双桥静力触探曲线形态判别土类特征图表

合集下载

关于双桥静力触探分层方法

关于双桥静力触探分层方法

双桥静力触探分层方法传统的单桥静力触探(简称单桥静探)只能测量比贯入阻力(Ps),数据单一、图形简单,在已有静探测试经验的简单场地能较好地满足工程需要,但对于岩土种类较多的复杂场地,单桥静探就具有较大的局限性。

而双桥静力触探(简称双桥静探)可以测量锥尖阻力(qc)和侧壁阻力(fs),还能求算出摩阻比(Rf),数据多元、图形丰富,相比单桥静探具有单独测试能力强、分层更准确等特点。

勘测分公司在地层复杂、软土深厚的江汉平原地区大量使用双桥静探进行测试,很好地满足了工程的需要,取得了较好的实践效果。

现将双桥静力触探内业整理经验归纳如下。

一:各类土的双桥静探曲线特征划分土层是双桥触探的基本应用之一,目前国内外在利用静力触探指标划分土层、确定土名的问题上,大多采用双桥探头测得的。

通过多年来湖北地区粘性土、粉土及砂类土中进行的静力触探与钻孔资料的对比,按土类对曲线形态进行分析,从中得出比较显著的特征,可以做为划分土类的基本标志,现分述如下:( 1 )填土:在测试以粘性土为主的素填土和以生活垃圾为主的杂填土,曲线变化无规律,往往出现突变现象,由于其位于表层,比较好判定。

2 )粘土:qc曲线比较平缓,有缓慢的波形起伏,局部略有突峰,fs曲线略有突峰,在曲线右侧且距离较大。

粘土特征曲线粉质粘土特征曲线( 3 ) 粉质粘土:qc曲线比较平缓,有缓慢的波形起伏,局部略有突峰,fs曲线局部略有突峰,与qc曲线距离较粘土近,大部位于qc曲线右侧,当土质不均时局部交叉越过qc曲线( 4 ) 粉土:qc值较大,曲线呈短锯齿状,齿峰较缓,fs曲线一般位于qc曲线右侧,局部间隔较大,但偶尔也和qc曲线左右穿插。

粉土特征曲线粉细砂特征曲线( 5 ) 砂类土:qc值较大,曲线呈长锯齿状,fs 曲线一般和qc曲线间隔较小,曲线尖峰处大部位于qc曲线以左;砂类土颗粒不均匀时qc曲线和fs曲线的尖齿更为剧烈,局部呈不规则的、残破的大锯齿状二:各土类划分指标通过双桥静探曲线形态我们能够对土层大致分层,但要做到精确分层我们还应根据《工程地质手册》(第四版)第205页图3-4-6来划分,现结合《岩土工程勘察工作规程》(DB42/169-2003)将图3-4-6中的公式整理成下表。

静力触探检测报告有图

静力触探检测报告有图

目录1 概况 (2)2 测点位置 (2)3 检测依据 (3)4 检测主要设备 (3)5 检测主要原理 (3)6 地基基本承载力确定方法 (4)7 检测结果 (4)7.1静力触探1#测点检测结果 (4)7.2静力触探2#测点检测结果 (5)7.3静力触探3#测点检测结果 (6)7.4静力触探4#测点检测结果 (7)7.5静力触探5#测点检测结果 (8)1 概况受XXXXXXXXXXXXx公司的委托,我公司于2015年6月10日至6月12日对XXXXXXXXXX合同段路基原地面(软弱土层地基)进行静力触探试验,以确定现场土层的比贯入阻力并计算基本承载力。

本工程设计为公路等级二级,路基宽度12米,本段软弱土层地基桩号……………………………….。

本工程建设单位为, 代建单位:公司,设计单位为, 监理单位:监理所,施工单位为公司。

2 测点位置本次静力触探共检测5个点,测点位置由委托方现场确定,现场高程数据由委托方提供,详见下表。

3 检测依据本次检测,根据委托方要求,主要依据以下规程及标准: (1)《铁路工程地质原位测试规程》TB 10018-2003; (2)本项目合同文件及其它相关技术资料。

4 检测主要设备本次采用的主要设备情况见下表。

5 检测主要原理静力触探适用于软土、黏性土、粉土、砂类土及含少量碎石土层,可划分土层界面、土类定名、确定地基承载力和单桩极限荷载、判定地基土液化可能性及测定地基土的物理学参数等。

试验时以一恒定的贯入速率将圆锥探头通过一系列探杆压入土中, 并按一定深度间距根据测得的探头贯入阻力大小来间接判定土的物理力学性质。

6 地基基本承载力确定方法本次试验探头采用单桥探头,确定地基基本承载力时,由于无地区使用经验可循,本报告参照《铁路工程地质原位测试规程》TB 10018-2003表10.5.16-1“天然地基基本承载力算表”中软土层公式σ0=0.112Ps+5计算所得。

7 检测结果7.1静力触探1#测点检测结果1#测点,位于K104+428右幅距中2m处,原地面高程1851.670m,触探面高程1849.150 m,各土层深度的比贯入阻力及基本承载力检测结果见下表。

静力触探测试成果图表5

静力触探测试成果图表5

24
24
26
26
28
28
2
30
30
32
32
34
34
34审5工 -3工审32 度度审4工 7审工期
36
36
3
38
38
40
40
4度审工工 -36审日2 6审5工 度审日期
42
42
4
43审5工 -3期审32 2审5工 2审72
44
44
2 45审工工 -4工审日2 度审5工 7审3日


标2工度度 工5 工5
4
4

6
6
7审工工 -3审24 4审4工 工审6期
8
8
10
10
12
12
14
14
16
16
度7审期工 -度4审度4 度工审期工
工审5度 18
18
20
20

22
22
22审期工 -度期审度4 5审工工 工审日3
24
24
26
26
28
28
2
30
30
32
32
34
34
34审4工 -3工审64 度度审5工 6审44
36
标2工度度工4度度
砂度工
静力触探测试成果图表
3审76高
45审工工高
标 5-5
度标2工工
Ps
ps
ps(MPa)
(高土 (高土 (高土 (MPa土 (高土 0 2
4
6
8
10
12
14
16
18
20
22
24
26

(完整版)双桥静力触探分层

(完整版)双桥静力触探分层

双桥静力触探分层探讨传统的单桥静力触探(简称单桥静探)只能测量比贯入阻力(Ps),数据单一、图形简单,在已有静探测试经验的简单场地能较好地满足工程需要,但对于岩土种类较多的复杂场地,单桥静探就具有较大的局限性。

而双桥静力触探(简称双桥静探)可以测量锥尖阻力(q c)和侧壁阻力(f s),还能求算出摩阻比(R f),数据多元、图形丰富,相比单桥静探具有单独测试能力强、分层更准确等特点。

勘测分公司在地层复杂、软土深厚的江汉平原地区大量使用双桥静探进行测试,很好地满足了工程的需要,取得了较好的实践效果。

现将双桥静力触探内业整理经验归纳如下。

一:各类土的双桥静探曲线特征划分土层是双桥触探的基本应用之一,目前国内外在利用静力触探指标划分土层、确定土名的问题上,大多采用双桥探头测得的。

通过多年来湖北地区粘性土、粉土及砂类土中进行的静力触探与钻孔资料的对比,按土类对曲线形态进行分析,从中得出比较显著的特征,可以做为划分土类的基本标志,现分述如下:( 1 )填土:在测试以粘性土为主的素填土和以生活垃圾为主的杂填土,曲线变化无规律,往往出现突变现象,由于其位于表层,比较好判定。

( 2 )粘土:q c曲线比较平缓,有缓慢的波形起伏,局部略有突峰,f s曲线略有突峰,在曲线右侧且距离较大。

粘土特征曲线粉质粘土特征曲线( 3 ) 粉质粘土:q c曲线比较平缓,有缓慢的波形起伏,局部略有突峰,f s曲线局部略有突峰,与q c曲线距离较粘土近,大部位于q c曲线右侧,当土质不均时局部交叉越过q c曲线。

( 4 ) 粉土:q c值较大,曲线呈短锯齿状,齿峰较缓,f s曲线一般位于q c曲线右侧,局部间隔较大,但偶尔也和q c曲线左右穿插。

粉土特征曲线粉细砂特征曲线( 5 ) 砂类土:q c值较大,曲线呈长锯齿状,f s曲线一般和q c曲线间隔较小,曲线尖峰处大部位于q c曲线以左;砂类土颗粒不均匀时q c曲线和f s曲线的尖齿更为剧烈,局部呈不规则的、残破的大锯齿状。

基于静力触探技术的土层及土类划分方法

基于静力触探技术的土层及土类划分方法

(2009-2010学年第二学期)土工测试原理与技术课程论文研究生:周森提交日期:2010年9月1日研究生签名:学号200920105032 学院土木与交通学院课程编号S0814004 课程名称土工测试原理与技术学位类别硕士任课教师刘叔灼教师评语:成绩评定:分任课教师签名:年月日基于静力触探技术的土层及土类划分方法周 森(华南理工大学土木与交通学院,广东 广州 510640)摘 要:静力触探是一种在工程中广泛应用的原位测试方法。

介绍了静力触探的国内、外发展状况、基本原理及成果应用,对单桥静力触探、双桥静力触探和孔压静力触探三种测试方法进行了比较,着重探讨了静力触探曲线在划分土层土类中的应用并总结了划分土层土类的三种方法,即目测经验法、分类图法和变量统计分析方法。

通过比较分析得出:双桥静力触探可同时测得锥尖阻力c q 和侧壁摩阻力s f ,因此较单桥静力触探具有较高的准确度;孔压静力触探方法综合运用h q c -、h f s -和h u -曲线划分土层,进一步提高了区分精度;随着计算机运算技术的发展,基于变量统计理论为基础的静力触探方法是今后的一个发展趋势。

关键词:静力触探技术;测试方法;土层土类划分中图分类号:TU 432 文献标识码:A 文章编号:作者简介:周森(1986~),男,河南南阳人,华南理工大学岩土工程专业硕士研究生,主要从事于风险分析方法在岩土工程中的应用及地下结构设计方法的研究。

E-mail:*******************。

Classifications of Soil Layer and Soil Properties on the Basis of CPT TechniqueZhou Sen(College of Civil Engineering & Transportation,South China University of Technology, Guangzhou 510640, China)Abstract : Cone Penetration Test is a widely-used in-situ measurement in practical project. The development, basic principle and application of CPT technique are discussed, three methods----Single bridge static CPT, double bridge static CPT and pore pressure CPT are analyzed and compared. The methods used to classify soil layer and soil properties are focused on. Conclusions are drawn as follows: Both resistance awl c q and side friction s f can be obtained by double bridge static CPT, thus double bridge static CPT hashigher accuracy than that of single bridge static CPT; The curvesh q c -,h f s -and h u -can be comprehensively used by pore pressure CPT, which improves the accuracy more; The CPT technique based on statistical theory is an evolution trend in thefuture.Key words : CPT technique; in-situ measurement; classification1 静力触探的国内、外发展状况静力触探(Cone Penetration Test ,简称CPT )是20世纪40年代随着实用土力学和理论土力学的建立,在欧洲一些软土分布较为广泛的国家发展起来的一种原位测试方法[1]。

静力触探测试成果图表

静力触探测试成果图表

8.12
1.32
32 32
34
34
3.56 1.72
2.49 8.63
36 36
38
38
⑦2
草黄~灰色粉砂
40
40
42
42
42.76 -38.42 ⑦2夹 灰色粉质粘土夹 薄层粉砂
6.30
12.72
44 44
45.00 -40.66
2.24
3.64
江苏南京地质工程勘察院上海分院
审核人:
工程负责人:
日期:2012年07月16日
孔号 层底 深度 (m) ①1 ①2 ② ③夹 杂填土 素填土 褐黄~灰色粉质 粘土 灰色粘质粉土
8 8
分图编号:
C8 层底 标高 (m) 2.95 1.99 0.67 -0.97 厚度 标高 平均值 Ps (MPa) 0.00 0.14 0.54 0.96
6 2
-8
1:200
4.19m 深 度 (m) 0
静力触探测试成果图表
工程编号:2012-SGK-071
孔号 层底 深度 (m) ①1 ①2 ③夹 杂填土 素填土 灰色粘质粉土 1.40 3.00 5.16 C7 层底 标高 (m) 2.83 1.23 -0.93 厚度 标高 平均值 Ps (MPa) 0.00
2 2
分图编号:
4.23m 深 度 (m) 0
静力触探测试成果图表
工程编号:2012-SGK-071
孔号 层底 深度 (m) ①1 ①2 ③夹 杂填土 2.16 素填土 灰色粘质粉土 3.34 4.88 2.00 0.82 -0.72 2.16 1.18 1.54 0.48 2.47
4 4 2 2
分图编号:

双桥静力触探划分土类

双桥静力触探划分土类

双桥静力触探划分土类
土名参数特征曲线形态
淤泥 qc<0.4Mpa,fs<20Kpa,Rf=1-30 稳定平直,fs在qc
右侧
淤泥质土 0.4<qc<0.7Mpa,10<fs<30Kpa,Rf=1-30 稳定平直,fs在qc右侧
亚粘土 0.5<qc<4Mpa,20<fs<50Kpa,
Rf≥1.5-4 起伏变化缓慢,fs在qc右侧
粘土 0.5<qc<4Mpa,20<fs<50Kpa, Rf>4 起伏变化缓慢,fs在qc右侧
亚砂土 0.7<qc<9Mpa, Rf≥0.9-1.5 短锯齿状或曲线呈麻花状交叉,或贴近左右一侧
含结核粘土 qc>2Mpa,fs>100Kpa qc fs不稳定,曲线有突变,fs在qc左右侧无规律
粉细砂 2<qc<15Mpa, Rf=0.6-0.9 fs不稳定,长锯齿状,曲线起伏较大, fs在qc左侧
中粗砂 qc>10Mpa, Rf<0.6 长锯齿状,曲线起伏较大,fs在q c左侧
风化层 qc>3.5Mpa fs是稳定高值qc不太稳定, fs在qc左侧或右侧突变。

(完整版)双桥静力触探分层方法

(完整版)双桥静力触探分层方法

双桥静力触探分层方法传统的单桥静力触探(简称单桥静探)只能测量比贯入阻力(Ps),数据单一、图形简单,在已有静探测试经验的简单场地能较好地满足工程需要,但对于岩土种类较多的复杂场地,单桥静探就具有较大的局限性。

而双桥静力触探(简称双桥静探)可以测量锥尖阻力(qc)和侧壁阻力(fs),还能求算出摩阻比(Rf),数据多元、图形丰富,相比单桥静探具有单独测试能力强、分层更准确等特点。

勘测分公司在地层复杂、软土深厚的江汉平原地区大量使用双桥静探进行测试,很好地满足了工程的需要,取得了较好的实践效果。

现将双桥静力触探内业整理经验归纳如下。

一:各类土的双桥静探曲线特征划分土层是双桥触探的基本应用之一,目前国内外在利用静力触探指标划分土层、确定土名的问题上,大多采用双桥探头测得的。

通过多年来湖北地区粘性土、粉土及砂类土中进行的静力触探与钻孔资料的对比,按土类对曲线形态进行分析,从中得出比较显著的特征,可以做为划分土类的基本标志,现分述如下:( 1 )填土:在测试以粘性土为主的素填土和以生活垃圾为主的杂填土,曲线变化无规律,往往出现突变现象,由于其位于表层,比较好判定。

2 )粘土:qc曲线比较平缓,有缓慢的波形起伏,局部略有突峰,fs曲线略有突峰,在曲线右侧且距离较大。

粘土特征曲线粉质粘土特征曲线( 3 ) 粉质粘土:qc曲线比较平缓,有缓慢的波形起伏,局部略有突峰,fs曲线局部略有突峰,与qc曲线距离较粘土近,大部位于qc曲线右侧,当土质不均时局部交叉越过qc曲线( 4 ) 粉土:qc值较大,曲线呈短锯齿状,齿峰较缓,fs曲线一般位于qc曲线右侧,局部间隔较大,但偶尔也和qc曲线左右穿插。

粉土特征曲线粉细砂特征曲线( 5 ) 砂类土:qc 值较大,曲线呈长锯齿状,fs 曲线一般和qc 曲线间隔较小,曲线尖峰处大部位于qc 曲线以左;砂类土颗粒不均匀时qc 曲线和fs 曲线的尖齿更为剧烈,局部呈不规则的、残破的大锯齿状二:各土类划分指标通过双桥静探曲线形态我们能够对土层大致分层,但要做到精确分层我们还应根据《工程地质手册》(第四版)第205页图3-4-6来划分,现结合《岩土工程勘察工作规程》(DB42/169-2003)将图3-4-6中的公式整理成下表。

静力触探试验(原理和应用)

静力触探试验(原理和应用)

静力触探试验(原理和应用)静力触探试验静力触探测试〔static cone penetration test〕简称静探(CPT)。

静力触探试验是把一定规格的圆锥形探头借助机械匀速压人土中,并测定探头阻力等的一种测试方法,实际上是一种准静力触探试验。

荷兰人在20世纪40年代提出了静力触探技术和机械式静力触探仪。

试验是用机械装置把带有双层管的圆锥形探头压人土中,在地面上用压力表分别量测套筒侧壁与周围土层间的摩阻力(fs)和探头锥尖贯入土层时所受的阻力(qc)。

电测静力触探试验于1964年首先在我国研制成功。

原建工部综合勘察院成功地研制了世界上第一台电测静力触探仪,即我国目前普遍应用的单桥(单用)探头静力触探仪。

利用电阻应变测试技术,直接从探头中量测贯入阻力,并定义为比贯入阻力。

20世纪60年代后期,荷兰开始研制类似的电测静力触探仪,探头为双桥式的。

此项成果发表于1971年。

从20世纪70年代开始,电测静力触探的发展使静力触探有了新的活力,发展迅猛,应用普遍。

其中,最重要的发展是国际上于20世纪80年代初成功研制了可测孔隙水压力的电测式静力触探,简称孔压触探.(CPTU)。

它可以同时测量锥头阻力、侧壁摩擦力和孔隙水压力,为了解土的更多的工程性质及提高测试精度提供了极大的可能性和现实性。

目前在我国使用的静力触探仪以电测式为主。

静力触探具有下列明显优点:(1)测试连续、快速,效率高,功能多,兼有勘探与测试的双重作用;(2)采用电测技术后,易于实现测试过程的自动化,测试成果可由计算机自动处理,大大减轻了人的工作强度。

由于以上原因,电测静力触探是目前应用最广的一种土工原位测试技术,本章将重点加以叙述和讨论。

静力触探的主要缺点是对碎石类土和密实砂土难以贯入,也不能直接观测土层。

在地质勘探工作中,静力触探常和钻探取样联合运用。

图2-1是静力触探示意和得到的测试曲线。

从测试曲线和地层分布的对比可以看出,触探阻力的大小与地层的力学性质有密切的相关关系。

双桥静力触探曲线形态判别土类特征图表

双桥静力触探曲线形态判别土类特征图表

附录 E 双桥静力触探曲线形态判别土类特征图表
E.0.1 当使用双桥静力触探时,可依据表 E.0.1 定性判别土类。

表 E.0.1 双桥静力触探各土层曲线特征图表
土层名称 曲线特征 曲线形态
(实线为 q c ,虚线为 f s )
淤泥、
q c 曲线较平直, f s 在 q c 右侧(较接
淤泥质黏性土 近),曲线基本无起伏
q
c 曲线起伏变化缓慢, f s 在 q c 右侧 黏土
(距离较远)
q c 曲线起伏变化缓慢,局部略有突
粉质黏土
峰, f s 大部位于 q c 右侧(距离较近),
当土质不均时局部交叉越过 q c 曲线
q c 值较大, 曲线呈短锯齿状, 齿峰较
粉土
缓, f s 曲线一般位于 q c 曲线右侧, 局
部间隔较大, 偶尔和 q c 曲线左右穿插
q c 值较大, 曲线呈长锯齿状, f s 曲线
一般和 q c 曲线间隔较小, 曲线尖峰处
大部分位于 q c 曲线左侧;砂类土颗粒
砂土
不均匀时 q c 曲线和 f s 曲线的尖齿更
为剧烈,局部呈不规则的、残破的
大锯齿状
29。

静力触探试验

静力触探试验
该规范规定当根据双桥探头静力触探资料确定预制桩竖向承载力标准值时对于粘性土粉土和砂土如无当地经验时可按下式计22245其它方面的应用除了在上述方面有着广泛的应用外静力触探技术还可用于推求土的物性参数密度密实度等力学参数ce检验地基处理后的效果测定滑坡的滑动面以及判断地基的液化可能性等
第 2章
2.1 试验设备和方法 2.2 基本测试原理 2.3 试验成果的整理分析 2.4 试验成果的应用 2.5 小 结
14
15
2.4.2 确定土类 静力触探的几种测试方法均可用于划分土类,但就其总 体而言,单桥探头测试的参数太少,精度较差,常常需要和 钻探及经验相结合,下面仅介绍《铁路工程地质原位测试规 程》TB 10041-2003 中利用双桥探头测试结果进行划分的方 法。
该方法利用了qc和Rf两个参数,其根据在于不同的土类不
相关规范的规定进行。主要应注意深度修正和零漂处理。
12
3.触探曲线的绘制
当使用自动化程度高的触探仪器时,需要的曲线可自
动绘制,只有在人工读数记录时才需要根据测得的数据绘 制曲线。 需 要 绘 制 的 触 探 曲 线 包 括 ps~h 或 qc~h 、 fs~h 和 Rf (=f/q×100%)~h曲线。
,E0,Es等),检验地基处理后的效果、测定滑坡的滑动面
以及判断地基的液化可能性等。关于这些方面的内容请见相 关参考资料。
21
3.5 小

总起来说,静力触探方便、快捷,对土层的扰动小,测 试连续进行,测试成本低,数据的重现性好,在岩土工程中 有着多方面的用途,在原位测试技术中占有举足轻重的地位。 静力触探的局限性除了对于硬土层难以穿越外,主要的还在 于测试手段较为单一,无法控制应力路径和应变路径,测试 时不能取样,测试时探杆的弯曲和倾斜较难控制,测试过程 和对测试结果的解释对经验的依赖性过强等等。 在工程中应用静力触探技术时应注意与其它测试手段联 合运用,注意对当地经验的获取和积累,测试过程要严格遵 守操作规程,发现异常情况要查明原因并尽早排除,对测试 成果的分析和解释要注意理论和经验并重。另外,检测工作 事关建筑物的安全,测试人员一定要有高度的责任心。 22

第二章_静力触探

第二章_静力触探
47
侧壁摩阻力fs(kPa)
回零 0 1 2 9
校正值 40 41 41 27
qc
20.0 20.5 20.5 13.5
读数
回零
fs
0.8 1.2 0.9
FR(%)
4
例如:如下表Ku=1.0kPa/R
深度 (m) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 …… 读数 0 0 5 34 20 28 32 38 41 36 45 42 …… 孔压u(kPa) uw umax 0 0 5 34 20 28 32 38 41 36 45 42 0 0 1 2 3 4 5 6 7 8 9 10 △u 备注
7
三、静力触探的适用范围
• 砂土、粉土、粘性土、泥炭层 • 孔压静探适用于地下水位以下的软粘土、粘性土、粉 土、非密实性砂土、黄土、素填土等; 对于不饱和的土层、砾石层、碎石层等则不适用。
8
9
10
11
12
静力触探
• • • • • • 第一节 概述 第二节 测试设备 第三节 测试步骤 第四节 测试数据的处理 第五节 测试精度影响因素 第六节 测试成果的应用
6
孔压触探的优点:
� 由于不同土体的渗透性差别很大,CPTU量测孔隙水压力 cm厚的薄土层土性的变化, 的灵敏度很高,能够分辨1~2 1~2cm 因而可以详细分层。特别是在区分砂层和粘土层方面精度 很高。 � 可以量测到孔隙水压力,从而有可能进行有效应力分析。 � 可以估算土体的渗透系数和固结系数。 � 可以测定土层不同深度的静止水压力,获得地下水条件的 资料。 � 可以区分排水、部分排水和不排水的贯入条件。 � 可计算土的超固结比,评价土层应力历史,计算静止侧压 力系数k0等。

静力触探解析(共29张PPT)

静力触探解析(共29张PPT)
– 记录仪器
数字式电阻应变仪、电子电位差自动记录仪等
探头
单桥探头
2 1
3
9

贯入力



5
7
5
8
6
4
单桥探头结构及工作原理示意图
1 — 顶柱;2 — 外套筒;3 — 探头管;4 — 导线;5 — 环氧树脂密封垫圈;6 — 橡皮 管;7 — 空心变形柱;8 — 应变片; 9、探杆
探头
锥尖
变形套
分界面:曲线变化的超前和滞后之间
静力触探 CPT——成果分析
阻力测量:阻力转化为电阻片的变形,形成电信号。
绘制触探曲线、地层分层 绘制触探曲线、地层分层
轻便加压装置——液压动力、地锚式反力
比贯入阻力 ps(单桥探头)
孔压传感器的位置和透水单元尺寸
车载加压装置——液压动力、压重地锚联合式反力 土的强度参数、变形参数
履带式车载加压装置——液压动力、压重式反力
车载加压装置——液压动力、压重地锚联合式反力
静力触探 CPT——试验方法
试验准备 孔压探头饱和 触探机定位 探头贯入 孔压消散试验 试验终止
静力触探 CPT——试验方法
影响静力触探试验的因素
– 探头、探杆规格
探头贯入引起土超孔隙水压力,影响贯入阻力测量值。
– 反力装置
为探头的贯入提供反力:地锚、压重、地锚压重联合
CLD-4型 静力触探仪
主要技术参数:
贯入力:2吨 贯入速度:0.8~1.2m/mim 探杆长度:0.5m/支 整机重量:100kg。
江苏省如皋大地仪器有限公司
贯入油缸
轻便加压装置——液压动力、地锚式反力
轻便加压装置——液压动力、地锚式反力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

29
附录E 双桥静力触探曲线形态判别土类特征图表
E.0.1 当使用双桥静力触探时,可依据表E.0.1定性判别土类。

表E.0.1 双桥静力触探各土层曲线特征图表
土层名称 曲线特征 曲线形态
(实线为c q ,虚线为s f )
淤泥、 淤泥质黏性土 c q 曲线较平直,s f 在c q 右侧(较接
近),曲线基本无起伏
黏土
c q 曲线起伏变化缓慢,s f 在c q 右侧(距离较远) 粉质黏土 c q 曲线起伏变化缓慢,局部略有突
峰,s f 大部位于c q 右侧(距离较近),
当土质不均时局部交叉越过c q 曲线
粉土 c q 值较大,曲线呈短锯齿状,齿峰较
缓,s f 曲线一般位于c q 曲线右侧,局
部间隔较大,偶尔和c q 曲线左右穿插
砂土 c q 值较大,曲线呈长锯齿状,s f 曲线
一般和c q 曲线间隔较小,曲线尖峰处
大部分位于c q 曲线左侧;砂类土颗粒
不均匀时c q 曲线和s f 曲线的尖齿更
为剧烈,局部呈不规则的、残破的
大锯齿状。

相关文档
最新文档