此时三角形只有一解,需要利用相关知识(如三角形大边对大角等)进行判断并舍去一解。变式2仍然是第2种类型的另外一种结果。

通过上述例题的分析,教师再次归纳了正弦定理的两种重要应用。并在上述例2及变式的基础上对第2种类型的问题作了详细的讨论及总结。在这一过程中利用了几何画板的动态过程给学生最直观的展示,从几何方面深化学生的认识,做到数形结合,从而进一步突破难点。当然如果能利用几何画板的点追踪或者轨迹功能,效果可能会现好。

本节课的课堂总结如果能花更多的时间强调一下重点及难点,相信会有更好的效果。

教师在课堂小结后给了学生充分的课堂练习的时间,并巡视完成情况,对其中存在的问题进行讲评。

该教师的板书规范工整,突出重点。我想如果能在课堂最后的时间提问一下解三角形的另我一种情形:已知两边及夹角求第三边,留给学生课后思考,相信下一节课《余弦定理》的学习会更加顺利。

相关文档
最新文档