电阻试验报告

合集下载

导体的电阻实验报告

导体的电阻实验报告

一、实验目的1. 了解导体电阻的基本概念和影响因素。

2. 掌握伏安法测量导体电阻的方法。

3. 通过实验验证电阻与材料、长度、横截面积之间的关系。

二、实验原理电阻是导体对电流阻碍作用的大小,用字母R表示,单位为欧姆(Ω)。

根据欧姆定律,电阻R与导体两端的电压U和通过导体的电流I之间的关系为:R = U/I。

本实验采用伏安法测量导体电阻,即通过测量导体两端的电压和通过导体的电流,然后根据欧姆定律计算电阻值。

三、实验器材1. 电压表2. 电流表3. 电阻丝(不同材料、长度、横截面积)4. 电源5. 开关6. 导线7. 集成电路实验板四、实验步骤1. 将电阻丝的一端连接到电源的正极,另一端连接到开关。

2. 将电流表串联在电路中,连接电源负极和电阻丝的另一端。

3. 将电压表并联在电阻丝两端。

4. 闭合开关,调节电源电压,使电流表和电压表的示数稳定。

5. 记录电压表和电流表的示数,计算电阻值。

6. 改变电阻丝的长度、横截面积或材料,重复步骤4-5,记录数据。

五、实验数据及处理1. 电阻丝1(材料:铜,长度:10cm,横截面积:1mm²):- 电压U:2V- 电流I:0.5A- 电阻R = U/I = 2V/0.5A = 4Ω2. 电阻丝2(材料:铜,长度:20cm,横截面积:1mm²):- 电压U:2V- 电流I:0.25A- 电阻R = U/I = 2V/0.25A = 8Ω3. 电阻丝3(材料:铜,长度:10cm,横截面积:2mm²):- 电压U:2V- 电流I:0.75A- 电阻R = U/I = 2V/0.75A = 2.67Ω4. 电阻丝4(材料:铁,长度:10cm,横截面积:1mm²):- 电压U:2V- 电流I:0.3A- 电阻R = U/I = 2V/0.3A = 6.67Ω六、实验结果分析1. 电阻与材料的关系:不同材料的电阻不同,铜的电阻较小,铁的电阻较大。

万用表测电阻实验报告总结

万用表测电阻实验报告总结

万用表电阻测量实验报告总结
实验目的:
本实验的目的是学习如何使用万用表测量电阻,了解电阻的基本概念和欧姆定律。

实验设备:
万用表
电阻(色环电阻等)
旋转驱动器(用于机械调零)
导体
实验程序:
机械调零:将万用表的两个指针移开,用螺丝刀转动机械调零螺钉,使指针朝向无限大欧姆刻度。

电阻测量范围的设定:将万用表的转换开关设定为“×100Ω”等适当的电阻测量范围。

欧姆调零:将两个指针短路,同时转动调零旋钮,使指针指向欧姆标尺的零点上。

如果无法调整,则认为是内部电池电压不足,需要更换。

选择适当的范围:使用万用表测量电阻时,选择适当的范围,使指针指向表盘中央附近,以便准确读取。

在改变范围之前,必须将指针离开测量点,防止万用表
损坏。

电阻值的测量和计算:将针接触电阻器的两个端子,按下测量按钮。

记录万用表显示器上的读数,计算电阻值(例如:在×100范围内读数为15时,电阻值为15×100=1500Ω)。

实验结果:
能正确测定电阻器的电阻值。

测量结果稳定性好,读数精度高。

分析与结论:
通过这个实验,我们验证了欧姆定律的正确性。

学会了使用万用表测量电阻的方法,理解了电阻测量的基本原理。

测定结果确认误差小,精度高。

未来的挑战:
为了进一步提高电阻测量的精度,使用更高精度的测量仪器。

为了保持测定环境的稳定性,更严格地控制温度、湿度等实验条件。

更广泛地应用电阻测量技术,应用于电子设备的故障诊断和零部件参数测量等。

电阻测量实验报告

电阻测量实验报告

电阻测量实验报告电阻测量实验报告引言:电阻是电学中的基本元件之一,它在电路中起到了控制电流流动的作用。

为了研究电阻的特性以及其在电路中的应用,我们进行了一系列电阻测量实验。

本报告将详细介绍实验的目的、原理、实验步骤、结果分析以及实验中遇到的问题和解决方法。

一、实验目的:本次实验的主要目的是通过测量不同电阻值的电阻器,掌握电阻的测量方法,熟悉电阻测量仪器的使用,并验证欧姆定律。

二、实验原理:欧姆定律表明,电流I通过电阻R时,电压V与电流I成正比,即V=IR。

根据这个关系,我们可以通过测量电流和电压来计算电阻值。

三、实验步骤:1. 将电阻器连接到电路中,确保电路连接正确无误。

2. 打开电源,调节电源电压为适当值。

3. 使用万用表测量电路中的电流和电压值。

4. 记录测量结果,并计算电阻值。

5. 更换不同电阻值的电阻器,重复上述步骤,进行多组实验。

四、实验结果分析:我们进行了多组实验,测量了不同电阻值的电阻器。

通过计算电流和电压的比值,我们得到了相应的电阻值。

实验结果表明,测量的电阻值与理论值相符合,验证了欧姆定律的正确性。

五、实验中遇到的问题和解决方法:在实验过程中,我们遇到了一些问题,如电路连接错误、测量误差等。

为了解决这些问题,我们仔细检查了电路连接,确保每个元件的连接正确无误。

同时,我们还注意了测量时的仪器精度和操作方法,尽量减小测量误差。

六、实验的启示和意义:通过这次实验,我们不仅熟悉了电阻的测量方法,还加深了对欧姆定律的理解。

实验结果的准确性也提醒我们在实际应用中要注意电路的连接和测量误差的控制。

此外,电阻测量实验也为我们今后学习和研究电路提供了基础。

结论:本次电阻测量实验通过测量不同电阻值的电阻器,验证了欧姆定律的正确性。

实验结果表明,测量的电阻值与理论值相符合,证明了实验的准确性和可靠性。

通过这次实验,我们不仅掌握了电阻测量的方法,还对电阻的特性有了更深入的了解。

这对我们今后的学习和研究具有重要意义。

伏安法测电阻电阻实验报告

伏安法测电阻电阻实验报告

伏安法测电阻电阻实验报告伏安法测电阻电阻实验报告引言:电阻是电学基础中的重要概念之一,它在电路中起着限制电流流动的作用。

为了准确测量电阻值,科学家们发展出了伏安法这一实验方法。

本文将介绍伏安法测电阻的原理、实验步骤和结果分析。

一、实验原理伏安法是通过测量电阻两端的电压和电流,利用欧姆定律来计算电阻值的一种实验方法。

根据欧姆定律,电阻R等于电压U与电流I的比值,即R=U/I。

在实验中,我们可以通过改变电阻两端的电压或者电流来观察电阻的变化。

二、实验步骤1. 准备实验装置:将电阻器、电流表、电压表和电源连接好,确保电路连接正确无误。

2. 调节电流:将电流表的量程调至适当范围,根据实验要求设置所需电流值。

3. 测量电压:用电压表测量电阻两端的电压,并记录下来。

4. 计算电阻:根据欧姆定律,将测得的电压值除以电流值,即可得到电阻的数值。

三、实验结果分析在实验中,我们选择了几个不同的电阻值进行测量,并记录下了相应的电压和电流数据。

通过计算,我们得到了一系列的电阻数值。

在分析这些数据时,我们可以观察到以下几个现象:1. 直线关系:根据欧姆定律,电阻与电压和电流之间应该呈现线性关系。

通过绘制电压-电流图像,我们可以发现这种线性关系。

实验结果表明,电阻值与电压成正比,与电流成反比。

2. 非线性关系:在某些特殊情况下,电阻与电压和电流之间可能呈现非线性关系。

这可能是由于电阻器本身的特性或者电路中其他元件的影响所导致的。

在实验中,我们可以通过观察电压-电流图像的形状来判断是否存在非线性关系。

3. 温度影响:电阻值与温度也有一定的关系。

在实验过程中,我们可以通过改变电阻器的温度来观察电阻值的变化。

实验结果表明,电阻值随温度的升高而增加。

四、实验误差分析在实验中,由于各种因素的存在,可能会导致实际测量值与理论值之间存在一定的误差。

主要的误差来源包括仪器误差、电源波动、电路接触不良等。

为了减小误差,我们可以采取以下措施:1. 仪器校准:定期对实验仪器进行校准,确保其准确度和稳定性。

电阻率实验报告

电阻率实验报告

一、实验目的1. 理解电阻率的定义及其在材料科学中的应用。

2. 掌握电阻率测量的基本原理和方法。

3. 通过实验验证电阻率与材料性质之间的关系。

二、实验原理电阻率(ρ)是衡量材料导电性能的重要参数,其定义为单位长度、单位截面积的导体电阻。

根据欧姆定律,电阻R与电阻率ρ、导体长度L和横截面积S之间存在以下关系:\[ R = \rho \frac{L}{S} \]因此,电阻率可以通过测量导体的长度、直径和电阻值来计算。

实验中,我们将使用双臂电桥测量金属丝的电阻,并据此计算其电阻率。

三、实验仪器与材料1. 金属丝(材料:铜,直径:1mm)2. 双臂电桥3. 数字万用表4. 精密测量尺5. 电路连接线6. 导线连接夹四、实验步骤1. 准备实验器材,将金属丝固定在实验台上。

2. 使用精密测量尺测量金属丝的长度L(精确到0.01cm)。

3. 使用数字万用表测量金属丝的电阻R(精确到0.01Ω)。

4. 使用精密测量尺测量金属丝的直径d(精确到0.001mm),然后计算横截面积S (S = π(d/2)^2)。

5. 根据公式\[ \rho = \frac{R \cdot S}{L} \]计算金属丝的电阻率ρ。

五、实验数据与结果| 金属丝长度L (cm) | 金属丝直径d (mm) | 金属丝电阻R (Ω) | 横截面积S (mm²) | 电阻率ρ (Ω·m) ||------------------|------------------|------------------|------------------|----------------|| 10.00 | 1.000 | 0.100 | 0.785 | 7.85 × 10^-6 |六、实验分析与讨论根据实验数据,金属丝的电阻率为7.85 × 10^-6 Ω·m。

该值与铜的标准电阻率(约为1.68 × 10^-8 Ω·m)存在较大差异,可能是由于以下原因:1. 金属丝长度和直径的测量误差;2. 金属丝表面氧化层或杂质的影响;3. 测量仪器的精度限制。

导体电阻的实验研究报告

导体电阻的实验研究报告

导体电阻的实验研究报告实验目的:本实验旨在研究导体电阻与导体长度、导体截面积和导体材料之间的关系。

实验原理:根据欧姆定律,导体电阻R与导体电流I、导体长度L以及导体材料的导电性质有关,可以表示为R = ρ * (L / A),其中ρ是导体的电阻率,L是导体的长度,A是导体的截面积。

实验材料:1. 导体材料:铜线、铁丝、铝线等2. 电源:直流电源3. 电阻箱:用于调节电路中的电阻4. 电流表:用于测量电流5. 电压表:用于测量电压6. 万用表:用于测量电阻和长度、截面积实验步骤:1. 准备不同材料导体的样品,例如铜线、铁丝、铝线等,并测量导体的长度L和截面积A。

2. 搭建实验电路,将样品连接到电路中。

3. 调节电源使电流保持恒定,并使用电压表测量电压。

4. 使用万用表测量电阻。

5. 分别记录不同材料导体的电流、电压和电阻数据。

6. 根据实验数据计算电阻率ρ。

7. 使用Excel或其他工具绘制电阻与长度、截面积、材料的关系图。

实验结果与分析:通过实验数据计算每个导体的电阻率ρ,并绘制电阻与导体长度、截面积、材料的关系图。

分析结果可以得出以下结论:1. 导体电阻与导体长度成正比,即导体越长,电阻越大。

2. 导体电阻与导体截面积成反比,即导体截面积越小,电阻越大。

3. 不同材料的导体电阻率不同,导体材料的导电性质影响电阻。

结论:导体的电阻与导体长度、截面积以及导体材料的导电性质相关。

在实验中,我们发现导体的电阻与导体长度成正比,与导体截面积成反比。

此外,不同材料的导体具有不同的电阻率,即不同材料的导体具有不同的导电性质。

测量导线电阻实验报告

测量导线电阻实验报告

测量导线电阻实验报告
实验目的:
本实验旨在测量导线电阻,了解电流通过导线时的电阻特性。

实验器材:
1. 直流电源
2. 变阻器
3. 电流表
4. 导线
5. 万用表
6. 连接线
实验原理:
导线的电阻可以通过测量电流和电压之间的关系来确定。

根据欧姆定律,导线的电阻R等于电压U与通过该导线的电流I 的比值,即R=U/I。

实验步骤:
1. 将直流电源接入实验电路中,连接电流表和变阻器。

2. 通过调节变阻器,使电流表读数维持在一个合适的范围内。

3. 使用万用表测量电源输出电压。

4. 注意记录电流表和万用表的示数。

5. 将电流表和万用表的示数带入欧姆定律,计算导线的电阻。

实验数据:
电源输出电压:V
电流表示数:I
导线电阻:R
数据处理:
根据欧姆定律 R=V/I,利用实验数据计算导线电阻R的数值,并进行数据处理和分析。

实验结果:
经过实验测量和计算,得到导线的电阻为R 欧姆。

结论:
通过实验测量和计算,我们得到了导线的电阻值。

这个结果表明导线对电流产生一定的阻力,电阻值越大,导线对电流的阻碍越大。

这一实验结果与预期相符。

实验注意事项:
1. 实验过程中避免触碰裸露的导线或电源。

2. 实验结束后及时关闭电源,拔掉连接线。

3. 实验操作中注意电流表和万用表的使用安全和准确度。

4. 实验中保持仪器和测试线路的接触良好,确保测量结果准确。

电阻的测量 实验报告

电阻的测量 实验报告

电阻的测量实验报告1. 实验目的本实验旨在掌握电阻的测量方法,了解电阻的基本特性以及影响电阻的因素,并运用所学知识进行实际测量。

2. 实验仪器和材料- 多用途数字万用表- 不同阻值的电阻器- 电源- 连接线等其他辅助器材3. 实验原理电阻是指电流在导体内流动时,受到阻碍的大小。

电阻的单位为欧姆(Ω)。

电阻的大小取决于导体的材料、长度、横截面积以及温度等因素。

实验中常用的电阻测量方法有两种:串联法和并联法。

串联法在待测电阻两端连接其他电路元件,通过测量总电阻和其他电路元件的电压、电流来计算电阻值;而并联法则相反,待测电阻与其他电路元件并联,测量总电流和其他电路元件的电压来计算电阻值。

在实际测量中,根据实际情况选择合适的测量方法。

4. 实验步骤1. 将待测电阻与万用表连接至串联测量电路,确保连接线连接牢固。

2. 打开电源,调节电压至适宜范围。

3. 万用表选择电阻测量档,记录下测量结果。

4. 将待测电阻与万用表连接至并联测量电路,确保连接线连接牢固。

5. 打开电源,调节电压至适宜范围。

6. 万用表选择电阻测量档,记录下测量结果。

7. 重复以上步骤,使用不同阻值的电阻器进行测量,确保准确性和可靠性。

5. 实验数据记录与分析实验数据如下:电阻值(Ω)串联法测量(Ω)并联法测量(Ω)-10 10.12 9.8847 46.94 47.09100 99.89 100.11从数据可以看出,串联法和并联法的测量结果基本符合预期,都在待测电阻的附近。

6. 实验结果与讨论通过本次实验,我们掌握了电阻的测量方法,并运用实际测量到的数据进行分析。

电阻的测量结果可能会受到一些因素的影响,如电源的稳定性、接触电阻等。

为了提高测量结果的准确性,我们应该选择质量较好的电源,并保持测量线路的良好接触。

在实验中,由于测量仪器的精度有限,测量结果可能会略有误差。

我们可以通过多次测量取平均值的方法来降低误差。

此外,在实际应用中,应根据测量目的和所需精度选择合适的测量方法和仪器。

电缆电阻试验报告模板

电缆电阻试验报告模板

电缆电阻试验报告模板一、试验目的本试验旨在测定电缆的电阻值,以验证其电气性能是否符合设计要求。

二、试验范围本试验适用于所有类型的电缆,包括电力电缆、通信电缆、地下电缆等。

三、试验设备1.电阻测试仪2.电缆绝缘测试仪3.电缆架4.测量仪表四、试验原理电阻是导体的基本性能之一,通常用于评价导线的电性能。

在电缆中,电阻的测量是确定电缆损耗和线路负载能力的基础。

电缆的电阻由电缆的导体材质、导体截面积、导体长度等因素决定。

在实际应用中,电缆的电阻应满足设计要求,以保证电路的正常工作。

五、试验方法5.1 准备工作1.对需要进行电阻试验的电缆进行检查,确保电缆无损伤、变形、老化等情况。

2.将电缆架置于平稳的地面上,并将电缆放置于电缆架上。

3.清洁电缆端头和接触面。

5.2 测量电阻1.对电阻测试仪进行校准。

2.选择合适的电阻测试仪,将测试仪与电缆的两端接好。

3.打开电阻测试仪,进行电阻测试。

4.记录测试结果。

5.3 检查测试结果1.将测得的电阻值与电缆设计基准值进行比较,判断电缆的电气性能是否符合要求。

2.如发现电阻值偏大或偏小,需检查电缆是否损坏、接头是否松动等原因。

六、试验结果电缆名称试验日期试验人员测试结果电缆1 2021/9/1 张三0.01Ω电缆2 2021/9/1 李四0.02Ω电缆3 2021/9/1 王五0.05Ω七、结论根据本次试验结果,三根电缆分别得出电阻值为0.01Ω、0.02Ω和0.05Ω,均符合设计基准值要求,电缆的电气性能良好。

八、试验注意事项1.在进行电阻测试之前,应先进行对电缆的绝缘性测试。

2.测量电阻值的时候,应保持测试仪与电缆的接触面干净、整洁,以保证测试结果的准确性。

3.测试结束后,应将测试仪器及电缆缆头清洗干净,存放于干燥、通风良好的地方,以防受潮、变形等情况。

九、参考标准1.GB/T3048-2007《电线电缆绝缘电阻测试方法》2.GB/T9452-2013《电线电缆电气性能试验方法通则》。

电阻的因素实验报告

电阻的因素实验报告

一、实验目的1. 了解电阻的基本概念及其影响因素;2. 探究电阻与导体材料、长度、横截面积之间的关系;3. 掌握伏安法测量电阻的方法。

二、实验原理1. 电阻是导体对电流阻碍作用的大小,其单位为欧姆(Ω);2. 电阻与导体材料、长度、横截面积、温度等因素有关;3. 伏安法测量电阻的原理是:根据欧姆定律,电阻R等于电压U与电流I的比值,即R=U/I。

三、实验器材1. 导线(铜线、铝线、镍铬合金丝等)2. 电流表(量程为0-0.6A)3. 电压表(量程为0-15V)4. 滑动变阻器(0-10Ω)5. 电源(电压为3V)6. 开关7. 导线夹8. 实验台四、实验步骤1. 将电源、开关、电流表、滑动变阻器、导线依次串联,形成一个闭合回路;2. 选择一根导线作为实验材料,将导线夹固定在实验台上;3. 将导线两端分别连接到电流表和电压表的正负极;4. 调节滑动变阻器,使电路中的电流为0.2A;5. 读取电压表示数U1;6. 保持导线长度不变,改变导线横截面积,重复步骤4-5,记录数据;7. 保持导线横截面积不变,改变导线长度,重复步骤4-5,记录数据;8. 改变导线材料,重复步骤4-7,记录数据;9. 分析实验数据,得出结论。

五、实验数据及处理1. 导线材料:铜线、铝线、镍铬合金丝2. 导线长度:10cm、20cm、30cm3. 导线横截面积:0.5mm²、1mm²、1.5mm²4. 电流I:0.2A5. 电压U:对应于不同长度、横截面积和材料的导线根据实验数据,计算电阻R=U/I,并记录在表格中。

六、实验结果与分析1. 导线材料对电阻的影响:实验结果表明,不同材料的导线电阻不同,其中铜线的电阻最小,镍铬合金丝的电阻最大;2. 导线长度对电阻的影响:实验结果表明,导线长度越长,电阻越大;3. 导线横截面积对电阻的影响:实验结果表明,导线横截面积越大,电阻越小。

七、结论1. 电阻与导体材料、长度、横截面积有关;2. 导体材料、长度、横截面积的变化对电阻有显著影响;3. 伏安法可以有效地测量电阻。

电阻测量实验报告结果

电阻测量实验报告结果

电阻测量实验报告结果1. 实验目的本实验旨在通过测量电阻的实际值来验证欧姆定律,并了解不同测量方法的优缺点。

2. 实验装置和原理实验装置包括电源、可变电阻器、电流表、电压表和待测电阻。

根据欧姆定律,电阻与电流和电压之间存在如下关系:U = IR其中,U表示电压,I表示电流,R表示电阻。

3. 实验步骤1. 搭建实验电路,将可变电阻器连接到电源的正负极之间,分别用电流表和电压表测量电流和电压。

2. 调节可变电阻器的阻值,遍测量电流和电压,记录数据。

4. 实验数据记录与处理下表是实验数据记录表:序号电流I/mA 电压U/V 电阻R/Ω1 5 1 2002 10 2 2003 15 3 2004 20 4 2005 25 5 2005. 结果分析根据测得的数据,可以计算实际电阻值R为:R = \frac{U}{I}将实际电阻值R代入计算,得到的结果如下:序号电流I/mA 电压U/V 实际电阻R/Ω1 5 1 2002 10 2 2003 15 3 2004 20 4 2005 25 5 200通过对比实际电阻值和测得电阻值,可以发现测得电阻值与实际电阻值相同,验证了欧姆定律的正确性。

6. 实验总结本实验通过测量电阻的实际值来验证欧姆定律,并了解了不同测量方法的优缺点。

实验结果表明欧姆定律成立,电阻与电流和电压之间存在线性关系。

同时,实验也提醒我们在实际测量中需要注意电路的稳定性和准确性。

7. 实验改进实验过程中,我们可以进一步改进以提高测量的精度和准确性。

例如,可以使用更精确的仪器进行测量,或者采取多次测量取平均值的方式处理数据。

同时,注意在搭建电路时,保证电路连接稳定,避免接触不良或者松动引起误差。

8. 参考文献- [1] 欧姆定律研究方法与电阻测量实验. (n.d). Retrieved from。

电阻测试实验报告

电阻测试实验报告

一、实验目的1. 理解电阻的概念及其测量原理;2. 掌握伏安法、惠斯通电桥法等电阻测量方法;3. 了解多用电表、电压表、电流表等实验仪器的使用方法;4. 提高实验操作技能和数据处理能力。

二、实验原理1. 电阻的定义:电阻是导体对电流阻碍作用的大小,通常用字母R表示,单位为欧姆(Ω)。

2. 伏安法测量电阻:通过测量电阻两端的电压U和通过电阻的电流I,根据欧姆定律R=U/I计算电阻值。

3. 惠斯通电桥法测量电阻:利用惠斯通电桥的平衡条件,通过调节电桥中的电阻值,使电桥达到平衡状态,从而计算出待测电阻的阻值。

4. 多用电表测量电阻:利用多用电表的欧姆档位,直接测量电阻的阻值。

三、实验仪器与器材1. 伏安法实验器材:电源、电压表、电流表、待测电阻、滑动变阻器、开关、导线等。

2. 惠斯通电桥实验器材:惠斯通电桥、标准电阻、待测电阻、导线等。

3. 多用电表实验器材:多用电表、待测电阻、导线等。

四、实验步骤1. 伏安法测量电阻:(1)按照电路图连接电路,将电源、电压表、电流表、待测电阻、滑动变阻器、开关和导线连接好。

(2)闭合开关,调节滑动变阻器的阻值,使电路中的电流在安全范围内。

(3)记录电压表和电流表的示数,计算电阻值。

(4)改变滑动变阻器的阻值,重复步骤(3),至少测量三次。

2. 惠斯通电桥法测量电阻:(1)按照电路图连接电路,将惠斯通电桥、标准电阻、待测电阻、导线连接好。

(2)调节电桥中的电阻值,使电桥达到平衡状态。

(3)记录电桥中的电阻值,计算待测电阻的阻值。

(4)改变标准电阻的阻值,重复步骤(3),至少测量三次。

3. 多用电表测量电阻:(1)将多用电表置于欧姆档位。

(2)将红黑表笔分别接到待测电阻的两端。

(3)读取多用电表上的示数,即为待测电阻的阻值。

(4)改变待测电阻的阻值,重复步骤(3),至少测量三次。

五、实验结果与分析1. 伏安法测量电阻:根据实验数据,计算三次测量结果的平均值,得到待测电阻的阻值。

电阻率测量实验报告

电阻率测量实验报告

一、实验目的1. 掌握电阻率的测量方法。

2. 了解电阻率的物理意义及其影响因素。

3. 熟悉实验仪器的使用方法。

二、实验原理电阻率是描述材料对电流阻碍能力的物理量,其单位为欧姆·米(Ω·m)。

根据电阻定律,电阻率(ρ)与电阻(R)、长度(L)和横截面积(A)之间的关系为:ρ = R (L/A)。

本实验采用伏安法测量电阻,通过测量电阻丝的长度、直径和电阻值,进而计算出电阻率。

三、实验仪器1. 电阻丝:直径为0.1mm,长度为1m。

2. 电流表:量程为0~0.6A,精度为0.1A。

3. 电压表:量程为0~15V,精度为0.5V。

4. 直尺:量程为0~1m,精度为0.1mm。

5. 秒表:精度为0.1s。

6. 导线:若干。

7. 电源:电压为5V,输出电流可调。

四、实验步骤1. 测量电阻丝的长度:使用直尺测量电阻丝的长度,记录为L(单位:m)。

2. 测量电阻丝的直径:使用直尺测量电阻丝的直径,记录为d(单位:mm),计算横截面积A = π (d/2)^2(单位:mm²)。

3. 接通电路:将电阻丝接入电路,串联电流表,并联电压表,接通电源。

4. 测量电压和电流:调节电源输出电流,记录电压表和电流表的读数,重复多次,取平均值。

5. 计算电阻:根据欧姆定律,计算电阻R = U/I(单位:Ω)。

6. 计算电阻率:根据电阻定律,计算电阻率ρ = R (L/A)(单位:Ω·m)。

五、实验数据及处理| 长度L (m) | 直径d (mm) | 横截面积A (mm²) | 电压U (V) | 电流I (A) | 电阻R (Ω) | 电阻率ρ (Ω·m) || :--------: | :--------: | :--------------: | :-------: | :-------:| :-------: | :------------: || 1.00 | 0.10 | 7.854×10^-4 | 5.00 | 0.50 | 10.00 | 1.27×10^5 |六、实验结果分析1. 通过实验数据可以看出,电阻率ρ与电阻R、长度L和横截面积A之间的关系符合电阻定律。

伏安法测电阻电阻实验报告

伏安法测电阻电阻实验报告

竭诚为您提供优质文档/双击可除伏安法测电阻电阻实验报告篇一:伏安法测电阻实验报告伏安法测电阻实验报告姓名得分实验名称:伏安法测量定值电阻的阻值实验时间:实验目的:会用伏安法(即用电压表和电流表)测量定值电阻的阻值实验原理:R=u/I实验器材:电源、电压表、电流表、滑动变阻器、待测定值电阻、开关各一个、导线若干实验电路图:实验步骤:1)断开开关,按照电路图连接电路;2)接入电路的滑动变阻器阻值调到最大;3)检查无误后,再闭合开关s,改变滑动变阻器的阻值三次,分别读出对应的电流表、电压表的示数,并填入下面的表格中;4)断开开关,计算定值电阻R阻值,并算出三次阻值的平均值填入表格;实验巩固:小宇做“测定小灯泡的电阻”实验(小灯泡标有“2.5V"字样),在实验过程中图7-14图7-15(2)在连接电路时,开关应处于状态,这是为了;闭合开关前,滑动变阻器的滑片应调至,这是为了;(3)正确连好电路后,闭合开关s,发现灯L不发光,故障的原因不可能是();A.电流表处有开路b.电压表与灯泡相连接的导线接触不良c.导线接触不良D.小灯泡L的灯丝断了(4)灯泡正常发光时,电流表的示数如图7-15所示,请将读数填入表格中的空格处.此时小灯泡的电阻为;(小数点后保留一位数字)(5)分析比较表格中的数据可以看出,在灯丝中的电流逐渐增大的过程中,灯丝的电阻,进一步分析表篇二:伏安法测电阻实验报告科学探究的主要步骤※一、提出问题※二、猜想与假设※三、设计实验(一)实验原理(二)实验装置图(三)实验器材和规格(三)实验步骤(四)记录数据和现象的表格四、进行试验※五、分析与论证※六、评估七、交流与合作※最后:总结实验注意事项第一方面:电学主要实验滑动变阻器复习提纲1、原理——通过改变接入电路中电阻丝的长度,来改变电路中的电阻,从而改变电路中的电流。

2、构造和铭牌意义——200Ω:滑动变阻器的最大阻值1.5A:滑动变阻器允许通过的最大电流3、结构示意图和电路符号——4、变阻特点——能够连续改变接入电路中的电阻值。

电阻的测量实验报告

电阻的测量实验报告

电阻的测量实验报告篇一:电阻测量的设计实验报告佛山科学技术学院实验报告课程名称实验项目专业班级姓名学号指导教师成绩日期年月日实验报告内容:一实验目的二实验仪器(仪器名称、型号、参数、编号)三实验原理(原理文字叙述和公式、原理图)四.实验步骤五、实验数据和数据处理六.实验结果七.分析讨论(实验结果的误差来源和减小误差的方法、实验现象的分析、问题的讨论等)八.思考题篇二:电阻的测量--伏安法的实验报告电阻的测量--伏安法的测定实验报告实验名称:_____电阻的测量--伏安法________ 姓名学号班级__实验日期 _ 2021.11.7_ _ 温度______同组者 ___ 无_____(一)实验目的:1. 学习伏安法测电阻的方法。

2. 学会仪表的选择。

3. 学习伏安法中减少系统误差的方法。

(二)实验仪器:直流稳压源、电阻箱、滑线变阻器、二极管、电流表、电压表、开关与导线(三)实验原理:如图11-1所示,测出通过电阻R的电流I及电阻R两端的电压U,则根据欧姆定律,可知图11-1R?U I以下讨论此种方法的系统误差问题。

1. 测量仪表的选择在电学实验中,仪表的误差是重要的误差来源,所以要选取适用的仪表。

(1)参照电阻器R的额定功率确定仪表的量限,设电阻R的额定功率为P,则最大电流I为I?P(11-1) R2处(最佳选择),电流计的量限为I32P3。

,即3R2为使电流计的指针指向度盘的设R?100Ω,P?50mA的毫安计较好。

13W,则I?0.035A,而I??0.053A,所以电流计取量限为8235.3V,所以电压计取量限5V的伏特计较2电阻两端电压为U?IR?3.5V,而U?好。

(2)参照对电阻测量准确度的要求确定仪表的等级假设要求测量R的相对误差不大于某一ER,则按误差传递公式,可有 ER?[(按误差等分配原则取U2I)?()2]UI2UIER(11-2) ??UI2对于准确度等级为a,量限为Xmax的电表,其最大绝对误差为?max,则 ?max?Xmax?a100参照此关系和式(11-2),可知电流计等级aI应满足aI?电压计的等级aU 应满足 aU?ERU100(11-3) U2max?ERU100 (11-4)2Umax?对前述实例(I=0.035A,Imax?0.05A,U?3.5A,Umax?5V),则当要求ER?2%时,必须 aI?0.99,aU?0.99即取0.5级的毫安计、伏特计较好,取1.0级也勉强可以。

测电阻实验报告

测电阻实验报告

测电阻实验报告测电阻实验报告引言:电阻是电路中常见的元件之一,它具有阻碍电流流动的作用。

为了了解电阻的性质和特点,我们进行了一系列的测电阻实验。

通过实验,我们可以掌握电阻的测量方法,研究电阻与电流、电压之间的关系,并了解电阻对电路的影响。

实验一:直流电阻测量在实验一中,我们使用万用表测量了不同电阻值的电阻。

首先,我们将万用表调至电阻测量档位,并将待测电阻与万用表的两个探头连接。

通过读取万用表上的数值,我们可以得到电阻的测量结果。

实验二:串联电阻测量在实验二中,我们研究了串联电阻的测量方法。

首先,我们将两个不同电阻值的电阻依次串联连接,然后使用万用表测量整个串联电阻的数值。

通过与实验一的结果对比,我们发现串联电阻的数值等于各个电阻值之和。

实验三:并联电阻测量在实验三中,我们研究了并联电阻的测量方法。

与实验二类似,我们将两个不同电阻值的电阻并联连接,并使用万用表测量整个并联电阻的数值。

通过与实验一的结果对比,我们发现并联电阻的数值等于各个电阻值的倒数之和的倒数。

实验四:电阻与电流关系的研究在实验四中,我们研究了电阻与电流之间的关系。

通过改变电路中的电阻值,我们可以观察到电流的变化情况。

实验结果表明,当电阻增大时,电流减小;当电阻减小时,电流增大。

这说明电阻与电流呈反比关系。

实验五:电阻与电压关系的研究在实验五中,我们研究了电阻与电压之间的关系。

通过改变电路中的电压值,我们可以观察到电阻上的电压变化情况。

实验结果表明,电阻上的电压与电阻成正比,即电压增大时,电阻上的电压也增大;电压减小时,电阻上的电压也减小。

实验六:电阻对电路的影响在实验六中,我们研究了电阻对电路的影响。

通过在电路中加入不同电阻值的电阻,我们观察到电路中电流和电压的变化情况。

实验结果表明,电阻的增加会降低电路中的电流和电压;电阻的减小则会增加电路中的电流和电压。

这说明电阻对电路的工作状态有着重要的影响。

结论:通过一系列的测电阻实验,我们对电阻的性质和特点有了更深入的了解。

电阻测量的设计实验报告

电阻测量的设计实验报告

电阻测量的设计实验报告设计实验报告:电阻测量1.实验目的本实验旨在通过设计一种电阻测量电路,测量出待测电阻的阻值,并熟悉电阻测量的原理和方法。

2.实验原理电阻是电流在电阻器中产生的电势差所引起的电压与电流的比值。

电阻测量的基本原理是利用欧姆定律,即恒定电流通过电阻器产生的电压与电阻成正比。

实验中我们需要设计一种电路来测量电阻的阻值。

3.实验器材-待测电阻-直流稳压电源-电流表-电压表-多用途万用表-连接导线4.实验步骤步骤1:将电源的正极接到待测电阻的一端,负极接地。

并将电流表、电压表以及多用途万用表连接至电路中。

步骤2:在电压表和电流表上分别选择合适的量程以及测量模式。

步骤3:将电流表分别放置在待测电阻的两端,记录测得的电流值。

步骤4:利用电压表在待测电阻两端测得的电压值和测得的电流值,计算出待测电阻的阻值。

步骤5:重复步骤1至步骤4,使得测得的电阻阻值更加准确。

5.实验结果与数据分析在实验中,我们依次测得了不同待测电阻下的电流值和电压值,并计算出了相应的阻值。

通过对实验数据的分析,我们可以发现待测电阻的阻值与通过它的电流和电压之比有关,符合欧姆定律。

6.实验误差分析-电流表和电压表的测量误差:由于电流表和电压表的精度限制,测量得到的电流和电压值可能存在一定的误差。

-线路连接误差:实验中所使用的导线可能存在一定的电阻,在测量电流和电压时会对实验结果产生影响。

-待测电阻本身的误差:由于电阻器的制造过程可能存在一定的误差,待测电阻的实际阻值与标定阻值可能存在一定的偏差。

7.实验改进方案为减小实验误差,可以采取以下改进方案:-提高电流表和电压表的精度:选用精度更高的仪器。

-减小线路连接误差:使用高质量的导线,保证连接的稳定性。

-校准待测电阻:在实验前对待测电阻进行校准,得到更准确的阻值。

8.实验结论总结:通过本次实验,我们对电阻测量的原理和方法有了更深入的理解,并通过实验操作获得了实践经验。

实验中的误差分析和改进方案也使我们更加注重实验的精确性和准确性。

电工电阻测量实验报告

电工电阻测量实验报告

一、实验目的1. 掌握电阻的测量原理和方法。

2. 熟悉伏安法、电桥法等测量电阻的实验操作。

3. 了解电阻测量中的误差分析及数据处理。

二、实验原理电阻是电路中阻碍电流流动的元件,其大小用欧姆(Ω)表示。

电阻的测量方法主要有伏安法、电桥法等。

1. 伏安法:通过测量电阻两端的电压(U)和通过电阻的电流(I),根据欧姆定律(R = U/I)计算电阻值。

2. 电桥法:利用电桥电路平衡原理,通过调节电桥中的电阻,使电桥平衡,从而计算出电阻值。

三、实验器材1. 电源:直流稳压电源2. 电阻箱:用于调节电路中的电阻值3. 电流表:用于测量电路中的电流4. 电压表:用于测量电路中的电压5. 滑动变阻器:用于调节电路中的电流和电压6. 待测电阻:待测电阻值已知7. 导线:用于连接电路8. 电桥电路:用于电桥法测量电阻四、实验步骤1. 伏安法测量电阻(1)按照电路图连接电路,将电源、电流表、电压表、滑动变阻器和待测电阻依次连接。

(2)打开电源,调节滑动变阻器,使电流表和电压表的示数稳定。

(3)记录电流表和电压表的示数,根据欧姆定律计算电阻值。

(4)改变滑动变阻器的阻值,重复步骤(2)和(3),至少测量三次。

2. 电桥法测量电阻(1)按照电桥电路图连接电路,将电源、电桥、滑动变阻器和待测电阻依次连接。

(2)打开电源,调节滑动变阻器,使电桥平衡。

(3)记录电桥中各电阻的阻值,根据电桥平衡原理计算待测电阻值。

(4)改变电桥中电阻的值,重复步骤(2)和(3),至少测量三次。

五、实验结果与分析1. 伏安法测量结果| 次数 | 电流(A) | 电压(V) | 电阻(Ω) || ---- | -------- | -------- | -------- || 1 | 0.2 | 2.0 | 10 || 2 | 0.3 | 2.5 | 8.33 || 3 | 0.4 | 3.2 | 8 |平均电阻:\( R_{\text{avg}} = \frac{10 + 8.33 + 8}{3} = 8.78 \,\Omega \)2. 电桥法测量结果| 次数 | 电桥电阻(Ω) || ---- | ------------ || 1 | 9 || 2 | 8.5 || 3 | 8.7 |平均电阻:\( R_{\text{avg}} = \frac{9 + 8.5 + 8.7}{3} = 8.6 \, \Omega \)六、误差分析1. 伏安法误差:电流表和电压表的测量误差、滑动变阻器的阻值误差、温度对电阻的影响等。

测电阻的实验报告

测电阻的实验报告

一、实验目的1. 熟悉欧姆定律,了解电阻、电压和电流之间的关系;2. 掌握使用电压表和电流表测量电阻的方法;3. 培养实验操作技能和数据处理能力。

二、实验原理根据欧姆定律,电阻R、电压U和电流I之间的关系为:R = U/I。

本实验通过测量电路中的电压和电流,计算出电阻值。

三、实验器材1. 欧姆表(含电流表和电压表)1台;2. 待测电阻1个;3. 电源1个;4. 导线若干;5. 开关1个;6. 电阻箱1个;7. 万用表1台;8. 记录本1本。

四、实验步骤1. 搭建电路:将电源、开关、待测电阻、电阻箱、欧姆表连接成串联电路。

2. 调节电阻箱:将电阻箱的阻值调至最大,确保电路安全。

3. 测量电压和电流:闭合开关,读取欧姆表上的电压和电流值。

4. 计算电阻值:根据欧姆定律,计算待测电阻的阻值。

5. 改变电路连接方式:将待测电阻与电阻箱并联,重复步骤3和4,计算电阻值。

6. 数据记录:将实验数据记录在实验报告上。

五、实验数据及处理实验数据如下:1. 串联电路:- 电压U1 = 2.5V- 电流I1 = 0.3A- 电阻R1 = U1/I1 = 8.33Ω2. 并联电路:- 电压U2 = 2.5V- 电流I2 = 0.4A- 电阻R2 = U2/I2 = 6.25Ω六、实验结果分析1. 通过实验,验证了欧姆定律的正确性;2. 测量得到的电阻值与理论计算值基本相符;3. 实验过程中,电路连接正确,操作规范,数据处理准确。

七、实验结论本实验成功测量了待测电阻的阻值,验证了欧姆定律的正确性。

通过实验,提高了实验操作技能和数据处理能力。

八、实验注意事项1. 实验过程中,注意电路连接的正确性,避免短路现象;2. 调节电阻箱时,注意阻值不宜过大,以免损坏电路;3. 实验过程中,保持实验环境整洁,避免发生意外;4. 数据记录要准确,避免因记录错误导致实验结果偏差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

試驗日期 2011.03.26 試驗條件 T:-55℃/25℃/125℃/25℃,5cycle 判定標准 ±(2%+0.10Ω)
測 試 數 據
試驗前 試驗後 變化率
試驗前 試驗後 變化率
No.
No.
Unit:KΩ Unit:KΩ Unit:%
Unit:KΩ Unit:KΩ Unit:%
判定
1
9.9988 9.9995
13
Min: 10.024PPM
4
9.9810 9.9934 12.424
14
Avg: 17.038PPM
5
10.0050 10.0180 12.994
15
CPK:
13.297A+
6
9.9980 10.0160 18.004
16
測試者:
7
9.9758 9.9858 10.024
17
審覈者:
8
10.0100 10.0290 18.981
0.007%
11
Sample: 10pcs
2
10.0200 10.0210
0.010%
12
Max:
0.019%
3
9.9875 9.9890
0.015%
13
Min:
0.007%
4
9.9751 9.9761
0.010%
14
Avg:
0.013%
5
9.9683 9.9700
0.017%
15
CPK:
80.347A+
14
Accept 新錫≧95% NA Avg:
NA
5
Accept 新錫≧95% NA
15
Accept 新錫≧95% NA CPK:
NA
6
Accept 新錫≧95% NA
16
Accept 新錫≧95% NA 測試者:
7
Accept 新錫≧95% NA
17
Accept 新錫≧95% NA 審覈者:
8
Accept 新錫≧95% NA
判定
1
10.0020 10.0020
0.000%
11
Sample: 10pcs
2
10.0180 10.0230
0.050%
12
Max:
0.131%
3
9.9995 10.0090
0.095%
13
Min:
0.000%
4
9.9875 9.9912
0.037%
14
Avg:
0.058%
5
10.0070 10.0130
2
Accept 阻值:∞
NA
12
Accept 阻值:∞ NA Max:
NA
3
Accept 阻值:∞
NA
13
Accept 阻值:∞ NA Min:
NA
4
Accept 阻值:∞
NA
14
Accept 阻值:∞ NA Avg:
NA
5
Accept 阻值:∞
NA
15
Accept 阻值:∞ NA CPK:
NA
6
Accept 阻值:∞
Unit:KΩ Unit:KΩ Unit:%
判定
1
Accept 外觀OK
NA
11
Accept 外觀OK
NA Sample: 20pcs
2
Accept 外觀OK
NA
12
Accept 外觀OK
NA Max:
NA
3
Accept 外觀OK
NA
13
Accept 外觀OK
NA Min:
NA
4
Accept 外觀OK
試驗日期 2011.03.26 試驗條件 260℃ 10S 判定標准 ±(2%+0.10Ω)
測 試 數 據
試驗前 試驗後 變化率
試驗前 試驗後 變化率
No.
No.
Unit:KΩ Unit:KΩ Unit:%
Unit:KΩ Unit:KΩ Unit:%
判定
1
10.0130 10.0110 -0.020%
0.060%
15
CPK:
8.043A+
6
9.9905 9.9912
0.007%
16
測試者:
7
10.0080 10.0180
0.100%
17
審覈者:
8
9.9949 10.0010
0.061%
18
9
9.9878 9.9919
0.041%
19
Judge: PASS
10
9.9919 10.0050
0.131%
試驗日期 2011.03.26
產品規格 GSMD1206 10 KΩ
試驗條件 Bending 5mm 60 Sec
產品批號 1111B0131
判定標准 ±(2%+0.10Ω)
測 試 數 據
試驗前 試驗後 變化率
試驗前 試驗後 變化率
No.
No.
Unit:KΩ Unit:KΩ Unit:%
Unit:KΩ Unit:KΩ Unit:%
判定標准 ±(2%+0.1Ω)
測 試 數 據
試驗前 試驗後 變化率
試驗前 試驗後 變化率
No.
No.
Unit:KΩ Unit:KΩ Unit:%
Unit:KΩ Unit:KΩ Unit:%
判定
1
10.0020 10.0010 -0.010%
11
Sample: 10pcs
2
10.0010 9.9995 -0.015%
試驗前 試驗後 變化率
No.
No.
Unit:Ω Unit:Ω Unit:%
Unit:Ω Unit:Ω Unit:%
判定
1
99.517 99.507 -0.010%
11
98.853 98.862
0.009% Sample: 20pcs
2
99.534 99.556
0.022%
12
99.431 99.438
20
Page: 10-8
XXXXXX 科技有限公司
【可靠性試驗報告】
試驗名稱 負荷壽命 產品規格 GSMD1206 100 Ω 產品批號 1109C0212
試驗日期 2011.03.28 試驗條件 T:70℃,1000H,5 V 判定標准 ±(3%+0.10Ω)
測 試 數 據
試驗前 試驗後 變化率
Page: 10-3
試驗名稱 絕緣耐電壓
試驗日期 2011.03.26
產品規格 GSMD1206 10 KΩ
試驗條件 500V 60S
產品批號 1111B0131
判定標准 無電弧放電、燒損及絕緣破壞等異狀
測 試 數 據
試驗前 試驗後 變化率
試驗前 試驗後 變化率
No.
No.
Unit:KΩ Unit:KΩ Unit:%
12
Max:
0.012%
3
10.0000 9.9983 -0.017%
13
Min:
-0.060%
4
9.9854 9.9866
0.012%
14
Avg:
-0.014%
5
9.9790 9.9766 -0.024%
15
CPK:
33.267A+
6
9.9839 9.9851
0.012%
16
測試者:
7
10.0020 10.0020
11
Sample: 10pcs
2
9.9897 9.9888 -0.009%
12
Max:
0.025%
3
9.9839 9.9824 -0.015%
13
Min:
-0.030%
4
9.9949 9.9941 -0.008%
14
Avg:
-0.012%
5
10.0080 10.0050 -0.030%
15
CPK:
18.417A+
0.000%
17
審覈者:
8
9.9736 9.9709 -0.027%
18
9
9.9934 9.9919 -0.015%
19
Judge: PASS
10
10.0160 10.0100 -0.060%
20
Page: 10-2
XXXXXX 科技有限公司
【可靠性試驗報告】
試驗名稱 絕緣阻值 產品規格 GSMD1206 10 KΩ 產品批號 1111B0131
NA
14
Accept 外觀OK
NA Avg:
NA
5
Accept 外觀OK
NA
15
Accept 外觀OK
NA CPK:
NA
6
Accept 外觀OK
NA
16
Accept 外觀OK
NA 測試者:
7
Accept 外觀OK
NA
17
Accept 外觀OK
NA 審覈者:
8
Accept 外觀OK
NA
9
Accept 外觀OK
試驗名稱 焊錫附著性
試驗日期 2011.03.26
產品規格 GSMD1206 10 KΩ
試驗條件 245℃ 3S
產品批號 1111B0131
判定標准 電極新錫覆蓋95%以上
相关文档
最新文档