旋转对称图形
§10.3.3_旋转对称图形_教案
10.3.3 旋转对称图形教材分析:《旋转对称图形》这一节课的设计和教学过程来看,是培养学生空间观念的一个很重要的内容;从青少年空间知觉的认知发展来说,则是从静态的前后、左右的空间知觉进人感悟平移和旋转这一动态的空间知觉。
这是培养空间观念的基础,而空间观念是创新精神所需的基本要素。
没有空间观念,就几乎谈不上任何发明创造。
平移和旋转,在现实生活中,学生也都经历过,也应该有一种切实的感觉,只是不知道这两个专门术语。
其次,创设有教学的情境和策略。
整个情境的创设体现了生活实践教学化、数学概念实践化这样两个转化,即学生在一堂课中初步完成了个体在认识上从感性到理性又从理性回到感性这样两次飞跃。
让学生高高兴兴地感悟数学的魅力和价值,并从中体会教学的简洁美、对称美、轮换美。
学情分析:从学生的主观印象出发,然后引导学生探索旋转对称图形,是遵守学生的认知规律的。
针对我校学生的基础知识教弱,让学生操作,并让学生各抒己见交流合作获得经验,达到学习的目的教学目标知识与技能:认识旋转对称图形.过程与方法:经历探究图形之间的变换关系的过程,发展图形的分析能力,提高“化归”意识和综合运用变换解决实际问题的能力.情感态度与价值观:培养探究意识,感悟变换的内涵,体会其价值.重点、难点重点:认识旋转对称图形.难点:综合运用变换解决有关问题.教具准备一些关于旋转对称的图纸、半透明纸、图钉.教学过程:一提纲导学:(一)、创设情境,导入新知出示课本P76图15.2.8学生观察图形.老师用一张半透明纸,覆盖在图15.2.8上,并在薄纸上画这两个图形,使它们与图15.2.8所示的图形重合,然后用一枚图钉在圆心处穿过,将薄纸绕着图钉旋转多少度后(小于周角)薄纸上的图形能与原图形再一次重合.由上述操作可知:电扇的叶片转动120°后能与自身重合,螺旋桨转动180°后能与自身重合.这让我们想起轴对称来,这些图形如果沿着某条直线对折、对折的两部分是完全重合的,这样的图形称为轴对称图形,这里的轴对称图形指的是一个图形,用的是对折的办法,使对折的两部分是完全重合的,可今天我们也是对一个图形来说,但它不是采用对折使两部分重合,而是通过绕着一个点旋转一定角度后,旋转后的图形与原图形重合,这也是一种对称吗?回答应该是肯定的,它确实也是一种对称,称为旋转对称图形,这就是今天我们所要研究的课题:旋转对称图形(板书)(二、)出示导纲:1、下列图形不是旋转图形的是()A、线段B、等腰三角形C、等边三角形D、圆2、四边形ABCD是旋转对称图形,点_______是旋转中心,•旋转了_____度后能与自身重合,则AD=_____,DC=_____,AO=_____,BO=_____.3、如图所示的图形绕哪一点旋转多少度后能与自身重合?答:4、如图所示的五角星绕哪一点旋转多少度后能与自身重合?答:第3题第4题二合作讨论:1.在日常生活中,一些图形绕着某一定点转动一定的角度后能与自身重合。
旋转对称图形的举例
自然界
工程领域
自然界中存在着大量的旋转对称现象,如 雪花、花朵等,这些自然形态的美丽和和 谐都与旋转对称有关。
在机械工程、航空航天等领域中,旋转对 称图形的应用也十分广泛,如各种旋转机 械零件、飞机和火箭的旋翼等。
THANKS
感谢观看
抛物线形
总结词
抛物线形是一种特殊的曲线,它具有旋转对称性。
详细描述
抛物线形关于其对称轴具有旋转对称性。例如,将抛物线形绕其对称轴旋转180 度,能与原图形完全重合。
03
旋转对称图形的性质
对称轴的性质
对称轴唯一性
旋转对称图形只有一条对称轴,该对称轴是固定不动的。
对称轴稳定性
对称轴是旋转对称图形稳定性的基础,任何微小的旋转都会 导致图形的不变。
在自然界中,许多物体和现象都具有旋转对称的特性,例 如行星、卫星、花朵、雪花等。
旋转对称的特性在自然界中广泛存在,因为这种特性有助 于物体在空间中保持平衡和稳定,同时也有助于自然界的 美观和和谐。
05
结论
总结旋转对称图形的特点和性质
旋转对称图形的定义
旋转对称图形的性质
旋转对称图形是指通过旋转一定的角 度后,能够与自身重合的图形。
在自然界和日常生活中,许多物体都 具有旋转对称性,如花朵、行星等, 这种特性使得它们在视觉上更加美观 和和谐。
02
常见的旋转对称图形
正方形
总结词
正方形是一个四边等长且四个角 都是直角的平面图形,它具有旋 转对称性。
详细描述
正方形无论从哪个角度旋转,都 能与自身重合。例如,将正方形 绕其中心点旋转90度、180度或 270度,都能与原图形完全重合 。
图形变换不变性
在旋转对称图形进行旋转时, 其形状和大小不会发生改变。
旋转对称图形
你能设计一个旋转30度后能 与自身重合的图形吗?
完成P125 习题10.3
旋转对称图形与以前学过的轴对 称图形有何关系?
旋转对称图形与轴对称图形是两种 不同的对称图形,旋转对称图形不一定是 轴对称图形,轴对称图形不一定是旋转对 称图形,它们是两个不同的概念.
一个是旋转一定的角度得到,一个是翻折得到。
三 P124练习
2.找找看,下面图形中有几 匹马? 4匹马 它们的位置 关系大致如何?
(C)等边三角形是旋转对称图形;
(D)等边三角形的对称轴只有一条.
10.长方形的旋转中心是对角线的交点 ,旋转 180 度与自身重合;五角星旋转____________ 72,144,216,288 度能与
自身重合.
旋转作图
例 设计一个旋转90°后能与自身重合的图形. 解 (1)任意定一点O为旋转中心; (2)以点O为中心,把周角360°分成4等份; (3)如图,以圆形为轮廓,在四个小扇形内画 上相同的图案即可. 所以右图就是一个符合条件 的图形.
(A)
(B)
(C)
(D)
5.下列说法中正确的是(
)
(A)是旋转对称图形,肯定不是轴对称图形; (B) 是轴对称图形,肯定是旋转对称图形; (C)一些图形可能既是旋转对称图形,又是轴
对称图形; (D)既不是旋转对称图形,又不是轴对称图形 的图形不存在. 6.在梯形、等边三角形、等腰三角形、正方形、 线段、正六边形、圆中是旋转对称图形的是 _______________________________________. 等边三周重合两次
旋转一周重合两次
旋转一周重合三次
旋转一周重合三次
旋转一周重合四次
旋转一周重合四次
旋转对称图形与中心对称图形
初二数学讲义第三讲 旋转对称图形与中心对称图形一、主要知识点1.把—个图形绕旋转中心旋转一定(小于周角)角度后,所得图形能够与自身重合,这种图形称为旋转对称图形。
2.中心对称图形是绕某一中心点旋转180°后能与自身重合的旋转对称图形,这个中心点叫做对称中心;3.中心对称图形是旋转对称图形的特例。
4.中心对称的特征:如果两个图形成中心对称,那么对称中心在对应点的连线上且平分这条线段.两个图形的对应角相等,对应线段平行且相等,两个图形的形状和大小都一样。
5.中心对称与中心对称图形:中心对称与中心对称图形是两个不同的概念,它们既有区别又有联系。
区别:(1)中心对称是指两个图形的关系,中心对称图形是指一个具有某种性质的图形。
(2)成中心对称的两个图形的对称点分别在两个图形上,中心对称图形的对称点在一个图形上。
联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称,若把中心对称的两个图形看成—个整体,则成为中心对称图形。
6.常见的中心对称图形有:①线段;②相交直线;③平行四边形;④矩形;⑤菱形;⑥正方形;⑦圆。
既是轴对称图形,又是中心对称图形的有:①线段;②相交直线;④矩形;⑤菱形;⑥正方形;⑦圆。
二、例题与练习例1.下列旋转对称图形中绕哪一个点旋转多少度与自身重合?答:例2.如图所示,该图按顺时针绕旋转中心旋转,可与自身重合的度数是 ( ) (A )60°; (B )180°; (C )120°; (D )320°。
答:(1)(3) (4) (5)例3.如图,△ABC 为等边三角形,D 为△ABC 内一点,△ABD 经过旋转后到达△ACE 的位置。
(1)旋转中心是点 ;(2)旋转角度是 ;(3)△ADE 是 三角形。
例4、如图,已知△ABC 和点O ,画出△A ’B ’C ’,使△A ’B ’C ’和△ABC 关于点O 成中心对称。
解:(1)连结 并延长 到 ,使 = ,于是得到点 的对称点 ;(2)同样画出点 和点 的对称点 和 ; (3)顺次连结 、 、 。
几何图形的旋转对称性质
几何图形的旋转对称性质一、定义与性质1.旋转对称图形:在平面内,如果把一个图形绕着某一点旋转一个角度后,能够与另一个图形重合,那么这个图形就叫做旋转对称图形。
2.旋转中心:旋转对称图形时,图形绕着旋转的点叫做旋转中心。
3.旋转角:图形旋转的角度叫做旋转角。
4.旋转对称性质:(1)旋转对称图形具有轴对称性质。
(2)旋转对称图形的边长、角度、面积等都不变。
(3)旋转对称图形的对应点、对应线段、对应角相等且共线。
二、常见旋转对称图形1.正多边形:正n边形(n为正整数)绕着中心旋转一个角度后,能够与另一个正n边形重合。
2.圆:圆绕着圆心旋转任意角度后,能够与另一个圆重合。
3.线段:线段绕着中点旋转一个角度后,能够与另一个线段重合。
4.等腰三角形:等腰三角形绕着底边中点旋转一个角度后,能够与另一个等腰三角形重合。
5.等边三角形:等边三角形绕着重心旋转一个角度后,能够与另一个等边三角形重合。
6.矩形、正方形、菱形:这些四边形绕着对角线交点旋转一个角度后,能够与另一个矩形、正方形、菱形重合。
三、旋转对称性质的应用1.构造图形:利用旋转对称性质,可以构造出各种几何图形。
2.证明定理:在证明几何定理时,可以利用旋转对称性质简化证明过程。
3.计算面积:利用旋转对称性质,可以简化计算几何图形面积的过程。
4.设计图案:在设计图案时,可以利用旋转对称性质创造出各种美丽的图案。
四、注意事项1.旋转对称图形与轴对称图形的区别:旋转对称图形是绕着某一点旋转,而轴对称图形是绕着某一条直线折叠。
2.旋转角的选择:在进行图形旋转时,旋转角的选择应尽量便于观察和计算。
3.注意旋转对称性质的应用范围:旋转对称性质适用于大部分平面几何图形,但并非所有图形都具有旋转对称性质。
习题及方法:1.习题:判断下列图形中,哪些是旋转对称图形。
(1)正三角形(3)五角星对于每个图形,想象将其绕着某一点旋转,看是否能与原来的图形重合。
(1)正三角形:可以绕着其中心旋转120度,与原来的图形重合,所以是旋转对称图形。
华东师大版七年级下册10.旋转对称图形课件(共15张)
注意:若顺时针或逆时针旋转
一定角度,该图形都能与原图
F
形重合,则可以淡化旋转方向.
C O
D E
1. 定义:如果一个图形绕着某一定点旋转一定角度后
能与自身重合,那么这个图形就叫做旋转对称图形.
2. 旋转对称图形的旋转角度:
(1)旋转角的范围:大于0°且小于360°;
(2)最小旋转角度:最小旋转角度=
1. 一个旋转对称图形旋转的角度可能不止一种. 2. 旋转对称图形的旋转中心一定在图形内或图形上. 3. 旋转角不确定时,先在0°~360°范围内找出其旋
转后能与自身重合的最小角度,并在此范围内找出 所有这一最小角度的倍数,那么这一图形旋转这一 最小角度的整数倍数后均与原图形重合.
例4 如图,△ABC中,∠BAC=90°,P是△ABC内一点, 将△ABP绕点A逆时针旋转一定角度后能与△ACQ重 合,如果AP=3,那么△APQ的面积是多少?
解:因为将△ABP绕点A逆时针旋转一定角度后能与
△ACQ重合,
所以AP=AQ=3,AB=AC.
因为∠BAC=90°,所以∠PAQ=90°,
所以△PAQ是等腰直角三角形.
所以S△APQ=
AP AQ 2
33 2
9 .
2
当堂练习
B
A
3、请大家欣赏下列图形,它们是旋转对称图形吗?它们 还是轴对称图形吗?如果是旋转图形想一想它们的旋转中 心在哪里?旋转角度是多少?
三个图形都是旋转对称图形,也都是轴对称图形; 它们的旋转中心为对称轴的交点; 最小旋转角分别为60°,72°,90°.
360 基本图形数
;
(3)旋转角度:旋转角度是最小旋转角度的整数倍.
例1 为了提高学生们的设计能力,某中学举行了图案 设计大赛,如图所示的是四名参赛选手设计的图 案.其中是旋转对称图形的是( D )
旋转对称图形
基本概念:
1.旋转的概念: 在平面内,将一个图形绕着一个 定点沿某个方向转动一个角度的运动叫做图形 的旋转. 2.旋转对称图形:一个图形绕着一个定点,沿某个 方向旋转一定角度后能与自身重合,这样的图形 称为旋转对称图形。其中这个定点叫旋转中心, 某个方向叫旋转方向。这个角叫旋转角。 3.成旋转对称的两个图形:一个图形绕着一个定点, 沿某个 方向旋转一定角度后能与另一个图形重合, 这样的两个图形叫做关于某一点旋转对称
【跟踪训练】 1.(2012·苏州中考)如图,将 △AOB绕点O按逆时针方向旋转 45°后得到△A′OB′,若∠AOB= 15°,则∠AOB′的度数是( )
(A)25°
(C)35°
(B)30°
(D)45°
2. 如 图 所 示 , 在 等 腰 直 角 三 角 形 A B C 中 ,
∠B=90°,将△ABC绕点A逆时针旋转60°后得
D
点E
EAD
等腰直角
AE
等腰直角
12cm 6cm2
如图,△ABC绕O点旋转后,顶点A的对应 点为点D,试确定B, C对应点的位置,以及旋 转后的三角形。
E
D A B (1)△ABC绕O旋转,能确定它 的旋转角吗?
F
O C
(2) 假设B, C的对应点分别是 E、F,则∠BOE、∠COF与 ∠AOD什么关系?线段OB, OE, OC, OF中有哪些相等关系?
10. 旋转的特征的两点作用:(1).利用旋转
的特征可以判断线段或角是否相等,主要有两种方 法:一是根据旋转角相等,对应点与旋转中心的连线 相等可得线段或角相等;二是根据旋转前后的图形
与原来图形的形状、大小都相同可得图形的对应线
段、对应角相等.2. 利用旋 Nhomakorabea的特征还可以计算图形的面积、线段的
初中数学 轴对称图形和旋转有什么关系
初中数学轴对称图形和旋转有什么关系轴对称图形和旋转在数学中有密切的关系。
旋转是指以某个点为中心,按照一定的角度将图形绕着这个点旋转。
下面是轴对称图形和旋转之间的关系:1. 旋转不改变轴对称图形的对称性质:旋转操作不改变图形的形状、大小和方向,因此它也不会改变轴对称图形的对称性质。
如果一个图形是轴对称的,那么它的旋转后仍然是轴对称的。
这意味着,如果我们对一个轴对称图形进行旋转操作,它的对称轴位置和方向会随着旋转而改变。
2. 旋转改变轴对称图形的方向:通过旋转操作,我们可以改变轴对称图形的方向。
旋转可以使轴对称图形沿着旋转中心旋转一定的角度,从而改变图形的方向。
旋转的角度和方向决定了轴对称图形旋转后的新位置和相对关系。
3. 旋转构造新的轴对称图形:通过旋转操作,我们可以构造出新的轴对称图形。
例如,如果一个图形是轴对称的,那么对它进行旋转操作后,旋转后的图形也是轴对称的,但它的对称轴方向和位置发生了变化。
通过不同的旋转操作,我们可以得到各种不同方向的轴对称图形。
4. 旋转可以帮助解决轴对称图形的问题:在解决与轴对称图形相关的问题时,我们经常使用旋转操作来帮助我们更好地理解和解决问题。
通过旋转,我们可以改变轴对称图形的方向和位置,从而更好地研究和分析问题。
旋转操作还可以帮助我们发现图形的对称性质和规律。
总之,轴对称图形和旋转之间有密切的关系。
旋转操作不改变轴对称图形的形状、大小和对称性质,但可以改变图形的方向和位置。
通过旋转操作,我们可以构造新的轴对称图形,并且可以利用旋转操作帮助解决轴对称图形的问题。
希望以上内容能够帮助你理解轴对称图形和旋转之间的关系。
如果你还有其他问题,请随时提问。
《中心对称图形》旋转中心对称图形
特点
中心对称图形有一个特点,就是 围绕一个点旋转180度后,能够与 原来的图形重合。这个点通常被 称为“对称中心”。
实例
常见的中心对称图形有圆形、矩形 、菱形等。
中心对称图形的性质
旋转性质
对于中心对称图形,如果我们 将其围绕对称中心旋转180度, 那么它所对应的点也会旋转180
度。
对称性质
中心对称图形的两个部分是关 于对称中心对称的,也就是说 ,如果我们将图形的两部分沿 着对称中心对折,它们会重合
04
中心对称图形和旋转中心对 称图形的实例
中心对称图形的实例
圆
圆是一种典型的中心对称图形,圆的直径是它的对称轴,圆心是 它的对称中心。
蝴蝶
蝴蝶的身体结构呈现出中心对称的特性,当它停在花朵上时,翅 膀上的花纹左右对称,给人以美的享受。
雪花
雪花是一种美丽的晶体,其结构呈现出中心对称的特性,即从中 心向各个方向扩展的形状都是相同的。
中心对称图形与旋转中心对称图形的区别
中心对称图形是对称中心两侧的图形 关于对称中心进行对称,而旋转中心 对称图形是图形围绕某一点旋转180
度后与原图形重合。
中心对称图形是一种静态的对称形式 ,而旋转中心对称图形是一种动态的
对称形式。
中心对称图形强调的是两侧图形的对 称性,而旋转中心对称图形强调的是
THANK YOU.
图形的旋转和重合。
中心对称图形与旋转中心对称图形的转化
旋转中心对称图形可以通过将中心对称图形绕其对称中心旋转180度得 到。
中心对称图形可以通过平移和翻转得到旋转中心对称图形。
在某些情况下,可以将中心对称图形转化为旋转中心对称图形,例如将 一个平行四边形绕其对角线的交点旋转180度后可以得到一个菱形,这 个菱形就是一个旋转中心对称图形。
旋转对称图形的举例(例子)
旋转对称图形的特性
旋转对称性
旋转对称图形具有旋转对称性 ,即可以通过旋转一定角度与
自身重合。
旋转对称中心
每个旋转对称图形都有一个旋 转对称中心,所有点围绕该中 心旋转一定角度后与原图重合 。
旋转角度
不同的旋转对称图形具有不同 的旋转角度,使得图形能够完 全重合。
旋转次数
一些图形可能需要多次旋转才 能与自身重合,而另一些图形
03 举例
CHAPTER
中心对称图形举例
圆
正方形
无论从哪个方向旋转180度,都能与 原图重合。
以中心点为中心,旋转180度后与原 图重合。
球体
无论从哪个方向旋转180度,都能与 原图重合。
轴对称图形举例
矩形
以任意垂直或水平中轴线为轴, 旋转180度后与原图重合。
正三角形
以中心点为中心,旋转180度后与 原图重合。
旋转对称图形的举例
目录
CONTENTS
• 旋转对称图形的定义 • 旋转对称图形的分类 • 举例
01 旋转对称图形的定义
CHAPTER
旋转对称图形的定义
01
旋转对称图形是指通过旋转某个 角度后与自身重合的图形。
02
旋转对称中心是图形旋转的固定 点,所有其他点围绕该中心旋转 一定角度后与原图重合。
等腰三角形
以高线为轴,旋转180度后与原图 重合。
点对称图形举例
正六边形
以中心点为中心,旋转60 度后与原图重合。
正十二边形
以中心点为中心,旋转30 度后与原图重合。
圆与原 图重合。
谢谢
THANKS
举例
矩形、正方形、等腰三角 形、线段等。
特性
轴对称图形有一条对称轴, 图形关于该轴对称,且沿 对称轴折叠后,两侧部分 完全重合。
《旋转对称图形》课件
旋转对称图形的旋转中心
旋转中心
旋转对称图形有一个或多个旋转中心,图形围绕 这些中心旋转特定角度后与原图重合。
旋转中心的确定
旋转中心通常位于图形的对称轴上,可以通过几 何推理或计算得出。
旋转对称图形的旋转轴
旋转轴
旋转对称图形有一个或多个旋转轴,这些轴是图形旋转对称的基准线。
旋转轴的特性
旋转轴通常与图形的对称轴重合,或者通过图形的对称中心。了解旋转轴有助于理解图形的对 称性质和几何特性。
《旋转对称图形》 ppt课件
目录
• 旋转对称图形的定义 • 旋转对称图形的性质 • 常见的旋转对称图形 • 旋转对称图形的应用 • 如何绘制旋转对称图形 • 总结与思考
01
旋转对称图形的定义
什么是旋转对称图形
01
旋转对称图形
指在旋转一定角度后与原图重合的平面图形。
02
旋转对称中心
图形旋转时所围绕的固定点称为旋转对称中心。
除了几何软件和手工绘制外,还 可以使用其他工具如图形编辑器 、画图板等来绘制旋转对称图形
。
操作步骤
打开相应的工具,选择合适的绘图 工具,然后按照相应步骤绘制出旋 转对称图形。
技巧提示
在使用其他工具绘制时,要注意工 具的特性和功能,以便更好地利用 它们来绘制出精美的旋转对称图形 。
06
总结与思考
总结旋转对称图形的性质和应用
使用手工绘制旋转对称图形
工具准备
技巧提示
准备纸、笔、尺、圆规等基本绘图工 具。
在绘制过程中,要保持线条的流畅和 直线的平行,以确保图形的准确性和 美观度。
操作步骤
先画出对称轴,然后使用圆规和尺子 在纸上绘制出对称的图形,最后将图 形进行旋转得到旋转对称图形。
旋转对称图形课件
旋转对称图形课件一、教学内容本节课的教学内容来自人教版小学数学四年级下册第五单元《旋转对称图形》。
该章节主要内容包括:了解旋转的概念,认识旋转对称图形,学会用旋转的方式将图形进行变换,并理解旋转对称图形的特点。
二、教学目标1. 让学生掌握旋转的概念,理解旋转对称图形的特征。
2. 培养学生运用旋转方法解决问题的能力。
3. 培养学生的观察、思考、动手操作能力,发展学生的空间观念。
三、教学难点与重点重点:旋转的概念,旋转对称图形的特征。
难点:理解旋转对称图形的特点,运用旋转方法解决问题。
四、教具与学具准备教具:多媒体课件、旋转对称图形卡片、黑板。
学具:学生用书、练习本、彩笔。
五、教学过程1. 实践情景引入:教师展示一幅美丽的蝴蝶图片,引导学生观察蝴蝶的翅膀。
提问:“蝴蝶的翅膀有什么特点?”(蝴蝶的翅膀是对称的。
)2. 概念讲解:教师讲解旋转的概念,并通过示例演示旋转的过程。
讲解旋转对称图形的概念,展示几个旋转对称图形,如风车、飞机等。
3. 例题讲解:教师出示例题,如:将一个正方形绕某一点旋转90°,求旋转后的图形。
引导学生观察、思考,并讲解解题步骤。
4. 随堂练习:教师给出几道练习题,让学生独立完成,检验学生对旋转对称图形的理解和掌握程度。
5. 动手操作:学生分组进行动手操作,用彩笔在纸上绘制一个旋转对称图形,并展示给全班同学。
6. 板书设计:教师在黑板上绘制一个旋转对称图形,标注出旋转中心和旋转角度,并写出旋转对称图形的特征。
7. 作业设计题目1:判断下列图形中,哪些是旋转对称图形,哪些不是,并说明原因。
图形1:正方形图形2:蝴蝶图形3:风车题目2:将一个三角形绕某一点旋转180°,求旋转后的图形。
答案:题目1:图形1:是旋转对称图形,因为可以围绕某一点旋转180°后与原图形重合。
图形2:是旋转对称图形,因为可以围绕某一点旋转一定角度后与原图形重合。
图形3:不是旋转对称图形,因为无法围绕某一点旋转一定角度后与原图形重合。
15.2.3旋转对称图形
15.2.3旋转对称图形教学目标:1.知道什么叫旋转对称图形;2.能找出图形的旋转中心和旋转角;3.知道旋转对称图形是具有旋转特征的特殊图形。
复习导学:回忆旋转的特征:图形中每一点都绕着旋转中心按 旋转方向旋转了 大的角度,对应点到旋转中心的距离 ,对应线段 ,对应角 ,图形的 与 都没有发生变化。
创设情景:观察下面图形旋转的特点:这两个图形绕着某一定点旋转一定的角度后都能与自身重合,这样的图形就是旋转对称图形,你能说说定义吗? 概括:一个图形绕着某一 旋转一定的 后能与自身重合,这个图形就叫做旋转对称图形。
这个点就叫做 。
旋转的角度就叫 。
探索发现:无论ΔABC 顺时针旋转还是逆时针旋转3600,都能与自身重合。
那这个图形是不是旋转对称图形呢?你有何发现呢?是不是任意的图形旋转3600都能与自身重合呢?如:下面的图形旋转3600都能与自身重合吗?1A由此可见,旋转对称图形是具有旋转特征的特殊图形。
旋转角应00<旋转角<3600旋转对称图形有何特征呢?图形中的每一点都绕着旋转中心按同一旋转方向旋转了同样大的角度。
试一试:1、这个图形是不是旋转对称图形?如果是,这个图形旋转多少度能与自身重合呢?想一想它的旋转中心在哪?2、找出下列图形的旋转中心和旋转角。
3、下列图形哪些不是旋转对称图形。
()4、你能设计一个旋转300后能与自身重合的图形吗?5、如图,在纸上画∆ABC和经过点P的两条直线PQ、PR。
画出∆ABC 关于直线PQ对称的∆A′B′C ′ ,再画出∆A′B′C ′ 关于直线PR对称的∆A′′B′′C′′ .观察∆ABC和∆A′′B′′C′′,你能发现这两个三角形有什么关系吗?课堂作业:1.设计出一幅经过600旋转重合的图案.2.课本78页,习题15.2第1题;79页第4题课后反思:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六 作业布置
课本P79 习题15.2 4 5题
旋转对称图形
如图,(1)它是不是旋转对称图形? (2)旋转中心在何处? (3)该图形需要旋转多少度后,
· · O
能与自身重合?
(4)该图形是轴对称图形吗? (1)这个图形是旋转对称图形; (2)如图所示,点O为旋转中心; (3)该图形需要旋转180度后,能与自身重合; (4)该图形是轴对称图形,有两条对称轴.(如 图)
旋转对称图形与以前学过的轴对 称图形有何关系?
旋转对称图形与轴对称图形是两种 不同的对称图形,旋转对称图形不一定是 轴对称图形,轴对称图形不一定是旋转对 称图形,它们是两个不同的概念.
一个是旋转一定的角度得到,一个是翻折得到。
(做一做)在纸 上画△ABC和 过点P的两条 直线PQ、PR。 画出△ABC关 于PQ 对称三 角形 A′B′C′, 再画出 △A′B′C′ 关于PR对称的 三角 形 △A″B″C″。
A C O
B
旋转对称图形
·
120°
180°
(或240°) 如图11.2.8所示,电扇的叶片转动120 、螺旋桨转动180 后,都能与自身重合
旋转对称图形
60° ·
该图形绕圆心旋转60°或______, 120° 或180 ______ ° 或______ 后,都能与自身重合. 240° 或_____ 300°
⑴旋转的概念: 在平面内,将一个图形绕着一个 定点沿某个方向转动一个角度的运动叫做旋转. ⑵旋转的特征: ①旋转不改变图形大小和形状; ②旋转前后的对应线段相等, 对应角相等; ③对应点到旋转中心的距离相等; ④每一点都绕旋转中心按同一方向旋转同样大 小的角度, 即对应点与旋转中心连线的夹角都相等.
(1)、请你画出等腰直角ΔABD绕BD的中 点O顺时针旋转180°后的图形。 (2)、由1得到的图形与原图形组成了一个 C D 什么图形? D
C
O
• O B
A
A
B
将上述得到的正方形ABCD绕着O点旋转 得到的正方形能不能与原正方形重合? 需要旋转多少度? 能 90度180度270度…… 在日常生活中,我们经 D 常可以看到,一些图形 绕着某一定点转动一定 的角度后能与自身重合。 请举例说明
什么是旋转对称图形
在平面内,将一个图形绕着 某一定点旋转一定的角度(小于 周角)后能与自身重合,这种图 形就称为旋转对称图形.
旋转中心在图形的哪个位置?怎样确 定旋转角度?
旋转中心在图形的正中心 旋转角度的最小值是360度除以基本图案的 个数
1.下列英文字母中属于旋转对称图形的是(
)
C
旋转对称图形
观察△ABC和△A″B″C″ ,你能 发现这两个三角形有什么 关系吗?
A′ C′ B′ B″ C″ A″
△ABC 旋转后得到△A″B一点)相当于 原图形绕两条对称轴的交点P旋转了一定的角 度,旋转角度为两个对应点与旋转中心连线 Q R 的交角∠BPB″。 C'
C A' A'' C'' A B P
八(上)数学
B' B''
练习
2.找找看,下面图形中有几 匹马? 4匹马 它们的位置 关系大致如何?
绕矩形两条对角线的 交点旋转180度,两匹 马能够分别与另两匹 马大致重合
3.如图所示的图形绕哪一点旋转多少度后与自身重合?
(1)将图形绕圆心旋转 60,120,180,240,300度后都 能与自身重合.
(2)将图形绕中心旋转 90,180,270度后都能与自 身重合
你能设计一个旋转30度后能与 自身重合的图形吗?
八(上)数学
五 课堂小结
1.什么是旋转对称图形? 2.会找旋转对称图形的旋转中心和旋转度数; 3.旋转对称图案的设计; 4.一个图形旋转一定的角度后能与自身重合,这 样的旋转角度可能不止一个.
(A)
S
(B)
L
(C)
K
(D)
2.下列图形中,绕旋转中心旋转60°后能与自身 重合的是( )
(A)
(B)
(C)
(D)
旋转对称图形
如图,(1)它是不是旋转对称图形? (2)旋转中心在何处? (3)该图形需要旋转多少度后,
·O
能与自身重合?
(4)该图形是轴对称图形吗? (1)这个图形是旋转对称图形; (2)如图所示,点O为旋转中心; (3)该图形在旋转90度180度270度后都能与 自身重合; (4)该图形不是轴对称图形。