数值分析(Hilbert矩阵)病态线性方程组的求解Matlab程序

合集下载

数值分析中求解线性方程组的MATLAB程序(6种)

数值分析中求解线性方程组的MATLAB程序(6种)

数值分析中求解线性方程组的MATLAB程序(6种)1.回溯法(系数矩阵为上三角)function X=uptrbk(A,B)%求解方程组,首先化为上三角,再调用函数求解[N,N]=size(A);X=zeros(N,1);C=zeros(1,N+1);Aug=[A B];for p=1:N-1[Y,j]=max(abs(Aug(p:N,p)));C=Aug(p,:);Aug(p,:)=Aug(j+p-1,:);Aug(j+p-1,:)=C;if Aug(p,p)==0'A was singular.No unique solution.'break;endfor k=p+1:Nm=Aug(k,p)/Aug(p,p);Aug(k,p:N+1)=Aug(k,p:N+1)-m*Aug(p,p:N+1);endendD=Aug;X=backsub(Aug(1:N,1:N),Aug(1:N,N+1));2.系数矩阵为下三角function x=matrix_down(A,b)%求解系数矩阵是下三角的方程组n=length(b);x=zeros(n,1);x(1)=b(1)/A(1,1);for k=2:1:nx(k)=(b(k)-A(k,1:k-1)*x(1:k-1))/A(k,k);end3.普通系数矩阵(先化为上三角,在用回溯法)function X=uptrbk(A,B)%求解方程组,首先化为上三角,再调用函数求解[N,N]=size(A);X=zeros(N,1);C=zeros(1,N+1);Aug=[A B];for p=1:N-1[Y,j]=max(abs(Aug(p:N,p)));C=Aug(p,:);Aug(p,:)=Aug(j+p-1,:);Aug(j+p-1,:)=C;if Aug(p,p)==0'A was singular.No unique solution.'break;endfor k=p+1:Nm=Aug(k,p)/Aug(p,p);Aug(k,p:N+1)=Aug(k,p:N+1)-m*Aug(p,p:N+1);endendD=Aug;X=backsub(Aug(1:N,1:N),Aug(1:N,N+1));4.三角分解法function [X,L,U]=LU_matrix(A,B)%A是非奇异矩阵%AX=B化为LUX=B,L为下三角,U为上三角%程序中并没有真正解出L和U,全部存放在A中[N,N]=size(A);X=zeros(N,1);Y=zeros(N,1);C=zeros(1,N);R=1:N;for p=1:N-1[max1,j]=max(abs(A(p:N,p)));C=A(p,:);A(p,:)=A(j+p-1,:);A(j+p-1,:)=C;d=R(p);R(p)=R(j+p-1);R(j+p-1)=d;if A(p,p)==0'A is singular.No unique solution'break;endfor k=p+1:Nmult=A(k,p)/A(p,p);A(k,p)=mult;A(k,p+1:N)=A(k,p+1:N)-mult*A(p,p+1:N);endendY(1)=B(R(1));for k=2:NY(k)=B(R(k))-A(k,1:k-1)*Y(1:k-1);endX(N)=Y(N)/A(N,N);for k=N-1:-1:1X(k)=(Y(k)-A(k,k+1:N)*X(k+1:N))/A(k,k);endL=tril(A,-1)+eye(N)U=triu(A)5.雅克比迭代法function X=jacobi(A,B,P,delta,max1);%雅克比迭代求解方程组N=length(B);for k=1:max1for j=1:NX(j)=(B(j)-A(j,[1:j-1,j+1:N])*P([1:j-1,j+1:N]))/A(j,j);enderr=abs(norm(X'-P));relerr=err/(norm(X)+eps);P=X';if (err<delta)|(relerr<delta)breakendendX=X';k6.盖斯迭代法function X=gseid(A,B,P,delta,max1);%盖斯算法,求解赋初值的微分方程N=length(B);for k=1:max1for j=1:Nif j==1X(1)=(B(1)-A(1,2:N)*P(2:N))/A(1,1);elseif j==NX(N)=(B(N)-A(N,1:N-1)*(X(1:N-1))')/A(N,N);elseX(j)=(B(j)-A(j,1:j-1)*X(1:j-1)-A(j,j+1:N)*P(j+1:N))/A(j,j);endenderr=abs(norm(X'-P));relerr=err/(norm(X)+eps);P=X';if (err<delta)|(relerr<delta)break;endendX=X';k。

MATLAB计算方法3解线性方程组计算解法

MATLAB计算方法3解线性方程组计算解法

MATLAB计算方法3解线性方程组计算解法线性方程组是数学中的一个重要问题,解线性方程组是计算数学中的一个基本计算,有着广泛的应用。

MATLAB是一种功能强大的数学软件,提供了多种解线性方程组的计算方法。

本文将介绍MATLAB中的三种解线性方程组的计算方法。

第一种方法是用MATLAB函数“linsolve”解线性方程组。

该函数使用高斯消元法和LU分解法求解线性方程组,可以处理单个方程组以及多个方程组的情况。

使用该函数的语法如下:X = linsolve(A, B)其中A是系数矩阵,B是常数向量,X是解向量。

该函数会根据A的形式自动选择求解方法,返回解向量X。

下面是一个使用“linsolve”函数解线性方程组的例子:A=[12;34];B=[5;6];X = linsolve(A, B);上述代码中,A是一个2×2的系数矩阵,B是一个2×1的常数向量,X是一个2×1的解向量。

运行代码后,X的值为[-4.0000;4.5000]。

第二种方法是用MATLAB函数“inv”求解逆矩阵来解线性方程组。

当系数矩阵A非奇异(可逆)时,可以使用逆矩阵求解线性方程组。

使用“inv”函数的语法如下:X = inv(A) * B其中A是系数矩阵,B是常数向量,X是解向量。

该方法先计算A的逆矩阵,然后将逆矩阵与B相乘得到解向量X。

下面是一个使用“inv”函数解线性方程组的例子:A=[12;34];B=[5;6];X = inv(A) * B;上述代码中,A是一个2×2的系数矩阵,B是一个2×1的常数向量,X是一个2×1的解向量。

运行代码后,X的值为[-4.0000;4.5000]。

第三种方法是用MATLAB函数“mldivide”(或“\”)求解线性方程组。

该函数使用最小二乘法求解非方阵的线性方程组。

使用“mldivide”函数的语法如下:X=A\B其中A是系数矩阵,B是常数向量,X是解向量。

matlab演示病态方程组

matlab演示病态方程组

matlab演示病态方程组
病态方程组是指具有高度敏感性和不稳定性的方程组,即使在输入数据上稍微的变化也会导致输出结果的巨大变化。

在 MATLAB 中演示病态方程组可以通过以下步骤进行:
步骤1,定义病态方程组。

首先,我们需要定义一个病态方程组。

例如,我们可以选择一个已知的病态方程组,如希尔伯特矩阵方程组。

希尔伯特矩阵是一个特定形式的方阵,其元素由公式H(i,j) = 1/(i+j-1)计算得出。

步骤2,求解方程组。

利用 MATLAB 的求解器,如 "\" 运算符或 `linsolve` 函数,对病态方程组进行求解。

在求解过程中, MATLAB 会自动选择适当的数值方法来解决病态方程组。

步骤3,观察数值稳定性。

在求解完成后,可以通过观察结果的数值稳定性来判断方程组
的病态程度。

可以计算残差向量的范数,或者利用条件数等指标来
评估方程组的数值稳定性。

步骤4,参数变化的影响。

进一步,可以尝试对输入数据进行微小的变化,然后观察方程
组解的变化情况。

这可以帮助理解病态方程组的敏感性和不稳定性。

步骤5,使用数值稳定的方法。

最后,可以尝试使用一些数值稳定的方法来解决病态方程组,
如正则化方法、迭代方法等。

这些方法可以在一定程度上减轻病态
方程组带来的数值计算困难。

通过以上步骤,可以在 MATLAB 中演示病态方程组的求解过程,并观察其数值稳定性和参数变化的影响。

这有助于加深对病态方程
组特性的理解,以及选择合适的数值方法来解决这类问题。

数值分析实验报告——Hilbert矩阵的求解

数值分析实验报告——Hilbert矩阵的求解

1 / 7 数值分析课程实验报告题目:病态线性方程组的求解理论分析表明,数值求解病态线性方程组很困难。

考虑求解如下的线性方程组的求解Hx = b ,期中,期中H 是Hilbert 矩阵,()ij n n H h ´=,11ij h i j =+-,i ,j = 1,2,…,n 1.估计矩阵的2条件数和阶数的关系2.对不同的n ,取(1,1,,1,1))nx =Î,分别用Gauss 消去,Jacobi 迭代,Gauss-seidel 迭代,SOR 迭代和共轭梯度法求解,比较结果。

3.结合计算结果,试讨论病态线性方程组的求解。

解答过程1.估计矩阵的2-条件数和阶数的关系矩阵的2-条件数定义为:1222()Cond A A A-=´,将Hilbert 矩阵带入有:1222()Cond H H H -=´调用自编的Hilbert_Cond 函数对其进行计算,取阶数n = 50,可得从,可得从1阶到50阶的2-条件数,以五位有效数字输出,其中前10项见表1。

表1.前十阶Hilbert 矩阵的2-条件数阶数1 2 3 4 5 2-条件数1 19.281 524.06 1.5514e+004 4.7661e+005 阶数6 7 8 9 10 2-条件数1.4951e+007 4.7537e+008 1.5258e+010 4.9315e+011 1.6025e+013 从表1可以看出,随着阶数每递增1,Hilbert 矩阵的2-条件数都至少增加一个数量级,但难以观察出明显的相依规律。

故考虑将这些数据点绘制在以n 为横轴、Cond (H )2为纵轴的对数坐标系中(编程用Hilbert_Cond 函数同时完成了这个功能),生成结果如图1。

图1.不同阶数下Hilbert 矩阵的2-条件数分布条件数分布由图可见,当维数较小时,在y-对数坐标系中Cond (H )2与n 有良好的线性关系;但n 超过10后,线性趋势开始波动,n 超过14后更是几乎一直趋于平稳。

数值分析(hilbert矩阵)病态线性方程组的求解matlab程序

数值分析(hilbert矩阵)病态线性方程组的求解matlab程序

(Hilbert 矩阵)病态线性方程组的求解理论分析表明,数值求解病态线性方程组很困难。

考虑求解如下的线性方程组的求解Hx = b ,期中H 是Hilbert 矩阵,()ij n n Hh ,11ij h i j ,i ,j = 1,2,…,n 1.估计矩阵的2条件数和阶数的关系2.对不同的n ,取(1,1,,1)nx K ?,分别用Gauss 消去,Jacobi 迭代,Gauss-seidel 迭代,SOR 迭代和共轭梯度法求解,比较结果。

3.结合计算结果,试讨论病态线性方程组的求解。

第1小题:condition.m %第1小题程序t1=20;%阶数n=20x1=1:t1;y1=1:t1;for i=1:t1H=hilb(i);y1(i)=log(cond(H));endplot(x1,y1);xlabel('阶数n');ylabel('2-条件数的对数(log(cond(H))');title('2-条件数的对数(log(cond(H))与阶数n 的关系图');t2=200;%阶数n=200x2=1:t2;y2=1:t2;for i=1:t2H=hilb(i);y2(i)=log(cond(H));endplot(x2,y2);xlabel('阶数n');ylabel('2-条件数的对数(log(cond(H))');title('2-条件数的对数(log(cond(H))与阶数n 的关系图');画出Hilbert 矩阵2-条件数的对数和阶数的关系n=200时n=20时从图中可以看出,1)在n小于等于13之前,图像近似直线log(cond(H))~1.519n-1.8332)在n大于13之后,图像趋于平缓,并在一定范围内上下波动,同时随着n的增加稍有上升的趋势第2小题:solve.m%m第2小题主程序N=4000;xGauss=zeros(N,1);xJacobi=zeros(N,1);xnJ=zeros(N,1);xGS=zeros(N,1);xnGS=zeros(N,1);xSOR=zeros(N,1);xnSOR=zeros(N,1);xCG=zeros(N,1);xnCG=zeros(N,1);for n=1:N;x=ones(n,1);t=1.1;%初始值偏差x0=t*x;%迭代初始值e=1.0e-8;%给定的误差A=hilb(n);b=A*x;max=100000000000;%可能最大的迭代次数w=0.5;%SOR迭代的松弛因子G=Gauss(A,b);[J,nJ]=Jacobi(A,b,x0,e,max);[GS,nGS]=G_S(A,b,x0,e,max);[S_R,nS_R]=SOR(A,b,x0,e,max,w);[C_G,nC_G]=CG(A,b,x0,e,max);normG=norm(G'-x);xGauss(n)=normG;normJ=norm(J-x);nJ;xJacobi(n)=normJ;xnJ(n)=nJ;normGS=norm(GS-x);nGS;xGS(n)=normGS;xnGS(n)=nGS;normS_R=norm(S_R-x);nS_R;xSOR(n)=normS_R;xnSOR(n)=nS_R;normC_G=norm(C_G-x);nC_G;xCG(n)=normC_G;xnCG(n)=nC_G;endGauss.m%Gauss消去法function x=Gauss(A,b)n=length(b);l=zeros(n,n);x=zeros(1,n);%消去过程for i=1:n-1for j=i+1:nl(j,i)=A(j,i)/A(i,i);for k=i:nA(j,k)=A(j,k)-l(j,i)*A(i,k);endb(j)=b(j)-l(j,i)*b(i);endend%回代过程x(n)=b(n)/A(n,n);for i=n-1:-1:1c=A(i,:).*x;x(i)=(b(i)-sum(c(i+1:n)))/A(i,i);endJacobi.m%Jacobi迭代,x0表示迭代初值,e表示允许误差(迭代停止条件),n表示迭代次数,m 可能最大的迭代次数function [x,n]=Jacobi(A,b,x0,e,m)n=length(A);D=diag(diag(A));U=-triu(A,1);L=-tril(A,-1);B=D\(L+U);f=D\b;x=B*x0+f;n=1;while norm(x-x0)>ex0=x;x=B*x0+f;n=n+1;if n>mdisp('Jacobi迭代次数过多,迭代可能不收敛');break;endendG_S.m%Gauss-Seidel迭代,x0表示迭代初值,e表示允许误差(迭代停止条件),n表示迭代次数,m可能最大的迭代次数function [x,n]=G_S(A,b,x0,e,m)n=length(A);D=diag(diag(A));U=-triu(A,1);L=-tril(A,-1);B=(D-L)\U;f=(D-L)\b;x=B*x0+f;n=1;while norm(x-x0)>ex0=x;x=B*x0+f;n=n+1;if n>mdisp('Gauss-Seidel迭代次数过多,迭代可能不收敛');break;endendSOR.m%SOR超松弛迭代,x0表示迭代初值,e表示允许误差(迭代停止条件),n表示迭代次数,m可能最大的迭代次数,w松弛因子function [x,n]=SOR(A,b,x0,e,m,w)n=length(A);D=diag(diag(A));U=-triu(A,1);L=-tril(A,-1);B=(D-w*L)\((1-w)*D+w*U);f=(D-w*L)\b*w;x=B*x0+f;n=1;while norm(x-x0)>ex0=x;x=B*x0+f;n=n+1;if n>mdisp('SOR超松弛迭代次数过多,迭代可能不收敛');break;endendCG.m%CG共轭梯度法,x0表示迭代初值,e表示允许误差(迭代停止条件),n表示迭代次数,m可能最大的迭代次数function [x,n]=CG(A,b,x0,e,m)r=b-A*x0;p=r;alpha=(r'*r)/(p'*(A*p));x=x0+alpha*p;r1=b-A*x;n=1;while norm(r1)>ebelta=(r1'*r1)/(r'*r);p=r1+belta*p;r=r1;x0=x;alpha=(r'*r)/(p'*(A*p));x=x0+alpha*p;r1=b-A*x;n=n+1;if n>mdisp('CG共轭梯度法迭代次数过多,迭代可能不收敛');break;endend。

Hilbert矩阵病态线性代数方程组的求解

Hilbert矩阵病态线性代数方程组的求解

实验一病态线性代数方程组的求解1.估计Hilbert矩阵2-条件数与阶数的关系运行tiaojianshu.m 输入m=10 可以得到如下表的结果2.选择不同维数,分别用Guass消去(LU分解),Jacobi迭代,GS 迭代,SOR迭代求解,比较结果。

说明:Hx=b,H矩阵可以由matlab直接给出,为了设定参考解,我们先设x为分量全1的向量,求出b,然后将H和b作为已知量,求x,与设定的参考解对比。

对于Jacobi迭代,GS迭代,SOR迭代,取迭代初值x0为0向量,迭代精度eps=1.0e-6,迭代次数<100000, SOR迭代中w=1.2和0.8分别计算。

a. n=5b. n=8c. n=10d. n=15取不同的n值,得到如下结果:对于Guass法,可以看出来,随着n的增大,求解结果误差变大,这是因为随着n增大,系数矩阵的条件数变大,微小的扰动就容易造成很大的误差。

最后得不到精确解。

对于Jacobi迭代,计算结果为Inf,说明是发散的。

对于GS迭代和SOR迭代,结果是收敛的,但是可以看出迭代次数比较多,并且对于不同维数GS和SOR收敛速度不一样,有时候GS快,有时SOR快。

对SOR取不同的w迭代速度也不一样,存在一个最优的松弛因子w。

并且可以知道,迭代次数多少跟初值x0也有关系。

3.讨论病态问题求解的算法。

通过上面的实验分析,可以看出,求解病态矩阵的时候要小心,否则可能得不到所要求的精确度。

可以采用高精度运算,用双倍多倍字长,使得由于误差放大而损失若干有效数字位之后,还能保留一些有效位。

另外可以通过对原方程作某些预处理,降低系数矩阵的条件数,因为cond(aA)=cond(A),所以不能通过将每一个方程乘上相同的常数来达到这个目标,可考虑将矩阵的每一行和每一列分别乘上不同的常数,亦即找到可逆的对角阵D1和D2将方程组化为D1AD2y=D1b,x=D2y这称为矩阵的平衡问题,但是这样计算量比原问题本身要多。

hilbert矩阵向量写法matlab

hilbert矩阵向量写法matlab

标题:探索Hilbert矩阵向量写法在Matlab中的应用及优势在Matlab中,Hilbert矩阵向量写法是一种常见且有价值的数学计算方法。

Hilbert矩阵是一类具有特殊结构和性质的矩阵,广泛应用于数值分析、线性代数和信号处理等领域。

本文将深入探讨Hilbert矩阵向量写法在Matlab中的应用及优势,为读者提供全面、深刻和灵活的理解。

1. Hilbert矩阵的定义及特点Hilbert矩阵是指矩阵元素满足以下公式的矩阵:H(i,j) = 1/(i+j-1),其中i和j分别表示矩阵元素的行和列标号。

Hilbert矩阵具有以下特点:稀疏性、对称性和奇异性等。

2. Matlab中的Hilbert矩阵生成在Matlab中,可以使用内置函数hilb(n)生成n阶Hilbert矩阵;也可以使用for循环和矩阵元素赋值的方法手动生成Hilbert矩阵。

3. Hilbert矩阵在线性方程组求解中的应用Hilbert矩阵在线性方程组的求解中有着广泛的应用。

通过将线性方程组转化为矩阵向量形式,我们可以利用Hilbert矩阵的特殊性质,采用迭代法或直接解法等方法高效地求解线性方程组。

4. Hilbert矩阵在数值分析中的优势Hilbert矩阵在数值分析中具有一定的优势,尤其在插值、逼近、多项式拟合等问题中,Hilbert矩阵能够提供更为稳定和精确的结果。

5. 个人观点与总结个人观点:Hilbert矩阵向量写法在Matlab中的应用具有重要的意义,特别是在数值计算和科学工程计算中。

通过合理地利用Hilbert矩阵的特点,我们能够获得更加准确和可靠的计算结果,提高计算效率,同时也能够更深入地理解数学和计算方法的内在规律。

Hilbert矩阵向量写法在Matlab中的应用具有重要意义和广阔前景。

通过深入理解Hilbert矩阵的特性和Matlab中的应用方法,我们能够在科学研究和工程实践中取得更为准确和可靠的结果。

希望本文能够帮助读者更好地理解Hilbert矩阵向量写法在Matlab中的应用及优势,并在相关领域取得更大的成就。

数值分析——线性方程组直接解法Hilbert矩阵

数值分析——线性方程组直接解法Hilbert矩阵

数值分析第一次上机实习报告——线性方程组直接解法一、问题描述设 H n = [h ij ] ∈ R n ×n 是 Hilbert 矩阵, 即11ij h i j =+- 对n = 2,3,4,…13,(a) 取11n n x R ⨯⎛⎫ ⎪=∈ ⎪ ⎪⎝⎭,及n n b H x =,用Gauss 消去法和Cholesky 分解方法来求解n n H y b =,看看误差有多大.(b) 计算条件数:2()n cond H(c) 使用某种正则化方法改善(a)中的结果.二、方法描述1. Gauss 消去法Gauss 消去法一般用于系数矩阵稠密且没有任何特殊结构的线性方程组。

设H =[h ij ],y = (y 1,y 2,…,y n )T . 首先对系数矩阵H n 进行LU 分解,对于k=1,2,…n,交替进行计算:1111),,1,,1(),1,2,,k kj kj kr rj r k ik ik ir rk r kk u h l u j k k n l a l u i k k n u -=-=⎧=-=+⎪⎪⎨⎪=-=++⎪⎩∑∑…… 由此可以得到下三角矩阵L=[l ij ]和上三角矩阵U=[u ij ]. 依次求解方程组Ly=b 和Ux=y ,111,1,2,,1(),,1,,1i i i ir r r n i i ir r r i ii y b l y i n x y u x i n n u -==+⎧=-=⎪⎪⎨⎪=-=-⎪⎩∑∑…… 即可确定最终解。

2. Cholesky 分解法对于系数矩阵对称正定的方程组n n H y b =,存在唯一的对角元素为正数的下三角矩阵L ,使得H=LL T 。

因此,首先对矩阵H n 进行Cholesky 分解,即1122111()1()j jj jj jk k j ij ij ik jk k jj l h l l h l l l -=-=⎧=-⎪⎪⎨⎪=-⎪⎩∑∑ 1,i j n =+… L 的元素求出之后,依次求解方程组Ly=b 和L T x=y ,即1111111(),2,3,i i i ik k k ii b y l y b l y i n l -=⎧=⎪⎪⎨⎪=-=⎪⎩∑… 11(),1,2,n n nn n i i ki k k i nn y x l x y l x i n n l =+⎧=⎪⎪⎨⎪=-=--⎪⎩∑…1 由此求得方程组n n H y b =的解。

数值分析实验-病态线性方程组的算法设计

数值分析实验-病态线性方程组的算法设计

数值分析课程实验报告 实验名称 病态线性方程组的算法设计
班级
学号 姓名 序号
任课教师 评分 一、 实验目的
1、 初步病态线性方程组的判定。

2、 初步了解常规方法在求解病态线性方程组时遇到的困难。

3、 针对病态问题设计求解算法并验证算法的有效性。

二、用文字或图表记录实验过程和结果
1、Hilbert 矩阵如下:
11/21/1/21/31/(1)()1/1/(1)1/(21)n ij n
n H h n n n ⎡⎤⎢⎥+⎢⎥==⎢⎥⎢⎥+-⎣⎦L L M M M L 其中1(1)ij h i j =+-,它是一个对称正定矩阵,并且()n cond H 随着n 的增加迅速增加,利用Matlab 分析如下:
可以发现在阶数不断增大
Hilbert 矩阵的条件数不断增大,
这样使得求解Hilbert 病态方程
变得非常困难,即使A 或b 有微小
扰动时,即使求解过程是精确进
行的(即没有舍入误差),所得的
解相对于原方程的解也会有很大
的相对误差。

这就需要提出病态
线性方程组的求解方法,对于一
般的方程求解常用的有高斯(选
主元)消去算法、高斯—赛德尔迭代。

本试验先使用用列主元高斯消去算法和高斯-赛德尔迭代算法求解线性方程组:
n
H x b = 其中11(,,),(1,2,,)n T n i ij j b b b b h i n ====∑L L 。

2、高斯列主元消去算法
(1)设计流程图:。

数值分析MATLAB科学计算—线性方程组

数值分析MATLAB科学计算—线性方程组

科学计算—理论、方法及其基于MATLAB的程序实现与分析 三、 解线性方程组(线性矩阵方程)解线性方程组是科学计算中最常见的问题。

所说的“最常见”有两方面的含义:1) 问题的本身是求解线性方程组;2) 许多问题的求解需要或归结为线性方程组的求解。

关于线性方程组B A x B Ax 1-=⇒=(1)其求解方法有两类:1) 直接法:高斯消去法(Gaussian Elimination ); 2) 间接法:各种迭代法(Iteration )。

1、高斯消去法1) 引例考虑如下(梯形)线性方程组:()⎪⎩⎪⎨⎧==+==+-=⇒⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⇔⎪⎩⎪⎨⎧==-=+-5.0141315.3221122004301211214322332321321332321x x x x x x x x x x x x x x x 高斯消去法的求解思路:把一般的线性方程组(1)化成(上或下)梯形的形式。

2)高斯消去法——示例考虑如下线性方程组:⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⇔⎪⎩⎪⎨⎧=++-=-+-=+-306015129101.2001.221113060129501.2001.221321321321321x x x x x x x x x x x x 1) 第一个方程的两端乘12加到第二个方程的两端,第一个方程的两端乘-1加到第三个方程的两端,得⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3060031110001.0001.00111321x x x2) 第二个方程的两端乘001.010-加到第三个方程的两端,得 ⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--60600311010001.0001.00111321x x x3) 从上述方程组的第三个方程依此求解,得()⎪⎩⎪⎨⎧==+-==+-=600300001.03100024011332321x x x x x x 3)高斯消去法的不足及其改进——高斯(全、列)主元素消去法在上例中,由于建模、计算等原因,系数2.001而产生0.0005的误差,实际求解的方程组为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---306015129101.20005.22111321x x x ⎪⎩⎪⎨⎧===⇒70.4509.30142.2565321x x x注:数值稳定的算法高斯列主元素消去法就是在消元的每一步选取(列)主元素—一列中绝对值最大的元取做主元素,高斯列主元素消去法是数值稳定的方法。

matlab 方程组 解

matlab 方程组 解

Matlab方程组解1. 引言方程组是数学中一个重要的概念,它描述了多个未知数之间的关系。

解方程组的过程在科学、工程和计算机科学等领域中有着广泛的应用。

Matlab作为一种高级数值计算环境,提供了丰富的工具和函数来解决方程组的求解问题。

本文将介绍如何使用Matlab解方程组,包括线性方程组和非线性方程组的求解方法。

2. 线性方程组的求解2.1 利用矩阵求解线性方程组可以表示为矩阵形式,例如:Ax = b,其中A是系数矩阵,x是未知数向量,b是常数向量。

在Matlab中,可以使用线性代数工具箱中的函数来求解线性方程组。

2.1.1 使用inv函数求解如果系数矩阵A是可逆的,可以使用inv函数求解线性方程组。

具体步骤如下: 1. 计算A的逆矩阵:A_inv = inv(A) 2. 计算解向量:x = A_inv * b2.1.2 使用linsolve函数求解linsolve函数可以直接求解线性方程组,无需计算逆矩阵。

具体步骤如下: 1. 调用linsolve函数:x = linsolve(A, b)2.2 利用高斯消元法求解高斯消元法是一种常用的求解线性方程组的方法,它通过矩阵的行变换将方程组转化为上三角矩阵,然后通过回代得到解。

在Matlab中,可以使用lu函数来进行高斯消元法求解。

2.2.1 使用lu函数求解lu函数可以将方程组的系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U,即A = LU。

具体步骤如下: 1. 调用lu函数:[L, U] = lu(A) 2. 解得方程组:x = U \ (L \ b)3. 非线性方程组的求解非线性方程组是指未知数与其函数之间存在非线性关系的方程组。

与线性方程组不同,非线性方程组的求解通常需要借助数值方法。

Matlab提供了多种函数和工具箱来解决非线性方程组的求解问题。

3.1 利用fsolve函数求解fsolve函数是Matlab中用于求解非线性方程组的函数,它通过迭代的方式逼近方程组的解。

数值分析实验报告--实验6--解线性方程组的迭代法

数值分析实验报告--实验6--解线性方程组的迭代法

1 / 8数值分析实验六:解线性方程组的迭代法2016113 张威震1 病态线性方程组的求解1.1 问题描述理论的分析表明,求解病态的线性方程组是困难的。

实际情况是否如此,会出现怎样的现象呢?实验内容:考虑方程组Hx=b 的求解,其中系数矩阵H 为Hilbert 矩阵,,,1(),,,1,2,,1i j n n i j H h h i j n i j ⨯===+-这是一个著名的病态问题。

通过首先给定解(例如取为各个分量均为1)再计算出右端b 的办法给出确定的问题。

实验要求:(1)选择问题的维数为6,分别用Gauss 消去法、列主元Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法求解方程组,其各自的结果如何?将计算结果与问题的解比较,结论如何?(2)逐步增大问题的维数(至少到100),仍然用上述的方法来解它们,计算的结果如何?计算的结果说明了什么?(3)讨论病态问题求解的算法1.2 算法设计首先编写各种求解方法的函数,Gauss 消去法和列主元高斯消去法使用实验5中编写的函数myGauss.m 即可,Jacobi 迭代法函数文件为myJacobi.m ,GS 迭代法函数文件为myGS.m ,SOR 方法的函数文件为mySOR.m 。

1.3 实验结果1.3.1 不同迭代法球求解方程组的结果比较选择H 为6*6方阵,方程组的精确解为x* = (1, 1, 1, 1, 1, 1)T ,然后用矩阵乘法计算得到b ,再使用Gauss 顺序消去法、Gauss 列主元消去法、Jacobi 迭代法、G-S 迭代法和SOR 方法分别计算得到数值解x1、x2、x3、x4,并计算出各数值解与精确解之间的无穷范数。

Matlab 脚本文件为Experiment6_1.m 。

迭代法的初始解x 0 = (0, 0, 0, 0, 0, 0)T ,收敛准则为||x(k+1)-x(k)||∞<eps=1e-6,SOR方法的松弛因子选择为w=1.3,计算结果如表1。

matlab数值解方程

matlab数值解方程

matlab数值解方程MATLAB是一种高级的数值计算软件,它非常适合数学求解问题。

MATLAB有一个非常强大的数值解方程工具箱,可以帮助人们解决各种复杂的方程问题。

在本文中,我们将介绍如何使用MATLAB数值解方程。

MATLAB数值解方程是通过迭代法或牛顿迭代法求解非线性方程或方程组的解。

它可以求解非线性方程组,线性方程组,常微分方程,偏微分方程等。

MATLAB数值解方程可以通过以下步骤进行:1. 定义方程在MATLAB中,通常使用symbolic工具箱来定义方程。

使用syms函数定义变量,并使用等于号将方程左边与右边连接。

例如,要定义以下方程:x ^ 2 + 3 * x - 2 = 0使用以下代码:syms xf = x ^ 2 + 3 * x - 2;2. 求解方程使用solve函数来求解方程。

该函数的输入参数是方程变量和方程,输出是方程的根。

例如,使用以下代码求解上述方程:x = solve(f)执行后,MATLAB将返回方程的根,即[-3.3029, 0.3029]。

3. 解非线性方程组使用fsolve函数可以求解非线性方程组,它可以将一个或多个非线性方程组等效于可用函数语法的单一函数。

示例如下:x0 = [0,0];[x,fval] = fsolve(@(x)[x(1)^2+x(2)^2-1, exp(x(1))-x(2)], x0)其中,x0为初始猜测,@(x)表示匿名函数,包含需要求解的方程组。

4. 解线性方程组使用linsolve函数可以求解线性方程组,它可以将系数矩阵和常数矢量作为输入,并返回解向量。

示例如下:A = [1 2 3; 4 5 6; 7 8 0];B = [3; 6; 9];X = linsolve(A,B)其中,A为系数矩阵,B为常数矢量。

5. 解常微分方程使用ode45函数(一种常用的MATLAB求解常微分方程框架函数)来求解常微分方程。

该函数需要一个匿名函数作为输入,该函数返回微分方程的右侧。

matlab计算方程组

matlab计算方程组

matlab计算方程组Matlab作为一款试用范围广泛的科学计算软件,其计算方程组的能力也是非常强大的。

在Matlab中,可以通过多种方式计算方程组,比如使用直接法、迭代法、线性方程组求解器等等。

下面将分步骤阐述使用Matlab计算方程组的方法。

一、使用直接法求解直接法是一种将系数矩阵直接求逆再与常数向量相乘的方法,通常在方程组的规模较小时使用。

下面是使用Matlab求解线性方程组的示例代码:```matlab% 定义系数矩阵和常数向量A = [1 2 3; 4 5 6; 7 8 9];b = [3; 6; 9];% 求解方程组x = A\b;disp(x);```这段代码首先定义了一个3x3的系数矩阵A和一个3x1的常数向量b,然后使用反斜线符号来求解方程组。

该符号将A的逆矩阵乘上b,得到解向量x。

二、使用迭代法求解当方程组的规模较大时,直接法的计算量可能会非常大,在这种情况下可以使用迭代法来求解方程组。

迭代法的主要思想是通过反复迭代求解来逼近方程组的解。

常见的迭代法有Jacobi迭代法、Gauss-Seidel迭代法等。

以Jacobi迭代法为例,下面是使用Matlab求解线性方程组的示例代码:```matlab% 定义系数矩阵和常数向量A = [1 2 3; 4 5 6; 7 8 9];b = [3; 6; 9];% 定义Jacobi迭代法函数function [x, k] = jacobi(A, b, x0, tol, max_iter)D = diag(diag(A));L = -tril(A, -1);U = -triu(A, 1);x = x0;for k = 1:max_iterx = inv(D)*(b + L*x + U*x);if norm(A*x - b) < tolreturnendendend% 求解方程组x0 = [0; 0; 0];tol = 1e-6;max_iter = 1000;[x, k] = jacobi(A, b, x0, tol, max_iter);disp(x);```这段代码首先定义了一个3x3的系数矩阵A和一个3x1的常数向量b,然后定义了一个Jacobi迭代法的函数来求解方程组。

MATLAB线性方程组求解方法

MATLAB线性方程组求解方法
下面把该线性方程组问题用矩阵形式来表达,从而方便 MATLAB 7.0 计算。首先把 x 和 y 用列向量来表示,具体代码如下: x=(0:0.1:1)’; y=([-0.01 0.045 0.12 0.2 0.33 0.52 0.67 0.95 1.2 1.45 1.78])’; 然后构造系数矩阵 A,具体代码如下: A(:,1)=x’; A(:,2)=x’.^2; 此时方程组可以写成:A*[c1 c2]’=y,然后用反斜杠’\’来求系数 c1 和 c2,具体代 码如下: c=A\y 由上述语句得到如下代码: c= 0.2420 1.5407 最后,拟合得到 y=0.242*x+1.5407*x 2 。具体代码如下: y_fit=c(1)*x+c(2)*x.^2; plot(x,y_fit,’-’,x,y,’o’) 由上述语句得到如图 3-1 所示的拟合结果和原始数据的对比图。 图 3-1 拟合结果和原始数据对比 由图 3-1 可见,虽然拟合得到的结果与原始数据并不严格重合,但其差别比原始数据
——GW318 物联网实验室学术活动
MATLAB 线性方程组求解方法
1.线性方程组的问题 在工程计算中,一个重要的问题是线性方程组的求解。在矩阵表示法中,上述问题可以 表述为给定两个矩阵 A 和 B,是否存在惟一的解 X 使得 AX=B 或 XA=B。 例如,求解方程 3x=6 就可以将矩阵 A 和 B 看成是标量的一种情况,最后得出该方 程的 解为 x=6/3=2。 尽管在标准的数学中并没有矩阵除法的概念,但 MATLAB 7.0 采用了与解标量方程中 类 似的约定,用除号来表示求解线性方程的解。MATLAB 7.0 采用第 2 章介绍过的运算 符斜杠 ’/’和运算符反斜杠’\ ’来表示求线性方程的解,其具体含义如下: • X=A\B 表示求矩阵方程 AX=B 的解; • X=B/A 表示求矩阵方程 XA=B 的解。 对于 X=A\B,要求矩阵 A 和矩阵 B 有相同的行数,X 和 B 有相同的列数,X 的行 数等于 矩阵 A 的列数。X=B\A 行和列的性质则与之相反。 在实际情况中,形式 AX=B 的线性方程组比形式 XA=B 的线性方程组要常见得多。 因此 反斜杠’\’用得更多。本小节的内容也主要针对反斜杠’\’除法进行介绍。斜杠’/’ 除法的性质可以 由恒等变换式得到(B/A)’=(A’\B’)。 系数矩阵 A 不一定要求是方阵,矩阵 A 可以是 m×n 的矩阵,有如下 3 种情况: • m=n 恰定方程组,MATLAB7.0 会寻求精确解; • m>n 超定方程组,MATLAB7.0 会寻求最小二乘解; • m<n 欠定方程组,MATLAB7.0 会寻求基本解,该解最多有 m 个非零元素。 值得注意的是用 MATLAB 7.0 求解这种问题时,并不采用计算矩阵的逆的方法。针对 不 同的情况,MATLAB7.0 会采用不同的算法来解线性方程组。 2.线性方程组的一般解 线性方程组 AX=B 的一般解给出了满足 AX=B 的所有解。线性方程组的一般解可以通 过 下面的步骤得到。 • 解相应的齐次方程组 AX=0, 求得基础解。 可以使用函数 null()来得到基础解。 语 句 null(A) 返回齐次方程组 AX=0 的一个基础解,其他基础解与 null(A)是线性关系。 • 求非齐次线性方程组 AX=B,得到一个特殊解。 • 非齐次线性方程组 AX=B 的一般解等于基础解的线性组合加上特殊解。 在后面的章节将介绍求非齐次线性方程组 AX=B 特殊解的方法。 3.恰定方程组的求解

数值求解Hilbert病态线性方程组

数值求解Hilbert病态线性方程组

病态线性代数方程组的求解理论的分析表明,求解病态的线性代数方程组是困难的。

考虑方程组Hx = b 的求解,其中H 为Hilbert 矩阵,n n ij h H ⨯=)(,11-+=j i h ij ,n j i ,...,2,1,=1. 估计Hilbert 矩阵2-条件数与阶数的关系;2. 选择问题的不同维数,分别用Gauss 消去法,Jacobi 迭代,GS 迭代和SOR 迭代求解,比较结果;3. 讨论病态问题求解的算法。

解: 1、取Hilbert 矩阵阶数最高分别为n=20和n=100。

采用Hilbert 矩阵的2-条件数作为实验的比较对象,画出的曲线如下图所示:lg(())n cond H n从图中可以看出,在n ≤13之前,图像接近直线,在n >13之后,图像趋于平缓,在一定的围上下波动。

为了比较图像的线性部分,作出一条直线与已知曲线进行比较。

比较直线的关系式为:833.1519.1))(lg(-=n H cond n ,结果下图所示。

nl g (c o n d (H n ))lg(cond(Hn))~n 关系图从图2中可以看出,当n 较小时,n H cond n ~))(lg(之间近似满足线性关系。

当n 继续增大到100时,n H cond n ~))(lg(关系图下图所示:从图中可以看出,图像的走势符合在n=20时的猜想,在n 大于一定的值之后,图像趋于平缓,且在一定围震荡,同时又有一定上升趋势,但上升速度很慢。

2、选择不同的阶数n ,设方程组的精确解为xz=(1,1,…,1)T进行计算,用四种方法解x_Guass1、x_Jacobi1、x_GS1、x_SOR1对比表如下nl g (c o n d (H n ))lg(cond(Hn))~n关系图nl g (c o n d (H n ))lg(cond(Hn))~n 关系图Gauss消去法求解:选择问题的阶数为3~8时,用Gauss消去法求得的解与精确解一致,当阶数为9~14时,解开始出现偏差,而且n越大,偏差越大。

matlab求解矩阵方程算法

matlab求解矩阵方程算法

matlab求解矩阵方程算法
求解矩阵方程是在数学和工程领域中经常遇到的问题。

在Matlab中,可以使用不同的函数和算法来求解矩阵方程,具体取决于方程的类型和特性。

对于线性矩阵方程Ax = B,其中A是已知的矩阵,x是未知的向量,B是已知的向量,可以使用Matlab中的左除运算符(\)来求解。

例如,如果方程是Ax = B,可以直接使用x = A \ B来求解x的值。

对于更复杂的非线性矩阵方程,可以使用Matlab中的fsolve 函数来求解。

该函数可以通过迭代的方式找到方程的根。

需要提供一个初始猜测值,并且方程必须是可微的。

如果矩阵方程涉及特殊类型的矩阵,比如对称矩阵、稀疏矩阵等,Matlab中有针对这些类型矩阵的特定函数和算法来求解方程,例如eigs用于对称矩阵的特征值求解。

另外,Matlab还提供了一些优化工具箱,可以用于求解包括矩阵方程在内的优化问题。

这些工具箱中包含了各种求解算法,比如
共轭梯度法、拟牛顿法等,可以根据具体情况选择合适的算法来求
解矩阵方程。

总之,Matlab提供了丰富的函数和工具箱来求解各种类型的矩
阵方程,用户可以根据具体情况选择合适的方法来求解他们的问题。

希望这些信息能够帮助到你。

数值分析希尔伯特病态线性方程组

数值分析希尔伯特病态线性方程组

病态线性代数方程组的求解理论的分析表明,求解病态的线性代数方程组是困难的。

考虑方程组Hx = b 的求解,其中H 为Hilbert 矩阵,n n ij h H ⨯=)(,11-+=j i h ij ,n j i ,...,2,1,=1. 估计Hilbert 矩阵2-条件数与阶数的关系;2. 选择问题的不同维数,分别用Gauss 消去法,Jacobi 迭代,GS 迭代和SOR 迭代求解,比较结果;3. 讨论病态问题求解的算法。

解: 1、取Hilbert 矩阵阶数最高分别为n=20和n=100。

采用Hilbert 矩阵的2-条件数作为实验的比较对象,画出的曲线如下图所示:lg(())n cond H n从图中可以看出,在n ≤13之前,图像接近直线,在n >13之后,图像趋于平缓,在一定的范围内上下波动。

为了比较图像的线性部分,作出一条直线与已知曲线进行比较。

比较直线的关系式为:833.1519.1))(lg(-=n H cond n ,结果下图所示。

nl g (c o n d (H n ))lg(cond(Hn))~n 关系图从图2中可以看出,当n 较小时,n H cond n ~))(lg(之间近似满足线性关系。

当n 继续增大到100时,n H cond n ~))(lg(关系图下图所示:从图中可以看出,图像的走势符合在n=20时的猜想,在n 大于一定的值之后,图像趋于平缓,且在一定范围内震荡,同时又有一定上升趋势,但上升速度很慢。

2、选择不同的阶数n ,设方程组的精确解为xz=(1,1,…,1)T进行计算,用四种方法解x_Guass1、x_Jacobi1、x_GS1、x_SOR1对比表如下nl g (c o n d (H n ))lg(cond(Hn))~n关系图nl g (c o n d (H n ))lg(cond(Hn))~n 关系图表所示。

Gauss 消去法求解:选择问题的阶数为3~8时,用Gauss 消去法求得的解与精确解一致,当阶数为9~14时,解开始出现偏差,而且n 越大,偏差越大。

Hilbert矩阵病态性分析

Hilbert矩阵病态性分析

Hilbert矩阵病态性分析一、问题叙述Hilbert矩阵是著名的病态矩阵,用迭代法解矩阵方程时,如果系数矩阵是Hilbert矩阵,则求解结果误差较大。

本文就研究Hilbert矩阵的病态性,和Hilbert 矩阵的阶数与迭代求解误差大小的关系。

二、问题分析MATLAB中有专门的Hilbert矩阵及其准确逆矩阵的生成函数,从而可以通过MATLAB求解出系数矩阵是Hilbert矩阵的矩阵方程比较准确的解,再根据条件数估计求解误差的大小。

三、实验程序及注释m=input('input m:='); %输入矩阵的阶数N=[m];for k=1:length(N)n=N(k); %矩阵的阶H=hilb(n); %产生n阶Hilbert矩阵disp(H) %输出n阶Hilbert矩阵Hi=invhilb(n); %产生完全准确的n阶逆Hilbert矩阵b=ones(n,1); %生成n阶全1向量x_approx=H\b; %利用左除H求近似解x_exact=Hi*b; %利用准确逆Hilbert矩阵求准确解ndb=norm(H*x_approx-b);nb=norm(b);ndx=norm(x_approx - x_exact);nx=norm(x_approx);er_actual(k)=ndx/nx; %实际相对误差K=cond(H); %计算Hilbert矩阵的条件数er_approx(k)=K*eps; %最大可能的近似相对误差er_max(k)=K*ndb/nb; %最大可能的相对误差enddisp('Hilbert矩阵阶数'),disp(N)format short edisp('实际误差 er_actual'),disp(er_actual),disp('')disp('近似的最大可能差 er_approx'),disp(er_approx),disp('') disp('最大可能误差 er_max'),disp(er_max),disp('')四、实验数据结果及分析程序运行后,输入矩阵阶数4时的输出为:input m:=41.0000 0.5000 0.3333 0.25000.5000 0.3333 0.2500 0.20000.3333 0.2500 0.2000 0.16670.2500 0.2000 0.1667 0.1429Hilbert矩阵阶数4实际误差er_actual1.0284e-013近似的最大可能误差er_approx3.4447e-012最大可能误差er_max4.7732e-011当输入不同的矩阵阶数时,误差大小如表1所示。

数值分析希尔伯特病态线性方程组

数值分析希尔伯特病态线性方程组

病态线性代数方程组的求解理论的分析表明,求解病态的线性代数方程组是困难的。

考虑方程组Hx = b的求解,其中H为Hilbert矩阵,H=(hij)n⨯n,hij=1,i,j=1,2,...,n i+j-11. 估计Hilbert矩阵2-条件数与阶数的关系;2. 选择问题的不同维数,分别用Gauss消去法,Jacobi迭代,GS迭代和SOR迭代求解,比较结果;3. 讨论病态问题求解的算法。

解:1、取Hilbert矩阵阶数最高分别为n=20和n=100。

采用Hilbert矩阵的2-条件数作为实验的比较对象,画出的曲线如下图所示:lg(cond(Hn))nlg(cond(Hn))~n关系图lg(cond(Hn))n从图中可以看出,在n≤13之前,图像接近直线,在n>13之后,图像趋于平缓,在一定的范围内上下波动。

为了比较图像的线性部分,作出一条直线与已知曲线进行比较。

比较直线的关系式为:lg(cond(Hn))=1.519n-1.833,结果下图所示。

lg(cond(Hn))~n关系图lg(cond(Hn))n从图2中可以看出,当n较小时,lg(cond(Hn))~n之间近似满足线性关系。

当n 继续增大到100时,lg(cond(Hn))~n关系图下图所示:lg(cond(Hn))~n关系图lg(cond(Hn))n从图中可以看出,图像的走势符合在n=20时的猜想,在n大于一定的值之后,图像趋于平缓,且在一定范围内震荡,同时又有一定上升趋势,但上升速度很慢。

2、选择不同的阶数n,设方程组的精确解为xz=(1,1,…,1)T进行计算,用四种方法解x_Guass1、x_Jacobi1、x_GS1、x_SOR1对比表如下表所示。

Gauss消去法求解:选择问题的阶数为3~8时,用Gauss消去法求得的解与精确解一致,当阶数为9~14时,解开始出现偏差,而且n越大,偏差越大。

用迭代法求解:取初始向量为1.2(1,1,…,1)T.无论n为多少阶,用Jacobi迭代方法迭代出现发散的不稳定现象,无法求解;用GS迭代方法迭代不发散,能求得解,但收敛非常缓慢,当迭代次数取得相当大(20000次)时解仍在精确解附近波动;取w=1.5,用SOR迭代方法迭代不发散,能求得解,收敛速度较GS迭代快一些,但仍非常缓慢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(Hilbert 矩阵)病态线性方程组的求解
理论分析表明,数值求解病态线性方程组很困难。

考虑求解如下的线性方程组的求解Hx = b ,期中H 是Hilbert 矩阵,()ij n n H h ⨯=,11
ij h i j =
+-,i ,j = 1,2,…,n 1. 估计矩阵的2条件数和阶数的关系 2. 对不同的n ,取(1,1,,1)n
x =∈K ?,分别用Gauss 消去,Jacobi 迭代,Gauss-seidel 迭
代,SOR 迭代和共轭梯度法求解,比较结果。

3. 结合计算结果,试讨论病态线性方程组的求解。

第1小题:
condition.m %第1小题程序
t1=20;%阶数n=20
x1=1:t1;
y1=1:t1;
for i=1:t1
H=hilb(i);
y1(i)=log(cond(H));
end
plot(x1,y1);
xlabel('阶数n');
ylabel('2-条件数的对数(log(cond(H))');
title('2-条件数的对数(log(cond(H))与阶数n 的关系图');
t2=200;%阶数n=200
x2=1:t2;
y2=1:t2;
for i=1:t2
H=hilb(i);
y2(i)=log(cond(H));
end
plot(x2,y2);
xlabel('阶数n');
ylabel('2-条件数的对数(log(cond(H))');
title('2-条件数的对数(log(cond(H))与阶数n 的关系图');
画出Hilbert 矩阵2-条件数的对数和阶数的关系
n=200时
n=20时
从图中可以看出,
1)在n小于等于13之前,图像近似直线
log(cond(H))~1.519n-1.833
2)在n大于13之后,图像趋于平缓,并在一定范围内上下波动,同时随着n的增加稍有上升的趋势
第2小题:
solve.m%m第2小题主程序
N=4000;
xGauss=zeros(N,1);
xJacobi=zeros(N,1);
xnJ=zeros(N,1);
xGS=zeros(N,1);
xnGS=zeros(N,1);
xSOR=zeros(N,1);
xnSOR=zeros(N,1);
xCG=zeros(N,1);
xnCG=zeros(N,1);
for n=1:N;
x=ones(n,1);
t=1.1;%初始值偏差
x0=t*x;%迭代初始值
e=1.0e-8;%给定的误差
A=hilb(n);
b=A*x;
max=100000000000;%可能最大的迭代次数w=0.5;%SOR迭代的松弛因子
G=Gauss(A,b);
[J,nJ]=Jacobi(A,b,x0,e,max); [GS,nGS]=G_S(A,b,x0,e,max);
[S_R,nS_R]=SOR(A,b,x0,e,max,w); [C_G,nC_G]=CG(A,b,x0,e,max);
normG=norm(G'-x);
xGauss(n)=normG;
normJ=norm(J-x);
nJ;
xJacobi(n)=normJ;
xnJ(n)=nJ;
normGS=norm(GS-x);
nGS;
xGS(n)=normGS;
xnGS(n)=nGS;
normS_R=norm(S_R-x);
nS_R;
xSOR(n)=normS_R;
xnSOR(n)=nS_R;
normC_G=norm(C_G-x);
nC_G;
xCG(n)=normC_G;
xnCG(n)=nC_G;
end
Gauss.m%Gauss消去法
function x=Gauss(A,b)
n=length(b);
l=zeros(n,n);x=zeros(1,n);
%消去过程
for i=1:n-1
for j=i+1:n
l(j,i)=A(j,i)/A(i,i);
for k=i:n
A(j,k)=A(j,k)-l(j,i)*A(i,k);
end
b(j)=b(j)-l(j,i)*b(i);
end
end
%回代过程
x(n)=b(n)/A(n,n);
for i=n-1:-1:1
c=A(i,:).*x;
x(i)=(b(i)-sum(c(i+1:n)))/A(i,i);
end
Jacobi.m%Jacobi迭代,x0表示迭代初值,e表示允许误差(迭代停止条件),n表示迭代次数,m 可能最大的迭代次数
function [x,n]=Jacobi(A,b,x0,e,m)
n=length(A);
D=diag(diag(A));
U=-triu(A,1);
L=-tril(A,-1);
B=D\(L+U);
f=D\b;
x=B*x0+f;
n=1;
while norm(x-x0)>e
x0=x;
x=B*x0+f;
n=n+1;
if n>m
disp('Jacobi迭代次数过多,迭代可能不收敛');
break;
end
end
G_S.m%Gauss-Seidel迭代,x0表示迭代初值,e表示允许误差(迭代停止条件),n表示迭代次数,m可能最大的迭代次数
function [x,n]=G_S(A,b,x0,e,m)
n=length(A);
D=diag(diag(A));
U=-triu(A,1);
L=-tril(A,-1);
B=(D-L)\U;
f=(D-L)\b;
x=B*x0+f;
n=1;
while norm(x-x0)>e
x0=x;
x=B*x0+f;
n=n+1;
if n>m
disp('Gauss-Seidel迭代次数过多,迭代可能不收敛');
break;
end
end
SOR.m%SOR超松弛迭代,x0表示迭代初值,e表示允许误差(迭代停止条件),n表示迭代次数,m可能最大的迭代次数,w松弛因子
function [x,n]=SOR(A,b,x0,e,m,w)
n=length(A);
D=diag(diag(A));
U=-triu(A,1);
L=-tril(A,-1);
B=(D-w*L)\((1-w)*D+w*U);
f=(D-w*L)\b*w;
x=B*x0+f;
n=1;
while norm(x-x0)>e
x0=x;
x=B*x0+f;
n=n+1;
if n>m
disp('SOR超松弛迭代次数过多,迭代可能不收敛');
break;
end
end
CG.m%CG共轭梯度法,x0表示迭代初值,e表示允许误差(迭代停止条件),n表示迭代次数,m可能最大的迭代次数
function [x,n]=CG(A,b,x0,e,m)
r=b-A*x0;
p=r;
alpha=(r'*r)/(p'*(A*p));
x=x0+alpha*p;
r1=b-A*x;
n=1;
while norm(r1)>e
belta=(r1'*r1)/(r'*r);
p=r1+belta*p;
r=r1;
x0=x;
alpha=(r'*r)/(p'*(A*p));
x=x0+alpha*p;
r1=b-A*x;
n=n+1;
if n>m
disp('CG共轭梯度法迭代次数过多,迭代可能不收敛');
break;
end
end。

相关文档
最新文档