代数学引论第一章答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群.

证明: 对任意a,b错误!未找到引用源。G,由结合律我们可得到

(ab)2=a(ba)b, a2b2=a(ab)b

再由已知条件以及消去律得到

ba=ab,

由此可见群G为交换群.

2.如果群G中,每个元素a都适合a2=e, 则G为交换群.

证明: [方法1] 对任意a,b错误!未找到引用源。G,

ba=bae=ba(ab)2=ba(ab)(ab)

=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab 因此G为交换群.

[方法2] 对任意a,b错误!未找到引用源。G,

a2b2=e=(ab)2,

由上一题的结论可知G为交换群.

3.设G是一非空的有限集合,其中定义了一个乘法ab,适合条件:

(1)a(bc)=(ab)c;

(2)由ab=ac推出b=c;

(3)由ac=bc推出a=b;

证明G在该乘法下成一群.

证明:[方法1]

设G={a

1,a

2

,…,a

n

},k是1,2,…,n中某一个数字,由(2)可知若i错误!未找到引用源。j(I,j=1,2,…,n),有

a

k

a

i

错误!未找到引用源。a

k

a

j

------------<1>

a

i

a

k

错误!未找到引用源。a

j

a

k

------------<2>

再由乘法的封闭性可知

G={a

1,a

2

,…,a

n

}={a

k

a

1

, a

k

a

2

,…, a

k

a

n

}------------<3>

G={a

1,a

2

,…,a

n

}={a

1

a

k

, a

2

a

k

,…, a

n

a

k

}------------<4>

由<1>和<3>知对任意a

t 错误!未找到引用源。G, 存在a

m

错误!未找到引用源。G,使得

a

k

a

m

=a

t

.

由<2>和<4>知对任意a

t 错误!未找到引用源。G, 存在a

s

错误!未找到引用源。G,使得

a

s

a

k

=a

t

.

由下一题的结论可知G在该乘法下成一群.

下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。 [方法2]

为了证明G 在给定的乘法运算下成一群,只要证明G 内存在幺元(单位元),并且证明G 内每一个元素都可逆即可. 为了叙述方便可设G={a 1,a 2,…,a n }. (Ⅰ) 证明G 内存在幺元.

<1> 存在a t 错误!未找到引用源。G ,使得a 1a t =a 1.(这一点的证明并不难,这里不给证明); <2> 证明a 1a t = a t a 1; 因为

a 1(a t a 1)a t =(a 1a t ) (a 1a t )=(a 1)2 a 1(a 1a t )a t =(a 1a 1)a t =a 1(a 1a t )= (a 1)2,

故此

a 1(a t a 1)a t = a 1(a 1a t )a t .

由条件(1),(2)可得到

a 1a t = a t a 1.

<3> 证明a t 就是G 的幺元; 对任意a k 错误!未找到引用源。G,

a 1(a t a k ) =(a 1a t )a k =a 1a k

由条件(2)可知

a t a k =a k .

类似可证

a k a t =a k .

因此a t 就是G 的幺元. (Ⅱ) 证明G 内任意元素都可逆;

上面我们已经证明G 内存在幺元,可以记幺元为e ,为了方便可用a,b,c,…等符号记G 内元素.下面证明任意a 错误!未找到引用源。G ,存在b 错误!未找到引用源。G ,使得

ab=ba=e.

<1> 对任意a 错误!未找到引用源。G ,存在b 错误!未找到引用源。G ,使得

ab=e;

(这一点很容易证明这里略过.)

<2> 证明ba=ab=e; 因为

a(ab)b=aeb=ab=e a(ba)b=(ab)(ab)=ee=e

再由条件(2),(3)知

ba=ab.

因此G内任意元素都可逆.

由(Ⅰ),(Ⅱ)及条件(1)可知G在该乘法下成一群.

4.设G是非空集合并在G内定义一个乘法ab.证明:如果乘法满足结合律,并且对于任一对

元素a,b错误!未找到引用源。G,下列方程

ax=b和ya=b

分别在G内恒有解,则G在该乘法下成一群.

证明:

取一元a错误!未找到引用源。G,因xa=a在G内有解, 记一个解为e

a ,下面证明e

a

为G内的左幺元. 对任意

b错误!未找到引用源。G, ax=b在G内有解, 记一个解为c,那么有ac=b ,所以

e a b= e

a

(ac)= (e

a

a)c=ac=b,

因此e

a

为G内的左幺元.

再者对任意d错误!未找到引用源。G, xd=e

a 在G内有解,即G内任意元素对e

a

存在左逆元, 又因乘法满足结合律,

故此G在该乘法下成一群.

[总结]

群有几种等价的定义:

(1)幺半群的每一个元素都可逆,则称该半群为群.

(2)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含幺元, G内任意元素都有逆元,则称G为该运算下的群.

(3)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且G内包含左幺元, G内任意元素对左幺元都有左逆元,则称G为该运算下的群.

(4)设G是一个非空集合,G内定义一个代数运算,该运算满足结合律, 并且对于任一对元素a,b错误!未找到引用源。G,下列方程

ax=b和ya=b

分别在G内恒有解,则称G为该运算下的群.

值得注意的是如果一个有限半群满足左右消去律, 则该半群一定是群.

5.在S

3

中找出两个元素x,y,适合

(xy)2错误!未找到引用源。x2y2.

[思路] 在一个群G中,x,y错误!未找到引用源。G, xy=yx错误!未找到引用源。(xy)2错误!未找到引用源。x2y2(这

一点很容易证明).因此只要找到S

3

中两个不可交换的元素即可. 我们应该在相交的轮换中间考虑找到这样的元素. 解: 取

相关文档
最新文档