不同翅片形式管翅式换热器流动换热性能比较

合集下载

十三种类型换热器结构原理及特点(图文并茂)

十三种类型换热器结构原理及特点(图文并茂)

十三种类型换热器结构原理及特点(图文并茂)一、板式换热器的构造原理、特点:板式换热器由高效传热波纹板片及框架组成。

板片由螺栓夹紧在固定压紧板及活动压紧板之间,在换热器内部就构成了许多流道,板与板之间用橡胶密封。

压紧板上有本设备与外部连接的接管。

板片用优质耐腐蚀金属薄板压制而成,四角冲有供介质进出的角孔,上下有挂孔。

人字形波纹能增加对流体的扰动,使流体在低速下能达到湍流状态,获得高的传热效果。

并采用特殊结构,保证两种流体介质不会串漏。

板式换热器结构图二、螺旋板式换热器的构造原理、特点:螺旋板式换热器是一种高效换热器设备,适用汽-汽、汽-液、液-液,对液传热。

它适用于化学、石油、溶剂、医药、食品、轻工、纺织、冶金、轧钢、焦化等行业。

结构形式可分为不可拆式(Ⅰ型)螺旋板式及可拆式(Ⅱ型、Ⅲ型)螺旋板式换热器。

螺旋板式换热器结构图三、列管式换热器的构造原理、特点:列管式换热器(又名列管式冷凝器),按材质分为碳钢列管式换热器,不锈钢列管式换热器和碳钢与不锈钢混合列管式换热器三种,按形式分为固定管板式、浮头式、U型管式换热器,按结构分为单管程、双管程和多管程,传热面积1~500m2,可根据用户需要定制。

列管式换热器结构图四、管壳式换热器的构造原理、特点:管壳式换热器是进行热交换操作的通用工艺设备。

广泛应用于化工、石油、石油化工、电力、轻工、冶金、原子能、造船、航空、供热等工业部门中。

特别是在石油炼制和化学加工装置中,占有极其重要的地位。

换热器的型式。

管壳式换热器结构图五、容积式换热器的构造原理、特点:钢衬铜热交换器比不锈钢热交换器经济,并且技术上有保证。

它利用了钢的强度和铜的耐腐蚀性,即保证热交换器能承受一定工作压力,又使热交换器出水质量好。

钢壳内衬铜的厚度一般为1.0mm。

钢衬铜热交换器必须防止在罐内形成部分真空,因此产品出厂时均设有防真空阀。

此阀除非定期检修是绝对不能取消的。

部分真空的形成原因可能是排出不当,低水位时从热交换器,或者排水系统不良。

干式风机盘管翅片管换热器流动换热的数值模拟与试验对比

干式风机盘管翅片管换热器流动换热的数值模拟与试验对比

作 为 干 式 风 机 盘 管 的 核 心 部 件 , 热 器 的设 换 计 计 算对 于整个 产 品的 设计 有 着 重 要 的 意义 。相
度 5 ; 0 冷水 侧 的进 口温 度 可 选 为 1 6℃ ; 冷 量 供
为 1k 干式 风机 盘管所 对应 的风 量应 不大 于 5 0 W 0 r3h或干式 风机 盘管 供冷 量 和风 量之 比不小 于 2 n/ W/ m h 。这样 的要 求 既可 以满 足 内 、 区最 大 ( /) 外
显 热冷 量 的需 求 , 可 以保 证 兼 容 现有 标 准 型 号 又 风 机盘 管 的风 机 系列 的规 格 、 结构 形 式 和 尺 寸l 。 _ 3 ] 笔 者利用 C D软件 对干式 风机 盘管 翅 片换 热器 空 F
率 低等 问题 。普遍 认 为 温湿 度 独 立 控制 系统 可 能
o i u de i fd y f n c lu t . ptm m sgn o r a - oi nis
KE W ORDS d y f n c i u is h a x h n e ; e f r a c ffu d f w ; e f r a c Y r a - o l n t ; e te c a g r p r o m n e o l i l o p ro m n e o e tt a s e : u rc lsmu a i n fh a r n f r n me ia i l t o
第 1卷 O
第 5期
制 冷 与 空 调
REF GERAT1 RI 0N AND R —C AI 0NDI 0NI T1 NG
2010年 1 0月
干 式 风 机 盘 管 翅 片 管 换 热 器 流 动 换 热 的 数 值 模 拟 与试 验对 比 *

换热器简介

换热器简介

、换热器的类型一二、列管换热器基本型式三、新型换热器四、各种间壁式换热器的比较和传热的强化途径1、管式换热器1)沉浸式换热器这种换热器是将金属管弯绕成各种与容器相适应的形状(多盘成蛇形,常称蛇管),并沉浸在容器内的液体中。

蛇管内、外的两种流体进行热量交换。

几种常见的蛇管形式如图所示。

优点:结构简单、价格低廉,能承受高压,可用耐腐蚀材料制造缺点:容器内液体湍动程度低,管外对流传热系数小。

2)喷淋式换热器喷淋式换热器也为蛇管式换热器,多用作冷却器。

这种换热器是将蛇管成行地固定在钢架上,热流体在管内流动,自最下管进入,由最上管流出。

冷水由最上面的淋水管流下,均匀地分布在蛇管上,并沿其两侧逐排流经下面的管子表面,最后流入水槽而排出,冷水在各排管表面上流过时,与管内流体进行热交换。

这种换热器的管外形成一层湍动程度较高的液膜,因而管外对流传热系数较大。

另外,喷淋式换热器常放置在室外空气流通处,冷却水在空气中汽化时也带走一部分热量,提高了冷却效果。

因此,和沉浸式相比,喷淋式换热器的传热效果要好得多。

同时它还便于检修和清洗等优点。

其缺点是喷淋不易均匀。

3)套管式换热器套管式换热器是由大小不同的直管制成的同心套管,并由U型弯头连接而成。

每一段套管称为一程,每程有效长度约为4~6m,若管子过长,管中间会向下弯曲。

在套管式换热器中,一种流体走管内,另一种流体走环隙适当选择两管的管径,两流体均可得到较高的流速,且两流体可以为逆流,对传热有利。

另外,套管式换热器构造较简单,能耐高压,传热面积可根据需要增减,应用方便缺点:管间接头多,易泄露,占地较大,单位传热面消耗的金属量大。

因此它较适用于流量不大,所需传热面积不多而要求压强较高的场合。

4)列管式换热器优点:单位体积所具有的传热面积大,结构紧凑、紧固传热效果好。

能用多种材料制造,故适用性较强,操作弹性较大,尤其在高温、高压和大型装置中多采用列管式换热器。

在列管式换热器中,由于管内外流体温度不同,管束和壳体的温度也不同,因此它们的热膨胀程度也有差别。

翅片的分类与特点

翅片的分类与特点

翅片分类及其特点简介14121330 彭启0.引言翅片是基本的传热元件,其作用是扩大换热面积,提高热传递的效率。

翅片可以看成是隔板的延伸和扩展;其次,翅片的不同形式使空气在流道内形成了强烈的扰流,并使流动边界层和热边界层断裂、重组,从而强化换热;最后,翅片还可以提高散热器整体强度,有效扩大其应用范围。

常用的翅片结构形式有平直翅片、百叶窗翅片、锯齿翅片、多孔翅片和波纹翅片[1]。

图1 典型翅片结构形式许多学者对翅片作了深入广泛的研究,本文利用翅片应用的环境,按照管内与管外;液体之间换热、液体与气体之间换热、气体与气体之间换热等方面对翅片进行分类,并详细阐述各种翅片的特点。

1.管内与管外翅片的结构形式与特点在换热器及许多换热设备中,传热壁面两侧流体的对流换热系数的大小往往很不均衡,因此需要在传热壁面对流换热系数小的那一侧加装翅片。

翅片管换热器所用翅片管有内翅片管和外翅片管两种,其中以外翅片管应用较为普遍。

外翅片管一般是用机械加工的方法在光管外表面形成一定高度、一定片距、一定厚度的翅片。

翅片管的型式有螺旋翅片管、套装翅片管、滚轧式翅片管、板翅式翅片管[2]。

其中螺旋形翅片管广泛应用于管内为液体或气液两相工质而管外为气体的场合,具有强化管外气流扰动、扩大换热面积的作用,从而增强传热,节约能源。

同时由于其结构紧凑,使金属耗量减少,因此在电场锅炉中采用螺旋管束翅片管省煤器可大大节省运行费用,在国内外得到了迅速的推广应用[3]。

为改进螺旋形翅片管易积灰且不易清理的缺点,近年来提出了H型鳍片管。

H型鳍片管,亦称H型肋片管,是把两片中间有圆弧的钢片对称地与光管焊接在一起形成鳍片(肋片或蝶片),正面形状颇像字母“H”。

由于其鳍片表面特殊的沟槽结构,去除了部分在鳍片表面进口和尾部分离区中的换热面积,降低了进口和尾部分离区传热恶化对整个鳍片传热的影响,从而提高了鳍片的平均对流换热系数和鳍片效率,达到强化传热的目的,并避免了螺旋鳍片管束常见的因结构设计不合理导致的鳍片烧毁问题[4]。

翅片管式气-液换热器变工况下传热特性研究

翅片管式气-液换热器变工况下传热特性研究

翅片管式气-液换热器变工况下传热特性研究苑中显;刘忠秋;吴波【摘要】采用FLUENT软件对高温空气-混合硝酸盐在翅片管式换热器中的换热进行了三维数值模拟,研究其换热与流动特性.模拟主要考察对于不同压力工况下及不同Re数的高温空气,换热器的换热及阻力特性.计算结果表明:随着空气侧流速及空气压力的增加,空气侧表面换热系数都有显著增加,同时流动阻力也有所增加.低压力工况时的换热及阻力特性曲线几乎随空气流速呈线性相关,高压力工况流动和换热呈非线性趋势.将数值模拟结果与实验结果进行了对比,对数值模拟结果的准确性进行了验证,并得出了流体物性对换热器性能的影响,给出了翅片管换热器在不同条件下的换热准则方程式.【期刊名称】《制冷与空调(四川)》【年(卷),期】2018(032)005【总页数】7页(P476-482)【关键词】翅片管式换热器;数值模拟;高温空气;混合硝酸盐;压力工况【作者】苑中显;刘忠秋;吴波【作者单位】北京工业大学环能学院北京 100124;北京工业大学环能学院北京100124;北京工业大学环能学院北京 100124【正文语种】中文【中图分类】TB657.5;TQ018当前各电厂的发电装机容量与电网容量都是按照最大需求建设,随电网峰谷差日趋增大,必然导致非用电高峰时发电机组的停机或低负荷运行及电网容量浪费。

2012年全国常规燃煤发电机组发电总负荷系数仅为52.1%[1],电网负荷利用系数也小于55%[2]。

储能[3]可大幅提高火电机组实际运行效率,增强电网输电能力。

超临界压缩空气储能系统利用低谷电,将空气压缩并储存在储气罐中,使电能转化为空气的内能存储起来,它解决了常规压缩空气储能系统面临的依靠化石燃料、储能密度低、依靠大型储气室、响应速度慢等问题[4]。

在超临界压缩空气过程中,空气的温度会随之升高,这部分热量如何被有效蓄集具有重要的研究意义[5]。

本文设计出一种翅片管式气-液换热器,可把这部分热量储存在熔融盐中[6]。

换热器的结构与性能特点

换热器的结构与性能特点

a.切除过少
b.切除适当
c.切除过多
挡板切除对流动的影响
精选课件
精选课件
精选课件
管子的规格和排列方式
管子的规格:最常用的直径为19 mm、 22 mm、25 mm、32 mm、38 mm、 57 mm 管长:1.5、2.0、3.0、6.0m L/D=4~10(管长/壳体直径)
精选课件
精选课件
换热器的结构与性能特点
精选课件
在工业生产中,要实现热量的传递,须采用一定 的设备,此种传递热量的设备,称换热器或热交换器。
换热器广泛应用于各种工业生产过程中,其主要 用途适用于加热、冷却、蒸发、冷凝、干燥等方面, 因其使用的条件不同,其容量、压力、温度等变动范 围较大,为了适应不同的用途,存在各种形式及结构 的换热器。
列管一端固定在与 优点是管束可取出清洗或更换。因为管束可自 外壳固定的管板上, 由移动,所以适用两流体温差大的换热情况。 另一端固定在可自 缺点是结构复杂,造价高 由移动的管板上
管束一端可自由膨 胀
优点是结构比浮头式简单,造价也比浮头式低。 缺点是壳内流体有外漏的可能,所以壳体内不 适于流过易挥发,易燃,易爆和有毒介质。只 适用于低压流体。
精选课件
流体流速的选择
流体 种类
一般液体 宜结垢液体
气体
流速 m/s
管程
壳程
0.5~0.3 >1
5~30
0.2~1.5 >0.5 3~15
精选课件
不同粘度液体在列管换热器中流速(在钢管中)
液体粘度mPa.s
>1500 1000~500 50பைடு நூலகம்~100
100~53 35~1 >1
最大流速m/s

空调用空气换热器翅片形式的选择

空调用空气换热器翅片形式的选择
百叶窗型的翅片可极大地改善热交换性能,特别是弧形百叶窗翅片可获得非常高的换热系数,几乎是波纹片的两倍。但引起的阻力损失也较大;影响大小与条缝高度有关。比如X1(开缝宽度为1mm)型翅片换热器,其换热特性与其他高度的相比并无明显提高,但阻力特性增长却比较明显,因此,百叶窗条缝高度应严格控制。
表2各种翅片在迎面风速Vy=2.5m/s时的性能参数对比
对于其它的翅片类型(波纹形翅片、条缝形翅片、百叶窗翅片),采用小管径,同样可以减小管排的拖曳作用,从而增大管外换热系数;并能够减小压降损失。如:对百叶窗翅片,当迎面风速Vfr<1.5m/s时,采用小管径的多排管结构有利于提高换热器的换热性能,并能够减小10%的压降损失。
3.湿工况下翅片换热器的性能变化对湿工况下空气侧传热系数的报道一直存在争议。
表1各种翅片形式
弧形百叶窗翅片的最优,其次为矩形百叶窗型、皱纹板型、波纹板型。究其原因为,光直翅片中,连续稳定的粘性层流层妨碍了流体与翅片的换热;波纹翅片破坏了连续稳定的粘性层流层,所以换热系数增大了;而开缝式翅片,不仅破坏了连续稳定的粘性层流层,而且大大增加了流道中的紊流度,从而使换热系数进一步增大。方形百叶窗和弧形百叶窗均是在翅片上开翻边槽,以此强化气流扰动,增强换热。弧形百叶窗型翅片的开槽是沿着铜管外壁进行的,这样的好处是气流可以在百叶窗型翻边的诱导下更大面积的冲刷到管后部,即减小铜管后部的尾流区域,强化换热。
2000年,Wang以两种百叶窗形翅片在湿工况下的换热性能为研究对象进行了分析。实验结果表明:在湿工况的条件下,换热特性对翅片间距和管排数的变化不太敏感,结果与干工况下的特性十分接近。然而与换热特性不同的是,翅片间距的变化对摩擦特性有显著的影响,对于翅距=1.2mm的换热器比翅距=2.5mm的换热器摩擦因子大30%~50%;另外,管排间距越大,越有利于凝结水的排放,从而使换热器的压降损失降低。

翅片的分类与特点

翅片的分类与特点

翅片的分类与特点翅片是生产过程中使用较广泛的加工零件,具有各种不同的分类与特点。

以下是对这些分类与特点进行详细介绍的文章。

翅片是一种具有较大表面积的平板形加工零件,通常用于换热装置、散热器、冷却器等设备中。

根据不同的分类标准,翅片可以被分为多种类型,各自具有不同的特点。

一、根据材料分类1.金属翅片金属翅片是最常见的一种翅片类型,广泛应用于不同的行业。

常见的金属材料有铝、铜、不锈钢等。

金属翅片具有良好的热传导性能和机械强度,能够有效提高换热效率。

同时,金属翅片还具有较好的耐腐蚀性和耐高温性能。

2.塑料翅片塑料翅片主要由一些高分子材料制成,例如聚丙烯、聚乙烯等。

相比于金属翅片,塑料翅片具有较低的成本和较轻的重量。

此外,塑料翅片还具有良好的耐腐蚀性、绝缘性和耐酸碱性能。

3.复合材料翅片复合材料翅片是金属与其他非金属材料的组合,通常是金属基体上涂覆一层非金属材料,如橡胶、陶瓷等。

复合材料翅片具有金属翅片的高强度和非金属材料的其他优点,能够同时满足多种要求。

二、根据结构分类1.平片翅片平片翅片是最简单常见的一种翅片结构形式,由于表面积较小,换热效率相对较低。

平板翅片适用于低温换热条件下的换热器。

2.湿式翅片湿式翅片是在平板翅片的基础上进一步改进而成的,其表面增加了一些褶皱,能够增加翅片的表面积,从而提高了换热效率。

湿式翅片适用于高温换热条件下的换热器。

3.纹理翅片纹理翅片是在平板翅片的表面上纹理一定形状的纹理,能够增加翅片的换热面积,提高换热效率。

纹理翅片适用于一些特殊的换热条件下。

三、根据工艺分类1.挤压翅片挤压翅片是利用挤压工艺在金属板上形成一系列彼此相连的翅片。

挤压翅片具有高强度、高密度、高热交换效率的特点,广泛应用于散热器、冷却器等设备中。

2.真空吸塑翅片真空吸塑翅片是利用真空吸塑工艺将热塑性塑料片吸附在金属基板上形成翅片的一种方法。

真空吸塑翅片具有成本低、工艺简单、重量轻等优点,在轻型散热器中广泛使用。

翅片的分类与特点

翅片的分类与特点

翅片分类及其特点简介14121330 彭启0.引言翅片是基本的传热元件,其作用是扩大换热面积,提高热传递的效率。

翅片可以看成是隔板的延伸和扩展;其次,翅片的不同形式使空气在流道内形成了强烈的扰流,并使流动边界层和热边界层断裂、重组,从而强化换热;最后,翅片还可以提高散热器整体强度,有效扩大其应用范围。

常用的翅片结构形式有平直翅片、百叶窗翅片、锯齿翅片、多孔翅片和波纹翅片[1]。

图1 典型翅片结构形式许多学者对翅片作了深入广泛的研究,本文利用翅片应用的环境,按照管内与管外;液体之间换热、液体与气体之间换热、气体与气体之间换热等方面对翅片进行分类,并详细阐述各种翅片的特点。

1.管内与管外翅片的结构形式与特点在换热器及许多换热设备中,传热壁面两侧流体的对流换热系数的大小往往很不均衡,因此需要在传热壁面对流换热系数小的那一侧加装翅片。

翅片管换热器所用翅片管有内翅片管和外翅片管两种,其中以外翅片管应用较为普遍。

外翅片管一般是用机械加工的方法在光管外表面形成一定高度、一定片距、一定厚度的翅片。

翅片管的型式有螺旋翅片管、套装翅片管、滚轧式翅片管、板翅式翅片管[2]。

其中螺旋形翅片管广泛应用于管内为液体或气液两相工质而管外为气体的场合,具有强化管外气流扰动、扩大换热面积的作用,从而增强传热,节约能源。

同时由于其结构紧凑,使金属耗量减少,因此在电场锅炉中采用螺旋管束翅片管省煤器可大大节省运行费用,在国内外得到了迅速的推广应用[3]。

为改进螺旋形翅片管易积灰且不易清理的缺点,近年来提出了H型鳍片管。

H型鳍片管,亦称H型肋片管,是把两片中间有圆弧的钢片对称地与光管焊接在一起形成鳍片(肋片或蝶片),正面形状颇像字母“H”。

由于其鳍片表面特殊的沟槽结构,去除了部分在鳍片表面进口和尾部分离区中的换热面积,降低了进口和尾部分离区传热恶化对整个鳍片传热的影响,从而提高了鳍片的平均对流换热系数和鳍片效率,达到强化传热的目的,并避免了螺旋鳍片管束常见的因结构设计不合理导致的鳍片烧毁问题[4]。

翅片的分类与特点

翅片的分类与特点

翅片分类及其特点简介14121330彭启0.引言翅片是基本的传热元件,其作用是扩大换热面积,提高热传递的效率。

翅片可以看成是隔板的延伸和扩展;其次,翅片的不同形式使空气在流道内形成了强烈的扰流,并使流动边界层和热边界层断裂、重组,从而强化换热;最后,翅片还可以提高散热器整体强度,有效扩大其应用范围。

常用的翅片结构形式有平直翅片、百叶窗翅片、锯齿翅片、多孔翅片和波纹翅片[1]。

图1 典型翅片结构形式许多学者对翅片作了深入广泛的研究,本文利用翅片应用的环境,按照管内与管外;液体之间换热、液体与气体之间换热、气体与气体之间换热等方面对翅片进行分类,并详细阐述各种翅片的特点。

1.管内与管外翅片的结构形式与特点在换热器及许多换热设备中,传热壁面两侧流体的对流换热系数的大小往往很不均衡,因此需要在传热壁面对流换热系数小的那一侧加装翅片。

翅片管换热器所用翅片管有内翅片管和外翅片管两种,其中以外翅片管应用较为普遍。

外翅片管一般是用机械加工的方法在光管外表面形成一定高度、一定片距、一定厚度的翅片。

翅片管的型式有螺旋翅片管、套装翅片管、滚轧式翅片管、板翅式翅片管[2]。

其中螺旋形翅片管广泛应用于管内为液体或气液两相工质而管外为气体的场合,具有强化管外气流扰动、扩大换热面积的作用,从而增强传热,节约能源。

同时由于其结构紧凑,使金属耗量减少,因此在电场锅炉中采用螺旋管束翅片管省煤器可大大节省运行费用,在国内外得到了迅速的推广应用[3]。

为改进螺旋形翅片管易积灰且不易清理的缺点,近年来提出了H型鳍片管。

H型鳍片管,亦称H型肋片管,是把两片中间有圆弧的钢片对称地与光管焊接在一起形成鳍片(肋片或蝶片),正面形状颇像字母“H”。

由于其鳍片表面特殊的沟槽结构,去除了部分在鳍片表面进口和尾部分离区中的换热面积,降低了进口和尾部分离区传热恶化对整个鳍片传热的影响,从而提高了鳍片的平均对流换热系数和鳍片效率,达到强化传热的目的,并避免了螺旋鳍片管束常见的因结构设计不合理导致的鳍片烧毁问题[4]。

翅片管束与光管管束管壳式换热器传热特性对比

翅片管束与光管管束管壳式换热器传热特性对比

翅片管束与光管管束管壳式换热器传热特性对比翅片管束与光管管束管壳式换热器传热特性对比换热器是工业生产过程中常用的设备之一,主要用于将热量从一个介质传递到另一个介质,以满足生产过程中的需要。

在换热器设计中,管束和管壳是两种常见的结构形式,分别适用于不同的工况和传热要求。

其中,翅片管束和光管管束是两种常用的管束结构。

本文通过对比分析翅片管束和光管管束在传热特性方面的异同,以期为换热器的设计和选型提供一定的参考。

首先,我们来看翅片管束。

翅片管束是一种通过在管子外表面安装鳍片增加换热表面积的管束结构。

翅片的存在可以增加单位长度的管道表面积,提高传热效果。

另外,鳍片的存在还能够改变流体流动状态,增加流体的湍流程度,进一步提高传热效率。

同时,翅片管束还可以增加管道的强度和刚度,增加其耐压能力和使用寿命。

然而,鳍片的存在也会增加系统的流动阻力,影响流体的流动特性,增加泵工作的功耗。

而光管管束则是一种由多个平行排列的管子构成的管束结构。

光管管束通过将多个管子排列在一起,形成了一个面积较大的管束,增加了换热器的传热表面积。

与翅片管束不同,光管管束的管道表面没有直接与外部介质接触,因此对于腐蚀性介质的换热,光管管束能够更好地保护管道不被腐蚀。

并且,光管管束结构简单,制造工艺较为容易。

然而,由于管子之间的距离较大,光管管束的传热表面积相对较小,传热效果不如翅片管束。

在传热特性方面,翅片管束相对于光管管束有一些明显的优势。

首先,翅片管束的传热系数相对较大。

由于鳍片的存在,翅片管束的传热表面积大幅度增加,从而提高了传热效率。

其次,翅片管束能够增加管道的强度和刚度,提升了换热器的使用寿命。

同时,翅片管束还能够改变流体流动状态,增加流体的湍流程度,进一步提高传热效果。

然而,翅片管束也存在一些不足之处,如增加了系统的流动阻力,使泵工作的功耗增加。

相比之下,光管管束在传热特性方面相对较弱。

由于光管管束的管道相对较远,传热表面积相对较小,传热效果不如翅片管束。

空调用空气换热器翅片形式的选择

空调用空气换热器翅片形式的选择

空调用空气换热器翅片形式的选择1.前言在空调工程中,空气的加热和冷却处理过程中大量用到的翅片管换热器采用盘管形式,传热管束是用直径较小的紫铜管穿上铝翅片,排成2至8排制成管束。

冷热水在管内为蛇形往复流动,空气在管外翅片间穿行,同时被加热或冷却。

翅片采用整体式翅片形式,翅片片型有平板型、皱纹型(其中,波纹板应用最多)及开缝型(如条缝型、百叶窗型等)。

不同翅片形式的换热器,其空气侧换热系数及阻力特性均有所差异。

大量的实验发现:在获得好的热交换特性的同时,不可避免地造成了摩阻的增加。

在给定的热交换器尺寸和风机运行曲线下,压力损失的提高必然造成空气流速的降低,并进而使空气与翅片壁面之间的传热温差降低。

其次,空调工程中所使用的大部分换热器都是干、湿工况交替运行的,而不同翅片换热器在湿工况下的换热及阻力特性与干工况下相比,有很大差异。

因此,如何正确选用翅片形式,对热交换器实际工作特性的影响不容忽视,最好的是在换热与阻力损失之间找到一种折衷的方案。

2.干工况下各种翅片换热器的性能对比2.1换热系数和压降损失GiovanniLozza和UmbertoMerlo[1]对翅距2mm,翅厚0.11mm,管间距25mm,排间距21.65mm的各种翅片进行了对比试验,试验时的迎面风速为1m/s到3m/s.表征空气侧换热强弱的Colburnj因子和摩阻因子f与Re数的关系。

表1各种翅片形式翅片代号翅片形式开缝或皱纹宽度(mm)P NCL1L2WX1X2X3 平板型波纹板型横向皱纹板型平板矩形百叶窗平板矩形百叶窗平板小翼型带矩形百叶窗波纹板弧形百叶窗波纹板弧形百叶窗波纹板弧形百叶窗0.800.540.751.60+0.701.000.750.65弧形百叶窗翅片的最优,其次为矩形百叶窗型、皱纹板型、波纹板型。

究其原因为,光直翅片中,连续稳定的粘性层流层妨碍了流体与翅片的换热;波纹翅片破坏了连续稳定的粘性层流层,所以换热系数增大了;而开缝式翅片,不仅破坏了连续稳定的粘性层流层,而且大大增加了流道中的紊流度,从而使换热系数进一步增大。

翅片管及翅片管换热器

翅片管及翅片管换热器

翅片管的材料范围很广,有碳钢、不锈钢、铝及铝合金、 锡及铜合金、钛、蒙乃尔合金等,有时还采用双金属翅片以 节约贵重金属,同时又能适应耐腐蚀性等工艺要求。 翅片管换热器中管束两端没有翅片且外径较大,故与光 管一样可与管板焊接或胀接,必要时也可装设折流扳,装折 流板处应制成没有翅片的平直段。由于翅片管应用广、材料 和制造方法多样,工业发达国家都已标准化、系列化,并有 专门的研究机构和制造厂。
翅片管
和 翅片管换热器
翅片管是一种带肋的壁面,在动力、化工等工业中有广 泛的应用,许多螺旋型换热面或螺纹管也都可看作是翅片管。 它对扩展换热面积和促进湍流有显著作用,无论对单相对流 换热还是相变对流换热都具有很大作用。翅片管换热器的结 构与一般管壳式换热器基本相同。只是用翅片管代替了光管 作为传热面,由于传热加强、结构紧凑,故可做成紧凑式换 热器;翅片管换热器也经常用于加热或冷却管外气体,而在 管内通以蒸汽或水,例如空冷器、锅炉省煤器、暖气片等。
四、翅片设计中有关参数的确定
1.肋片高度h 前已提到,并非任何条件下加高翅片部是有利的,理论 上可以证明,各种形状翅片都存在一个最佳高度。经验表明: 当传热壁面两侧的α值相差2~5倍时,采用低翅型螺纹管比 较合适,造价比光管只增加25~30%;当两侧α值相差十倍 以上时可考虑用高翅片,此时翅片传热面积较大。
一、翅片管的结构
有纵向和径向(横向)两类翅片,其它类型都是这两类 的变形,例如大螺旋角翅片管、螺纹管等,前者接近纵向, 后者接近横向。肋片可在管内、管外或内外兼有。肋片管按 制造方法不同可分为整体翅片、焊接翅片和机械连接翅片。 几种带纵向肋片和径向肋片的翅片管如图所示。
横 向
纵 向
整体翅片由铸造、机械加工或轧制而成,肋片与管子一 体,无接触热阻,强度高,耐热震和机械震动,因而传热、 机械和热膨胀等性能较好,但制造成本提高,对低翅片比较 适用;焊接翅片用钎焊或氩弧焊等工艺制造,现代焊接技术 可使不同材料的翅片与母体管连接在一起并将其扭弯成各种 形状。焊接翅片管由于制造简易、经济且具有较好的传热性 能和机械性能,已在工业上广为应用。

各种换热器工作原理和特点,值得收藏

各种换热器工作原理和特点,值得收藏

各种换热器工作原理和特点,值得收藏一、换热器1、U形管式换热器每根管子都弯成U形,固定在同一侧管板上,每根管可以自由伸缩,也是为了除去热应力。

性能特点:(1)优点此类换热器的特点是管束可以自由伸缩,不会因管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速较高,传热性能较好;承压本领强;管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。

(2)缺点是管内清洗不便,管束中心部分的管子难以更换,又因最内层管子弯曲半径不能太小,在管板中心部分布管不紧凑,所以管子数不能太多,且管束中心部分存在间隙,使壳程流体易于短路而影响壳程换热。

此外,为了弥补弯管后管壁的减薄,直管部分需用壁较厚的管子。

这就影响了它的使用场合,仅宜用于管壳壁温相差较大,或壳程介质易结垢而管程介质清洁及不易结垢,高温、高压、腐蚀性强的情形。

2、沉浸式蛇管换热器沉浸式蛇管换热器以蛇形管作为传热元件的换热器,是间壁式换热器种类之一。

依据管外流体冷却方式的不同,蛇管式换热器又分为沉浸式和喷淋式。

(1)优点这是一种古老的换热设备。

它结构简单,制造、安装、清洗和维护和修理便利,便于防腐,能承受高压,价格低廉,又特别适用于高压流体的冷却、冷凝,所以现代仍得到广泛应用。

(2)缺点由于容器体积比管子的体积大得多、笨重、单位传热面积金属耗量多,因此管外流体的表面传热系数较小。

为提高传热系数,容器内可安装搅拌器。

3、列管式换热器冷流体走管内,热流体经折流板走管外,冷、热流体通过间壁换热。

性能特点:列管式换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。

此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。

通常在管外装置一系列垂直于管束的挡板。

同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。

因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。

工业用换热器分类概述

工业用换热器分类概述

换热器的结构形式
管式换热器的结构形式
1、列管式换热器(管壳式换热器)
它结构紧凑,单位体积所具有的传热面积较大(40~ 150m2/m3),传热效果好,适应性强,操作弹性大,尤其 适用于高温、高压和大型装置中,是管式换热器中应用 最普遍的换热器。
在列管式换热器中,由于管内外流体温度不同,使管 束和壳体的受热程度不同,导致它们的热膨胀程度出现 差别。若两流体温差较大,就可能由于热应力而引起设 备的变形,管子弯曲甚至破裂,严重时从管板上脱落。 因此当两流体的温度差超过50℃时,就应从结构上考虑 热膨胀的影响,采取相应的热补偿措施。根据热补偿方 法的不同,列管式换热器分为三种形式:
换热器中热流体有相变化分两种情况:
1.冷凝液温度为饱和温度(特定环境下,液体蒸发为气体 或气体冷凝为液体时的温度)
热负荷 Q=Whr=WcCpc(t2-t1) 冷凝液温度低于饱和温度
热负荷 Q=Wh[r+Cph(Ts-T2)]=WcCpc(t2-t1) Ts:饱和温度
污垢热阻
换热器操作一段时间后,由于温度的关系或流体的不洁 净等,传热面上常有污垢积存。这些垢层虽然不厚,但由 于其导热系数小,导热热阻很大,对传热产生附加热阻, 称为污垢热阻。因此计算总传热系数时要考虑到污垢热阻 的影响,因垢层厚度及其导热系数难以确定,通常是根据 经验选用污垢热阻来作为计算依据。若管壁两侧污垢热阻 分别用Rsi和Rso表示时,总热阻为:
(3)能利用低温热源 由于流道长而且两流体可达到完全逆 流,因而传热温差大,能充分利用温度较低的热源。
(4)结构紧凑 由于板薄2~4mm,单位体积的传热面积可 达到150~500m2/m3。
主要缺点是操作压强不能超过2MPa,操作温度在300~ 400℃以下,另外因整个换热器焊为一体,一旦损坏检修困 难。螺旋板换热器直径在1.5m之内,板宽200~1200mm, 板厚2~4mm,两板间距5~25mm,可用普通钢板和不锈钢 制造,目前广泛用于化工、轻工、食品等行业。

翅片的分类与特点知识分享

翅片的分类与特点知识分享

翅片的分类与特点翅片分类及其特点简介14121330彭启0.引言翅片是基本的传热元件,其作用是扩大换热面积,提高热传递的效率。

翅片可以看成是隔板的延伸和扩展;其次,翅片的不同形式使空气在流道内形成了强烈的扰流,并使流动边界层和热边界层断裂、重组,从而强化换热;最后,翅片还可以提高散热器整体强度,有效扩大其应用范围。

常用的翅片结构形式有平直翅片、百叶窗翅片、锯齿翅片、多孔翅片和波纹翅片[1]。

图1 典型翅片结构形式许多学者对翅片作了深入广泛的研究,本文利用翅片应用的环境,按照管内与管外;液体之间换热、液体与气体之间换热、气体与气体之间换热等方面对翅片进行分类,并详细阐述各种翅片的特点。

1.管内与管外翅片的结构形式与特点在换热器及许多换热设备中,传热壁面两侧流体的对流换热系数的大小往往很不均衡,因此需要在传热壁面对流换热系数小的那一侧加装翅片。

翅片管换热器所用翅片管有内翅片管和外翅片管两种,其中以外翅片管应用较为普遍。

外翅片管一般是用机械加工的方法在光管外表面形成一定高度、一定片距、一定厚度的翅片。

翅片管的型式有螺旋翅片管、套装翅片管、滚轧式翅片管、板翅式翅片管[2]。

其中螺旋形翅片管广泛应用于管内为液体或气液两相工质而管外为气体的场合,具有强化管外气流扰动、扩大换热面积的作用,从而增强传热,节约能源。

同时由于其结构紧凑,使金属耗量减少,因此在电场锅炉中采用螺旋管束翅片管省煤器可大大节省运行费用,在国内外得到了迅速的推广应用[3]。

为改进螺旋形翅片管易积灰且不易清理的缺点,近年来提出了H型鳍片管。

H型鳍片管,亦称H型肋片管,是把两片中间有圆弧的钢片对称地与光管焊接在一起形成鳍片(肋片或蝶片),正面形状颇像字母“H”。

由于其鳍片表面特殊的沟槽结构,去除了部分在鳍片表面进口和尾部分离区中的换热面积,降低了进口和尾部分离区传热恶化对整个鳍片传热的影响,从而提高了鳍片的平均对流换热系数和鳍片效率,达到强化传热的目的,并避免了螺旋鳍片管束常见的因结构设计不合理导致的鳍片烧毁问题[4]。

高效间壁式换热器板翅式换热器板翅式换热器

高效间壁式换热器板翅式换热器板翅式换热器

(2)类型
翅片有锯齿形、平直形、多孔形等多种 结构型式,可根 据不同的操作条件来选 择合适的翅片型式;
翅片的扩展面和翅片对流体的扰流能力 决定了热交换能力;
因此板翅式换热器具有结构紧凑、轻巧 及传热效率高等特点。
平直翅片特点是有很长的带 光滑壁的长方型翅片,传热 与流动特性类似于流体在长 圆型管道中的流动。传热系 数和阻力都较小,适宜用于 阻力要求较小而自身传热性 能较好的场合。
(1)当量直径 d e
de
4A' 4xy 2xy U 2(xy) xy
(2)通道横截面积A
对于每层单元,通道的横截面积为
Ai
xy
B ,m2
s
芯体的n层通道的横截面积为 AnAi nxyBs,m2
❖波纹翅片是将薄金属板冲压 或滚轧成一定的波形,形成 弯曲流道,不断改变流体的 流动方向,以促进流体的湍 动,分离和破坏热阻边界层, 其效果相当于翅片的折断。 波纹愈密、波幅愈大,越能 强化传热。
百叶窗式翅片又称鳞 片式翅片或切断式翅 片,其特点是翅片上 冲有等距离的百叶窗 式的栅格,向内流道 凸出,起到强化传热 的作用。
65PZ2103 表示:翅高6.5mm,
节距(或翅片间距)2.1mm, 厚度0.3mm 平直翅片
(2)导流片和封头
为了便于把流体均匀地引导到翅片的各 流道中或汇集到封头中,一般在翅片的 两端均设有导流片。它的结构与多孔翅 片相同,但其翅距、翅厚和小孔直径比 多孔翅片大。
封头的作用就是集聚流体,使板束与工 艺管道连接起来。
锯齿形翅片可看做平直翅片切成许 多短小的片段并相互错开一定间隔 而形成的间断式翅片。这种翅片对 促进流体的湍动,破坏热阻边界层 十分有效,属于高效率翅片。但流 体通过锯齿形翘片时其流动阻力相 应增大。锯齿形翅片普遍用在需要 强化传热(尤其是气侧)的场合。

板翅式散热器介绍

板翅式散热器介绍

从结构形式上看,目前油换热器主要有以下几种类型:(1)管片式结构主要由翅片(结构型式有开窗、不开窗或褶皱压凹翅片等)和散热管(圆管或者扁平管)、主片组成散热芯体,再焊接上下集油室、进出油接管等组成整个换热器。

特点:承压能力较高,散热效率较低,工作效率高,便于组织流水线生产,但由于散热效率低等原因,目前较少采用。

(2)管带式结构主要由散热扁管、波浪散热带、加强板、主片组成散热芯体,再焊接上下集油室、进出油接管等零部件组成整个换热器。

特点:散热效率高,但承压能力较低,工作效率高,便于组织流水线生产,目前较多采用。

(3)板翅式结构主要由隔板、内翅片以及散热带和封头、封条组成芯体,再焊接上下集油室、进出油接管等零部件组成整个换热器。

特点:散热效率高,承压能力高,但工作效率低,要求精度高,焊接方式特殊,不便于大批量生产,目前较少采用表2-1 常用清洗方法Table2-1 The Common Cleaning Methods序号清洗方法11,用有机溶剂清洗并晾干;2,在温度60~70℃的水溶液中加Na3PO4(40~60)g;NaOH(8~12)g;水玻璃(25~30)g;清洗(3~5)min;3,在温度70~80℃的热水清洗池中冲洗;4,在温度70~80℃、加40~60g/L 的NaOH 水溶液中清洗;5,冷水洗;6,在温度8~25℃,加250~300g/L 的HNO3水溶液中清洗;7,在清洗池的流动热水中清洗;8,干燥。

21,在温度60~70℃,加5%NaOH 的水溶液中清洗2min;2,在清洗池中用热水清洗;3,在温度60~65℃,加15%NaOH 水溶液中清洗(2~5)min;4,在清洗池中用热水清洗;5,清洗池中用冷水冲洗;6,干燥。

31,把5%(按重量)无水Na2CO3溶解在90℃水里,浸(10~30)s;2,把2%NaOH(按重量)和5%Na2SiO3 (按重量)水玻璃溶解在90℃水中,浸(1~2)min;3,在清洗池中用热水清洗;4,在温度65℃,15%HNO3 (按重量)溶液中浸(1~2)min;5,热水冲洗,烘干。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不同翅片形式管翅式换热器流动换热性能比较摘要:随着制冷空调行业的发展,人们已经把注意力集中在高效、节能节材的紧凑式换热器的开发上,而翅片管式换热器正是制冷、空调领域中所广泛采用的一种换热器形式。

对于它的研究不仅有利于提高换热器的换热效率及其整体性能,而且对改进翅片换热器的设计型式,推出更加节能、节材的紧凑式换热器有着重要的指导意义。

由于翅片管式换热器在翅片结构形式和几何尺寸的不同,造成其换热性能和阻力性能上的极大差异。

本文概述目前国内外空调制冷行业中的普遍采用的几种不同翅片类型(平直翅片、波纹翅片、开缝翅片、百叶窗形翅片)的换热及压降实验关联式及其影响因素,对不同翅片形式的管翅式换热器的换热及压降特性的实验关联式进行总结,并对不同翅片的流动换热性能进行了比较。

正确地选用实验关联式及性能指标,将对翅片管式换热器的优化设计及其制造提供可靠的依据。

关键词:翅片形式;管翅式;换热器;关联式;流动换热性能Study on heat transfer and flow characteristics of fin-and-tube heat exchangers with various fintypesAbstract:With the development of refrigeration and air conditioning, high efficiency, energy saving and material saving compact type of heat exchanger is development, as one kind of compact heat exchanger, fin-and-tube heat exchanger has a wide application in future. It is necessary to develop compact heat exchanger which is more energy saving and material saving to improve the heat exchanger thermal efficiency and the overall performance of heat transfer.This paper summaries the heat transfer and pressure drop correlations of different fin surfaces, and the corresponding influencing factors. The heat transfer and friction characteristic of these kinds of fin types are compared, and the results show the difference of these fin types. The appropriate correlation and evaluation criterion will provide reliable foundation to the design and optimization of compact heat exchangers.Key words:Fin-and-tube heat exchanger; Heat transfer and flow characteristics; Experimental correlations; Comparison目录1 绪论 (2)1.1课题背景及研究意义 (3)1.2管翅式换热器简介 (3)1.3管翅式换热器的特点 (4)1.4 管翅式换热器的换热过程 (4)1.5研究现状 (5)1.5.1国外实验及模拟研究进展 (5)1.5.2国内研究现状和数值模拟 (6)1.5.3管翅式换热器及发展趋势 (8)1.6 管翅式换热器的不同形式的翅片研究现状 (9)2影响翅片换热和压降性能的主要结构因素 (11)2.1翅片间距对换热特性和压降特性的影响 (12)2.2管排数对换热特性和压降特性的影响 (12)2.3管径对换热特性和压降特性的影响 (13)2.4管间距对换热特性和压降特性的影响 (13)3.不同翅片经验关系式总结及比较 (14)3.1 平直翅片经验关系式的总结 (14)3.2 波纹翅片经验关系式的总结 (18)3.3 百叶窗翅片经验关系式的总结 (23)3.4 开缝翅片经验关系式的总结 (26)4.四种翅片经验关系式比较 (31)结论 (38)参考文献 (40)致谢 (44)1 绪论1.1课题背景及研究意义换热器是国民生产中的重要设备,其应用遍及动力、冶金、化工、炼油、建筑、机械制造、食品、医药及航空等各工业部门。

例如,过路热力系统中的过热器、省煤器、空气预热器、凝汽器、除氧器、给水加热器、冷却塔等;金属冶炼系统中的热风炉、空气或煤气预热器、废热锅炉等;制冷及低温系统中的蒸发器、冷凝器、回热器等;石油化工工业中广泛采用的加热及冷却设备等,制糖工业和造纸工业的糖液蒸发器和纸浆蒸发器,这些都是换热器应用的大量实例。

它不但是一种广泛应用的通用设备,并且在某些工业企业中占有很重要的地位。

例如在是有化工工厂中,它的投资要占到整个建厂投资的1/5左右,它的重量站工艺设备总重的40%;在年产30万吨的乙烯装置中,它的投资站总投资的25%。

由于世界上燃煤、石油、天然气资源储量有限而面临这能源短缺的局面,各国都致力于新能源的开发,并积极开展预热回收及节能工作,因而换热器的应用又与能源的开发及节约有着密切的联系。

在这一工作中,换热器也充当着一个重要的角色,其性能的好坏也直接影响到能源利用的效益。

热交换器作为一种利用能源与节约能源的有效设备,在余热利用、核能利用、太阳能利用和地热利用等方面也起着重要的作用。

随着我国工业的不断发展,对能源利用、开发的合理性与有效性的要求不断提高,因而对换热器性能的要求也日益增加。

特别是对换热器的研究必须满足各种特殊情况和苛刻条件的要求,对它的研究也就显得更为重要。

因此,在换热器的生产及研究开发上除了满足各种必需的工艺条件之外,对它的综合性能也提出了更高的要求。

1.2管翅式换热器简介换热器是热力系统的关键设备,管翅式换热器是比较常用的换热器结构形式。

翅片分为单、双或多排结构。

这种形式的换热器具有结构简单,便于加工、装配的特点,广泛的应用于石油化工、航空、车辆、动力机械、空分、深低温领域、原子能和宇宙航天等工业部门。

管翅式换热器的基本结构是由翅片、隔板、封条和导流片组成的通道。

它是在金属平板上放一翅片,然后再在其上放一金属平板,两边以封条密封而组成一个个基本单元。

管翅式换热器的芯体则是由多个这样的单位组成。

如果对各个通道进行不同的叠置和排列并钎焊成整体,即可得到最常用的错流、逆流、错逆流管翅式换热器芯体、管翅式换热器内可组成各种形式的流道,为使流体分布更加均匀,在流道的两段部均设置导流片,在导流片上开设许多小孔,使流体能够相互穿通。

一般情况下,从强度、热绝缘和制造工艺等要求出发,芯体顶部和底部还各留着若干曾假翅片层。

在芯体的两段配置适当的流体出入口封头,即可组装成完整的管翅式换热器。

翅片是管翅式换热器的最基本的原件,传热过程主要是依靠翅片来完成的,一部分直接由板来完成。

翅片与隔板的连接均为焊钳,因此大部分热量经翅片,通过隔板传到了冷流体。

由于翅片传热不隔板是直接传热,故翅片又有“二次表面”之称。

二次传热表面一般比一次传热表面的传热效率低。

翅片除承担主要的传热任务外,还起着两隔板之间的加强作用,所以尽管翅片和隔板材料都很薄,但其强度很高,故能承受较高的压力。

1.3管翅式换热器的特点1、高效节能:其换热系数在3000~4500kcal/m2·°C·h,比管壳式换热器的热效率高3~5倍。

2、结构紧凑:板式换热器板片紧密排列,与其他换热器类型相比,板式换热器的占地面积和占用空间较少,面积相同换热量的板式换热器仅为管壳式换热器的1/5。

3、容易清洗拆装方便:板式换热器靠夹紧螺栓将夹固板板片夹紧,因此拆装方便,随时可以打开清洗,同时由于板面光洁,湍流程度高,不易结垢。

4、使用寿命长:板式换热器采用不锈钢或钛合金板片压制,可耐各种腐蚀介质,胶垫可随意更换,并可方便在、拆装检修。

5、适应性强:板式换热器板片为独立元件,可按要求随意增减流程,形式多样;可适用于各种不同的、工艺的要求。

6、不串液,板式换热器密封槽设置泄液液道,各种介质不会串通,即使出现泄露,介质总是向外排出。

1.4 管翅式换热器的换热过程在空调中,换热器的结构采用铜管套翅片而组成传热管束,即锡翅片穿在直径较小的紫铜管上。

管翅式换热器换热过程:制冷剂(高温)通过铜管将热量以热传导的方式传递给管外的翅片,翅片将热量以对流的方式传递给其表面的的冷空气(常温),通过不停吹入新的冷空气达到增强冷却的目的。

管翅式换热器的翅片结构形式对其传热性能和阻力性能有很大的影响。

管翅式换热器的翅片型式很多,从最初的平直翅片到波纹翅片、银齿形翅片、百叶窗式翅片及打孔式翅片等。

平直翅片加工制造方便、不易发生变形及装配简单。

波纹翅片可使介质的流向不断改变以促进瑞流,提高传热效率,强化换热,可用于压力较高的气体场合本文研究了倾角均匀的波纹翅片及新型的倾角渐增的波纹翅片和前平直后倾角均勾的波纹翅片的圆管换热器的翅片结构对流体流动和换热过程的影响。

1.5研究现状1.5.1国外实验及模拟研究进展1973年,Rich[28]实验研究14种不同结构平翅片,结果表明,在其研究范文内,,翅片间距不影响传热效率,单根管子的压降和管排数无关。

1974年,Saboya等[29]首次在复杂的单排平翅片管换热器的翅片侧利用实验定量计算局部传热系数,总结出翅片表面局部Sh数的分布;得出翅片管上游的局部换热系数较高,下游的局部换热系数较低。

1978年,McQuiston[6]得出特定结构参数下的翅片换热及压降关联式。

而后Xu[31]模拟研究空调单元中蒸发器的湍流流动。

利用热线风速仪技术得到平均速度值和流动的湍流参数,由于凝结物的影响,实验结果会有流动干扰;运用U-e瑞流模型榄拟空调单元空气流动,得到的结架十分准确,再加上QUICK方法得到的平均速度提供了更加准确的结果。

另外,混合网格能快速达到收敛,并很好与实验结架达到一致。

1996年,Rammohan Rao[47]等实验研究水平翅片自然对流和辐射换热的关系。

借助干涉仪和数侦微分方获得对流换热量和福射换热量,并得到Nu和Re的关联式。

相关文档
最新文档