齿轮学基础知识

合集下载

齿轮学基础知识

齿轮学基础知识

齒輪學基礎知識一.齒輪之功用a.能夠傳達動力.b.能通過先選配齒數組合,獲得任意正確的速度比.c.能通過增減齒輪組合數,改變各軸之間的相互位置關係.二.齿轮的种类齿轮有许多种类,根据轴向和位置关系可大致分为3类:①平行轴②交叉轴类③偏移轴。

①平行轴类(正齿轮)齿向与轴平行的齿轮,最为常用。

(斜齿轮)齿向沿螺旋线回转。

正齿轮是1个齿或2个齿反复地啮合,而斜齿轮的啮合率则上升,为2或3个齿。

因此斜齿轮噪音低而强度大。

齿向分左旋和右旋两种。

同为左旋或同为右旋都不能啮合。

使用时应使左旋和右旋啮合。

(齿条)(齿条)一般圆形齿轮的齿形是一种称为渐开线的曲线,而这种齿条则是一条直线,且呈锯齿状。

啮合对象是斜齿轮时则称作斜齿条。

(斜齿条)(内齿轮)是一种轮齿向内且位于圆筒内部的齿轮。

多与结构复杂、被称为行星齿轮的齿轮配套使用。

(人字齿轮)由齿向不同的上下两部分构成的一种齿轮。

斜齿轮啮合时所产生的力会使两个齿轮发生轴向错位,但人字齿轮则没有错位现象。

②交叉轴类(伞齿轮)正齿轮为圆柱状,而伞齿轮则是名副其实的伞状(圆锥状)。

常用于塑料玩具汽车来改变转轴方向。

(螺旋伞齿轮)是伞齿轮的斜齿版。

与斜齿轮相同,噪音低和强度大是其特点。

③偏移轴类(蜗轮蜗杆)想要极度降低转速时使用。

正齿轮的轮齿会发出撞击声,而蜗轮则不会发出这种声音。

三. 精度等级執行規範JIS:日本国家工业齿轮规范JGMA:日本齿轮工会规范AGMA:美国齿轮工会规范DIN:德国齿轮工会规范四.正齒輪各部位之名稱及定義:1.模數(M):表示公制齒輪上齒的大小.2.齒數(Z):一個齒輪齒的數量.3.壓力角(a):指一對嚙合齒輪間之壓力線與節圓在節點之公切線所夾之角度.常用壓力角有14.5°; 20°; 22.5°4.節圓:為節線在圓周上的軌跡,即互相嚙合的兩齒間假想互為滾動之圓.為齒輪設計與制造上的主要數據.5.基圓:與壓力角線相切之圓,即產生漸開線齒廓之圓.6.齒冠圓:為通過齒輪頂部之圓.7.齒根圓:為通過齒輪根部之圓.8.齒冠:又稱齒頂高,為齒冠圓與節圓半徑之差.9.齒根:又稱齒底高,為節圓與齒根圓半徑之差.10.齒深:即全齒高,齒冠與齒齒根之和.五.正齒輪之計算:1.標準正齒輪2.轉位正齒輪3.齒條與正齒輪六.齒輪設計要求:1.模數標準值之使用:見附頁,首先考慮第一糸列.2.塑膠齒輪常用的材質是POM料, .機械性質良好,高強度、高剛性、耐疲勞限,俗有”塑鋼(plastic steel)”之稱.但其在成型時主要的缺點是縮水率較大(0.15%~0.35%),故齒輪設計時均勻的料位是影響其精度的一個重要因素:一般料位厚度在1.0—1.5mm之間,且偷料要兩邊均勻,在結構要求允許的情況下兩邊偷料.3.孔兩端倒角及磨擦環設計:4.齒輪重點部位尺寸一般公差定義:孔徑一般控制在+0.05/+0.01mm,功能長度控制在+0/-0.10mm.齒外徑的管控與模數、齒數及齒輪的精度有關,一般模數在0.3(包括0.3以下)為+0/-0.10,其他的可根據齒數及精度控制在+0/-0.20mm.5.齒輪的定位情況:如果配合五金軸心則一般利用介子扣在軸心上定位或齒輪上做一倒鉤扣住軸心定位;如果是配合塑膠軸心則一般是塑膠軸心上做一倒鉤定位.6.兩齒輪咬合中心距公差定義:一般為+0.1/+0mm或+0.05/-0.05mm.7.解決噪音問題:噪音一般會產生在轉速較快的咬合齒輪之間.其主要的原因為齒輪的精度差、齒面上有異物、或兩齒輪拉得太遠(中心距不當),還有一個能減小噪音的辦法就是齒輪使用比較軟一點型號的pom材料,比如SU-25、NW-02……等,但其強度、剛性稍差,需依功能來定.8.齒輪設計之強度:正齿轮设计基于刘易斯公式的疲劳强度设计刘易斯公式的基本思路是假设一个齿尖承受所有法向负荷这样一种最严重的情况,并据此来考虑齿根处所产生的最大弯曲应力。

关于齿轮基本知识

关于齿轮基本知识

精选课件
14
齿轮材料要求
• 齿轮材料要满足齿轮表面层有足够的硬度和耐磨性,对于承受交变载 荷和冲击载荷的齿轮,基体要有足够的抗弯强度和韧性,要有良好的 工艺性,即要易于切削加工和热处理性能好
精选课件
15
齿轮参数解释
• 模数:表示齿轮的大小,单位为毫米,啮合两齿轮的模数须相等模数 大,齿距、齿厚、齿高、也随之增大,因而齿轮的承载能力越大。
• 由于这五个因素的英文名称的第一个字母是M和E,所以常简称为 5M1E。6要素只要有一个发生改变就必须重新计算。
精选课件
25
戴明循环
精选课件
26
精选课件
27
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
精选课件
13
齿轮齿形加工原理
• 圆柱齿轮加工机床主要有滚齿机,插齿机,剃齿机,衍齿机和磨齿机 等。加工原理主要分为成形法(仿形法)和展成法,目前展成法应用 最为广泛。齿轮加工的关键是齿面的加工。目前,齿面加工的主要方 法是刀具切削加工和砂轮磨削加工。前者因为加工效率高,加工精度 较高因而是目前广泛采用的齿面加工方法。后者主要用于齿面精加工, 效率一般较低,按照加工原理也可分为成形法和展成法两大类
• 分度圆:在齿顶圆和齿根圆之间,规定一定直径为d的圆,作为计算 齿轮各部分尺寸的基准,并把这个圆称为分度圆。其直径和半径分别 用d和r表示,值只和模数和齿数的乘积有关,模数为端面模数。与变 位系数无关。
• 齿隙:一对齿轮啮合时,齿面间的间隙。(公法线长度最好走下限)
精选课件
18
齿轮精度等级
• 齿轮分为13个等级,用数字0~12由底到高的顺序排列,0级为最 高,12级最低。

齿轮基础必学知识点

齿轮基础必学知识点

齿轮基础必学知识点
以下是齿轮基础必学的知识点:
1. 齿轮的定义:齿轮是一种用于传递转动的机械元件,它由一组齿数相等、剖面相同的齿排列在轮轴上。

2. 齿轮的作用:齿轮主要用于传递转矩和旋转速度,通过齿轮传动可以改变输入轴和输出轴的转速和转矩。

3. 齿轮的分类:齿轮可以根据齿轮的齿数和齿形来分类,常见的分类包括直齿轮、斜齿轮、蜗杆齿轮等。

4. 齿轮的主要参数:齿轮的主要参数包括模数、齿数、齿宽、压力角等。

这些参数对齿轮的传动效果和强度有重要影响。

5. 齿轮的传动比:齿轮传动比是指输入轴和输出轴的转速比,可以通过齿轮的齿数比来计算。

6. 齿轮的啮合问题:齿轮的啮合是指两个齿轮齿面相互接触和传递转动的过程,啮合过程中需要考虑啮合角和啮合系数等问题。

7. 齿轮的设计原则:齿轮的设计需要考虑传动效率、噪音、强度等因素,通常需要满足一定的设计原则和标准。

8. 齿轮的制造工艺:齿轮的制造工艺包括锻造、车削、滚齿等,不同的工艺对齿轮的精度和强度有不同的要求。

9. 齿轮的润滑和维护:齿轮在运动过程中需要适当的润滑和维护,以
保持正常运转和延长使用寿命。

10. 齿轮的应用:齿轮广泛应用于机械传动领域,如汽车、工程机械、船舶等,也用于其他领域如机械工具、钟表等。

齿轮的全部知识点

齿轮的全部知识点

齿轮的全部知识点一、齿轮的概念和作用齿轮是机械传动中常用的一种零件,其主要作用是将动力传递给其他零件或改变传动方向和传动比例。

齿轮是由齿轮齿与齿轮轴组成的。

二、齿轮的分类根据齿轮的形状和用途,齿轮可以分为直齿轮、斜齿轮、锥齿轮、蜗杆齿轮等多种类型。

1.直齿轮:齿轮齿与轴线平行,是最常见的齿轮类型。

直齿轮具有传递动力平稳、效率高等优点,广泛应用于各种机械传动中。

2.斜齿轮:齿轮齿与轴线倾斜,常用于变速箱、差速器等传动装置中,可实现转速和转矩的变化。

3.锥齿轮:齿轮齿与轴线相交于一点,主要用于轴线方向变换,如正交传动。

4.蜗杆齿轮:由蜗杆和蜗轮组成,主要用于传递大扭矩和减速的场合,常用于起重机、输送机等设备中。

三、齿轮的结构和参数齿轮的结构包括齿面、齿根、齿顶等部分,并具有一系列参数来描述其几何形状和传动特性。

1.齿数:齿数是齿轮上齿的数量,决定了齿轮的传动比例。

2.模数:模数是齿轮齿距与齿数的比值,是描述齿轮尺寸的重要参数。

3.压力角:齿轮齿与轴线间的夹角,影响齿轮的传动效率和载荷能力。

4.齿宽:齿轮齿的宽度,决定了齿轮的承载能力。

四、齿轮的工作原理齿轮传动是通过齿轮齿的啮合来实现动力传递的。

齿轮齿的啮合产生了转矩和转速的变化,使得齿轮能够实现不同的传动需求。

五、齿轮的应用领域齿轮广泛应用于各种机械装置中,如汽车、船舶、飞机、工业生产线等。

齿轮传动具有传递效率高、传动精度高等特点,被广泛应用于各个行业。

六、齿轮的设计与制造齿轮的设计与制造涉及到齿轮传动的计算、选型、绘图、加工等环节。

通过对齿轮的设计与制造,可以满足不同传动需求和工作环境的要求。

七、齿轮的维护保养齿轮在使用过程中需要进行定期的维护保养,包括齿轮的润滑、检查齿轮磨损情况、更换磨损严重的齿轮等。

合理的维护保养可以延长齿轮的使用寿命和保证传动效果。

八、齿轮的故障和排除齿轮在使用过程中可能会出现故障,如齿面磨损、齿轮断裂等。

针对不同的故障情况,可以采取不同的排除方法,如修复磨损齿面、更换断裂齿轮等。

齿轮知识点图解总结

齿轮知识点图解总结

齿轮知识点图解总结一、齿轮的种类齿轮根据不同的分类标准可以分为多种类型,常见的齿轮包括直齿轮、斜齿轮、蜗杆齿轮、锥齿轮等。

下面通过图解的方式一一介绍各种齿轮的特点和应用领域。

1. 直齿轮直齿轮是最常见的一种齿轮,齿轮的齿直立于齿轮轴线,传动时齿轮之间是平行传动。

直齿轮的特点是传动效率高、噪音小、结构简单,适用于大部分机械传动系统。

2. 斜齿轮斜齿轮的齿轮齿呈斜面,传动时齿轮之间是斜交传动。

斜齿轮的特点是传动平稳、噪音小、传动力矩大,适用于需要高精度传动的场合。

3. 蜗杆齿轮蜗杆齿轮是由蜗杆和蜗轮组成的一种齿轮,蜗杆一般是螺旋状的,蜗轮是蜗杆的齿轮。

蜗杆齿轮的特点是传动比大、传动效率低,适用于需要大传动比的场合,如减速箱。

4. 锥齿轮锥齿轮是齿轮的齿面呈锥面的一种齿轮,传动时齿轮之间是交叉传动。

锥齿轮的特点是传动平稳、传动力矩大,适用于需要变速和转向的场合。

二、齿轮的工作原理齿轮的工作原理主要是依靠齿轮之间的啮合传递动力和运动。

当两个齿轮啮合时,齿轮的齿会相互嵌合,由驱动齿轮传递动力给被动齿轮,从而实现转动。

下面通过图解的方式介绍齿轮的工作原理。

1. 齿轮的啮合齿轮的啮合是指齿轮之间的齿相互嵌合,使得齿轮可以传递动力和运动。

啮合是齿轮传动的基础,它决定了齿轮传动的稳定性和精度。

2. 齿轮的传动齿轮的传动是指驱动齿轮传递动力给被动齿轮,从而实现齿轮的转动。

传动过程中,齿轮的齿相互嵌合,使得动力从驱动齿轮传递到被动齿轮,从而实现齿轮的运动。

三、齿轮的设计要点齿轮的设计是齿轮制造中的关键环节,设计的好坏直接影响齿轮的性能和使用寿命。

齿轮的设计要点包括模数、齿数、齿宽、啮合角、齿形等方面。

下面通过图解的方式介绍齿轮的设计要点。

1. 模数模数是齿轮齿数和齿轮齿距的比值,它决定了齿轮的齿形和啮合性能。

模数越大,齿轮的传动能力越大,但重量和成本也会增加。

2. 齿数齿数是指齿轮上的齿的数量,它决定了齿轮的传动比和传动精度。

齿轮基本知识

齿轮基本知识
8,全齿高h:( h=hk+hf ) 从齿顶圆到齿底圆的距离。
9,齿顶圆直径dk:( dk=d+2m ) 一般均以外径称齿顶圆。可以通过节圆直径加上2倍模数 算出。
10,齿底圆直径dr:( dk=d-2.5m ) 一般均以根圆外径称齿底圆。
b,转位直齿轮:
转位分正转位和负转位,不管转位是正还是负,节圆直径d
齒輪基本知識
一,齿轮的基本知识:
齿轮可以用来传递动力,改变转动方向、速度及 改变运动方式.
齿轮分为: 圆柱齿轮(用于两平行轴传动) 圆锥齿轮(用于两相交轴传动) 涡轮蜗杆(用于两垂直交叉轴传动)
二,齿轮基本参数
a,标准直齿轮:
1,齿数Z: 圆周上所加工之齿的总数。
2,模数m: 是指相邻两轮齿同侧齿廓间的 齿距t与圆周率π的比值(m=t/π) 以毫米为单位。
全齿误差Fi: 在回转一周中,其中心距离最大至最小之变化值;
单齿误差fi: 在回转一周中,各齿间变化最大之值;
五,齿轮测量:
1,图面齿轮参数识别(附件圖面講解); 2,直齿与螺旋齿齿数为奇数时外径测量需要用三点测定;
六,斜齿(螺旋齿)
斜齿轮基本资料下回课程会重点讲述,目前先让大家不 看图纸的情况下,如何区分斜齿是左旋还是右旋,详见 下面图片
图示一
图示二
上图示一:齿的倾斜方向向左-------左旋; 上图示二:齿的倾斜方向向右-------右旋;
是不变的。
1,转位系数:x
(当转位系数是正数时为正转位,
转齿顶高:hk= m+xm
4,齿底高:hf=1.25m-xm
5, 齿顶圆直径:
dk=d+2hk==mz+2m+2xm
6,齿底圆直径:

齿轮的基本知识1226

齿轮的基本知识1226

基圆,半径为rb 。
第一章 齿轮的基本概念
1.2.2 压力角与展开角
渐开线AK所对的基
圆上的角度θk就是该渐 开线的展开角。
渐开线上任意一点 的受力方向线和运动方 向线之间的夹角,叫做 改点的压力角。
展开 角θk
展开角的大小决定 渐开线的长度。渐开线 上各点的压力角大小不 等。
发生线 压力角
αk
基圆
向面上,端面内进行测量。
1.法向模数mn:设计用的标准值。 mn
pn
2.端面压力角αt:tan t
tan n(为螺旋角) cos
3.当量齿数zn:齿轮的法向截面为椭圆。
zn
z cos3
称为斜齿轮的当量齿数
第一章 齿轮的基本概念
1.5.5 斜齿轮的的旋向 1.可以用左右手定则判断 2.直观判断:面对齿轮,顺着齿轮轴线看,外齿轮:
第一章 齿轮的基本概念
图 b
第一章 齿轮的基本概念
2.齿距与齿厚 相邻两齿同侧齿面在分度圆上的弧长叫齿距,用p
表示。 齿轮一个轮齿同侧齿廓间在分度圆上的叫分度圆齿
厚,以s表示。齿槽宽以e表示。(如图a) 则齿距: p=s+e
第一章 齿轮的基本概念
3.齿顶高、齿根高、齿高 分度圆至齿顶的径向距
离称为齿顶高,用ha表示。 ha*表示齿顶高的一个参数。
1.5.1 导程和螺旋角
在斜齿轮中,螺旋线绕圆柱体转一周沿轴线方向 上升的距离叫导程,用代号pz来表示。
展开螺旋线与圆柱体轴线的夹角叫螺旋角,用β 来表示。
第一章 齿轮的基本概念
1.5.2 斜齿轮啮合特点 1.轮齿表面为螺旋面。 2.轮齿表面的接触线为直线并位于基圆柱切平面内,
且与基圆母线倾斜一基圆螺旋角。斜齿轮接触线是斜线, 在啮合过程中接触线逐渐变长,又逐渐从长变短,受力也 从小变大,然后再由大变小。

齿轮基础知识

齿轮基础知识
综上所述,m、a、ha*、c*、z 是渐开线齿轮几何尺寸计算的五个基本
参数,其中 m、a、ha*、c* 均为标准值。
精品PPT
二、渐开线齿轮
4、渐开线齿轮的啮合原理
1)渐开线齿廓啮合的基本定律: 根据渐开线的特性,一对渐开线齿廓不论何 处啮合,两齿轮的传动比恒定不变。
即:i12 =ω1/ω2 =O2P/O1P=r2/r1
ha ha*m
hf ha* c* m
齿顶高系数,国标规定,正常齿制 ha* 1 ,短齿制 ha* 0.8 ;
顶隙系数,国标规定,正常齿制 c* 0.25,短齿制 c* 0.3。
——短齿制齿轮主要用于汽车、坦克、拖拉机、电力机车等。 (4)齿数:z 最小齿数: Zmin = 2h*a / sin2α ,避免跟切现象。
英制齿轮型号 欧美等国主要采用的英制齿轮(径节齿轮),是指每一英寸分度圆直径
上的齿数,该值越大齿越小。径节 DP=z/D (z —齿数,D—分度圆直径,英 寸),以径节DP单位为 (1/in)。它与公制的换算关系为 m=25.4/DP。
精品PPT
一、齿轮概述
5、齿轮的优缺点
1)优点: – 效率高,是机械传动最高的一种,效率 可达99% – 结构紧凑 – 工作可靠,使用寿命长 – 传动比恒定
精度标注示例:
8-8-7-FL
ⅠⅡⅢ
若3项精度相同,则记为: 8-FL
齿厚下偏差代号 齿厚上偏差代号
精品PPT
三、齿轮精度与测量
2、常见机械中齿轮精度
机械名称 汽轮机 金属切削机床 轻型汽车 载重汽车 拖拉机
精度等级 3~6 3~8 5~8 7~9 6~8
机械名称 通用减震器 锻压机床
起重机 矿山卷扬机 农业机械

齿轮基础知识全(建议收藏)

齿轮基础知识全(建议收藏)

渐开线标准直齿齿形:轮齿的轮廓线就是渐开线。

一:基本概念介绍渐开线:将一端系有铅笔的线缠在圆筒的外周上,然后在线绷紧的状态下将线渐渐放开。

此时,铅笔所画出的曲线即为渐开曲线。

圆筒的外周被称为基圆。

一个示例:8齿渐开线齿轮示例。

将圆筒8等分后,系上8根铅笔,画出8条渐开曲线。

然后,将线向相反方向缠绕,按同样方法画出8条曲线,这就是以渐开曲线作为齿形,齿数为8的齿轮。

当直线沿一圆周作相切纯滚动时,直线上任一点在与该圆固联的平面上的轨迹k0k,称为该圆的渐开线。

渐开线的性质(1)直线NK = 曲线N K0(2) 渐开线上任意一点的法线必切于基圆,切于基圆的直线必为渐开线上某点的法线。

与基圆的切点N为渐开线在k点的曲率中心,而线段NK是渐开线在点k处的曲率半径。

(3)渐开线齿廓各点具有不同的压力角,点K离基圆中心O愈远,压力角愈大。

(4)渐开线的形状取决于基圆的大小,基圆越大,渐开线越平直,当基圆半径趋于无穷大时,渐开线成为斜直线。

(故齿条的齿轮廓线为斜线)(5)基圆内无渐开线。

渐开线的方程式rk为渐开线再任意点K的向径。

模数:模数是决定齿大小的因素。

齿轮模数被定义为模数制轮齿的一个基本参数,是人为抽象出来用以度量轮齿规模的数。

目的是标准化齿轮刀具,减少成本。

直齿、斜齿和圆锥齿齿轮的模数皆可参考标准模数系列表。

分度圆上的齿距p对Π的比值称为模数,用m表示,单位为mm,即m=p/Π,已标准化。

模数是齿轮的主要参数之一,齿轮的主要几何尺寸都与模数成正比,m越大,则齿距p越大,轮齿就越大,轮齿的抗弯能力就越强,所以模数m又是轮齿抗弯能力的标志。

不同模数的轮齿大小对比。

分度圆:为了便于设计、制造及互换,我们把齿轮某一圆周上的比值规定为标准值(整数或较完整的有理数),并使该圆上的压力角也为标准值,这个圆称为分度圆,其直径以d表示。

因轮齿分度圆上的齿槽宽e=齿厚s。

故s=e=Πd/2z,故p=2s=2e=Πd/z。

齿轮知识点总结大全

齿轮知识点总结大全

齿轮知识点总结大全一、齿轮的定义齿轮是一种机械传动元件,由一个或多个齿轮组成,用于传递动力和转速。

它们通常是金属制成,具有一定的硬度和耐磨性,可在高速运动和高负荷下可靠地工作。

二、齿轮的分类1. 按齿轮轴的位置划分:(1)平行轴齿轮:齿轮轴线平行。

(2)垂直轴齿轮:齿轮轴线成直角。

(3)斜齿轮:齿轮轴线不平行也不相交。

2. 按齿轮的形状划分:(1)圆柱齿轮:齿轮齿的咬合线为直线。

(2)锥齿轮:齿轮齿的咬合线为斜线。

(3)蜗杆齿轮:由蜗杆和蜗轮组成。

3. 按齿轮齿数划分:(1)小齿轮:齿数较少。

(2)大齿轮:齿数较多。

4. 按齿轮传动形式划分:(1)齿轮齿和链轮齿。

(2)齿轮和滚子链传动。

5. 按齿轮副的类型划分:(1)外啮合齿轮副。

(2)内啮合齿轮副。

(3)混合啮合齿轮副。

三、齿轮的参数1. 齿轮的模数(m):模数是齿轮齿数和齿轮直径的比值,常用来确定齿轮的大小。

2. 齿轮的齿数(z):齿数是齿轮上齿的数量,齿数与模数和齿轮直径有直接关系。

3. 齿轮的齿宽(b):齿轮齿的宽度,影响齿轮的承载能力。

4. 齿轮的分度圆直径(d):分度圆直径是齿轮上齿的根部圆与齿轮轴线的距离。

5. 齿轮的法向齿距(P):同一齿轮上相邻两个齿的顶部和底部之间的距离。

6. 齿轮的齿面硬度:齿轮齿面的硬度应适中,以保证齿面耐磨和承受载荷。

四、齿轮的原理1. 齿轮的啮合原理:两个啮合的齿轮之间,齿与缝的形状是特定的,称为啮合曲线,其形状决定了齿轮的传动特性。

2. 齿轮的传动比:传动比是驱动轮和从动轮的转速之比,可以通过齿轮的齿数比来计算。

3. 齿轮的传动效率:齿轮传动的效率是指输入功率和输出功率的比值,取决于齿轮的设计和加工质量。

4. 齿轮的传动稳定性:齿轮传动的稳定性受制于载荷和齿轮的设计,有时需要采取一定的减振和降噪措施。

5. 齿轮的传动可靠性:齿轮传动的可靠性是指在一定时间内不发生故障的能力,取决于齿轮的材料和制造工艺。

齿轮基础知识全(建议收藏)

齿轮基础知识全(建议收藏)

渐开线标准直齿齿形:轮齿的轮廓线就是渐开线。

一:基本概念介绍渐开线:将一端系有铅笔的线缠在圆筒的外周上,然后在线绷紧的状态下将线渐渐放开。

此时,铅笔所画出的曲线即为渐开曲线。

圆筒的外周被称为基圆。

一个示例:8齿渐开线齿轮示例。

将圆筒8等分后,系上8根铅笔,画出8条渐开曲线。

然后,将线向相反方向缠绕,按同样方法画出8条曲线,这就是以渐开曲线作为齿形,齿数为8的齿轮。

当直线沿一圆周作相切纯滚动时,直线上任一点在与该圆固联的平面上的轨迹k0k,称为该圆的渐开线。

渐开线的性质(1)直线NK = 曲线N K0(2) 渐开线上任意一点的法线必切于基圆,切于基圆的直线必为渐开线上某点的法线。

与基圆的切点N为渐开线在k点的曲率中心,而线段NK是渐开线在点k处的曲率半径。

(3)渐开线齿廓各点具有不同的压力角,点K离基圆中心O愈远,压力角愈大。

(4)渐开线的形状取决于基圆的大小,基圆越大,渐开线越平直,当基圆半径趋于无穷大时,渐开线成为斜直线。

(故齿条的齿轮廓线为斜线)(5)基圆内无渐开线。

渐开线的方程式rk为渐开线再任意点K的向径。

模数:模数是决定齿大小的因素。

齿轮模数被定义为模数制轮齿的一个基本参数,是人为抽象出来用以度量轮齿规模的数。

目的是标准化齿轮刀具,减少成本。

直齿、斜齿和圆锥齿齿轮的模数皆可参考标准模数系列表。

分度圆上的齿距p对Π的比值称为模数,用m表示,单位为mm,即m=p/Π,已标准化。

模数是齿轮的主要参数之一,齿轮的主要几何尺寸都与模数成正比,m越大,则齿距p越大,轮齿就越大,轮齿的抗弯能力就越强,所以模数m又是轮齿抗弯能力的标志。

不同模数的轮齿大小对比。

分度圆:为了便于设计、制造及互换,我们把齿轮某一圆周上的比值规定为标准值(整数或较完整的有理数),并使该圆上的压力角也为标准值,这个圆称为分度圆,其直径以d表示。

因轮齿分度圆上的齿槽宽e=齿厚s。

故s=e=Πd/2z,故p=2s=2e=Πd/z。

齿轮基础知识大全

齿轮基础知识大全

齿轮基础知识大全目录1. 内容简述 (3)1.1 齿轮简介 (3)1.2 齿轮的重要性 (4)1.3 齿轮应用领域 (5)2. 齿轮基础原理 (6)2.1 齿轮咬合原理 (7)2.2 齿轮传动的特点 (8)2.3 齿轮传动的分类 (9)3. 齿轮材料 (10)3.1 材料选择依据 (11)3.2 常见齿轮材料 (12)3.3 材料性能特点 (13)4. 齿轮设计与制造 (14)4.1 齿轮设计过程 (16)4.2 齿轮加工技术 (17)4.3 齿轮热处理工艺 (19)5. 齿轮精度与检测 (20)5.1 齿轮精度要求 (22)5.2 齿轮检测方法 (23)5.3 齿轮误差分析 (24)6. 齿轮失效分析 (25)6.1 齿轮常见失效形式 (27)6.2 失效原因分析 (28)6.3 失效预防措施 (29)7. 齿轮传动系统 (31)7.1 齿轮传动系统组成 (32)7.2 齿轮传动系统设计 (32)7.3 齿轮传动系统优化 (34)8. 齿轮润滑与维护 (35)8.1 齿轮润滑原理 (36)8.2 润滑油选择与管理 (38)8.3 齿轮维护与保养 (39)9. 特殊齿轮 (41)9.1 蜗轮蜗杆 (42)9.2 行星齿轮 (43)9.3 斜齿轮和园弧齿轮 (45)10. 实践案例分析 (46)10.1 齿轮应用案例 (48)10.2 故障诊断案例 (48)10.3 设计优化案例 (49)11. 未来趋势 (51)11.1 计算机辅助设计 (52)11.2 数字控制加工 (53)11.3 节能与绿色制造 (54)1. 内容简述将对齿轮的分类进行详细介绍,包括按齿形、齿数、传动方式等进行分类的方法。

阐述齿轮的基本原理,如啮合原理、传动原理等,帮助读者理解齿轮的工作机制。

本文档还将介绍齿轮的设计方法,包括设计准则、步骤和注意事项等,以培养读者的设计能力和实践经验。

介绍齿轮的制造工艺,如切削加工、热处理等,以及各种工艺的优缺点和适用范围。

齿轮知识点教程总结

齿轮知识点教程总结

齿轮知识点教程总结齿轮是机械传动中常见的零件,它的结构简单,但却担负着重要的传动任务。

本教程将向您介绍齿轮的基本知识点,从齿轮的类型、运动原理、设计和制造等方面进行详细讲解。

第一章:齿轮的基本概念在开始学习齿轮知识之前,我们首先要了解一些基本概念,比如齿轮的定义、作用、分类等。

齿轮是利用齿与齿之间的啮合来传递运动和力的机械元件,它一般由带齿的圆柱体构成。

齿轮的作用主要有两个,一是传递转矩,二是调整转速。

根据其传动方式和结构特点,齿轮可以分为直齿轮、斜齿轮、锥齿轮、蜗轮蜗杆等多种类型。

第二章:齿轮的运动原理齿轮的运动原理是齿轮知识中最基本的概念之一。

齿轮的基本运动包括旋转和直线移动两种形式。

在实际应用中,通过不同类型的齿轮组合,可以实现不同的传动功能,比如增速、减速、改变运动方向等。

此外,齿轮传动的效率、噪音、寿命等性能指标也与运动原理相关。

第三章:齿轮的设计与计算齿轮的设计与计算是齿轮知识中较为复杂和重要的内容,它直接关系到齿轮传动的可靠性和性能。

齿轮的设计包括齿数、齿宽、齿高、模数、齿顶高、齿根高等参数的确定,以及齿轮材料的选择、齿面硬度及表面质量的要求等。

在齿轮计算中,需要考虑齿轮的强度、变形、寿命等多个方面的因素,并进行相关计算和分析。

第四章:齿轮的制造工艺齿轮的制造工艺包括齿轮的加工方法、热处理、表面处理等内容。

一般来说,齿轮的加工方法包括铣削、滚齿、磨削、车削等多种方式,而齿轮经过热处理后能够提高其硬度和强度,延长其使用寿命。

除此之外,齿轮还需要进行表面处理,以改进其表面质量、减小摩擦、延长使用寿命。

第五章:齿轮的润滑与维护齿轮的润滑与维护是齿轮运行过程中必不可少的环节。

有效的润滑方式能够减小齿轮的摩擦、降低噪音、提高效率,并延长齿轮的使用寿命。

齿轮的维护工作包括齿轮箱油的更换、齿轮及轴承的清洗、润滑油的添加、齿轮的定期检查等。

总结:在本教程中,我们详细介绍了齿轮的基本概念、运动原理、设计与计算、制造工艺、润滑与维护等方面的知识点。

齿轮基础知识详解,看看你知道多少

齿轮基础知识详解,看看你知道多少

齿轮基础知识详解,看看你知道多少1. 什么是齿轮?齿轮是能互相啮合的有齿的机械零件。

它在机械传动及整个机械领域中的应用极其广泛。

2. 齿轮的历史早在公元前350年,古希腊著名的哲学家亚里士多德在文献中对齿轮有过记录。

公元前250年左右,数学家阿基米德也在文献中对使用了涡轮蜗杆的卷扬机进行了说明。

在现今伊拉克凯特斯芬遗迹中还保存着公元前的齿轮。

齿轮在我国的历史也源远流长。

据史料记载,远在公元前400~200年的中国古代就已开始使用齿轮,在我国山西出土的青铜齿轮是迄今已发现的最古老齿轮,作为反映古代科学技术成就的指南车就是以齿轮机构为核心的机械装置。

15世纪后半的意大利文艺复兴时期,著名的全才列奧纳多.达芬奇,不仅在文化艺术方面,在齿轮技术史上也留下了不可磨灭的功绩,经过了500年以上,现在的齿轮仍然保留着当时素描的原型。

直到17世纪末,人们才开始研究能正确传递运动的轮齿形状。

18世纪,欧洲工业革命以后,齿轮传动的应用日益广泛;先是发展摆线齿轮,而后是渐开线齿轮,一直到20世纪初,渐开线齿轮已在应用中占了优势。

其后又发展了变位齿轮、圆弧齿轮、锥齿轮、斜齿轮等等。

现代齿轮技术已达到:齿轮模数0.004-100毫米;齿轮直径由1毫米-150米;传递功率可达十万千瓦;转速可达十万转/分;最高的圆周速度达300米/秒。

国际上,动力传动齿轮装置正沿着小型化、高速化、标准化方向发展。

特殊齿轮的应用、行星齿轮装置的发展、低振动、低噪声齿轮装置的研制是齿轮设计方面的一些特点。

3. 齿轮一般分为三大类齿轮的种类繁多,其分类方法最通常的是根据齿轮轴性。

一般分为平行轴、相交轴及交错轴三种类型。

1)平行轴齿轮:包括正齿轮、斜齿轮、内齿轮、齿条及斜齿条等。

2)相交轴齿轮:有直齿锥齿轮、弧齿锥齿轮、零度齿锥齿轮等。

3)交错轴齿轮:有交错轴斜齿齿轮、蜗杆蜗轮、准双曲面齿轮等。

上表中所列出的效率为传动效率,不包括轴承及搅拌润滑等的损失。

齿轮基础知识

齿轮基础知识

齿轮综合知识直齿圆柱齿轮各部分的名称和尺寸代号1、齿顶圆--齿轮齿顶所在的圆。

其直径(或半径)用da(或ra )表示。

2、齿根圆-—齿轮齿槽底所在的圆.其直径(或半径)用df(或rf)表示。

3、分度圆--用来分度(分齿)的圆,该圆位于齿厚和槽宽相等的地方。

其直径(或半径)用d(或r表示)。

4、齿顶高--齿顶圆与分度圆之间的径向距离,用ha表示.5、齿根高-—齿根圆与分度圆之间的径向距离,用hf表示。

6、全齿高--齿顶圆与齿根圆之间的径向距离,用h表示。

显然有:h = ha + hf7、齿厚-—一个齿的两侧齿廓之间的分度圆弧长,用s表示。

8、槽宽—-一个齿槽的两侧齿廓之间的分度圆弧长,用e表示.9、齿距—-相邻两齿的同侧齿廓之间的分度圆弧长,用p表示。

显然有:p = s + e10、齿宽—-齿轮轮齿的宽度(沿齿轮轴线方向度量),用b表示。

直齿圆柱齿轮的基本参数和尺寸关系齿数z 一个齿轮的轮齿总数.模数m 以z表示齿轮的齿数,那么齿轮的分度圆周长=πd = z p.因此分度圆直径为:d=(p/p)•z,式中:p/p称为齿轮的模数,用m表示,即要使两个齿轮能啮合,它们的齿距必须相等。

因此互相啮合的两齿轮的模数m必须相等。

从d = mz中可见,模数m越大,轮齿就越大;模数m越小,轮齿就越小。

模数m是设计、制造齿轮时的重要参数。

不同模数的齿轮,要用不同模数的刀具来加工制造.为了便于设计和减少加工齿轮的刀具数量,GBI357一78对齿轮的模数m已系列化,如下表所示。

在选用模数时,应优先采用第一系列的模数,其次是第二系列,括号内的尽可能不用。

压力角a (啮合角、齿形角)在节点P处,两齿廓曲线的公法线与两节圆的公切线所夹的锐角称啮合角,也称压力角.我国采用的压力角a一般为20°,加工齿轮的原始基本齿条的法向压力角称齿形角。

因此,压力角a=啮合角=齿形角.当标准直齿圆柱齿轮的模数m确定后,按照与m的比例关系可算出轮齿的各基本尺寸。

机械原理第七章齿轮

机械原理第七章齿轮

机械原理第七章齿轮一、齿轮的基本概念齿轮是一种经常使用的传动装置,广泛应用于机械工程领域。

其主要作用是通过齿与齿之间的啮合来传递功率和运动。

齿轮主要由齿轮齿、齿凹槽和齿轮轴组成。

齿轮有许多种类,如定径齿轮、圆柱齿轮、斜齿轮等。

它们的最主要区别是齿轮的齿面形状不同。

二、齿轮的基本特性1.齿数:齿数是指齿轮上的齿的数量,通常用N来表示。

齿数的大小决定了齿轮的大小和传动比例。

2.模数:模数是齿轮齿面形状的一个参数,它表示齿轮齿顶宽度与齿数的比值。

3.压力角:压力角是描述齿面的一条斜线与齿轴的夹角,通常用α来表示。

4.模数:模数是指齿轮上两相邻齿之间的距离。

5.分度圆直径:分度圆直径是齿轮齿面上任一一个点所在的圆的直径。

三、齿轮的传动特点齿轮传动具有以下特点:1.齿轮的传动效率高:由于齿轮啮合传动是一种交替非连续的传动方式,传动效率较高。

2.从动轴与主动轴的转速与扭矩之间的传递关系是恒定的:根据齿轮的几何关系,从动轴与主动轴的转速与扭矩之间的传递关系是恒定的。

3.可以实现大范围的传动比:齿轮传动可以通过改变齿轮的大小和齿数来实现大范围的传动比,使得机械系统具有较大的调速范围。

4.传递的功率大:由于齿轮传动可以通过改变齿轮的尺寸来实现大范围的传动比,因此可以传递较大的功率。

5.结构紧凑,体积小:齿轮传动的结构紧凑,体积小,可以满足机械系统对体积和空间的要求。

四、齿轮的设计与计算1.齿轮的设计:齿轮的设计主要包括齿形设计和齿间间隙的设计。

齿形设计是指确定齿轮的齿高、齿底等参数,齿间间隙的设计是指确定齿轮齿面副的间隙。

2.齿轮的计算:齿轮的计算主要包括齿轮尺寸的计算和齿轮传动的计算。

齿轮尺寸的计算是根据给定的传动比和功率等参数,计算齿轮的尺寸;齿轮传动的计算是根据给定的齿轮传动系统参数,计算齿轮传动的效率、转速、扭矩等参数。

齿轮的设计和计算是齿轮传动设计的重要环节,其正确与否直接影响到齿轮传动的使用性能。

五、齿轮的啮合与接触齿轮的啮合是指两个齿轮的齿面之间的接触和相互咬合。

齿轮基础知识大全

齿轮基础知识大全

齿轮基础知识⼤全第⼀章齿轮的种类及应⽤范围第⼀节齿轮的种类齿轮传动是⽬前机械传动中应⽤最⼴泛、最常见的⼀种传动形式。

齿轮⽤它的轮齿来传递⼒矩和运动、变换运动的⽅向、指⽰读数及变换机构的位置等。

齿轮按轮齿齿廓曲线,可分为渐开线、摆线、圆弧线、双圆弧线齿轮等。

按其外形,可分成圆柱齿轮、锥齿轮、蜗杆蜗轮、⿎形齿轮、⾮圆齿轮等。

按其传动形式,⼜可分为平⾏轴传动、相交轴传动及交错轴传动。

第⼆节齿轮的应⽤范围及特点第三章齿轮加⼯⽅法及⼯艺过程第⼀节齿轮加⼯⽅法⼀、齿轮常⽤材料及其⼒学性能齿轮的轮齿在传动过程中要传递⼒矩⽽承受弯曲、冲击等载荷。

通过⼀段时间的使⽤,轮齿还会发⽣齿⾯磨损、齿⾯点蚀、表⾯咬合和齿⾯塑性变形等情况⽽造成精度丧失,产⽣振动和噪声等故障。

齿轮的⼯作条件不同,轮齿的破坏形式也不同。

选取齿轮材料时,除考虑齿轮⼯作条件外,还应考虑齿轮的结构形状、⽣产数量、制造成本和材料货源等因素。

⼀般应满⾜下列⼏个基本要求:1. 轮齿表⾯层要有⾜够的硬度和耐磨性。

2. 对于承受交变载荷和冲击载荷的齿轮,基体要有⾜够的抗弯强度与韧性。

3.要有良好的⼯艺性,即要易于切削加⼯和热处理性能好。

齿轮的常⽤材料及其⼒学性能见表1-3。

⼆、常⽤齿形加⼯⽅法齿轮齿形的加⼯⽅法,有⽆切屑加⼯和切削加⼯两⼤类。

⽆切屑加⼯⽅法有:热轧、冷挤、模锻、精密铸造和粉末冶⾦等。

切削加⼯⽅法可分为成形法和展成法两种,其加⼯精度及适⽤范围见表1-4。

三、齿轮常⽤热处理(表1-5)齿轮制造技术是获得优质齿轮的关键。

齿轮加⼯的⼯艺,因齿轮结构形状、精度等级、⽣产条件可采⽤不同的⽅案,概括起来有齿坯加⼯、齿形加⼯、热处理和热处理后精加⼯四个阶段。

齿坯加⼯必须保证加⼯基准⾯精度。

热处理直接决定轮齿的内在质量,齿形加⼯和热处理后的精加⼯是制造的关键。

也反映了齿轮制造的⽔平。

在齿轮加⼯⼯艺上,对软齿⾯和中硬齿⾯齿轮(300~400HBS),⼀般⼯艺⽅法为调质后滚齿或插齿。

齿轮基础知识及齿轮测量基础知识

齿轮基础知识及齿轮测量基础知识

热处理工艺对齿轮性能影响
热处理工艺
包括淬火、回火、渗碳、氮化等,可以改善齿轮的硬度、耐磨性、抗疲劳性能等 。
影响
正确的热处理工艺可以显著提高齿轮的使用寿命和可靠性,而错误的热处理工艺 则可能导致齿轮早期失效。因此,在制定热处理工艺时,应充分考虑齿轮的材料 、尺寸、精度等因素。
03 齿轮精度标准与测量方法
如基节测量、公法线长度测量等,可根据具 体需求选择合适的测量方法。
测量误差分析和处理
误差来源
01
包括仪器误差、环境误差、操作误差等,需要对这些误差进行
分析和控制。
误差处理
02
采用合适的数学方法和软件对测量数据进行处理,以减小误差
对测量结果的影响。
不确定度评定
03
对测量结果的不确定度进行评定,以了解测量结果的可靠性和
圆锥齿轮
圆锥齿轮的齿形呈圆锥形,通常用于相交轴之间的传动。圆锥齿轮具有 传动比稳定、结构紧凑等优点,但制造难度较大。
03
蜗杆蜗轮
蜗杆蜗轮是一种特殊的齿轮传动形式,其中蜗杆为螺旋状齿轮,蜗轮则
类似于斜齿轮。蜗杆蜗轮传动具有传动比大、结构紧凑、自锁性好等特
点,但传动效率相对较低。
齿轮参数术语解释
模数
模数是表示齿轮大小的一个基本参数,它决定了齿轮的齿距和齿高。 模数越大,齿轮的承载能力越强,但制造难度也相应增加。
测量误差来源及控制措施
误差来源
齿轮测量误差主要来源于测量仪器的 精度、被测齿轮的制造误差、测量环 境的影响等因素。
校验与修正
对于测量结果,需要进行校验和修正, 以消除系统误差和随机误差的影响。
实际案例分析
案例一
某企业生产的齿轮在测量时发现齿形误差较大,经过分析发现是由于齿轮加工过程中刀具 磨损导致的。企业采取了更换刀具、优化加工工艺等措施,最终解决了问题。

齿轮基本知识

齿轮基本知识

齿轮基本知识 The manuscript was revised on the evening of 2021齿轮基本知识1.什么是齿廓啮合基本定律,什么是定传动比的齿廓啮合基本定律?齿廓啮合基本定律的作用是什么?答:一对齿轮啮合传动,齿廓在任意一点接触,传动比等于两轮连心线被接触点的公法线所分两线段的反比,这一规律称为齿廓啮合基本定律。

若所有齿廓接触点的公法线交连心线于固定点,则为定传动比齿廓啮合基本定律。

作用;用传动比是否恒定对齿廓曲线提出要求。

2.什么是节点、节线、节圆节点在齿轮上的轨迹是圆形的称为什么齿轮答:齿廓接触点的公法线与连心线的交点称为节点,一对齿廓啮合过程中节点在齿轮上的轨迹称为节线,节线是圆形的称为节圆。

具有节圆的齿轮为圆形齿轮,否则为非圆形齿轮。

3.什么是共轭齿廊?答:满足齿廓啮合基本定律的一对齿廓称为共轭齿廓。

4.渐开线是如何形成的有什么性质答:发生线在基圆上纯滚动,发生线上任一点的轨迹称为渐开线。

性质:(1)发生线滚过的直线长度等于基圆上被滚过的弧长。

(2)渐开线上任一点的法线必切于基圆。

(3)渐开线上愈接近基圆的点曲率半径愈小,反之则大,渐开线愈平直。

(4)同一基圆上的两条渐开线的法线方向的距离相等。

(5)渐开线的形状取决于基圆的大小,在展角相同时基圆愈小,渐开线曲率愈大,基圆愈大,曲率愈小,基圆无穷大,渐开线变成直线。

(6)基圆内无渐开线。

5.请写出渐开线极坐标方程。

答:rk = rb / cos αk θk= inv αk = tgαk一αk6.渐开线齿廓满足齿廓啮合基本定律的原因是什么?答;(1)由渐开线性质中,渐开线任一点的法线必切于基圆(2)两圆的同侧内公切线只有一条,并且两轮齿廓渐开线接触点公法线必切于两基圆,因此节点只有一个,即i12 =ω1 / ω2 = O2P / O1P =r2′/ r1′= rb2 / rb1 = 常数7.什么是啮合线?答:两轮齿廓接触点的轨迹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

齒輪學基礎知識
一.齒輪之功用
a.能夠傳達動力.
b.能通過先選配齒數組合,獲得任意正確的速度比.
c.能通過增減齒輪組合數,改變各軸之間的相互位置關係.
二.齿轮的种类
齿轮有许多种类,根据轴向和位置关系可大致分为3类:①平行轴②交叉轴类③偏移轴。

①平行轴类
(正齿轮)
齿向与轴平行的齿轮,最为常用。

(斜齿轮)
齿向沿螺旋线回转。

正齿轮是1个齿或2个齿反复地啮合,而
斜齿轮的啮合率则上升,为2或3个齿。

因此斜齿轮噪音低而强度大。

齿向分左旋和右旋两种。

同为左旋或同为
右旋都不能啮合。

使用时应使左旋和右旋
啮合。

(齿条)
一般圆形齿轮的齿形是一种称为渐开线
的曲线,而这种齿条则是一条直线,且呈
锯齿状。

啮合对象是斜齿轮时则称作斜齿
条。

(齿条)
(斜齿条)
(内齿轮)
是一种轮齿向内且位于圆筒内部的齿
轮。

多与结构复杂、被称为行星齿轮的齿轮配套使用。

(人字齿轮)
由齿向不同的上下两部分构成的一种齿轮。

斜齿轮啮合时所产生的力会使两个齿轮
发生轴向错位,但人字齿轮则没有错位现象。

②交叉轴类
(伞齿轮)
正齿轮为圆柱状,而伞齿轮则是名副其实的伞状(圆锥状)。

常用于塑料玩具汽车来改变转轴方向。

(螺旋伞齿轮)
是伞齿轮的斜齿版。

与斜齿轮相同,噪音低和强度大是其特点。

③偏移轴类
(蜗轮蜗杆)
想要极度降低转速时使用。

正齿轮的轮齿会
发出撞击声,而蜗轮则不会发出这种声音。

三. 精度等级執行規範
JIS:日本国家工业齿轮规范
JGMA:日本齿轮工会规范
AGMA:美国齿轮工会规范
DIN:德国齿轮工会规范
四.正齒輪各部位之名稱及定義:
1.模數(M):表示公制齒輪上齒的大小.
2.齒數(Z):一個齒輪齒的數量.
3.壓力角(a):指一對嚙合齒輪間之壓力線與節圓在節點之公切線所夾之角度.常用
壓力角有14.5°; 20°; 22.5°
4.節圓:為節線在圓周上的軌跡,即互相嚙合的兩齒間假想互為滾動之圓.為
齒輪設計與制造上的主要數據.
5.基圓:與壓力角線相切之圓,即產生漸開線齒廓之圓.
6.齒冠圓:為通過齒輪頂部之圓.
7.齒根圓:為通過齒輪根部之圓.
8.齒冠:又稱齒頂高,為齒冠圓與節圓半徑之差.
9.齒根:又稱齒底高,為節圓與齒根圓半徑之差.
10.齒深:即全齒高,齒冠與齒齒根之和.
五.正齒輪之計算:
1.標準正齒輪
2.轉位正齒輪
3.齒條與正齒輪
六.齒輪設計要求:
1.模數標準值之使用:見附頁,首先考慮第一糸列.
2.塑膠齒輪常用的材質是POM料, .機械性質良好,高強度、高剛性、耐疲勞限,俗有”塑鋼(plastic steel)”之稱.但其在成型時主要的缺點是縮水率較大(0.15%~
0.35%),故齒輪設計時均勻的料位是影響其精度的一個重要因素:一般料位厚度在
1.0—1.5mm之間,且偷料要兩邊均勻,在結構要求允許的情況下兩邊偷料.
3.孔兩端倒角及磨擦環設計:
4.齒輪重點部位尺寸一般公差定義:孔徑一般控制在+0.05/+0.01mm,功能長度控制在
+0/-0.10mm.齒外徑的管控與模數、齒數及齒輪的精度有關,一般模數在0.3(包括0.3以下)為+0/-0.10,其他的可根據齒數及精度控制在+0/-0.20mm.
5.齒輪的定位情況:如果配合五金軸心則一般利用介子扣在軸心上定位或齒輪上做一倒鉤扣住軸心定位;如果是配合塑膠軸心則一般是塑膠軸心上做一倒鉤定位.
6.兩齒輪咬合中心距公差定義:一般為+0.1/+0mm或+0.05/-0.05mm.
7.解決噪音問題:噪音一般會產生在轉速較快的咬合齒輪之間.其主要的原因為齒輪的精度差、齒面上有異物、或兩齒輪拉得太遠(中心距不當),還有一個能減小噪音的辦法就是齒輪使用比較軟一點型號的pom材料,比如SU-25、NW-02……等,但其強度、剛性稍差,需依功能來定.
8.齒輪設計之強度:
正齿轮设计
基于刘易斯公式的疲劳强度设计
刘易斯公式的基本思路是假设一个齿尖承受所有法向负荷这样一种最严重
的情况,并据此来考虑齿根处所产生的最大弯曲应力。

但齿形系数一般使用节
点附近的值。

啮合率
虽说刘易斯公式是在假定所有的法向负荷都施加在一个齿尖上的基
础上来加速齿根强度的,但实际上啮合的轮齿不止一个。

压力角为
20°的标准齿正齿轮的啮合率在1和2之间,如齿数为20和30的齿
轮啮合率约为1.6。

换言之,在1对齿开始啮合的瞬间,另一对齿
已在前1个法向节距处啮合,因此在随后的0.6个法向节距内有2
对齿啮合,而在此后的0.4个法向节距内只有1对齿啮合。

因此,
考虑到把在齿尖承受所有法向负荷时所得出的值y用作齿形系数会
大大超过安全侧,于是本文采用节距附近承受负荷时的值y′。

啮合率越大则越有利于轮齿强度,因此对于传动齿轮来说,应重点
考虑增大其啮合率。

此外,如果压力角变小,则啮合率增大,例如标准齿正齿轮的
啮合率有时会增大到2以上,仅从啮合率来讲,这一点更可取。


压力角为20°的标准工具切割器进行正变位成型加工的齿轮的压力
角会变得大于20°,因此从啮合率的角度来说是不利的。

(1) 轮齿承受的切向负荷、传递扭矩
根据刘易斯公式,正齿轮的轮齿上所承受的切向负荷P和传递扭矩
T分别用(1)、(2)式来表示。

其中
P :轮齿上的切向负荷(N)
T :扭矩(N·m)
:弯曲应力(MPa)
σb
b :齿宽(mm)
m :模数(mm)
d :节圆直径(mm)
y′
:节点附近的齿形系数
“模数m基准”(参见表1-1)Z :齿数
(2) 最大容许弯曲应力
Duracon TM齿轮的容许弯曲应力会因各种运行条件以及轮齿的大小(模数)而变化。

图1-1中给出了从标准条件下的试验中得出的、与各种模数相对应的最大容许弯曲应力。

如果运行条件与之不同,则可根据(3)式来修正。

其中
σbf:给定运转条件下的最大容许弯曲应力(MPa)
σb′:从图1-1求出的标准条件下的Duracon TM M90的最大容许弯曲应力(MPa)
C s:使用状况系数(表1-2)
K v:速度修正系数(图1-2)
K T:温度系数
工作温度高时必须修正温度。

由于轮齿的弯曲强度与静态
弯曲强度间存在良好的相关性,因此可用弯曲强度~温度
的关系来修正。

例如,当温度是80℃时,用图1-3可得

K L:润滑系数
无润滑时K L=0.8
用润滑脂初始润滑时K L=1
K M:对象材质系数
Duracon TM对金属时
K M=1
Duracon TM对Duracon TM时
K M=0.8
Duracon TM如果是Duracon与金属的组合,必须注意金
属侧的表面平滑度——表面粗糙则磨损增大。

此外,
如果能够将金属侧齿尖倒角/取圆,则可减少树脂侧的
磨损。

K G:材料强度修正系数(表1-3)
也就是要对用(3)式求出的容许弯曲应力σbf和用(1)式或(2)式求出的发生应力σb进行比较:
σb>σbf则不可σb�Qσbf
则OK
图1-1给出了Duracon TM齿轮中经常使用的模数0.8~2.0的范围。

即使模数低于0.8,使用模数为0.8时的容许弯曲应力会更加安全,因此不会出现问题。

此外,图1-1所示的曲线考虑到偏差因素,因此画得比实验平均值低25%左右。

基于赫兹面压的磨损强度设计
油润滑后,Duracon TM齿轮基本上不存在磨损问题,但对于尚未润滑的齿轮,轮齿在折断前就磨损得快不能使用了,因此应根据面压来设计。

根据面压强度来设计时,可根据用(4)式算出的赫兹面压Sc和图1-4的容许面压来判断轮齿可否使用。

但当这两者没有太大差异时,则需要进一步详细研究,此时请与本公司商谈。

其中
P :轮齿上的切向负荷(N)
b :齿宽(mm)
d1:小齿轮的节圆直径(mm)
i :齿数比=Z2/z1
E :假定是Duracon M90-金属情况下的弹性模量。

换言之,即使是
Duracon的组合,也要用E1=205000MPa和E2=2580MPa来计算。

α:压力角
上式中的下标1和2分别表示小齿轮和齿轮。

图1-4所示的是根据从下述条件得出的实测值并将偏差因素考虑在内
而确定的容许面压值。

(a)齿轮材质:Duracon TM对金属时
(b)模数:m=2mm
(c)温度:常温
(d)润滑:无润滑
此外,钢齿轮的齿面经过了研磨。

如果不研磨(齿面的最大粗糙度为
5μm),则应比图1-4的最大容许面压小4~9MPa。

上面讲述了Duracon TM正齿轮的强度设计,至于其他
Duracon TM齿轮,则可以使用下一项的计算公式来设计。

但如果难以判断计算值可否使用,则需要进一步详细研究,此时也请与本公司商谈。

相关文档
最新文档