一次函数的定义练习题及答案.
一次函数经典题及答案
一次函数经典题一.定义型是一次函数,求其解析式。
已知函数1. 例解:由一次函数定义知,。
y=-6x+3,故一次函数的解析式为。
0≠m-3。
如本例中应保证0≠k解析式时,要保证y=kx+b 注意:利用定义求一次函数 . 二点斜型,求这个函数的解析式。
(2, -1)的图像过点y=kx-3已知一次函数2. 例,(2, -1)解:一次函数的图像过点。
y=x-3。
故这个一次函数的解析式为k=1,即,求这个函数的解析式。
y=-1时,x=2,当y=kx-3 变式问法:已知一次函数两点型. 三3.例,则这个函数的(0, 4)、(-2, 0)轴的交点坐标分别是y轴、x已知某个一次函数的图像与。
_____解析式为,由题意得y=kx+b 解:设一次函数解析式为 y=2x+4 故这个一次函数的解析式为,图像型. 四。
__________已知某个一次函数的图像如图所示,则该函数的解析式为4. 例y=kx+b解:设一次函数解析式为(0, 2) 、(1, 0)由图可知一次函数的图像过点 y=-2x+2 故这个一次函数的解析式为有斜截型. 五,则直线的解析式为2轴上的截距为y平行,且在y=-2x与直线y=kx+b已知直线5. 例。
___________时,b≠b,=kk。
当;解析:两条直线2121平行,y=-2x与直线y=kx+b直线。
y=-2x+2 ,故直线的解析式为2轴上的截距为y在y=kx+b直线又平移型. 六。
___________个单位得到的图像解析式为2向下平移y=2x+1把直线6. 例,y=kx+b 解析:设函数解析式为y=2x+1直线平行y=2x+1与直线y=kx+b个单位得到的直线2向下平移,故图像解析式为b=1-2=-1 轴上的截距为y在y=kx+b直线七实际应用型. (升)Q则油箱中剩油量分钟,/升流速为油从管道中匀速流出,升,20某油箱中存油7. 例。
___________(分钟)的函数关系式为t与流出时间 Q=+20 ,即Q= 解:由题意得)(Q=+20 故所求函数的解析式为注意:求实际应用型问题的函数关系式要写出自变量的取值范围。
一次函数练习题(附答案)
一次函数练习题(附答案)一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题 1.函数y=中,自变量某的取值范围是()某(ab的图象如图所示,那么a的取值范围是()A.a1C.a07.(上海市)如果一次函数yb的图象经过第一象限,且与y轴负半轴相交,那么()A.k0B.k0C.k0D.k08.(陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为()A.y某某某2)9.(浙江湖州)将直线y=2某向右平移2个单位所得的直线的解析式是(。
CA、y=2某+2B、y=2某-2C、y=2(某-2)D、y=2(某+2)10.已知两点M(3,5),N(1,-1),点P是某轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2,0)3C.(4,0)3D.(3,0)2二、填空题11.若点A(2,,-4)在正比例函数y=k某的图像上,则k=_____。
12.某一次函数的图像经过点(-1,2),且经过第一、二、三象限,请你写出一个符合上述条件的函数关系式_________。
13.在平面直角坐标系中,把直线y=2某向下平移3个单位,所得直线的解析式_14.(福建晋江)若正比例函数y1,2),则该正比例函数的解析式为y36(kPa)时,ya某b1200某y某y2(某5(2)设函数解析式为y=k某,则图像过点(1,1.6),故y=1.6某(某≥0).(3)方案一:80元。
方案二:y=6某60-2=70(元).方案三:y=1.6某60=96(元)5∴选方案二最好。
22解:(1)小李3月份工资=2000+2%某14000=2280(元)小张3月份工资=1600+4%某11000=2040(元)(2)设y2b,取表中的两对数(1,7400),(2,9200)代入解析式,得kk=1800 解得1800某9200b,b=5600(3)小李的工资w12%(1200某24某16005600)1824当小李的工资w218242208,解得,某8答:从9月份起,小张的工资高于小李的工资。
一次函数精选20题(附答案)
分邮递员小王从县城出发,骑自行车到A 村投递,途中遇到县城中学的学生李明从A 村步行返校.小王在A 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求:(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案.(2)小王从县城出发到返回县城所用的时间.(3)李明从A 村到县城共用多长时间?26.(本小题满分8分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC 、线段DE 分别表示甲、乙两车所行路程y (千米)与时间x (小时)之间的函数关系对应的图象(线段AB 表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程y 与时间x 的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)小24.(本题满分10分)工业园区某消毒液工厂,今年四月份以前,每天的产量与销售量均为500箱.进入四月份后,每天的产量保持不变,市场需求量不断增加.如图是四月前后一段时期库存量y(箱)与生产时间t(月份)之间的函数图象.(1)四月份的平均日销售量为多少箱?(2)该厂什么时候开始出现供不应求的现象,此时日销售量为多少箱?(3)为满足市场需求,该厂打算在投资不超过135万元的情况下,购买5台新设备,使扩大生产规模后的日产量不低于四月份的平均日销售量.现有A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表:哪几种购买设备的方案?若为了使日产量最大,应选择哪种方案?24.小张骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离与时间的关系如图中折线所示,小李骑摩托车匀速从乙地到甲地,比小张晚出发一段时间,他距乙地的距离与时间的关系如图中线段AB所示.(1)小李到达甲地后,再经过___小时小张到达乙地;小张骑自行车的速度是___千米/小时.(2)小张出发几小时与小李相距15千米?(3)若小李想在小张休息期间与他相遇,则他出发的时间x应在什么范围?(直接写出答案)25.(本小题满分8分)因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援下图是两水库的蓄水量y (万米3)与时间x (天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题:(1)甲水库每天的放水量是多少万立方米?(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?(3)求直线AD 的解析式.23.(10分)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x (套)与每套的售价1y (万元)之间满足关系式x y 21701-=,月产量x (套)与生产总成本2y (万元)存在如图所示的函数关系.(1)直接写出....2y 与x 之间的函数关系式;(2)求月产量x 的范围;(3)当月产量x (套)为多少时,这种设备的利润W (万元)最大?最大利润是多少?20.(本题满分9分)某公司专销产品A ,第一批产品A 上市40天内全部售完.该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图10中的折线表示的是市场日销售量与上市时间的关系;图11中的折线表示的是每件产品A 的销售利润与上市时间的关系.(1)试写出第一批产品A 的市场日销售量y 与上市时间t 的关系式;(2)第一批产品A 上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?(说明理由)22.(本题满分10分)甲、乙两人骑自行车前往A 地,他们距A 地的路程(km)s 与行驶时间(h)t 之间的关系如图13所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(4分)(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个).(3分)(3)在什么时间段内乙比甲离A 地更近?(3分)图1325、(2011•黑河)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1)请你直接写出甲厂的制版费及y 甲与x 的函数解析式,并求出其证书印刷单价.(2)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?23.(2011福建龙岩,23, 12分) 周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。
必修一函数的概念练习题(含答案)
函数的概念一、选择题1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( ) A .f (x )→y =12x B .f (x )→y =13x C .f (x )→y =23x D .f (x )→y =x2.某物体一天中的温度是时间t 的函数:T (t )=t 3-3t +60,时间单位是小时,温度单位为℃,t =0表示12:00,其后t 的取值为正,则上午8时的温度为( )A .8℃B .112℃C .58℃D .18℃3.函数y =1-x 2+x 2-1的定义域是( ) A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1}4.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]5.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( ) A .[1,3] B .[2,4] C .[2,8]D .[3,9]6.函数y =f (x )的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个 C .至多一个 D .可能两个以上7.函数f (x )=1ax 2+4ax +3的定义域为R ,则实数a 的取值范围是( )A .{a |a ∈R }B .{a |0≤a ≤34}C .{a |a >34}D .{a |0≤a <34}8.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .79.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ⎝⎛⎭⎫12等于( ) A .15B .1C .3D .3010.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题11.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.12.函数y =x +1+12-x的定义域是(用区间表示)________.三、解答题13.求一次函数f (x ),使f [f (x )]=9x +1.14.将进货单价为8元的商品按10元一个销售时,每天可卖出100个,若这种商品的销售单价每涨1元,日销售量就减少10个,为了获得最大利润,销售单价应定为多少元?15.求下列函数的定义域. (1)y =x +1x 2-4; (2)y =1|x |-2;(3)y =x 2+x +1+(x -1)0.16.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的定义域.17.(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域; (2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;(3)已知f (x )的定义域为[0,1],求函数y =f (x +a )+f (x -a )(其中0<a <12)的定义域.18.用长为L 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩 形底边长为2x ,求此框架的面积y 与x 的函数关系式及其定义域.1.2.1 函数的概念答案一、选择题1.[答案] C [解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.2.[答案] A [解析] 12:00时,t =0,12:00以后的t 为正,则12:00以前的时间负,上午8时对应的t =-4,故T (-4)=(-4)3-3(-4)+60=8.3.[答案] D[解析] 使函数y =1-x 2+x 2-1有意义应满足⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,∴x 2=1,∴x =±1.4.[答案] C [解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.5.[答案] C [解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。
一次函数专题练习题含答案
一次函数专题练习题含答案一次函数知识点专题练题一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量x的取值范围是x≥2的是()A.y=2-x。
B.y=1/x。
C.y=4-x^2.D.y=x+2/(x-2)答案:D5.若函数y=(2m+1)x^2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>1/2.B.m=1/2.C.0<m<1/2.D.m<0答案:D11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,该函数的解析式为_______答案:m=1,y=x+1二、相信你也能找到正确答案!(每小题6分,共36分)2.下面哪个点在函数y=x+1的图象上()A.(2,1)B.(-2,1)C.(2,3)D.(-2,-1)答案:A15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.答案:a+b=818.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.答案:a=0,b=717.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组x-y-3=02x-y+2=0的解是________.答案:(-1,-2)4.一次函数y=-5x+3的图象经过的象限是()A.一、二、三。
B.二、三、四。
C.一、二、四。
D.一、三、四答案:B6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3.B.0<k≤3.C.-1≤k<3.D.0<k<3答案:-1≤k<3三、最后,再来几道大题吧!(每小题12分,共54分)7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()答案:y=-x+1010.一次函数y=kx+b的图象经过点(2,-1)和(4,3),那么这个一次函数的解析式为()答案:y=2x-512.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为()答案:y=3x1.农民卖土豆一位农民带了一些土豆去卖。
第1讲 一次函数的概念及图像(练习)解析版
第1讲 一次函数的概念及图像(练习)夯实基础一、单选题1.(2019·上海黄浦区·)下列函数中,是一次函数的是( )A .21y x =+B .12y x =-C .23y x =+D .y kx b =+(k 、b 是常数)【答案】C【分析】根据一次函数的定义逐项分析即可.【详解】A . 21y x =+中自变量的次数是2,故不是一次函数; B . 12y x=-中自变量在分母上,故不是一次函数; C . 23y x =+是一次函数;D . 当k=0时,y kx b =+(k 、b 是常数)不是一次函数.故选C .【点睛】本题考查了一次函数的定义,一般地,形如y =kx +b ,(k 为常数,k ≠0)的函数叫做一次函数.2.(2019·上海市敬业初级中学)下列命题错误的是( )A .正比例函数是一次函数B .反比例函数不是一次函数C .如果1y -和x 成正比例,那么y 是x 的一次函数D .一次函数也是正比例函数【答案】D【分析】直接利用正比例函数与一次函数的定义判断得出即可.【详解】解:A 、正比例函数是一次函数,此选项正确;B 、反比例函数不是一次函数,故此选项正确;C 、如果1y -和x 成正比例,则y-1=kx ,即y=kx+1,那么y 是x 的一次函数,故此选项正确;D 、一次函数可能是正比例函数,也可能不是正比例函数,故此选项错误;故选:D .【点睛】此题主要考查了正比例函数与一次函数的定义,正确把握它们的区别与联系是解题关键.3.(2020·上海市奉贤区弘文学校八年级期末)正比例函数的图像在第二、四象限内,则点(--1m m ,)在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】根据一次函数图象与系数的关系由正比例函数y =mx 的图象在第二、四象限内得到m <0,则﹣m>0,m −1<0,于是得到点(−m ,m −1)在第四象限.【详解】解:∵正比例函数y =mx 的图象在第二、四象限内,∴m <0,∴-m>0,m −1<0,∴点(-m ,m −1)在第四象限.故选:D .【点睛】本题考查了一次函数图象与系数的关系:一次函数y =kx +b (k ≠0),当k >0,图象经过第一、三象限;当k <0,图象经过第二、四象限;当b >0,图象与y 轴的交点在x 轴上方;b =0,图象过原点;当b <0,图象与y 轴的交点在x 轴下方.4.(2018·上海全国·八年级期中)一次函数y kx k =+的图象可能是( )A .B .C .D . 【答案】A【分析】根据一次函数的图象与系数的关系进行解答即可【详解】解:当k>0时,函数图象经过一、二、三象限;当k<0时,函数图象经过二、三、四象限,故A 正确.故选A.【点睛】本题考查的是一次函数的图象,熟知一次函数y=kx+b (k ≠0)中,当k<0,b<0时,函数图像经过二、三、四象限是解答此题的关键.5.(2020·上海徐汇区·八年级期末)若一次函数的图像不经过第三象限,则k b 、的取值范围是( ).A .k ﹤0,0b ≥;B .k ﹥0,b ﹥0;C .k ﹤0,b ﹥0;D .k ﹥0,b ﹤0;【答案】A【分析】根据一次函数的图象与系数的关系即可得出结论.【详解】∵一次函数y kx b =+的图象不经过第三象限,∴直线y kx b =+经过第一、二、四象限或第二、四象限,∴0k <,0b ≥.故选:A .【点睛】本题考查的是一次函数的图象与系数的关系,熟知一次函数一次函数y kx b=+(0k ≠)的图象与系数k ,b 的关系是解答此题的关键.6.(2018·上海松江区·八年级期中)如图,一次函数y kx b =+的图像经过,两点,那么当3y >时,x 的取值范围是( )A .0x <B .2x <C .1x >D .1x <【答案】D【分析】根据一次函数的图象可直接进行解答.【详解】由函数图象可知,此函数是减函数,当y=3时x=1,故当y>3时,x<1,故选:D.【点睛】此题考查一次函数的性质,一次函数图象上点的坐标特点.7.(2019·上海市闵行区明星学校)在一次函数y=ax-a 中,y 随x 的增大而减小,则其图像可能是( )A .B .C .D .【答案】B 【分析】根据y 随x 的增大而减小可得a <0,−a >0,然后判断函数图象即可.【详解】解:∵一次函数y =ax-a 中,y 随x 的增大而减小,∴a <0,−a >0, ∴其图象过一、二、四象限,故选:B .【点睛】本题考查了一次函数的图象和性质,根据增减性判断出a <0,−a >0是解题的关键.8.(2020·上海市南汇第四中学八年级月考)一次函数y mx n =+的图像如图所示,那么下列说法正确的是( )A .当0x >时,2y >-B .当1x ≥时,0y ≤C .当1x <时,0y >D .当0x <时,20y -<<【答案】A【分析】根据图像,结合一次函数的性质逐项分析即可.【详解】A . 由图像可知,当0x >时,2y >-,故正确;B . 由图像可知, 当1x ≥时,0y ≥,故不正确;C . 由图像可知, 当1x <时,0y <,故不正确;D . 由图像可知,当0x <时,2y <-,故不正确;故选A .【点睛】本题主要考查函数和不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.9.(2019·青浦东方中学八年级期中)在函数y =kx (k >0)的图象上有三点A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3),已知x 1<x 2<0<x 3,则下列各式中正确的是( )A .y 1<0<y 3B .y 3<0<y 1C .y 2<y 1<y 3D .y 3<y 1<y 2【答案】A【分析】根据正比例函数的图象性质.【详解】k >0,正比例函数,y 随x 增大而增大.【点睛】正比例函数y=kx (k 图象性质: 0,k >,正比例函数图象过一、三象限和原点,y 随x 增大而增大;0,k <,正比例函数图象过二、四象限和原点,y 随x 增大而减小.二、填空题10.(2020·上海嘉定区·八年级期末)已知一次函数,那么()1f -=______.【答案】1-【分析】代入1x =-,即可求出()1f -的值.【详解】当1x =-时,.故答案为:1-.【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y kx b =+是解题的关键.11.(2019·上海市闵行区明星学校)如果y关于x 的函数y=(k-1)x+1是一次函数,那么k 的取值范围是______.【答案】k ≠1【分析】根据一次函数的定义条件求解即可.【详解】解:∵y =(k -1)x+1是一次函数,∴k -1≠0,即k ≠1,故答案为:k ≠1.【点睛】本题主要考查了一次函数的定义,属于基础题,注意掌握一次函数y =kx +b 的定义条件是:k 、b 为常数,k ≠0.12.(2020·上海市静安区实验中学八年级期中)已知点(,)P a b 在一次函数21y x =+的图象上,则21a b --=_____.【答案】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将(,)P a b 代入函数解析式得:b=2a+1,将此式变形即可得到:210a b -+=,两边同时减去2,得:21a b --=-2,故答案为:.【点睛】本题考查了通过函数上点的坐标,求相关代数式的值,解决本题的关键要熟练掌握一次函数的性质,明白函数上的点都能使函数解析式成立.13.(2019·上海).已知函数y=(k+2)x+k 2﹣4,当k _________ 时,它是一次函数.【答案】﹣2【分析】根据一次函数的定义可知自变量的系数不为零.【详解】解:∵函数y=(k+2)x+k 2﹣4是一次函数,∴k+2≠0,即k ≠﹣2.故答案为:≠﹣2.【点睛】本题考点:一次函数的定义,正确把握定义是解题的关键.14.(2019·上海)根据图中的程序,当输入x=-3时,输出结果y =________.【答案】1【分析】根据题意可知当x=-3≤1时,应代入函数y=x+4,然后求解即可.【详解】解:∵x=-3≤1,∴当x=-3时,y= x+4=﹣3+4=﹣1.故答案为:﹣1.【点睛】本题主要考查一次函数,解此题的关键在于理解题意,根据自变量的取值范围选择正确的函数进行求解.15.(2019·上海)若298y m x x =-+表示一次函数,则m 满足的条件是__________________。
一次函数的定义专项练习30题(有答案)
一次函数的定义专项练习30题(有答案)1.下列五个式子,①,②,③y=﹣x+1,④,⑤y=2x2+1,其中表示y是x的一次函数的有()A.5个B.4个C.3个D.2个2.下列函数中,y是x的一次函数的是()A.y=﹣3x2﹣1 B.y=x﹣1+2 C. y=2(x﹣1)2D.3.下列问题中,变量y与x成一次函数关系的是()A.路程一定时,时间y和速度x的关系B.长10米的铁丝折成长为y,宽为x的长方形C.圆的面积y与它的半径xD.斜边长为5的直角三角形的直角边y和x4.下列函数:①y=﹣x+2;②y=﹣x2+2;③y=﹣3x;④;⑤,其中不是一次函数的有()A.1个B.2个C.3个D.4个5.下列函数(1)y=2x﹣1;(2)y=πx;(3)y=;(4)y=;(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.一次函数是正比例函数B.正比例函数是一次函数C.正比例函数不是一次函数D.一次函数不可能是正比例函数7.已知函数y=3x+1,当自变量增加3时,相应的函数值增加()A.10 B.9C.3D.88.对于函数y=2x﹣1,当自变量增加m时,相应的函数值增加()A.2m B.2m﹣1 C.m D.2m+1az9.若+5是一次函数,则a=()A.±3 B.3C.﹣3 D.10.若函数y=(m﹣1)x|m|+2是一次函数,则m的值为()A.m=±1 B.m=﹣1 C.m=1 D.m≠﹣111.函数y=(m﹣2)x n﹣1+n是一次函数,m,n应满足的条件是()A.m≠2且n=0 B.m=2且n=2 C.m≠2且n=2 D.m=2且n=012.下列说法正确的是()A.y=kx+b(k、b为任意常数)一定是一次函数B.(常数k≠0)不是正比例函数C.正比例函数一定是一次函数D.一次函数一定是正比例函数13.已知y+2与x成正比例,则y是x的()A.一次函数B.正比例函数C.反比例函数D.无法判断14.设圆的面积为S,半径为R,那么下列说法确的是()A.S是R的一次函数B.S是R的正比例函数C.S是R2的正比例函数D.以上说法都不正确15.已知函数y=(k+2)x+k2﹣4,当k_________时,它是一次函数.16.如果函数y=(a﹣2)x+3是一次函数,那么a_________.17.当m=_________时,函数y=(m+5)x2m﹣1+7x﹣3(x≠0)是一个一次函数.18.已知一次函数y=(k﹣1)x|k|+3,则k=_________.19.已知:y=(m﹣1)x|m|+4,当m=_________时,图象是一条直线.20.把2x﹣y=3写成y是x的函数的形式为_________.21.在函数y=﹣2x﹣5中,k=_________,b=_________.22.一次函数y=﹣2x﹣1,当x=﹣5时,y=_________,当y=﹣7时,x=_________.23.一次函数y=kx+b中,k、b都是_________,且k_________,自变量x的取值范围是_________;当k_________,b_________时它是正比例函数.24.函数:①y=﹣2x+3;②x+y=1;③xy=1;④y=;⑤y=+1;⑥y=0.5x中,属于一次函数的有_________,属正比例函数的有_________(只填序号)25.若y=mx|m|+2是一次函数的解析式且y随x的增大而减小,则m的值等于_________.26.已知函数y=(m﹣3)x|m|﹣2+3是一次函数,求解析式.27.已知函数y=(m﹣10)x+1﹣2m.(1)m为何值时,这个函数是一次函数;(2)m为何值时,这个函数是正比例函数.28.已知函数y=(m+1)x+(m2﹣1)当m取什么值时,y是x的一次函数?当m取什么值是,y是x的正比例函数.29.x为何值时,函数的值分别满足下列条件:(1)y=3;(2)y>2.30.说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,那么汽车离开A站的距离s(千米)和时间t(小时)之间的函数关系是什么?的函数关系式为_________,它是_________函数;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,那么汽车离开A站的距离s(千米)与时间t(小时)之间的函数关系是什么?的函数关系式为_________,它是_________函数.参考答案:1.①是反比例函数,故本选项错误;②符合一次函数的定义;故本选项正确;③y=﹣x+1符合一次函数的定义;故本选项正确;④=x ﹣,符合一次函数的定义;故本选项正确;⑤y=2x2+1,是二次函数;故本选项错误;综上所述,表示y是x的一次函数的有3个;故选C2.A、自变量次数不为1,故不是一次函数;B、自变量次数不为1,故不是一次函数;C、自变量次数不为1,故不是一次函数;D、是一次函数.故选D.3.A、设路程是s,则根据题意知,y=,是反比例函数关系.故本选项错误;B、根据题意,知10=2(x+y),即y=﹣x+5,符合一次函数的定义.故本选项正确;C、根据题意,知y=πx2,这是二次函数,故本选项错误;D、根据题意,知x2+y2=25,这是双曲线方程,故本选项错误.故选B.4.①y=﹣x+2是一次函数;②y=﹣x2+2是二次函数;③y=﹣3x是一次函数;④y=﹣x是一次函数;⑤y=﹣是反比例函数;所以,不是一次函数的有②⑤共2个.故选B5.(1)y=2x﹣1是一次函数;(2)y=πx是一次函数;(3)y=,自变量次数不为1,故不是一次函数;(4)y==,自变量次数不为1,故不是一次函数;(5)y=x2﹣1自变量次数不为1,故不是一次函数;综上所述,一次函数有2个.故选C.6.A、一次函数不一定是正比例函数,故本选项错误;B、正比例函数一定是一次函数,故本选项正确;C、正比例函数一定是一次函数,故本选项错误;D、一次函数可能是正比例函数,故本选项错误.故选B.7.因为y=3x+1,所以当自变量增加3时,y1=3(x+3)+1=3x+1+9,相应的函数值增加9.故选B.8.当自变量增加m时,y=2(x+m)﹣1,即y=2x+2m ﹣1,故函数值相应增加2m.故选A.9.根据一次函数的定义可知:a2﹣8=1,a+3≠0,解得:a=3.故选B.10.根据题意得:,解得:m=﹣1.故选B.11.∵函数y=(m﹣2)x n﹣1+n是一次函数,∴,解得,.故选C.12.A、y=kx+b(k、b为任意常数),当k=0时,不是一次函数,故本选项错误;B 、(常数k≠0)是正比例函数,故本选项错误;C、正比例函数一定是一次函数,故本选项正确;D、一次函数不一定是正比例函数,故本选项错误.故选C.13.y+2与x成正比例,则y+2=kx,即y=kx﹣2,符合一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1,则y是x的一次函数.故选A.14.由题意得,S=πR2,所以S是R2的正比例函数.故选C.15.根据一次函数定义得,k+2≠0,解得k≠﹣2.故答案为:≠﹣2.16.∵y=(a﹣2)x+3是一次函数,∴a﹣2≠0,∴a≠2.故答案为:a≠﹣2.17. ①,解得:m=1根据题意得:2m﹣1=1,解得:m=1,此时函数化简为y=13x﹣3.②2m﹣1=0,解得:m=,此时函数化简为y=7x﹣2.5;③m+5=0,解得:m=﹣5,此时函数化简为y=7x﹣3.故答案为:1或﹣5或18.根据题意得k﹣1≠0,|k|=1则k≠1,k=±1,即k=﹣1.19.∵y=(m﹣1)x|m|+4的图象是一条直线,∴①当该图象是一次函数图象时,|m|=1,且m﹣1≠0,解得m=﹣1.②当该直线是平行于x轴的直线时,m﹣1=0,即m=1;综上所述,当m=±1时,y=(m﹣1)x|m|+4的图象是一条直线.故答案是:±120.2x﹣y=3写成y是x的函数的形式为y=2x﹣3.故答案为:y=2x﹣3.21.根据一次函数的定义,在函数y=﹣2x﹣5中,k=﹣2,b=﹣5.22.把x、y的值分别代入一次函数y=﹣2x﹣1,当x=﹣5时,y=﹣2×(﹣5)﹣1=9;当y=﹣7时,﹣7=﹣2x﹣1,解得x=3.故填9、3.23.一次函数y=kx+b中,k、b都是常数,且k≠0,自变量x的取值范围是任意实数;当k≠0,b =0时它是正比例函数.24.函数:①y=﹣2x+3;②x+y=1;③xy=1;④y=;⑤y=+1;⑥y=0.5x中,属于一次函数的有①②⑥,属正比例函数的有⑥(只填序号)25.∵y=mx|m|+2是一次函数,∴|m|=1,∴m=±1,∵y随x的增大而减小,∴m=﹣1.故答案为:﹣126.∵m﹣3≠0且|m|﹣2=1,∴m=﹣3,∴函数解析式为:y=﹣6x+3 27.(1)根据一次函数的定义可得:m﹣10≠0,∴m≠10,这个函数是一次函数;(2)根据正比例函数的定义,可得:m﹣10≠0且1﹣2m=0,∴m=时,这个函数是正比例函数.28.由函数是一次函数可得,m+1≠0,解得m≠﹣1,所以,m≠﹣1时,y是x的一次函数;函数为正比例函数时,m+1≠0且m2﹣1=0,解得m=1,所以,当m=1时,y是x的正比例函数.29.(1)当y=3时,可得:1.5x+6=3,解得x=﹣2;(2)当y>2时,1.5x+6>2,解得30.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,则汽车离开A站的距离s=40t,它是正比例函数;故两空应分别填s=40t,正比例;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,则汽车离开A站的距离s=40t+4,它是一次函数;故两空应分别填s=40t+4,一次.。
一次函数经典测试题含答案
一次函数经典测试题含答案一、选择题1.如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC 分割成面积相等的两部分,则直线的表达式( )A .+1y x =B .4455y x =-C .1y x =-D .33y x =-【答案】C【解析】【分析】 根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.【详解】∵点B 的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l 的函数解析式为y kx b =+,则320k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,所以直线l 的解析式为1y x =-. 故选:C .【点睛】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.2.如图,直线l 是一次函数y=kx+b 的图象,若点A (3,m )在直线l 上,则m 的值是( )A .﹣5B .32C .52D .7【解析】【分析】把(-2,0)和(0,1)代入y=kx+b ,求出解析式,再将A (3,m )代入,可求得m.【详解】把(-2,0)和(0,1)代入y=kx+b ,得201k b b -+=⎧⎨=⎩, 解得121k b ⎧=⎪⎨⎪=⎩ 所以,一次函数解析式y=12x+1, 再将A (3,m )代入,得 m=12×3+1=52. 故选C.【点睛】 本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.3.一次函数y=ax+b 与反比例函数a b y x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( ) A . B .C .D .【解析】【分析】根据一次函数的位置确定a 、b 的大小,看是否符合ab<0,计算a-b 确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a −b>0,∴反比例函数y=a b x- 的图象过一、三象限, 所以此选项不正确; B. 由一次函数图象过二、四象限,得a<0,交y 轴正半轴,则b>0,满足ab<0,∴a −b<0,∴反比例函数y=a b x-的图象过二、四象限, 所以此选项不正确; C. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a −b>0,∴反比例函数y=a b x-的图象过一、三象限, 所以此选项正确; D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小4.如图,函数4y x =-和y kx b =+的图象相交于点()8A m-,,则关于x 的不等式()40k x b ++>的解集为( )A .2x >B .02x <<C .8x >-D .2x <【答案】A【解析】【分析】 直接利用函数图象上点的坐标特征得出m 的值,再利用函数图象得出答案即可.【详解】解:∵函数y =−4x 和y =kx +b 的图象相交于点A (m ,−8),∴−8=−4m ,解得:m =2,故A 点坐标为(2,−8),∵kx +b >−4x 时,(k +4)x +b >0,则关于x 的不等式(k +4)x +b >0的解集为:x >2.故选:A .【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.5.如图,已知一次函数22y x =-+的图象与坐标轴分别交于A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( )A .2B 2C 5D 3【答案】D【解析】【分析】【详解】解:连结OM 、OP ,作OH ⊥AB 于H ,如图,先利用坐标轴上点的坐标特征:当x=0时,y=﹣x+22=22,则A (0,22),当y=0时,﹣x+22=0,解得x=22,则B (22,0),所以△OAB 为等腰直角三角形,则AB=2OA=4,OH=12AB=2, 根据切线的性质由PM 为切线,得到OM ⊥PM ,利用勾股定理得到PM=22OP OM -=21OP -,当OP 的长最小时,PM 的长最小,而OP=OH=2时,OP 的长最小,所以PM 的最小值为2213-=.故选D .【点睛】本题考查切线的性质;一次函数图象上点的坐标特征.6.下列函数中,y 随x 的增大而增大的函数是( )A .2y x =-B .21y x =-+C .2y x =-D .2y x =-- 【答案】C【解析】【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】∵y=-2x 中k=-2<0,∴y 随x 的增大而减小,故A 选项错误;∵y=-2x+1中k=-2<0,∴y 随x 的增大而减小,故B 选项错误;∵y=x-2中k=1>0,∴y 随x 的增大而增大,故C 选项正确;∵y=-x-2中k=-1<0,∴y 随x 的增大而减小,故D 选项错误.故选C .【点睛】本题考查的是一次函数的性质,一次函数y=kx+b (k≠0)中,当k >0时y 随x 的增大而增大;k<0时y 随x 的增大而减小;熟练掌握一次函数的性质是解答此题的关键.7.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.8.如图,在同一直角坐标系中,函数13y x =和22y x m =-+的图象相交于点A ,则不等式210y y <<的解集是( )A .01x <<B .502x <<C .1x >D .512x << 【答案】D【解析】【分析】 先利用y 1=3x 得到A(1,3),再求出m 得到y 2═-2x+5,接着求出直线y 2═-2x+m 与x 轴的交点坐标为(52,0),然后写出直线y 2═-2x+m 在x 轴上方和在直线y 1=3x 下方所对应的自变量的范围【详解】当x=1时,y=3x=3,∴A(1,3),把A(1,3)代入y 2═−2x+m 得−2+m=3,解得m=5,∴y 2═−2x+5,解方程−2x+5=0,解得x=52, 则直线y 2═−2x+m 与x 轴的交点坐标为(52,0), ∴不等式0<y 2<y 1的解集是1<x<52故选:D【点睛】 本题考查了一次函数与一元一次不等式,会观察一次函数图象.9.如图,在矩形AOBC 中,A (–2,0),B (0,1).若正比例函数y=kx 的图象经过点C ,则k 的值为( )A .–12B .12C .–2D .2【答案】A【解析】【分析】根据已知可得点C 的坐标为(-2,1),把点C 坐标代入正比例函数解析式即可求得k.【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB 是矩形,∴BC=OA=2,AC=OB=1,∵点C 在第二象限,∴C 点坐标为(-2,1),∵正比例函数y =kx 的图像经过点C ,∴-2k=1,∴k=-12, 故选A. 【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C 的坐标是解题的关键.10.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭ 【答案】B【解析】【分析】作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;∵A 的坐标为(-4,5),D 是OB 的中点,∴D (-2,0),由对称可知A'(4,5),设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩ 5563y x ∴=+ 当x=0时,y=53 50,3E ⎛⎫∴ ⎪⎝⎭故选:B【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.11.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.12.若正比例函数y=kx的图象经过第二、四象限,且过点A(2m,1)和B(2,m),则k的值为()A.﹣12B.﹣2 C.﹣1 D.1【答案】A【解析】【分析】根据函数图象经过第二、四象限,可得k<0,再根据待定系数法求出k的值即可.【详解】解:∵正比例函数y=kx的图象经过第二、四象限,∴k<0.∵正比例函数y=kx的图象过点A(2m,1)和B(2,m),∴2km1 2k m=⎧⎨=⎩,解得:m11k2=-⎧⎪⎨=-⎪⎩或m11k2=⎧⎪⎨=⎪⎩(舍去).故选:A.【点睛】本题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键.13.如图,已知正比例函数y1=ax与一次函数y2=12x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()A.①②B.②③C.①③D.①④【答案】D【解析】【分析】根据正比例函数和一次函数的性质判断即可.【详解】因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;一次函数21 2y x b=+ \过一、二、三象限,所以b>0,②错误;由图象可得:当x>0时,y1<0,③错误;当x<−2时,y1>y2,④正确;故选D.【点睛】考查一次函数的图象与系数的关系,一次函数与不等式,熟练掌握和灵活运用相关知识是解题的关键.14.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1cm的速度从点A出发,沿折线AC -CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长是()A.1.5cm B.1.2cm C.1.8cm D.2cm【答案】B【解析】【分析】【详解】由图2知,点P在AC、CB上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+,解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==. 故选B .15.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A.B.C.D.【答案】D【解析】试题解析:当x>-1时,x+b>kx-1,即不等式x+b>kx-1的解集为x>-1.故选A.考点:一次函数与一元一次不等式.16.在平面直角坐标系中,已知直线与轴、轴分别交于、两点,点是轴上一动点,要使点关于直线的对称点刚好落在轴上,则此时点的坐标是()A.B.C.D.【答案】B【解析】【分析】过C作CD⊥AB于D,先求出A,B的坐标,分别为(4,0),(0,3),得到AB的长,再根据折叠的性质得到AC平分∠OAB,得到CD=CO=n,DA=OA=4,则DB=5-4=1,BC=3-n,在Rt△BCD中,利用勾股定理得到n的方程,解方程求出n即可.【详解】过C作CD⊥AB于D,如图,对于直线,当x=0,得y=3;当y=0,x=4,∴A(4,0),B(0,3),即OA=4,OB=3,∴AB=5,又∵坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,∴AC 平分∠OAB ,∴CD=CO=n ,则BC=3-n ,∴DA=OA=4,∴DB=5-4=1,在Rt △BCD 中,DC 2+BD 2=BC 2,∴n 2+12=(3-n )2,解得n=,∴点C 的坐标为(0,).故选B.【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b ,(k≠0,且k ,b 为常数),关于x 轴对称,横坐标不变,纵坐标是原来的相反数;关于y 轴对称,纵坐标不变,横坐标是原来的相反数;关于原点轴对称,横、纵坐标都变为原来的相反数.也考查了折叠的性质和勾股定理.17.已知直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于不等式12k x b k x +>的解集为( )A .1x <B .1x >C .2x >D .0x <【答案】A【解析】【分析】 根据函数图象可知直线l 1:y=k 1x+b 与直线l 2:y=k 2x 的交点是(1,2),从而可以求得不等式12k x b k x +>的解集.【详解】由图象可得,12k x b k x +>的解集为x <1,故选:A .【点睛】此题考查一次函数与一元一次不等式的关系,解题的关键是明确题意,利用数形结合的思想解答问题.18.已知一次函数y=kx+k,其在直角坐标系中的图象大体是()A.B.C.D.【答案】A【解析】【分析】函数的解析式可化为y=k(x+1),易得其图象与x轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y=k(x+1),即函数图象与x轴的交点为(﹣1,0),观察四个选项可得:A符合.故选A.【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.19.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),4x+2<kx+b<0的解集为()A.x<﹣2 B.﹣2<x<﹣1 C.x<﹣1 D.x>﹣1【答案】B【解析】【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(-1,-2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.【详解】∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.20.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是()A.甲乙两地相距1200千米B.快车的速度是80千米∕小时C.慢车的速度是60千米∕小时D.快车到达甲地时,慢车距离乙地100千米【答案】C【解析】【分析】(1)由图象容易得出甲乙两地相距600千米;(2)由题意得出慢车速度为60010=60(千米/小时);设快车速度为x千米/小时,由图象得出方程60×4+4x=600,解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.【详解】解:(1)由图象得:甲乙两地相距600千米,故选项A错;(2)由题意得:慢车总用时10小时,∴慢车速度为:60010=60(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时,慢车速度为60千米/小时;选项B错误,选项C正确;(3)快车到达甲地所用时间:60020903小时,慢车所走路程:60×203=400千米,此时慢车距离乙地距离:600-400=200千米,故选项D错误.故选C【点睛】本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式.。
一次函数练习题及答案
一次函数练习题及答案本文将为大家提供一系列有关一次函数的练习题,同时附带相应的答案。
一次函数,也叫线性函数,是初中数学中的重要知识点之一。
希望通过这些练习题的训练,大家能够更好地掌握一次函数的概念、性质和解题方法。
一、选择题1.已知函数y=3x+2,则它的斜率是多少?– A. 2– B. 3– C. -2– D. -3答案:B2.若一次函数图像上两点的坐标分别为(1,4)和(3,y),则y的值是多少?– A. 10– B. 12– C. 14– D. 16答案:D3.已知函数经过点(−2,1)和(4,y),则y的值是多少?– A. -5– B. 0– C. 3– D. 6答案:C二、填空题1.若一次函数y=kx+3经过点(2,5),则k的值为 \\\_。
答案:12.一次函数y=−2x+b经过点(3,−1),则b的值为 \\\_。
答案:53.若一次函数图像上两点的坐标分别为(1,y1)和(2,y2),则$\\frac{{y_1}}{{y_2}}$ 的值为 \\\_。
答案:$\\frac{1}{2}$三、计算题1.求函数y=2x−1和y=x+3的交点坐标。
解:将两个方程联立起来,得到方程组:$$ \\begin{cases} y = 2x - 1\\\\ y = x + 3\\\\ \\end{cases} $$解方程组可得:$$ x + 3 = 2x - 1 \\\\ \\Rightarrow x = 4 $$将x=4代入其中一个方程,得到y=8−1=7。
因此,交点坐标为(4,7)。
2.已知函数y=3x+b经过点(2,−1),求b的值。
解:代入点(2,−1),得到方程 $-1 = 3 \\cdot 2 + b$,解方程可得b=−7。
3.一辆汽车以匀速行驶,开车起点距离目的地 600 公里。
如果行驶 4小时后,已行驶距离为 320 公里,求每小时行驶的公里数。
解:设每小时行驶的公里数为x,根据题意可得方程 $\\frac{320}{4} = x$,解方程可得x=80。
中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)
中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)知识点总结1. 一次函数的定义:一般地,形如()0≠+=k b k b kx y 是常数且,的函数叫做一次函数。
2. 一次函数的图像:是不经过原点的一条直线。
3. 一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛−0 ,k b;与y 轴的交点坐标公式为:()b ,0。
专项练习题1.(2022•沈阳)在平面直角坐标系中,一次函数y =﹣x +1的图像是( )A .B .C .D .【分析】依据一次函数y =x +1的图像经过点(0,1)和(1,0),即可得到一次函数y =﹣x +1的图像经过一、二、四象限.【解答】解:一次函数y =﹣x +1中,令x =0,则y =1;令y =0,则x =1, ∴一次函数y =﹣x +1的图像经过点(0,1)和(1,0), ∴一次函数y =﹣x +1的图像经过一、二、四象限, 故选:C .2.(2022•安徽)在同一平面直角坐标系中,一次函数y =ax +a 2与y =a 2x +a 的图像可能是( )A .B .C .D .【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图像都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.3.(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图像分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图像位置,可得k1>0,b1>0,k2>0,b2<0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图像过一、二、三象限,∴k1>0,b1>0,∵一次函数y=k2x+b2的图像过一、三、四象限,∴k2>0,b2<0,∴A、k1•k2>0,故A不符合题意;B、k1+k2>0,故B不符合题意;C、b1﹣b2>0,故C不符合题意;D、b1•b2<0,故D符合题意;故选:D.4.(2022•六盘水)如图是一次函数y=kx+b的图像,下列说法正确的是()A.y随x增大而增大B.图像经过第三象限C.当x≥0时,y≤b D.当x<0时,y<0【分析】根据一次函数的图像和性质进行判断即可.【解答】解:由图像得:图像过一、二、四象限,则k<0,b>0,当k<0时,y随x的增大而减小,故A、B错误,由图像得:与y轴的交点为(0,b),所以当x≥0时,从图像看,y≤b,故C正确,符合题意;当x<0时,y>b>0,故D错误.故选:C.5.(2022•兰州)若一次函数y=2x+1的图像经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据﹣3<4即可得出结论.【解答】解:∵一次函数y=2x+1中,k=2>0,∴y随着x的增大而增大.∵点(﹣3,y1)和(4,y2)是一次函数y=2x+1图像上的两个点,﹣3<4,∴y1<y2.故选:A.6.(2022•凉山州)一次函数y=3x+b(b≥0)的图像一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的图像与系数的关系即可得出结论.【解答】解:∵函数y=3x+b(b≥0)中,k=3>0,b≥0,∴当b=0时,此函数的图像经过一、三象限,不经过第四象限;当b>0时,此函数的图像经过一、二、三象限,不经过第四象限.则一定不经过第四象限.故选:D.7.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值(写出一个即可),使x>2时,y1>y2.【分析】由题意可知,当b>﹣1时满足题意,故b可以取0.【解答】解:直线y1=x﹣1与y2=kx+b相交于点(2,1).∵x>2时,y1>y2.∴b>﹣1,故b可以取0,故答案为:0(答案不唯一).8.(2022•上海)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).9.(2022•无锡)请写出一个函数的表达式,使其图像分别与x轴的负半轴、y轴的正半轴相交:.【分析】设函数的解析式为y=kx+b(k≠0),再根据一次函数的图像分别与x轴的负半轴、y轴的正半轴相交可知k>0,b>0,写出符合此条件的函数解析式即可.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵一次函数的图像分别与x轴的负半轴、y轴的正半轴相交,∴k>0,b>0,∴符合条件的函数解析式可以为:y=x+1(答案不唯一).故答案为:y=x+1(答案不唯一).10.(2022•湘潭)请写出一个y随x增大而增大的一次函数表达式.【分析】根据y随着x的增大而增大时,比例系数k>0即可确定一次函数的表达式.【解答】解:在y=kx+b中,若k>0,则y随x增大而增大,∴只需写出一个k>0的一次函数表达式即可,比如:y=x﹣2,故答案为:y=x﹣2(答案不唯一).11.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是.【分析】根据甲、乙两位同学给出的函数特征可判断出该函数为一次函数,再利用一次函数的性质,可得出k<0,b=2,取k=﹣1即可得出结论.【解答】解:∵函数值y随自变量x增大而减小,且该函数图像经过点(0,2),∴该函数为一次函数.设一次函数的表达式为y=kx+b(k≠0),则k<0,b=2.取k=﹣1,此时一次函数的表达式为y=﹣x+2.故答案为:y=﹣x+2(答案不唯一).12.(2022•甘肃)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=(写出一个满足条件的值).【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【解答】解:∵函数值y随着自变量x值的增大而增大,∴k>0,∴k=2(答案不唯一).故答案为:2(答案不唯一).13.(2022•柳州)如图,直线y1=x+3分别与x轴、y轴交于点A和点C,直线y2=﹣x+3分别与x轴、y轴交于点B和点C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.1B.2C.4D.6【分析】由于P的纵坐标为2,故点P在直线y=2上,要求符合题意的m值,则P点为直线y=2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.【解答】解:∵点P(m,2)是△ABC内部(包括边上)的一点,∴点P 在直线y =2上,如图所示,当P 为直线y =2与直线y 2的交点时,m 取最大值, 当P 为直线y =2与直线y 1的交点时,m 取最小值, ∵y 2=﹣x +3中令y =2,则x =1, y 1=x +3中令y =2,则x =﹣1, ∴m 的最大值为1,m 的最小值为﹣1.则m 的最大值与最小值之差为:1﹣(﹣1)=2. 故选:B .14.(2022•遵义)若一次函数y =(k +3)x ﹣1的函数值y 随x 的增大而减小,则k 值可能是( ) A .2B .23C .﹣21 D .﹣4【分析】根据一次项系数小于0时,一次函数的函数值y 随x 的增大而减小列出不等式求解即可.【解答】解:∵一次函数y =(k +3)x ﹣1的函数值y 随着x 的增大而减小, ∴k +3<0, 解得k <﹣3.所以k 的值可以是﹣4, 故选:D .15.(2022•包头)在一次函数y =﹣5ax +b (a ≠0)中,y 的值随x 值的增大而增大,且ab >0,则点A (a ,b )在( ) A .第四象限B .第三象限C .第二象限D .第一象限【分析】根据一次函数的增减性,确定自变量x 的系数﹣5a 的符号,再根据ab >0,确定b 的符号,从而确定点A (a ,b )所在的象限.【解答】解:∵在一次函数y =﹣5ax +b 中,y 随x 的增大而增大, ∴﹣5a >0,∴a <0. ∵ab >0, ∴a ,b 同号, ∴b <0.∴点A (a ,b )在第三象限. 故选:B .16.(2022•眉山)一次函数y =(2m ﹣1)x +2的值随x 的增大而增大,则点P (﹣m ,m )所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【解答】解:∵一次函数y =(2m ﹣1)x +2的值随x 的增大而增大, ∴2m ﹣1>0, 解得:m >,∴P (﹣m ,m )在第二象限, 故选:B .17.(2022•天津)若一次函数y =x +b (b 是常数)的图像经过第一、二、三象限,则b 的值可以是 (写出一个即可).【分析】根据一次函数的图像可知b >0即可.【解答】解:∵一次函数y =x +b (b 是常数)的图像经过第一、二、三象限, ∴b >0, 可取b =1,故答案为:1.(答案不唯一,满足b >0即可) 18.(2022•邵阳)在直角坐标系中,已知点A (23,m ),点B (27,n )是直线y =kx +b(k <0)上的两点,则m ,n 的大小关系是( ) A .m <nB .m >nC .m ≥nD .m ≤n【分析】根据k <0可知函数y 随着x 增大而减小,再根>即可比较m 和n 的大小.【解答】解:点A (,m ),点B (,n )是直线y =kx +b 上的两点,且k <0,∴一次函数y 随着x 增大而减小, ∵>,∴m <n , 故选:A .19.(2022•株洲)在平面直角坐标系中,一次函数y =5x +1的图像与y 轴的交点的坐标为( ) A .(0,﹣1)B .(﹣51,0) C .(51,0) D .(0,1)【分析】一次函数的图像与y 轴的交点的横坐标是0,当x =0时,y =1,从而得出答案. 【解答】解:∵当x =0时,y =1,∴一次函数y =5x +1的图像与y 轴的交点的坐标为(0,1), 故选:D .20.(2022•绍兴)已知(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3,则以下判断正确的是( ) A .若x 1x 2>0,则y 1y 3>0 B .若x 1x 3<0,则y 1y 2>0C .若x 2x 3>0,则y 1y 3>0D .若x 2x 3<0,则y 1y 2>0【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【解答】解:∵直线y =﹣2x +3,∴y 随x 的增大而减小,当y =0时,x =1.5,∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3, ∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意; 若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意; 故选:D .21.(2022•盘锦)点A (x 1,y 1),B (x 2,y 2)在一次函数y =(a ﹣2)x +1的图像上,当x 1>x 2时,y 1<y 2,则a 的取值范围是 . 【分析】根据一次函数的性质,建立不等式计算即可.【解答】解:∵当x1>x2时,y1<y2,∴a﹣2<0,∴a<2,故答案为:a<2.22.(2022•永州)已知一次函数y=x+1的图像经过点(m,2),则m=.【分析】由一次函数y=x+1的图像经过点(m,2),利用一次函数图像上点的坐标特征可得出2=m+1,解之即可求出m的值.【解答】解:∵一次函数y=x+1的图像经过点(m,2),∴2=m+1,∴m=1.故答案为:1.。
初二数学一次函数练习题及答案
初二数学一次函数练习题及答案一、选择题1.下列函数中,是一次函数的是()A. y = 3x^2 + 4x - 2B. y = 2x + 5C. y = 5/xD. y = √x答案:B2.已知一次函数y = kx - 3的图象与x轴交于点(-4, 0),则k的值为()A. 4B. 3C. 2D. 1答案:D3.已知函数y = -2x + 5与直线y = x + 3相交于点P,点P的坐标是()A. (2, 3)B. (-2, 1)C. (-2, 5)D. (2, 1)答案:A二、填空题1.若一次函数y = -3x + b过点(4, 11),则b的值为_______。
答案:232.若函数y = kx + 2经过点(3, -1),则k的值为_______。
答案:-33.若直线y = 2x + a与函数y = kx - 3的图象交于点(-2, 1),则a的值为_______。
答案:-5三、计算题1.某商品的售价y与进价x之间的关系可用一次函数模型y = 0.8x + 200表示。
如果进价为600元,那么售价是多少?答案:售价为680元。
解析:将进价x代入函数模型y = 0.8x + 200中,得到售价y = 0.8 * 600 + 200 = 480 + 200 = 680元。
2.一辆汽车以每小时60公里的速度行驶,已经行驶2小时。
如果继续以相同的速度行驶,总共行驶的路程是多少公里?答案:行驶路程为120公里。
解析:车速为60公里/小时,行驶2小时,则行驶的路程为60 * 2 = 120公里。
3.已知函数y = 4x - 5,求使得y = 0的x的值。
答案:x = 5/4。
解析:将y = 0代入函数中,得到0 = 4x - 5,解方程得x = 5/4。
四、应用题小明去超市买牛奶,一瓶牛奶售价为y元,购买x瓶牛奶的总花费C(x)与购买数量x之间的关系可以表示为一次函数C(x)= 5x + 10。
1.如果小明购买3瓶牛奶,他需要支付多少钱?答案:小明需要支付25元。
一次函数习题附答案
2022年1月10日初中数学周测/单元测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图象中,表示y是x的函数的个数有()A.1个B.2个C.3个D.4个【答案】B【分析】根据函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量,据此判断即可.【详解】解:属于函数的有故y是x的函数的个数有2个,故选:B.【点睛】本题考查了函数的定义,熟记定义是本题的关键.2.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)和y=mx+n(m≠0)相交于点(2,﹣1),则关于x,y的方程组kx y bmx n y=-⎧⎨+=⎩的解是()A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=⎩【答案】B 【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题. 【详解】解:∵一次函数y =kx +b 和y =mx +n 相交于点(2,-1),∴关于x 、y 的方程组kx y b mx n y =-⎧⎨+=⎩的解是21x y =⎧⎨=-⎩.故选:B . 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.3.已知一次函数y kx k =-的图像过点(3-,4),则下列结论正确的是( ) A .y 随x 增大而增大 B .1k = C .直线过点(1,0) D .直线过原点【答案】C 【分析】将点()3,4-代入一次函数解析式,求出k 的值,利用一次函数的图象与性质逐一判断即可. 【详解】解:∵一次函数y kx k =-过点()3,4-, ∴43k k =--,解得1k =-,∴一次函数为1y x =-+,y 随x 增大而减小,故A 和B 错误,不符合题意;当1x =时,0y =,故该选项正确,符合题意;当0x =时,1y =-,故该直线不经过原点,故该选项不正确,不符合题意; 故选:C . 【点睛】本题考查一次函数的图象与性质,利用待定系数法求出一次函数解析式是解题的关键. 4.下列函数中,为一次函数的是( ) A .12y x=B .2y xC .1y =D .1y x =-+【答案】D 【分析】根据一次函数的定义即可求解. 【详解】 A.12y x=不是一次函数, B.2yx 不是一次函数,C.1y =不是一次函数,D.1y x =-+是一次函数 故选D . 【点睛】一次函数的定义一般地,形如y=kx+b (k ,b 是常数,k≠0)的函数,叫做一次函数.当b=0时,y=kx+b 即y=kx ,所以说正比例函数是一种特殊的一次函数.5.如果函数y =(2﹣k )x +5是关于x 的一次函数,且y 随x 的值增大而减小,那么k 的取值范围是( ) A .k ≠0 B .k <2 C .k >2 D .k ≠2【答案】C 【分析】由题意()25y x k =-+,y 随x 的增大而减小,可得自变量系数小于0,进而可得k 的范围. 【详解】解:∵关于x 的一次函数()25y x k =-+的函数值y 随着x 的增大而减小,20k ∴-<,2k ∴>.故选C . 【点睛】本题主要考查了一次函数的增减性问题,解题的关键是:掌握在y kx b =+中,0k >,y 随x 的增大而增大,0k <,y 随x 的增大而减小.6.一次函数y =kx +b 的图象如图所示,则关于x 的方程kx +b =0的解为( )A .x =0B .x =3C .x =﹣2D .x =﹣3【答案】B 【分析】根据一次函数与x 轴的交点横坐标的值即为方程kx +b =0的解 【详解】解:一次函数y =kx +b 与x 轴的交点横坐标为3∴关于x 的方程kx +b =0的解为3x =故选B 【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax +b =0 (a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y =ax +b 确定它与x 轴的交点的横坐标的值.7.一辆汽车行驶的路程与行驶时间的关系如图所示,下列说法正确的是( )A .前3h 中汽车的速度越来越快B .3h 后汽车静止不动C .3h 后汽车以相同的速度行驶D .前3h 汽车以相同速度行驶【答案】B 【分析】根据图象可直接进行排除选项. 【详解】解:由图象可知前3小时汽车行驶的路程是曲线,并且路程是缓慢增加,故汽车的速度是越来越小,在3小时到5小时之间,汽车的路程没有发生改变,故可知汽车在此期间是静止不动的, 由上述可知,只有B 选项正确; 故选B . 【点睛】本题主要考查函数图象,解题的关键是根据函数图象得到相关信息. 8.将直线y =2x 向上平移2个单位后所得图象对应的函数表达( ) A .y =2x -1 B .y =2x -2 C .y =2x +1 D .y =2x +2【答案】D 【分析】函数y =2x 的图象向上平移2个单位长度,所以根据左加右减,上加下减的规律,直接在函数上加2可得新函数. 【详解】∵直线y =2x 的图象向上平移2个单位, ∴平移后的直线的解析式为y =2x +2. 故选D. 【点睛】考查一次函数图象的平移,熟练掌握平移规律是解题的关键.二、填空题9.某正比例函数的图像经过点(1-,3),则此函数关系式为________. 【答案】3y x =- 【分析】设正比例函数解析式为y =kx ,把已知点的坐标代入y =kx 中求出k 即可. 【详解】解:设正比例函数解析式为y =kx , 把(-1,3)代入y =kx 得k =-3, 所以正比例函数解析式为y =-3x . 故答案为y =-3x .本题考查了待定系数法求正比例函数的解析式:设正比例函数的解析式为y =kx (k ≠0),然后把一组对应值代入求出k 即可.10.在平面直角坐标系xOy 中,一次函数y =kx 和y =﹣x +3的图象如图所示,则关于x 的一元一次不等式kx >﹣x +3的解集是______.【答案】x >1 【分析】利用函数与不等式的关系,找到正比例函数高于一次函数图像的那部分对应的自变量取值范围,即可求出解集. 【详解】解:由图可知:不等式kx >﹣x +3,正比例函数图像在一次函数上方的部分,对应的自变量取值为x >1. 故此不等式的解集为x >1. 故答案为:x >1. 【点睛】本题主要是考查了一次函数与不等式,熟练地应用函数图像求解不等式的解集,培养数形结合的能力,是解决该类问题的要求. 11.若函数()121k y k x -=-+是表示一次函数,则k 等于_______.【答案】0 【分析】根据一次函数的定义解答. 【详解】解:由题意得11,20k k -=-≠, 解得k =0, 故答案为:0. 【点睛】此题考查了一次函数的定义:形如(0)y kx b k =+≠的函数是一次函数,熟记定义是解题12.如图所示,在三角形ABC 中,已知16BC =,高10AD =,动点Q 由点C 沿CB 向点B 移动(不与点B 重合).设CQ 的长为x ,三角形ACQ 的面积为S ,则S 与x 之间的关系式为___________________.【答案】()5016S x x =<< 【分析】根据三角形的面积公式可知1=2AQC S AD CQ ⋅△,由此求解即可.【详解】∵AD 是△ABC 中BC 边上的高,CQ 的长为x ,∴1==52AQC S AD CQ x ⋅△,∴()5016S x x =<<. 故答案为:()5016S x x =<<. 【点睛】本题主要考查了列关系式,解题的关键在于能够熟练掌握三角形面积公式. 13.已知一次函数()0y ax b a =+≠过点()2,0A -和点()0,3B ,那么关于x 的方程0ax b +=的解是______.【答案】2x =- 【分析】把点()2,0A -和点()0,3B 代入解析式求解即可; 【详解】∵一次函数()0y ax b a =+≠过点()2,0A -, ∴当2x =-时,0y ax b =+=, ∴0ax b +=的解是2x =-.故答案是:2x =-. 【点睛】本题主要考查了一次函数与一元一次方程的关系,准确分析计算是解题的关键. 14.一次函数y =kx +b (k ≠0)中两个变量x 、y 的部分对应值如下表所示: x … -2 -1 0 1 2 … y…852-1-4…那么关于x 的不等式kx +b ≥-1的解集是________. 【答案】x ≤1 【分析】由表格得到函数的增减性后,再得出1y =-时,对应的x 的值即可. 【详解】解:当1x =时,1y =-,根据表可以知道函数值y 随x 的增大而减小, ∴不等式1kx b +≥-的解集是1x ≤. 故答案为:1x ≤. 【点睛】此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系,理解一次函数的增减性是解决本题的关键.三、解答题15.一辆汽车行驶时的耗油量为0.1升/千米.一天油箱加满油后进行长途行驶,如图是油箱中的剩余油量y (升)与行驶路程x (千米)的函数关系图. (1)根据图象直接写出汽车行驶400千米时,油箱中的剩余油量. (2)求y 与x 的函数关系式.【答案】(1)剩余油量30升;(2)y =-0.1x +70 【分析】(1)由图象可知:汽车行驶400千米,剩余油量30升;(2)行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升),故加满油时油箱的油量是40+30=70升,设y =kx +b (k ≠0),把(0,70),(400,300)坐标代入可求出解析式. 【详解】解:(1)由图象可知:汽车行驶400千米,剩余油量30升;(2)∵行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升) ∴加满油时油箱的油量是40+30=70升. 设y =kx +b (k ≠0),把(0,70),(400,30)坐标代入可得:k =-0.1,b =70, ∴y =-0.1x +70. 【点睛】本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,根据点的坐标利用待定系数法求出一次函数解析式是解题的关键. 16.已知y 是关于x 的一次函数,如表列出了部分对应值:(1)求此一次函数的表达式; (2)求a ,b 的值.【答案】(1)32y x =-;(2)5a =-,2b =. 【分析】(1)根据待定系数法求一次函数解析式即可;(2)根据(1)中得到的函数解析式可以求出a ,b 的值. 【详解】解:(1)设此一次函数的表达式为y kx b =+, 当1x =时,1y =;0x =时,2y =-.据此列出方程组12k b b +=⎧⎨=-⎩,解得32k b =⎧⎨=-⎩,∴一次函数的解析式为32y x =-;(2)把1x =-代入32y x =-,得到5y a ==-.把4y =代入32y x =-得出,得出432b =-,解得:2b =.5a ∴=-.2b =.【点睛】本题考查了待定系数法求一次函数解析式,一次函数上点的坐标特征等知识点,根据表格求出一次函数解析式是解本题的关键.17.甲,乙两地相距520km ,一辆汽车以80km/h 的速度从甲地开往乙地,行驶了t h .求剩余路程s (km )与行驶时间t (h )之间的函数表达式.并根据问题的实际意义确定t 的取值范围.【答案】函数表达式为:80520s t =-+,t 的范围为:0 6.5t ≤≤ 【分析】根据剩余路程等于相距距离减去行驶距离,求解即可,根据剩余路程大于等于0,即可确定t 的范围. 【详解】解:行驶了h t ,行驶的距离为80km t ,则剩余距离为5208080520s t t =-=-+, 由题意可得:0t ≥,0s ≥,即805200t -+≥, 解得0 6.5t ≤≤,函数表达式为:80520s t =-+,t 的范围为:0 6.5t ≤≤, 【点睛】此题考查了一次函数的应用,解题的关键是理解题意,找到等量关系,正确求出函数表达式.18.某公司销售A 、B 两种型号教学设备,每台的销售成本和售价如表:已知每月销售两种型号设备共20台,设销售A 种型号设备x 台,A 、B 两种型号设备全部售完后获得毛利润y 万元(毛利润=售价-成本)(1)求y 关于x 的函数关系式(不要求写自变量的取值范围);(2)若销售两种型号设备的总成本不超过80万元,那么公司如何安排销售A 、B 两种型号设备,售完后毛利润最大?并求出最大毛利润.【答案】(1)y =-2x +60;(2)公司生产A ,B 两种品牌设备各10台,售完后获利最大,最大毛利润为40万元. 【分析】(1)设销售A 种品牌设备x 台,B 种品牌设备(20-x )台,算出每台的利润乘对应的台数,再合并在一起即可求出总利润;(2)由“生产两种品牌设备的总成本不超过80万元”,列出不等式,再由(1)中的函数的性质得出答案.【详解】解:(1)设销售A 种型号设备x 台,则销售B 种型号设备(20-x )台,依题意得:y =(4-3)x +(8-5)×(20-x ),即y =-2x +60;(2)3x +5×(20-x )≤80,解得x ≥10.∵-2<0,∴当x =10时,y 最大=40万元.故公司生产A ,B 两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【点睛】本题考查了一次函数的应用,一元一次不等式的应用,注意题目蕴含的数量关系,正确列式解决问题.19.我国是一个严重缺水的国家,为了加强公民的节水意识,毕节市某县制定了如下用水收费标准;每户每月的用水不超过8吨时,水价为每吨4元,超过8吨时,超过的部分按每吨5元收费.该县某户居民5月份用水x 吨,应交水费y 元.(1)若0<x ≤8,请写出y 与x 的函数关系式.(2)若x>8,请写出y 与x 的函数关系式.(3)如果该户居民这个月交水费58元,那么这个月该户用了多少吨水?【答案】(1)4y x =;(2)58y x =-;(3)这个月该户用了665吨水. 【分析】(1)根据每户每月的用水不超过8吨时,水价为每吨4元列出函数关系式即可; (2)根据超过8吨时,超过的部分按每吨5元收费,列出函数关系式即可;(3)先判断该用户这个月用水量在那个范围,然后将58y =代入相应的解析式求解即可.【详解】解:(1)根据题意可知:当08x <≤时,4y x =;(2)根据题意可知:当8x >时,()485858y x x =⨯+-=-.(3)∵483258⨯=<,∴8x >,令5858x -=,解得665x =, 答:这个月该户用了665吨水. 【点睛】本题考查了一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.20.已知y ﹣2与3x ﹣4成正比例,且当x =2时,y =3.(1)求出y 与x 之间的函数解析式;(2)若点P (a ,﹣3)在这个函数的图象上,求a 的值. 【答案】(1)y =32x ;(2)﹣2 【分析】(1)根据正比例的定义设y −2=k (3x −4),然后把x =2时,y =3代入计算求出k 值,再整理即可得解;(2)将点(a ,−3)代入(1)中所求的函数的解析式求a 的值.【详解】解:(1)设y −2=k (3x −4),将x =2、y =3代入,得:2k =1,解得k =12, ∴y −2=12(3x −4),即y =32x ; (2)将点P (a ,−3)代入y =32x ,得:32a =−3, 解得:a =−2.【点睛】本题综合考查了一次函数的性质、待定系数法求一次函数的解析式、一次函数图象上点的坐标特征.一次函数图象上的点的坐标都满足该函数的解析式.21.已知直线2y x =+和直线4y x =-+相交于点A ,且分别与x 轴相交于点B 和点C .(1)求点A 的坐标;(2)求ABC 的面积.【答案】(1)()1,3A ;(2)9【分析】(1)根据题意联立两直线解析式解二元一次方程组即可求得点A 的坐标; (2)分别令0y =,即可求得点,B C 的坐标,进而求得ABC S【详解】 解:(1)由题意得24y x y x =+⎧⎨=-+⎩ 解得,13x y =⎧⎨=⎩∴A (1,3).(2)过A 作AD ⊥x 轴于点D .∵y =x +2与x 轴交点B (-2,0),y =-x +4与x 轴交点C (4,0).∴BC =6.∵A (1,3),∴AD =3.∴S △ABC =1163922BC AD ⨯=⨯⨯= 【点睛】本题考查了两直线交点问题,两直线与坐标轴围成的三角形的面积,数形结合是解题的关键.22.在建设美好乡村活动中,某村民委员会准备在乡村道路两旁种植柏树和杉树.经市场调查发现:购买2棵柏树和3棵杉树共需440元,购买3棵柏树和1 棵杉树共需380元.(1)求柏树和杉树的单价;(2)若本次美化乡村道路臀购买柏树和杉树共150棵(两种树都必须购买),且柏树的棵数不少于树的3倍,设本次活动中购买柏树x 棵,此次购树的费用为w 元. ①求w 与x 之间的函数表达式,并写出x 的取值范围?②要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?【答案】(1)柏树的单价为100元,杉树的单价为80元;(2)①2012000w x =+,112.5150x ≤<且x 为整数;②要使此次费用最少,柏树购买113棵,杉树37棵,最少费用为14260元.【分析】(1)设柏树的单价为m 元,杉树的单价为n 元,根据题意列出二元一次方程组求解即可;(2)①根据单价、数量与费用的关系列出一次函数即可;再由题意本次购买柏树和杉树共150棵,且两种树都必须购买,可得不等式组,柏树的棵树不少于杉树的3倍,列出相应不等式求解,综合即可得x 的取值范围;②根据一次函数的增减性质可得w 随x 的增大而增大,由x 的取值范围代入求解即可.【详解】解:(1)设柏树的单价为m 元,杉树的单价为n 元,根据题意可得:234403380m n m n +=⎧⎨+=⎩, 解得:10080m n =⎧⎨=⎩, 答:柏树的单价为100元,杉树的单价为80元;(2)①设本次活动中购买柏树x 棵,则杉树()150x -棵,由(1)及题意可得:()100801502012000w x x x =+-=+,∵本次购买柏树和杉树共150棵,且两种树都必须购买,即:01500x x >⎧⎨->⎩, ∴0150x <<,∵柏树的棵树不少于杉树的3倍,∴()3150x x ≥-,解得:112.5x ≥,综合可得:2012000w x =+,112.5150x ≤<且x 为整数;②由①可得:2012000w x =+,∵200>,∴w 随x 的增大而增大,∵112.5150x ≤<,∴当113x =时,w 最小,此时,201131200014260w =⨯+=(元),15011337-=(棵),∴要使此次费用最少,柏树购买113棵,杉树37棵,最少费用为14260元.【点睛】题目主要考查二元一次方程组、不等式组及一次函数的应用,理解题意,列出相应方程是解题关键.23.一次函数y =kx +4的图象经过点(3,﹣2) ,求这个函数解析式.【答案】y =-2x +4.【分析】把点(3,-2)代入y =kx +4,即可求出k 的值.【详解】解:∵一次函数y =kx +4的图象经过点 (3,-2),∴-2=3k +4,解得:k =-2,∴一次函数的解析式是y =-2x +4.【点睛】本题考查了待定系数法求一次函数的解析式,熟练掌握待定系数法是解题的关键. 24.如图,直线y=kx +6与x 轴、y 轴分别相交于点E 、F ,点E 的坐标为(-8,0),点 A 的坐标为(-6,0),点P (x ,y ))是第二象限内的直线上的一个动点,(1)求k 的值;(2)在点 P 的运动过程中,写出△OPA 的面积S 与x 的函数表达式,并写出自变量x 的取值范围;(3)探究,当点P 运动到什么位置(求P 的坐标)时,△OPA 的面积是274 【答案】(1)34k =;(2)S 918(80)4x x =+-<<;(3)点P 的坐标为95,4⎛⎫- ⎪⎝⎭时,OPA 的面积是274. 【分析】(1)根据待定系数法将点E 的坐标代入函数解析式求解即可;(2)根据图象,点(),P x y 是第二象限内的直线上的一个动点,可得:364y x =+,6OA =为定值,利用三角形面积公式即可得出函数表达式;同时从图象即可得出自变量x 的取值范围;(3)将已知条件直接代入(2)中函数解析式,求解x ,然后将其代入(1)中函数解析式即可确定点的坐标.【详解】解:(1)点E 的坐标为()8,0-,且在直线6y kx =+上,∴860k -+=, 解得,34k =; (2)如图所示:点(),P x y 是第二象限内的直线上的一个动点,∴364y x=+,∴136624S x⎛⎫=⨯⨯+⎪⎝⎭918(80) 4x x=+-<<.(3)由题意得,9271844x+=,解得,5x=-,则:39(5)644y=⨯-+=.∴点P的坐标为95,4⎛⎫- ⎪⎝⎭时,OPA的面积是274.【点睛】题目主要考查一次函数与三角形面积问题,包括待定系数法确定一次函数解析式,依据三角形面积确定新的函数解析式及取值范围等,理解题意,熟练掌握一次函数的基本性质是解题关键.。
一次函数练习题(含答案)
2 设直线 CD 的解析式为 y=k1x+b1,由 C(2,15)、D(3,30), 代入得:y=15x-15,(2≤x≤3).
当 x=2.5 时,y=22.5(千米) 答:出发两个半小时,小明离家 22.5 千米. 3 设过 E、F 两点的直线解析式为 y=k2x+b2, 由 E(4,30),F(6,0),代入得 y=-15x+90,(4≤x≤6) 过 A、B 两点的直线解析式为 y=k3x,
(A)-4<a<0
(B)0<a<2
(C)-4<a<2 且 a≠0 (D)-4<a<2 14.在直角坐标系中,已知 A(1,1),在 x 轴上确定点 P,使△AOP 为等腰三角形,则
符合条件的点 P 共有( )
(A)1 个 (B)2 个 (C)3 个 (D)4 个 15.在直角坐标系中,横坐标都是整数的点称为整点,设 k 为整数.当直线 y=x-3 与 y=kx+k 的交点为整点时,k 的值可以取( )
象限.
8.若一次函数 y=kx+b,当-3≤x≤1 时,对应的 y 值为 1≤y≤9, 则一次函数的解析式
为
.
三、解答题 1.已知一次函数 y=ax+b 的图象经过点 A(2,0)与 B(0,4).(1)求一次函数的解
析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数 y 的值在-
7.B 提示:∵y=kx+2 经过(1,1),∴1=k+2,∴y=-x+2,
∵k=-1<0,∴y 随 x 的增大而减小,故 B 正确.
∵y=-x+2 不是正比例函数,∴其图像不经过原点,故 C 错误.
一次函数练习题及答案
一次函数练习题及答案一、选择题1. 一次函数y = 2x - 3的斜率是:A. 2B. -3C. -2D. 3答案:A2. 如果一次函数y = kx + b的图象经过点(1, 0)和(0, -1),那么k 的值是:A. 1B. -1C. 0D. 2答案:A3. 函数y = 3x + 5与x轴的交点坐标是:A. (-5/3, 0)B. (0, 5)C. (1, 0)D. (-1, 0)答案:A二、填空题4. 已知一次函数y = 4x + 1,当x = 2时,y的值为________。
答案:95. 一次函数y = -2x + 4的图象与y轴的交点坐标是________。
答案:(0, 4)三、解答题6. 已知直线y = 3x + 2与直线y = -x + 4相交于点P,求点P的坐标。
解:将两个方程联立求解:\[ \begin{cases} y = 3x + 2 \\ y = -x + 4 \end{cases} \]解得:\[ x = \frac{2}{4}, y = 3 \times \frac{2}{4} + 2 \] 所以点P的坐标为(\(\frac{1}{2}\), 3)。
7. 一次函数y = kx + b的图象经过点A(-1, -2)和点B(2, 6),求k 和b的值。
解:将点A和点B的坐标代入一次函数方程得:\[ \begin{cases} -k + b = -2 \\ 2k + b = 6 \end{cases} \] 解得:\[ k = 2, b = 0 \]8. 已知直线y = 5x - 7在x轴上的截距为a,在y轴上的截距为b,求a和b的值。
解:当y = 0时,x = \frac{7}{5},所以a = \frac{7}{5};当x = 0时,y = -7,所以b = -7。
四、应用题9. 某工厂生产一种产品,每件产品的成本为c元,售价为p元。
已知当生产x件时,利润为y元,且利润函数为y = 20x - 30。
一次函数练习题(超经典含答案)
第十九章一次函数19.2 一次函数19.3 课题学习选择方案1.下列四个实际问题中的两个变量之间关系中,属于正比例函数关系的是A.有一个边长为x的正方体,则它的表面积S与边长x之间的函数关系B.某梯形的下底5 cm,高3 cm,上底x cm(0<x<5),则梯形的面积S与上底x之间的函数关系C.一个质量为100 kg的物体,静止放在桌面上,则该物体对桌面的压强P与受力面面积S之间的函数关系D.一个小球由静止开始沿一个斜坡向下滚动,其速度每秒增加2 m/s,则小球速度v 与时间t之间的函数关系2.已知y=(m+1)2m x,如果y是x的正比例函数,则m的值为A.1 B.-1 C.1,-1 D.03.若点P(-1,3)在正比例函数y=kx(k≠0)的图象上,则k的值是A.3 B.13C.-3 D.-134.下列函数关系式:(1)y=-x;(2)y=2x+11;(3)y=x2;(4)y=1x,其中一次函数的个数是A.1 B.2 C.3 D.4 5.一次函数y=2x-1的图象大致是A.B.C.D .6.设点(-1,m )和点(12,n )是直线y =(k -1)x +b (0<k <1)上的两个点,则m ,n 的大小关系为 A .m >nB .m ≥nC .m ≤nD .m <n7.已知y =(m -1)x +m +3的图象经过一、二、四象限,则m 的取值范围是 A .-3<m <1B .m >1C .m <-3D .m >-38.若y =(m -1)x |m |是正比例函数,则m 的值为__________.9.直线y =-x +1向上平移5个单位后,得到的直线的解析式是__________. 10.已知y 与x +2成正比例,且当x =1时,y =-6.(1)求y 与x 的函数关系式.(2)若点(a ,2)在此函数图象上,求a 的值.11.已知函数y =231()2k k x-+(k 为常数).(1)k 为何值时,该函数是正比例函数;(2)k 为何值时,正比例函数过第一、三象限,写出正比例函数解析式; (3)k 为何值时,正比例函数y 随x 的增大而减小,写出正比例函数的解析式.12.已知函数y =(m -2)x 3-|m|+m +7,当m 为何值时,y 是x 的一次函数.13.已知y =(k -1)x |k |+(k 2-4)是一次函数.(1)求k 的值; (2)求x =3时,y 的值; (3)当y =0时,x 的值.14.设一次函数y kx b =+(k ,b 是常数,0k ≠)的图象过(12)A -,,(04)B -,两点.(1)求该一次函数表达式;(2)已知存在另一直线CD ,其表达式为:3y x m =+,若直线AB CD ,交于点E ,且E 在第四象限,求此时m 的取值范围.15.下列函数①y =2x -1,②y =πx ,③y =1x,④y =x 2中,一次函数的个数是 A .1B .2C .3D .416.已知点12(4)(2)y y -,,,都在直线23y x b =-+上,则1y 与2y 的大小关系是 A .12y y >B .12y y =C .12y y <D .不能确定17.一次函数y =-x 的图象平分A .第一、三象限B .第一、二象限C .第二、三象限D .第二、四象限18.已知一函数y =kx +3和y =-kx +2,则两个一次函数图象的交点在A .第一、二象限B .第二、三象限C .第三、四象限D .第一、四象限19.已知一次函数y =(a +1)x +b 的图象如图所示,那么a ,b 的取值范围分别是A .a >-1,b >0B .a >-1,b <0C .a <-1,b >0D .a <-1,b <020.一次函数y =mx +|m -1|的图象过点(0,2),且y 随x 的增大而增大,则m 的值为A .1-B .1C .3D .1-或321.一次函数y =-5x -3的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限22.已知k >0,则一次函数y =kx -k 的图象大致是A .B .C .D .23.对于一次函数y =-2x +4,下列结论错误的是A .函数值随自变量的增大而减小B.当x<0时,y<4C.函数的图象向下平移4个单位长度得y=-2x的图象D.函数的图象与y轴的交点坐标是(0,4)24.若y=kx-4的函数值y随着x的增大而减小,则k的值可能是下列的A.0 B.-4 C.πD.1 225.已知某一次函数的图象与直线y=-3x平行,且与函数y=3x+5的图象交y轴上于同一点,那么这个一次函数的解析式是A.y=3x+5 B.y=3x-5C.y=-3x+5 D.y=-3x-526.如图表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn≠0)的图象的是A.B.C.D.27.已知正比例函数y=(5m-3)x,如果y随着x的增大而减小,那么m的取值范围为__________.28.已知一次函数图象交x轴于点(-2,0),与y轴的交点到原点的距离为5,则该一次函数解析式为__________.29.已知y与x+2成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)判断点(-7,-10)是否是函数图象上的点.30.已知点(2,-4)在正比例函数y=kx的图象上.(1)求k的值;(2)若点(-1,m)在函数y=kx的图象上,试求出m的值;(3)若A(12,y1),B(-2,y2),C(1,y3)都在此函数图象上,试比较y1,y2,y3的大小.31.如图,直线OA的解析式为y=3x,点A的横坐标是-1,OB OB与x轴所夹锐角是45°.(1)求B点坐标;(2)求直线AB的函数表达式;(3)若直线AB与y轴的交点为点D,求△AOD的面积;(4)在直线AB上存在异于点A的另一点P,使得△ODP与△ODA的面积相等,请直接写出点P的坐标.32.如图,在平面直角坐标系xOy 中,一直线111(0)y k x b k =+≠与x 轴相交于点A ,与y 轴相交于点(02)B ,,与正比例函数222(0)y k x k =≠的图象交于点(11)P ,.(1)求直线1y 的解析式. (2)求AOP △的面积.(3)直接写出12k x b k x +>的解集.33.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现要调往A 县10辆,调往B 县8辆,已知调运一辆农用车的费用如表:(1)设从乙仓库调往A 县农用车x 辆,求总运费y 关于x 的函数关系式. (2)若要求总运费不超过900元.共有哪几种调运方案? (3)求出总运费最低的调运方案,最低运费是多少元?34.(2018·江苏常州)一个正比例函数的图象经过(2,-1),则它的表达式为A .y =-2xB .y =2xC .12y x =-D .12y x =35.(2018·四川南充)直线y =2x 向下平移2个单位长度得到的直线是A .y =2(x +2)B .y =2(x -2)C .y =2x -2D .y =2x +236.(2018·辽宁抚顺)一次函数y =-x -2的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三,四象限D .第二、三、四象限37.(2018·湖南常德)若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则A .2k <B .2k >C .0k >D .0k <38.(2018·山东枣庄)如图,直线l 是一次函数y =kx +b 的图象,若点A (3,m )在直线l上,则m 的值是A .-5B .32C .52D .739.(2018·贵州遵义)如图,直线y =kx +3经过点(2,0),则关于x 的不等式kx +3>0的解集是A .x >2B .x <2C .x ≥2D .x ≤240.(2018·辽宁省辽阳)如图,直线y =ax +b (a ≠0)过点A (0,4),B (-3,0),则方程ax +b =0的解是A .x =-3B .x =4C .x =43-D .x =34-41.(2018·湖北荆州)已知:将直线y =x -1向上平移2个单位长度后得到直线y =kx +b ,则下列关于直线y =kx +b 的说法正确的是 A .经过第一、二、四象限 B .与x 轴交于(1,0) C .与y 轴交于(0,1)D .y 随x 的增大而减小42.(2018·湖南娄底)将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为 A .24y x =-B .24y x =+C .22y x =+D .22y x =-43.(2018·浙江义乌)如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点(12)A -,,(13)B ,,(21)C ,,(65)D ,,则此函数A .当1x <时,y 随x 的增大而增大B .当1x <时,y 随x 的增大而减小C .当1x >时,y 随x 的增大而减小D .当1x >时,y 随x 的增大而减小44.(2018·四川甘孜州)一次函数y =kx -2的函数值y 随自变量x 的增大而减小,则k 的取值范围是__________.45.(2018·内蒙古巴彦淖尔)已知点A (-5,a ),B (4,b )在直线y =-3x +2上,则a __________b .(填“>”“<”或“=”)46.(2018·海南)如图,在平面直角坐标系中,点M 是直线y =-x 上的动点,过点M 作MN ⊥x 轴,交直线y =x 于点N ,当MN ≤8时,设点M 的横坐标为m ,则m 的取值范围为__________.47.(2018·辽宁辽阳)如图,直线142y x=+与坐标轴交于A,B两点,在射线AO上有一点P,当△APB是以AP为腰的等腰三角形时,点P的坐标是__________.48.(2018·甘肃陇南)如图,一次函数y=-x-2与y=2x+m的图象相交于点P(n,-4),则关于x的不等式组2220x m xx+<--⎧⎨--<⎩的解集为__________.49.(2018·辽宁锦州)如图,直线y1=-x+a与y2=bx-4相交于点P,已知点P的坐标为(1,-3),则关于x的不等式-x+a<bx-4的解集是__________.50.(2018·吉林长春)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为__________.(写出一个即可)51.(2018·湖南邵阳)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是__________.52.(2018·黑龙江牡丹江)某书店现有资金7700元,计划全部用于购进甲、乙、丙三种图书共20套,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元.书店将甲、乙、丙三种图书的售价分别定为每套550元,430元,310元.设书店购进甲种图书x套,乙种图书y套,请解答下列问题:(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);(2)若书店购进甲、乙两种图书均不少于1套,则该书店有几种进货方案?(3)在(1)和(2)的条件下,根据市场调查,书店决定将三种图书的售价作如下调整:甲种图书的售价不变,乙种图书的售价上调a(a为正整数)元,丙种图书的售价下调a元,这样三种图书全部售出后,所获得的利润比(2)中某方案的利润多出20元,请直接写出书店是按哪种方案进的货及a的值.53.(2018·四川巴中)学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.54.(2018·湖南益阳)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:(1)求每次运输的农产品中A,B产品各有多少件?(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元?55.(2018·广西梧州)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A、B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y 元.写出y与m之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?56.(2018·重庆)如图,在平面直角坐标系中,直线l1:y=12x与直线l2交点A的横坐标为2,将直线l1沿y轴向下平移4个单位长度,得到直线l3,直线l3与y轴交于点B,与直线l2交于点C,点C的纵坐标为-2.直线l2与y轴交于点D.(1)求直线l2的解析式;(2)求△BDC的面积.57.(2018·黑龙江省龙东地区)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B 城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?58.(2018·云南曲靖)某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台.(1)求y关于x的函数解析式;(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?1.【答案】D【解析】A、正方形的表面积S=6x2,不是正比例函数,故本选项错误;B、梯形的面积S与上底x之间的函数关系:s=3(5)2x,不是正比例函数,故本选项错误;C、物体对桌面的压强P与受力面面积S之间的函数关系:P=100S,不是正比例函数,故本选项错误;D、小球速度v与时间t之间的函数关系:v=2t,是正比例函数,故本选项正确.故选D.2.【答案】A【解析】由题意得:m2=1且m+1≠0,解得m=1,故选A.3.【答案】C【解析】∵点P(-1,3)在正比例函数y=kx(k≠0)的图象上,∴k×(-1)=3,解得k=-3,故选C.4.【答案】B【解析】(1)y=-x是正比例函数,是特殊的一次函数,故正确;(2)y=2x+11符合一次函数的定义,故正确;(3)y=x2属于二次函数,故错误;(4)y=1x属于反比例函数,故错误.综上所述,一次函数的个数是2个.故选B.5.【答案】B【解析】由题意知,k=2>0,b=-1<0时,函数图象经过一、三、四象限.故选B.6.【答案】A【解析】∵0<k<1,∴k-1<0,∴直线y值随x的增大而减小,∵-1<12,∴m>n,故选A.7.【答案】A【解析】由题意得,1030m m -<⎧⎨+>⎩,解得-3<m <1,故选A .8.【答案】-1【解析】由题意得:m −1≠0,|m |=1,解得:m =−1,故答案为:−1. 9.【答案】y =-x +6【解析】直线y =-x +1向上平移5个单位后,得到的直线的解析式是y =-x +1+5,即y =-x +6.故答案为:y =-x +6.10.【解析】(1)∵y 与x +2成正比例,∴可设y =k (x +2),把当x =1时,y =-6代入得-6=k (1+2). 解得:k =-2.故y 与x 的函数关系式为y =-2x -4. (2)把点(a ,2)代入得:2=-2a -4, 解得:a =-3.11.【解析】(1)由题意得:k +12≠0,k 2-3=1,解得k =±2. ∴当k =±2时,这个函数是正比例函数. (2)当k =2时,正比例函数过第一、三象限,解析式为y =52x . (3)当k =-2时,正比例函数y 随x 的增大而减小,解析式为y =-32x . 12.【解析】当函数y =(m -2)x 3-|m|+m +7是一次函数,则满足:3-|m |=1,且m -2≠0, 解得m =-2. 故答案是:m =-2.13.【解析】(1)由题意可得:|k |=1,k -1≠0,解得:k =-1.(2)当x =3时,y =-2x -3=-9. (3)当y =0时,0=-2x -3, 解得:x =32-. 14.【解析】(1)∵一次函数y kx b =+(k ,b 是常数,0k ≠)的图象过(12)A -,,(04)B -,两点,∴24k b b -=+⎧⎨=-⎩,解得24k b =⎧⎨=-⎩,∴一次函数的解析式为24y x =-. (2)∵24y x =-经过第一、三、四象限, ∴与x 、y 轴交点坐标为(2,0)、(0,-4), ∵3y x m =+中k =3,∴y 随x 的增大而增大,减小而减小,∴直线AB CD ,交于点E ,且E 在第四象限时,m 的最小值为经过点(2,0),m 的最大值为经过(0,-4),∴当x =2,y =0时,m =-6;当x =0,y =-4时,m =-4, ∴m 的取值范围64m -<<-. 15.【答案】B【解析】①②是一次函数;③是反比例函数;④最高次数是2次,是二次函数.则一次函数的个数是2.故选B . 16.【答案】A【解析】因为k =23-<0,所以y 随着x 的增大而减小,因为-4<2,所以y 1>y 2,故选A . 17.【答案】D【解析】y =-x 的图象平分第二、四象限,故选D . 18.【答案】A【解析】由32y kx y kx =+⎧⎨=-+⎩可得1252x ky ⎧=-⎪⎪⎨⎪=⎪⎩,分两种情况讨论:①当k >0时,交点的横坐标为负,纵坐标为正,即交点在第二象限; ②当k <0时,交点的横坐标为正,纵坐标为正,即交点在第一象限.故选A . 19.【答案】A【解析】根据图示知:一次函数y =(a +1)x +b 的图象经过第一、二、三象限,∴a +1>0,即a >-1,且b >0,故选A . 20.【答案】C【解析】∵一次函数y=mx+|m-1|的图象过点(0,2),∴把x=0,y=2代入y=mx+|m-1|得:|m-1|=2,解得:m=3或-1,∵y随x的增大而增大,所以m>0,所以m=3,故选C.21.【答案】A【解析】∵一次函数y=-5x-3中的-5<0,∴该函数图象经过第二、四象限;又∵一次函数y=-5x-3中的-3<0,∴该函数图象与y轴交于负半轴,∴该函数图象经过第二、三、四象限,即不经过第一象限,故选A.22.【答案】B【解析】∵k>0,∴一次函数经过第一、三象限,∴-k<0,则一次函数经过y轴的负半轴,故选B.23.【答案】B【解析】A、在y=-2x+4中k=-2<0,∴y随x的增大而减小,即A正确;B、令y=-2x+4中x=0,则y=4,∴当x<0时,y>4,即B不正确;C、函数的图象向下平移4个单位长度后得到的图象的解析式为y=-2x+4-4=-2x,∴C正确;D、令y=-2x+4中x=0,则y=4,∴函数的图象与y轴的交点坐标是(0,4),即D正确.故选B.24.【答案】B【解析】∵y随着x的增大而减小,∴0k<,所以B选项是正确的,故选B.25.【答案】C【解析】∵函数y=3x+5的图象交y轴于(0,5),∴设函数解析式为y=-3x+k,代入(0,5)得,k=5,∴一次函数的解析式是y=-3x+5,故选C.26.【答案】C【解析】①当mn>0,m,n同号,同正时y=mx+n过1,2,3象限,同负时过2,3,4象限;②当mn<0时,m,n异号,则y=mx+n过1,3,4象限或1,2,4象限.故选C.27.【答案】m<3 5【解析】当5m-3<0时,y随着x的增大而减小,解得35m<,故答案为:35m<.28.【答案】y=52x+5或y=-52x-5【解析】由题意可知:一次函数与x轴的交点坐标为(-2,0),与y轴的交点坐标为(0,5)或(0,-5),设一次函数解析式为y=kx+b,当一次函数图象过点(-2,0),(0,5)时,则205k bb-+=⎧⎨=⎩,解得525kb⎧=⎪⎨⎪=⎩,此时一次函数解析式为y=52x+5;当一次函数图象过点(-2,0),(0,-5)时,则205k bb-+=⎧⎨=-⎩,解得525kb⎧=-⎪⎨⎪=-⎩,此时一次函数解析式为y=-52x-5,综上所述,该函数的解析式为y=52x+5或y=-52x-5,故答案为:y=52x+5或y=-52x-5.29.【解析】(1)设y=k(x+2).∵x=4,y=12,∴6k=12,解得k=2.∴y=2(x+2)=2x+4.(2)当y=36时,2x+4=36,解得x=16.(3)当x=-7时,y=2×(-7)+4=-10,∴点(-7,-10)是函数图象上的点.30.【解析】(1)把点(2,-4)的坐标代入正比例函数y=kx得-4=2k,解得k=-2.(2)把点(-1,m)的坐标代入y=-2x得m=2.(3)方法1:因为函数y=-2x中,y随x的增大而减小,-2<12<1,所以y3<y1<y2.方法2:y1=(-2)×12=-1,y2=(-2)×(-2)=4,y3=(-2)×1=-2,所以y3<y1<y2.31.【解析】(1)过点B作BE⊥x轴于点E,如图所示.∵∠BOE =45°,BE ⊥OE , ∴△BOE 为等腰直角三角形, ∴OE =BE ,OBOE . ∵OB, ∴OE =BE =1,∴点B 的坐标为(1,-1). (2)当x =-1时,y =-3, ∴点A 的坐标为(-1,-3).设直线AB 的表达式为y =kx +b (k ≠0), 将(-1,-3)、(1,-1)代入y =kx +b ,31k b k b -+=-⎧⎨+=-⎩,解得12k b =⎧⎨=-⎩, ∴直线AB 的函数表达式为y =x -2. (3)当x =0时,y =-2, ∴点D 的坐标为(0,-2), ∴S △AOD =12OD ·|x A |=12×2×1=1. (4)∵△ODP 与△ODA 的面积相等, ∴x P =-x A =1,当x =1时,y =1-2=-1, ∴点P 的坐标为(1,-1).32.【解析】(1)将(02)B ,、(11)P ,代入11y k x b =+, 121b k b =⎧⎨+=⎩,解得112k b =-⎧⎨=⎩,∴直线1y 的解析式为12y x =-+.(2)当10y =时,有20x -+=,∴2x =,∴点A 的坐标为()2,0. ∴1121122AOP P S AO y =⋅=⨯⨯=△. (3)观察函数图象,可知:当1x <时,直线11y k x b =+在直线22y k x =的上方, ∴12k x b k x +>的解集为1x <.33.【解析】(1)若乙仓库调往A 县农用车x 辆(x ≤6),则乙仓库调往B 县农用车6-x辆,A 县需10辆车,故甲给A 县调农用车10-x 辆,那么甲仓库给B 县调车8-(6-x )=x +2辆,根据各个调用方式的运费可以列出方程如下:y =40(10-x )+80(x +2)+30x +50(6-x ),化简得:y =20x +860(0≤x ≤6).(2)总运费不超过900,即y ≤900,代入函数关系式得20x +860≤900,解得x ≤2,所以x =0,1,2,即如下三种方案:甲往A :10辆;乙往A :0辆;甲往B :2辆;乙往B :6辆,甲往A :9;乙往A :1甲往B :3;乙往B :5,甲往A :8;乙往A :2甲往B :4;乙往B :4.(3)要使得总运费最低,由y =20x +860(0≤x ≤6)知,x =0时y 值最小为860,即上面(2)的第一种方案:甲往A :10辆;乙往A :0辆;甲往B :2辆;乙往B :6辆,总运费最少为860元.34.【答案】C【解析】设该正比例函数的解析式为(0)y kx k =≠,因为正比例函数的图象经过点(21)-,,则12k -=,解得12k =-,所以这个正比例函数的表达式是12y x =-.故选C . 35.【答案】C【解析】直线y=2x向下平移2个单位得到的函数解析式为y=2x-2.故选C.36.【答案】D【解析】∵-1<0,∴一次函数y=-x-2的图象一定经过第二、四象限,又∵-2<0,∴一次函数y=-x-2的图象与y轴交于负半轴,∴一次函数y=-x-2的图象经过第二、三、四象限,故选D.37.【答案】B【解析】∵在一次函数y=(k-2)x+1中,y随x的增大而增大,∴k-2>0,∴k>2,故选B.38.【答案】C【解析】把(-2,0)和(0,1)代入y=kx+b,得201k bb-+=⎧⎨=⎩,解得121kb⎧=⎪⎨⎪=⎩,所以一次函数解析式为y=12x+1,再将A(3,m)代入,得m=12×3+1=52,故选C.39.【答案】B【解析】由一次函数图象可知关于x的不等式kx+3>0的解集是x<2,故选B.40.【答案】A【解析】方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(-3,0),∴方程ax+b=0的解是x=-3,故选A.41.【答案】C【解析】将直线y=x-1向上平移2个单位长度后得到直线y=x-1+2=x+1,A、直线y=x+1经过第一、二、三象限,错误;B、直线y=x+1与x轴交于(-1,0),错误;C、直线y=x+1与y轴交于(0,1),正确;D、直线y=x+1,y随x的增大而增大,错误,故选C.42.【答案】A【解析】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.43.【答案】A【解析】由点(12)A -,,(13)B ,可知,当1x <时,y 随x 的增大而增大,故A 正确;由(13)B ,,(21)C ,知,当1<x <2时,y 随x 的增大而减小,故B 错误; 由(21)C ,,(65)D ,知,当2x >时,y 随x 的增大而增大,故C 、D 错误,故选A .44.【答案】k <0【解析】∵一次函数y =kx -2的函数值y 随自变量x 的增大而减小,∴k <0,故答案为:k <0.45.【答案】>【解析】∵直线y =-3x +2中,k =-3<0,∴此函数是减函数,∵-5<4,∴a >b ,故答案为:>.46.【答案】-4≤m ≤4【解析】∵点M 在直线y =-x 上,∴M (m ,-m ),∵MN ⊥x 轴,且点N 在直线y =x 上,∴N (m ,m ),∴MN =|-m -m |=|2m |,∵MN ≤8,∴|2m |≤8,∴-4≤m ≤4,故答案为:-4≤m ≤4.47.【答案】(30)80)--,,,【解析】当y =0时,x =-8,即A (-8,0),当x =0时,y =4,即B (0,4),∴OA =8,OB =4,在Rt △ABO 中,AB =若AP =AB OP =AP -AO 8,∴点P (8,0),若AP '=BP ',在Rt △BP 'O 中,BP '2=BO 2+P 'O 2=16+(AO -BP ')2.∴BP '=AP '=5,∴OP '=3,∴P '(-3,0),综上所述:点P (-3,0),(-8,0),故答案为:(-3,0),(8,0).48.【答案】-2<x <2【解析】∵一次函数y =-x -2的图象过点P (n ,-4),∴-4=-n -2,解得n =2,∴P (2,-4),又∵y =-x -2与x 轴的交点是(-2,0),∴关于x 的不等式组2220x m x x +<--⎧⎨--<⎩的解集为22x -<<.故答案为:22x -<<.49.【答案】1x >【解析】∵直线y 1=-x +a 与y 2=bx -4相交于点P ,已知点P 的坐标为(1,-3),∴关于x 的不等式-x +a <bx -4的解集是x >1,故答案为:x >1.50.【答案】2【解析】∵直线y =2x 与线段AB 有公共点,∴2n ≥3,∴n ≥32,故答案为:2. 51.【答案】x =2【解析】∵一次函数y =ax +b 的图象与x 轴相交于点(2,0),∴关于x 的方程ax +b =0的解是x =2,故答案为:x =2.52.【解析】(1)根据题意得购进丙种图书(20-x -y )套,则有500x +400y +250(20-x -y )=7700, 所以解析式为:y =-53x +18. (2)根据题意得:51813x -+≥, 解得1105x x ≤, 又∵x ≥1, ∴11105x x ≤≤, 因为x ,y ,(20-x -y )为整数,∴x =3,6,9,即有三种购买方案:①甲、乙、丙三种图书分别为3套,13套,4套,②甲、乙、丙三种图书分别为6套,8套,6套,③甲、乙、丙三种图书分别为9套,3套,8套,(3)若按方案一:则有13a -4a =20,解得a =209(不是正整数,不符合题意), 若按方案二:则有8a -6a =20,解得a =10(符合题意),若按方案三:则有3a -8a =20,解得a =-4(不是正整数,不符合题意),所以购买方案是:甲种图书6套,乙种图书8套,丙种图书6套,a =10.53.【解析】(1)设A 型桌椅的单价为a 元,B 型桌椅的单价为b 元,根据题意知,2200033000a ba b+=⎧⎨+=⎩,解得600800 ab=⎧⎨=⎩,即:A,B两型桌椅的单价分别为600元,800元.(2)根据题意知,y=600x+800(200-x)+200×10=-200x+162000(120≤x≤140).(3)由(2)知,y=-200x+162000(120≤x≤140),∴当x=140时,总费用最少,即:购买A型桌椅140套,购买B型桌椅60套,总费用最少,最少费用为134000元.54.【解析】(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y 件,根据题意得,45251200 30201200300x yx y+=⎧⎨+=-⎩,解得1030 xy=⎧⎨=⎩,答:每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件.(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W 元,增加供货量后A产品的数量为(10+m)件,B产品的数量为30+(8-m)=(38-m)件,根据题意得:W=30(10+m)+20(38-m)=10m+790,由题意得:38-m≤2(10+m),解得:m≥6,即6≤m≤8,∵一次函数W随m的增大而增大,∴当m=6时,W最小=850,答:产品件数增加后,每次运费最少需要850元.55.【解析】(1)设A、B两种型号电动自行车的进货单价分别为x元、(x+500)元,由题意:50000x=60000+500x,解得:x=2500,经检验:x=2500是分式方程的解,答:A、B两种型号电动自行车的进货单价分别为2500元3000元.(2)y=300m+500(30-m)=-200m+15000(20≤m≤30).(3)∵y=300m+500(30-m)=-200m+15000,∵-200<0,20≤m≤30,∴m=20时,y有最大值,最大值为11000元.56.【解析】(1)把x=2代入y=12x,得y=1,∴A的坐标为(2,1).∵将直线l1沿y轴向下平移4个单位长度,得到直线l3,∴直线l3的解析式为y=12x-4,∴x=0时,y=-4,∴B(0,-4).将y=-2代入y=12x-4,得x=4,∴点C的坐标为(4,-2).设直线l2的解析式为y=kx+b,∵直线l2过A(2,1)、C(4,-2),∴2142k bk b+=⎧⎨+=-⎩,解得324kb⎧=-⎪⎨⎪=⎩,∴直线l2的解析式为y=-32x+4.(2)∵y=-32x+4,∴x=0时,y=4,∴D(0,4).∵B(0,-4),∴BD=8,∴△BDC的面积=12×8×4=16.57.【解析】(1)设A城有化肥a吨,B城有化肥b吨,根据题意得,500100 b ab a+=⎧⎨-=⎩,解得200300 ab=⎧⎨=⎩,答:A城和B城分别有200吨和300吨肥料.(2)设从A城运往C乡肥料x吨,则运往D乡(200-x)吨,从B城运往C乡肥料(240-x)吨,则运往D乡(60+x)吨,设总运费为y元,根据题意,则:y=20x+25(200-x)+15(240-x)+24(60+x)=4x+10040,∵20002400600xxxx≥⎧⎪-≥⎪⎨-≥⎪⎪+≥⎩,∴0≤x≤200,由于函数是一次函数,k=4>0,所以当x=0时,运费最少,最少运费是10040元.(3)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,所以y=(20-a)x+25(200-x)+15(240-x)+24(60+x)=(4-a)x+10040,当4-a>0时,即0<a<4时,y随着x的增大而增大,∴当x=0时,运费最少,A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;当4-a=0时,即a=4时,y=10040,在0≤x≤200范围内的哪种调运方案费用都一样;当4-a<0时,即4<a<6时,y随着x的增大而减小,∴当x=240时,运费最少,此时A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.58.【解析】(1)由题意得,0.6x+0.4×(35-x)=y,整理得,y=0.2x+14(0<x<35).(2)由题意得,35-x≤2x,解得,x≥353,则x的最小整数为12,∵k=0.2>0,∴y随x的增大而增大,∴当x=12时,y有最小值16.4,答:该公司至少需要投入资金16.4万元.。
一次函数经典试题及答案
—次函数经典试题及答案10.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程$看作时间,的函数,其图像可能是()S【关键词】函数的意义【答案】A1、小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线0-A-B-C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间I(分钟)之间的函数关系,清根据图象回答下列问题:s(千米),D小明第1题(1)小聪在天一阁查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟。
(2)请你求出小明离开学校的路程s(千米)与所经过的时间I(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?【关键词】函数与实际问题4【答案】解:(1)15,—15(2)由图像可知,s是,的正比例函数设所求函数的解析式为s=kt(kxO)代入(45,4)得:4=45k4解得:k=—454.・.s与,的函数关系式s=—t(0</<45)45(3)由图像可知,小聪在30<r<45的时段内s是f的一次函数,设函数解析式为s=〃”+〃(777=0)代入(30,4),(45,0)f30w+rt =4[45〃?+〃=04m=——解得:15n=124.・.s=——f+12(30</<45)15令-£_‘+12=£f,解得t=—15454业135n.仁4135.当/=---时,S=——x---=34454答:当小聪与小明迎面相遇时,他们离学校的路程是3千米。
Ja+25.要使式子a有意义,a的取值范围是()A. B.a>-2且a^Q C.a>-2或aHO D.珍一2且奸0【关键词】函数自变量的取值范围【答案】D11.函数y=-~的自变量x的取值范围是―A.x【关键词】自变量的取值范围【答案】E05.如图2,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是【关键词】函数图像【答案】A20.A,3两城相距600千米,甲、乙两车同时从/城出发驶向3城,甲车到达3城后立即返回.如图是它们离/I城的距离*(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中*与X之间的函数解析式,并写出向变量X的取值范围:(2)当它们行驶7了小时时,两车相遇,求乙车速度.【关键词】一次函数、分类思想【答案】(1)①当0时,*=100x:②当6VxW14时,^y=kx+b,•・,图象过(6,600),(14,0)两点,6k+h=600,l4k+b=0.解得港.Ay=-75.r+1050.••y100x(0Wx<6)/c、、tz,',(2)当x=7时,y=-75x7+1050=525, -75x+1050(6<x<14).'525萼=75(千米/小时).21、某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?【关键词】一元一次方程(组)、一元一次不等式(组)、一次函数型的最值问题【答案】解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗(6000-x)尾,山题意得:0.5a-+0.8(6000-.r)=3600(1分)解这个方程,得:x=4000/.6000-jr=2000答:甲种鱼苗买4000尾,乙种鱼苗买2000尾..............(2分)(2)由题意得:0.5^+0.8(6000-x)<4200.....................(3分)解这个不等式,得:X22000即购买甲种鱼苗应不少于2000尾........................(4分)(3)设购买鱼苗的总费用为y,则y=0.5x+0.8(6000-x)=-O.3x+4800(5分)an qi山题意,有—x+—(6000-x)>—X6000...............(6分)100100100解得:x<2400.......................................(7分)在,=-0.3x+4800中V-0.3<0,:.y随x的增大而减少..•当x=2400时,jx小=4080.即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低......(9分)5.下列函数中,*随刀增大而增大的是(A.y=——B.y=-x+5C.y=^xD.y=—x2(x<0)x22【答案】C【关键词】一次函数、反比例函数、二次函数的增减性26.保护生态环境,建设绿色社会巳经从理念变为人们的行动.某化工厂2009年1月的利润为200万元.设2009年1月为第1个月,第x个月的利润为y万元.山于排污超标,该厂决定从2009年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,*与刀成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).⑴分别求该化工厂治污期间及治污改造工程完工后*与x之间对应的函数关系式.⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平?⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?【答案】(1XD当l<x<5时,设y=把(1,200)代入,得左=200,即X顶=炎2:②当工=5时,y=40,所以当x>5时,j?=40+20(x-5)=2O.r—60:⑵当尸200时,20k60=200,x=13.所以治污改造工程顺利完工后经过13-5=8个月后,该厂利润达到200万元:⑶对于y=---,当尸100时,*=2:对于5=20/60,当尸100时,x=8,所以资x金紧张的时间为8-2=6个月.【关键词】反比例函数、一次函数的性质及应用1.一辆汽车和一辆摩托车分别从4方两地去同一城市,它们离/地的路程随时间变化的图象如图所示.则下列结论错误的是()A.摩托车比汽车晚到1hB.4占两地的路程为20kmC.摩托车的速度为45km/hD.汽车的速度为60km/h【答案】C3.已知(1)若x-2y=6,则V的最小值是;(2).若x2+y2 =3,xy=\,则x-y=.【关键词】函数的值域、完全平方式【答案】(1)一3:(2)-1.710.如图.四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F-H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH7.下列四个函数图象中,当x>0时,*随》的增大而增大的是()答案:C23.小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1)小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米?(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的顷路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问:①小刚到家的时间是下午几时?②小刚回家过程中,离家的路程s(米)与时间"分)之间的函数关系如图,请写出点3的坐标,并求出线段⑦所在直线的函数解析式.(1)小刚铝分钟走12004-10=120(步),每步走1004-150=|(米),所以小刚上学的步行速度是120X|=80(米/分).2分小刚家和少年宫之间的路程是80X10=800(米).1分少年宫和学校之间的路程是80X(25-10)=1200(米).1分/c\61200-300小800+300«八七击\(2)①--------+30+--------=60(分钟),45110所以小刚到家的时间是下午5:00.2分②小刚从学校出发,以45米/分的速度行走到离少年宫300米处时实际走了900米,用时竺=20分,此时小刚离家1100米,所以点8的坐标是45(20,1100).2分线段⑦表示小刚与同伴玩了30分钟后,回家的这个时间段中离家的路程s(米)与行走时间”分)之间的函数关系,山路程与时间的关系得$=1100-110(—50),即线段6P所在直线的函数解析式是5=6600-110/.2分(线段⑦所在直线的函数解析式也可以通过下面的方法求得:9点C的坐标是(50,1100),点〃的坐标是(60,0)设线段⑦所在直线的函数解析式是s=H+b,将点G〃的坐标代入,得(50k+h=\l00y朝应住=一】】0,[60k+h=0.(A=6600.所以线段⑦所在直线的函数解析式是5=-110/+6600)417.—次函数y=-x^A分别交x轴、y轴于力、8两点,在x轴上取一点,使△枷为等腰三角形,则这样的的点。
一次函数性质练习题及答案
一次函数性质练习题及答案一、选择题1. 若一次函数y = mx + b的图象经过点(2, 5)和(-1, -4),则m和b的值分别为:A) m = 3, b = -2B) m = -3, b = -2C) m = 3, b = 2D) m = -3, b = 2答案:A) m = 3, b = -22. 若一次函数的图象经过坐标轴上的两个点,且不经过第三个点(4,3),则该函数的解析式为:A) y = x + 6B) y = -x - 3C) y = -x + 3D) y = -x + 6答案:D) y = -x + 63. 若一次函数y = kx + 5的图象过点(3, 14),则k的值为:A) 3B) 4C) 9D) 11答案:B) 4二、计算题1. 求一次函数y = 2x - 3在x = 4时的函数值。
解答:将x = 4代入函数y = 2x - 3中,y = 2(4) - 3y = 8 - 3y = 5所以,当x = 4时,函数y = 2x - 3的值为5。
2. 已知一次函数的解析式为y = 3x + 2,求该函数的斜率和截距。
解答:该一次函数的斜率为3,截距为2。
三、应用题1. 一家超市的饮料销售额与销售数量之间存在一次函数的关系,已知当销售数量为20时,销售额为600元;当销售数量为50时,销售额为1500元。
求该一次函数的解析式,并根据该函数计算销售数量为80时的销售额。
解答:设该一次函数的解析式为y = mx + b。
根据题意可以列出以下两个方程:20m + b = 600 (1)50m + b = 1500 (2)将方程(1)乘以5,并与方程(2)进行消元,得到:100m + 5b = 3000 (3)50m + b = 1500 (2)将方程(3)减去方程(2),消去b,得到:50m = 1500m = 30将m = 30代入方程(2),求得b的值:50(30) + b = 1500b = 1500 - 1500b = 0所以,该一次函数的解析式为y = 30x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数的定义1、判断正误:(1)一次函数是正比例函数; ( ) (2)正比例函数是一次函数; ( ) (3)x +2y =5是一次函数; ( ) (4)2y -x=0是正比例函数. ( ) 2、选择题(1)下列说法不正确的是( ) A .一次函数不一定是正比例函数。
B .不是一次函数就不一定是正比例函数。
C .正比例函数是特殊的一次函数。
D .不是正比例函数就一定不是一次函数。
(2)下列函数中一次函数的个数为( )①y=2x ;②y=3+4x ;③y=21;④y=ax (a ≠0的常数);⑤xy=3;⑥2x+3y-1=0;A .3个B 4个C 5个D 6个3、填空题(1)若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________。
(2)当m=__________时,函数y=3x2m+1+3 是一次函数。
(3 )关于x 的一次函数y=x+5m-5,若使其成为正比例函数,则m 应取_________。
4、已知函数y=()()112-++m x m 当m 取什么值时,y 是x 的一次函数?当m 取什么值是,y 是x 的正比例函数。
5、函数:①y=-2x+3;②x+y=1;③xy=1;④y=1+x ;⑤y=221x+1;⑥y=0.5x 中,属一次函数的有 ,属正比例函数的有 (只填序号) (2)当m= 时,y=()()m x m x m +-+-1122是一次函数。
(3)请写出一个正比例函数,且x =2时,y= -6请写出一个一次函数,且x=-6时,y=2(4) 我国是一个水资源缺乏的国家,大家要节约用水.据统计,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.李丽同学在洗手时,没有把水龙头拧紧,当李丽同学离开x小时后水龙头滴了y毫升水.则y与x之间的函数关系式是(5)设圆的面积为s,半径为R,那么下列说法正确的是()A S是R的一次函数B S是R的正比例函数R的正比例函数 D 以上说法都不正确C S是26、说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数。
①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,那么汽车离开A站的距离s(千米)和时间t(小时)之间的函数关系式为,它是函数②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,那么汽车离开A 站的距离s(千米)与时间t(小时)之间的函数关系式为,它是函数7、曾子伟叔叔的庄园里已有50棵树,,他决定今后每年栽2棵树,则曾叔叔庄园树木的总数y(棵)与年数x的函数关系式为它是函数8、圆柱底面半径为5cm,则圆柱的体积V(cm3)与圆柱的高h(cm)之间的函数关系式为,它是函数9、甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y(元)与包裹重量x(千克)之间的函数解析式,并计算5千克重的包裹的邮资。
10、.在拖拉机油箱中,盛满56千克油,拖拉机工作时,每小时平均耗油6千克,求邮箱里剩下Q(千克)与拖拉机的工作时间t(小时)之间的函数解析式。
一次函数的图象1、 在同一平面直角坐标系中画出下列每组函数的图象. (1) y =2x 与y =2x +3解2、说出直线y =3x +2与221+=x y ;y =5x -1与y =5x -4的相同之处. 解 :直线y =3x +2与221+=x y 的 ,相同,所以这两条直线 ,同一点,且交点坐标 ,;直线y =5x -1与y =5x -4的 相同,所以这两条直线 ,. 3.(1)直线521,321--=+-=x y x y 和x y 21-=的位置关系是 ,直线521,321--=+-=x y x y 可以看作是直线x y 21-=向 平移 个单位得到的;; 向 平移 个单位得到的(2)将直线y =-2x +3向下平移5个单位,得到直线 .(3).函数y =kx -4的图象平行于直线y =-2x ,求直线4y kx =-的解析式为 ;(4)直线y=2x-3可以由直线y=2x 经过 单位而得到;直线y=-3x+2 可以由直线y=-3x 经过 而得到;直线y=x+2可以由直线y=x-3经过 而得到.(5)直线y=2x +5与直线521+=x y ,都经过y 轴上的同一点( 、 )4、写出一条与直线y=2x -3平行的直线5、写出一条与直线y=2x -3平行,且经过点(2,7)的直线6、直线y=-5x +7可以看作是由直线y=-5x -1向 平移 个单位得到的1、(1)一次函数y=kx+b 当x=0时,y= ,横坐标为0点在 上,在y kx b =+中,;当y=0时,x= 纵坐标为0点在 上。
画一次函数的图象,常选取(0, )、( ,0)两点连线。
(2)直线y =4x -3过点(_____,0)、(0, ); (3)直线231+-=x y 过点( ,0)、(0, ). 2、 分别在同一直角坐标系内画出下列直线,写出各直线分别与x 轴、y 轴的交点坐标,并指出每一小题中两条直线的位置关系.(1)y =-x +2 ; y =-x -1. (2)y =3x -2 ; y =232-x .3、直线y =-x +2与x 轴的交点坐标是 ,与y 轴的交点坐标是4、直线y =-x -1与x 轴的交点坐标是 ,与y 轴的交点坐标是5、直线y =4x -2与x 轴的交点坐标是 ,与y 轴的交点坐标是6、直线y =232-x 与x 轴的交点坐标是 ,与y 轴的交点坐标是7、 画出函数y =-2x +3的图象,借助图象找出: (1) 直线上横坐标是2的点,它的坐标是( , )(2) 线上纵坐标是-3的点,它的坐标是( , )(3) 直线上到y 轴距离等于2的点,它的坐标是( , )(4)点(2、7)是否在此图象上;( ) (5)找出横坐标是-2的点,并标出其坐标;( , )(6)找出到x 轴的距离等于1的点,并标出其坐标;( , ) (7)找出图象与x 轴和y 轴的交点,并标出其坐标。
( , ) 9、求函数323-=x y 与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.10、一次函数y =3x +b 的图象与两坐标轴围成的三角形面积是24,求b .一次函数的性质1、 做一做,画出函数y =-2x +2的图象,结合图象 回答下列问题。
函数y =-2x +2的图象中: (1) 随着x 的增大,y 将 (填“增大”或“减小”) (2) 它的图象从左到右 (填“上升”或“下降”) (3)图象与x 轴的交点坐标是 ,与y 轴的交点坐标是 (4) 这个函数中,随着x 的增大,y 将增大还是减小?它的图象从左到右怎样变化? (5) 当x 取何值时,y =0? (6) 当x 取何值时,y >0?2、函数y =3x -6的图象中:(1)随着x 的增大,y 将 (填“增大”或“减小”) (2)它的图象从左到右 (填“上升”或“下降”) (3)图象与x 轴的交点坐标是 ,与y 轴的交点坐标是 3、已知函数y =(m -3)x -32. (1) 当m 取何值时,y 随x 的增大而增大? (2) 当m 取何值时,y 随x 的增大而减小?[B 组]1、 写出一个y 随x 的增大而减少的一次函数2、 写出一个图象与x 轴交点坐标为(3,0)的一次函数3、写出一个图象与y轴交点坐标为(0,-3)的一次函数1.一次函数y=5x+4的图象经过___________象限,y随x的增大而________,它的图象与x轴.Y轴的坐标分别为________________ (2).函数y=(k-1)x+2,当k>1时,y随x的增大而______,当k<1时,y随x的增大而_____。
2、函数y=-7x-6的图象中:(1)随着x的增大,y将(填“增大”或“减小”)(2)它的图象从左到右(填“上升”或“下降”)(3)图象与x轴的交点坐标是,与y轴的交点坐标是(4)x 取何值时,y=2? 当x=1时,y=3.某个一次函数的图象位置大致如下图所示,试分别确定k、b的符号,并说出函数的性质.(k 0, b 0) (k 0, b 0)4、已知一次函数y=(2m-1)x+m+5,当m 取何值时,y 随x 的增大而增大? 当m 取何值时,y 随x 的增大而减小?5.已知点(x1, y1)和(x2, y2)都在直线 y=43x-1上, 若x1 < x2, 则 y 1__________y 26. 已知一次函数y =(1-2m)x +m-1,若函数y 随x 的增大而减小,并且函数的图象经过二、三、四象限,求m 的取值范围.7.已知函数m x m y m m +-=--12)1(,当m 为何值时,这个函数是一次函数.并且图象经过第二、三、四象限?8.已知一次函数y =(1-2k ) x +(2k +1). ①当k 取何值时,y 随x 的增大而增大? ②当k 取何值时,函数图象经过坐标系原点? ③当k 取何值时,函数图象不经过第四象限?9.已知函数y =2x -4. (1)作出它的图象;(2)标出图象与x 轴、y 轴的交点坐标;(3) 由图象观察,当-2≤x ≤4时,函数值y 的变化范围.10.若 a 是非零实数 , 则直线 y=ax-a 一 定( )A.第一、二象限B. 第二、三象限C.第三、四象限D. 第一、四象限 11.已知关于x 的一次函数y =(-2m +1)x +2m 2+m-3.(1)若一次函数为正比例函数,且图象经过第一、第三象限,求m 的值; (2)若一次函数的图象经过点(1,-2),求m 的值.12. 已知一次函数y =(3m-8)x +1-m 图象与y 轴交点在x 轴下方,且y 随x 的增大而减小,其中m 为整数.(1)求m 的值;(2)当x 取何值时,0<y <4?一次函数图象和性质第1题. 将直线13y x =-向上平移3个单位得到的函数解析式是 . 第2题. 直线y mx n =+如图所示,化简:m n -= .第3题. 已知函数y kx b y =+的图象与轴交点的纵坐标为5-,且当12x y ==时,,则此函数的解析式为 .第4题. 在函数2y x b =-中,函数y 随着x 的增大而 ,此函数的图象经过点(21)-,,则b = . 第5题. 如图,表示一次函数y mx n =+与正比例函数y mnx =(m n ,为常数,且mn0≠)图象的是( )A.B.C .D .(第7题)第6题. 在下列四个函数中,y 的值随x 值的增大而减小的是( ) A.2y x =B.36y x =-C.25y x =-+D.37y x =+第7题. 已知一次函数y kx k =+,其在直角坐标系中的图象大体是( )第8题. 在下列函数中,( )的函数值先达到100. A.26y x =+B.5y x =C.51y x =-D.42y x =+第9题. 已知一次函数35y x =+与一次函数6y ax =-,若它们的图象是两条互相平等的直线,则a = .第10题. 一次函数3y x =+与2y x b =-+的图象交于y 轴上一点,则b = . 第11题. 作出函数41y x =-的图象,并回答下列问题: (1)y 的值随x 值的增大怎样变化? (2)图象与x 轴、y 轴的交点坐标是什么?第12题. 已知一次函数2(3)16y m x m =++-,且y 的值随x 值的增大而增大. (1)m 的范围;(2)若此一次函数又是正比例函数,试求m 的值.第13题. 已知一次函数y kx b =+的图象不经过第三象限,也不经过原点,那么k b 、的取值范围是( ) A.0k >且0b <B.0k >且0b < C.0k <且0b >D.0k <且0b <D.C. B . A .第14题. 如图所示,已知正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =--的图象大致是( )第15题. 若函数2(1)2y m x m =++-与y 轴的交点在x 轴的上方,且10m m <,为整数,则符合条件的m 有( ) A.8个B.7个C.9个D.10个第16题. 函数34y x =-,y 随x 的增大而 .第17题. 已知一次函数(3)21y m x m =-+-的图象经过一、二、四象限,求m 的取值范围.一次函数的定义参考答案: 1.判断正误(1)-(4)×√√√ 2.选择题 (1)-(2)BB 3.填空题 (1)m ≠2 (2)0 (3)1xxxxD .C.B .A .4.m≠-1,m=15.(1)①②⑥,⑥(2)-1(3)y=-3x,y=x+8(4)y=360x(5)C6.①s=40t正比例②s=4-40t,一次7.y=2x+50,一次8.V=25πh,正比例9.y=0.9x+0.2,4.710.Q=56-6t一次函数的图像1.略2.b,相交,(0,2),k,平行3.(1)平行,上,3,下,5(2)y=-2x-2(3)y=-2x-4(4)向下平移3个,向上平移2个单位,向下平移5个单位(5)0,54.y=2x(不唯一,k为2即可)5.y=2x+36.下,81.(1)b,y轴,-b/k,x轴,b,-b/k(2)3/4,-3(3)6,22.图略3.(2,0),(0,2)4.(-1,0),(0,-1)5.(½,0),(0,-2)6.(3,0),(0,-2)7.(1)(2,-1)(2)3,-3(3)(2,-1)或(-2,7)(4)不在(5)-2,7(6)(1,1)或(2,-1)(7)(1.5,0),(0,3)9.(2,0)(0,-3)面积是310.±12一次函数的性质1.(1)减小(2)下降(3)(1,0),(0,2)(4)减小,下降(5)1(6)x<12.(1)增大(2)上升(3)(2,0),(0,-6)3.(1)m>3(2)m<3[B组]1.y=-2x+1(k<0,b≠0)2.y=2x-63.y=2x-31.一二三,增大,(-4/5,0)(0,4)(2)增大,减小2.(1)减小(2)下降(3)(-6/7,0),(0,-6)(4)=-8/7,-133.(1)<,>(2)>,>4.m>½,m<½5.<6.½<m<17.-18.①k<½②k=-½③-½≤k<½9.(1)略(2)(2,0),(0,-4)(3)-8≤y≤410.D11.(1)-1.5(2)012.(1)2(2)-2.5<x<-0.5一次函数图像和性质参考答案1.y=-1/3x+32.n3.y=7x-54.增大,55.A6.C7.A8.B9.310.311.(1)y随x的增大而增大(2)(¼,0),(0,-1)12.(1)m>-3(2)±413.C 14.B 15.B 16.减小 17.½<m<3。