概率论与数理统计1.1随机事件
概率论与数理统计 第一章1.1随机事件

事件的关系与运算
注:(1) 事件的关系与运算可用维恩图形象表之
(2) 事件的和与积的运算可推广到有限个事 件或可数无限个事件的情形.
A B A B, (3) 事件的和与积的另一记法:
A B AB.
事件的关系与运算
8. 完备事件组 设 A1 , A2 ,, An , 是有限或可数个事件,若其 满足:
完
随机事件
在随机试验中,人们除了关心试验的结果本身外,
往往还关心试验的结果 是否具备某一指定的可观
察的特征,概率论中将这一可观察的特征称为一 个事件 , 它分三类:
随机事件
1. 随机事件:在试验中可能发生也可能不发生的 事件; 2. 必然事件:在每次试验中都必然发生的事件; 3. 不可能事件:在任何一次试验中都不可能发 生的事件. 例如,在抛掷一枚骰子的试验中,我们也许会关
A : “点数为奇数”,B : “点数小于5”.
则 A B {1,2,3,4,5}; A B {1,3};
A - B {5}.
6. 若 A B , 则称事件 A 与 B 是互不相 容的(或互斥的).
7. 若 A B S 且 A B ,
事件的关系与运算
由于随机现象的结果事先不能预知, 初看似乎 毫无规律. 然而人们发现 同一随机现象大量重 其每种可能的结果 出现的频率具有 复出现时,
稳定性, 从而表明随机现象也有其固有的规律
性. 人们把随机现象在大量重复出现时 所表现 出的量的规律性 称为随机现象的统计规律性.
随机现象的统计规律性
概率论与数理统计是研究 随机现象统计规律性 的一门学科. 为了对随机现象的统计规律性进行研究,就需 对随机现象进行重复观察,我们把对随机现象
概率论与数理统计目录

概率论与数理统计目录一、随机事件及其概率1.1 随机事件的基本概念定义与分类事件的运算1.2 概率的定义与性质概率的公理化定义概率的基本性质1.3 古典概型与几何概型古典概型的计算几何概型的计算1.4 条件概率与独立性条件概率事件的独立性1.5 全概率公式与贝叶斯公式全概率公式贝叶斯公式及其应用二、随机变量及其分布2.1 随机变量的概念随机变量的定义随机变量的分类2.2 离散型随机变量及其分布常见的离散型分布分布律与分布函数2.3 连续型随机变量及其分布常见的连续型分布概率密度函数与分布函数2.4 随机变量函数的分布离散型随机变量函数的分布连续型随机变量函数的分布三、多维随机变量及其分布3.1 多维随机变量的概念联合分布函数边缘分布3.2 多维离散型随机变量联合分布律边缘分布律3.3 多维连续型随机变量联合概率密度函数边缘概率密度函数3.4 条件分布离散型条件分布连续型条件分布3.5 随机变量的独立性独立性的定义独立性的判定与性质四、数字特征4.1 数学期望数学期望的定义与性质数学期望的计算4.2 方差方差的定义与性质方差的计算4.3 协方差与相关系数协方差的定义与性质相关系数的定义与性质4.4 矩与协矩阵矩的定义与计算协矩阵的定义与计算五、大数定律与中心极限定理5.1 大数定律切比雪夫大数定律伯努利大数定律5.2 中心极限定理林德贝格-莱维中心极限定理德莫佛尔-拉普拉斯中心极限定理六、数理统计的基本概念6.1 总体与样本总体的定义与性质样本的定义与性质6.2 统计量与抽样分布统计量的定义与性质常见的抽样分布七、参数估计与假设检验7.1 参数估计点估计区间估计7.2 假设检验假设检验的基本概念单侧检验与双侧检验正态总体的假设检验八、回归分析与方差分析8.1 回归分析一元线性回归多元线性回归回归模型的检验与预测8.2 方差分析单因素方差分析双因素方差分析方差分析的应用。
概率论与数理统计

一、事件的频率与概率
次数, µ n ( A ) : 事件 A 在 n 次可重复试验中出现的 次数,
称为 A 在 n 次试验中出现的频数
频率—— f n ( A) = 频率
µ n ( A)
n
.
频率有如下性质: 频率有如下性质:
1. 非负性:对任何事件 A,有 0 ≤ f n ( A) ≤ 1 非负性:
掷一骰子, 如: A =“掷一骰子,点数小于 4”, B =“掷一骰子,点数小于 5”, 掷一骰子, 则A ⊂ B.
显然对任何事件 A,有 Φ ⊂ A ⊂ Ω⊂ A,则称事件 A与事件 B相等,记作 A = B .
2.事件的和(并) 事件的和(
两个事件 A, B 中至少有一个发生 (属于A或属于 B的样本点 构成的集合 ),称为事件 A 与 B 的和(并 ), 记作 A + B 或 A ∪ B .
显然, 显然,事件 A 与 A 可以构成一个完备事件 组
类似地,称可列个事件 A1 , A2 , L , An, 构成一个 L 类似地, 完备事件组, 完备事件组,如果满足 :
(1)
( 2)
Ai A j = Φ
(i ≠ j )
∑A
i
i
=Ω
律 事件运算满足下列运算 :
(1) 交换律 A + B = B + A AB = BA
设袋中有红, 黄各一球, 例: 设袋中有红,白,黄各一球,有放回抽取三 取出球后仍把球放回原袋中),每次取一球, ),每次取一球 次(取出球后仍把球放回原袋中),每次取一球,试 说明下列各组事件是否相容?若不相容, 说明下列各组事件是否相容?若不相容,说明是否 对立? 对立? 三次抽取, 三次抽取, (1) A=“三次抽取,颜色全不同”,B=“三次抽取, = 三次抽取 颜色全不同” = 三次抽取 相容 颜色不全同” 颜色不全同” (2) A=“三次抽取,颜色全同”,B=“三次抽取, 三次抽取, 三次抽取, = 三次抽取 颜色全同” = 三次抽取 颜色不全同” 颜色不全同” 不相容, 不相容,对立 三次抽取, 三次抽取, (3) A=“三次抽取,无红色球”,B=“三次抽取, = 三次抽取 无红色球” = 三次抽取 无黄色球” 无黄色球” 相容 三次抽取, (4) A=“三次抽取,无红色球也无黄色”, = 三次抽取 无红色球也无黄色” B=“三次抽取, 无白色球” 不相容,不对立 三次抽取, = 三次抽取 无白色球” 不相容,
概率论与数理统计第1章随机事件及其概率

(ii) S2 {( 正品,次品 ),( 正品,正品 )} .
若用“1 ”表示“正品”,“ 0 ”表示“次品”,这里的两个样本空
间又可表示为
(i) S1 {(1,0),(1,1),(0,1)} ;(ii) S2 {(1,0),(1,1)}. (4) (i) S1 {t t 0};(ii) S2 { 合格品, 不合格品} . 若用“1 ”表示“合格品”,“ 0 ”表示“不合格品”, S2 又可表示为 S2 {1,0} . (5) S5 {(x, y) x2 y2 100}.
字母 E T A O I N S R H
使用频率 0.126 8 0.097 8 0.078 8 0.077 6 0.070 7 0.070 6 0.063 4 0.059 4 0.057 3
字母 L D U C F M W Y G
使用频率 0.039 4 0.038 9 0.028 0 0.026 8 0.025 6 0.024 4 0.021 4 0.020 2 0.018 7
第1章 随机事件及其概率
§1.1 随机事件
1.1.1 随机现象
在自然界以及生产实践和科学实验中普遍存在着两类现象.一类是 在一定条件下,重复进行试验,某一结果必然发生或必然不发生,即是可 以事前预言的,称为确定性现象.
除去确定性现象,人们发现还存在另一类现象,它是事前不可预言 的,即在相同条件下重复进行试验,每次的结果不一定相同,这一类现象 我们称之为偶然性现象或随机现象.
在一定条件下,随机现象有多种可能的结果发生,事前不能预知 将出现哪种结果,但通过大量的重复观察,出现的结果会呈现出某种 规律,称为随机现象的统计规律性.
概率论与数理统计复习资料

自考04183概率论与数理统计(经管类)笔记-自考概率论与数理统§1.1 随机事件1.随机现象:确定现象:太阳从东方升起,重感冒会发烧等;不确定现象:随机现象:相同条件下掷骰子出现的点数:在装有红、白球的口袋里摸某种球出现的可能性等;其他不确定现象:在某人群中找到的一个人是否漂亮等。
结论:随机现象是不确定现象之一。
2.随机试验和样本空间随机试验举例:E1:抛一枚硬币,观察正面H、反面T出现的情况。
E2:掷一枚骰子,观察出现的点数。
E3:记录110报警台一天接到的报警次数。
E4:在一批灯泡中任意抽取一个,测试它的寿命。
E5:记录某物理量(长度、直径等)的测量误差。
E6:在区间[0,1]上任取一点,记录它的坐标。
随机试验的特点:①试验的可重复性;②全部结果的可知性;③一次试验结果的随机性,满足这些条件的试验称为随机试验,简称试验。
样本空间:试验中出现的每一个不可分的结果,称为一个样本点,记作。
所有样本点的集合称为样本空间,记作。
举例:掷骰子:={1,2,3,4,5,6},=1,2,3,4,5,6;非样本点:“大于2点”,“小于4点”等。
3.随机事件:样本空间的子集,称为随机事件,简称事件,用A,B,C,…表示。
只包含一个样本点的单点子集{}称为基本事件。
必然事件:一定发生的事件,记作不可能事件:永远不能发生的事件,记作4.随机事件的关系和运算由于随机事件是样本空间的子集,所以,随机事件及其运算自然可以用集合的有关运算来处理,并且可以用表示集合的文氏图来直观描述。
(1)事件的包含和相等包含:设A,B为二事件,若A发生必然导致B发生,则称事件B包含事件A,或事A包含于事件B,记作,或。
性质:例:掷骰子,A:“出现3点”,B:“出现奇数点”,则。
注:与集合包含的区别。
相等:若且,则称事件A与事件B相等,记作A=B。
(2)和事件概念:称事件“A与B至少有一个发生”为事件A与事件B的和事件,或称为事件A与事件B的并,记作或A+B。
概率论与数理统计教程

1.1 随机事件和样本空间
一、随机现象 二、随机试验 三、样本空间 样本点 四、随机事件的概念 五、随机事件的关系
一、随机试验
1.必然现象(确定) 2.偶然现象(不确定)随机
说明: 1.随机现象揭示了条件和结果之间的非确定性联系 ,
其数量关系无法用函数加以描述. 2.随机现象在一次观察中出现什么结果具有偶然性,
1、包含关系 若事件 A 出现, 必然导致 B 出现 则称事件 B 包含事件 A,记作B A 或 A B.
特别地 若事件A包含事件B,而且事件B包含 事件A, 则称事件A与事件B相等,记作 A=B.
2.两事件的和与并
“二事件 A, B至少发生一个”也是一个事件, 称为事件 A 与事件B的和事件.记作A B,显然 A B {e | e A或e B}.
若事件 A 、B 满足 A B 且 AB .
则称 A 与B 为互逆(或对立)事件. A 的逆记
作 A.
事件间的运算规律
设 A, B, C 为事件, 则有
(1) 交换律 A B B A, AB BA. ( AB)C A(BC).
(2) 结合律 ( A B) C A (B C),
实例 抛掷一枚骰子, 观察出现的点数。 试验中,骰子“出现1点”, “出现2 点”, … ,“出现6点”, “点数不大于4”, “点 数为偶数” 等都为随机事件.
五、随机事件的关系及运算
(1)、随机事件间的关系
设试验 E 的样本空间为 , 而 A, B, Ak (k 1,2,)是 的子集.
推广:
N元情形
n
推广 称 Ak 为n个事件 A1, A2 ,, An 的积事件,
k 1
即A1, A2 ,, An同时发生;
1.1随机试验与随机事件

(De· Morgan)律: A B A B; A B A B
对差事件运算: A - B AB A - AB
例 掷一颗骰子。设事件 A1 为掷出是奇数点,A2 为掷出 是偶数点,A3 为掷出是小于 4 的偶数点,则有
A1 A2 {1, 2, 3, 4, 5, 6} ;
A1 A2 A2 Ai 发生。
i 1 n
对任一事件A件 A B { A, B}称为事件 A 与 B 的差事件。
当事件 A 发生而事件 B 不发生时,A - B 发生。
5、对于事件 A、B,若 AB = ,则称事件 A 与 B 是互不相 容事件,或互斥事件。
如上例中,如某天的营业额为 500 元,则事件 A 发生。
特别地,由一个样本点组成的单点集称为基本事件 (basic event)。
例如试验 E1 中有 6 个基本事件{1},{2},{3},{4},{5},{6}.
样本空间 包含所有的样本点,在每次试验中它总发生, 称为必然事件(certain event)。
n 个事件 A1 , A2, … , An 被称为互不相容的,是指其中任意 两个事件都是互不相容的,即 Ai Aj , (i j, i , j 1,2,, n) 。
6.事件 A、B,若 A∪B = ,且 A B , 就是说,无论
试验的结果如何,事件 A 与 B 中必有且仅有一个发生,
概率论与数理统计
在现实世界中发生的现象千姿百态, 概括起来无非 是两类现象:
一类是在一定条件下必然出现(或恒不出现)的现象,
例如,在标准大气压下,水加热到 100 时 必定沸腾,三角形内角和为 180 等等.
0 0
概率第一章

第1章 随机事件1.1 随机事件1.1.1 随机现象与随机试验概率论与数理统计是研究随机现象统计规律的一门数学分科.什么是随机现象呢?下面让我们先做两个简单的试验:试验一:一个盒子中有10个完全相同的白球,搅匀后从中任意摸取一球;试验二:一个盒子中有10个相同的球,其中5个是白色的,另外5个是黑色的,搅匀后从中任意摸取一球.分析上述两个试验结果给出下述两个基本概念:确定性现象:在一定条件下必然发生的现象称为确定性现象.试验一所代表的类型即是确定性现象.试验二所代表的类型,有多于一种可能的试验结果,而且在一次试验之前不能确定会出现哪一个结果,这一类试验称为随机试验.在客观世界中随机现象也是极为普遍的,例如:某地区的年降雨量;检查流水生产线上的一件产品,是合格品还是不合格;打靶射击时,弹着点离靶心的距离,等等.在条件相同的一系列重复观察中,会时而出现时而不出现,呈现出不确定性,并且在每次观察之前不能准确预料其是否出现,这类现象称之为随机现象.在相同条件下多次重复某一试验或观察时,虽然结果具有不确定性,但会表现出一定的规律性,这种规律性称之为统计规律性.那么如何来研究随机现象的统计规律呢?对随机现象进行的实验与观察统称为试验.具有下列特征的试验称为随机试验:1.可在相同的条件下重复进行;2.试验结果不止一个,但在试验之前能明确试验所有可能的结果;3.试验前不能确定到底会出现哪一个结果.随机试验一般用大写英文字母E 表示.如:1E :抛一枚硬币,观察出现正面还是反面(分别用“H ” 和“T ” 表示出现正面和反面);2E :抛两枚硬币,观察出现的结果;3E :掷一颗骰子,观察出现的点数;4E :记录某网站一分钟内被点击的次数;5E :对一目标进行射击,直到命中为止,观察其结果;6E :在一批灯泡中任取一只,测其寿命.1.1.2 样本空间与随机事件对于随机试验,虽然在我们试验之前不能预知试验的结果,但可以确定试验的所有可能的结果.定义1.1.1 样本空间:随机试验所有可能的结果组成的集合称为样本空间,通常用字母Ω表示.定义1.1.2 样本点:随机试验每一个可能的结果称为样本点,通常用字母ω表示样本点,即为Ω中的元素.例1.1.1 一盒子中有黑球、白球,从中任取一球,观察其颜色,记1ω={取得白球},2ω={取得黑球},则12{,}ωωΩ=.例 1.1.2 一个盒子中有十个完全相同球,分别标以号码1210,,,,从中任取一球,令 i ={取得球的号码为i },则{1,210}Ω=.例1.1.3 写出16~E E 的样本空间.解 16~E E 的样本空间分别为:(1) 1{,}H T Ω=;(2) 2{,,,}HH HT TH TT Ω=;(3) 3{1,2,3,4,5,6}Ω=;(4) 4{0,1,2}Ω=;(5) 5{(,)|0,0}x y x y Ω=>>;(6) 6{|0}t t Ω=≥.在实际中,我们通常并不关心所有的样本点,而是只关注一些满足一定条件的样本点,如在随机试验6E 中,若规定这种灯泡的寿命超过1000小时为一级品,那么我们只关心{|1000}t t >中的样本点,所以我们有如下定义:定义1.1.3 随机事件:样本空间Ω的子集,称为随机事件,用大写字母,,,,A B C D 表示,即随机事件为满足一定条件的样本点组成的集合.特别的,仅由一个样本点的事件称为基本事件,它是随机试验的直接结果,每次试验必定发生且只可能发生一个基本事件;全体样本点组成的事件称为必然事件,记为Ω,每次试验必然事件必定发生;不包含任何样本点的事件称为不可能事件,记为∅,每次试验不可能事件必定不发生.在每次试验中,当且仅当事件A 中的一个样本点出现时,称事件A 发生.例如在3E 中,如果用A 表示事件“掷出奇点数”,那么A 是一个随机事件.由于在一次投掷中,当且仅当掷出的点数是1,3,5中的任何一个时才称事件A 发生了,所以我们把事件A 表示为{}1,3,5A =;“掷出的点数不超过6”就是必然事件,用集合表示这一事件就是3E 的样本空间{}1,2,3,4,5,6Ω=.而事件“掷出的点数大于6”是不可能事件,这个事件不包括3E 的任何一个可能结果,所以用空集∅表示.一个样本空间Ω中,可以有很多的随机事件.概率论的任务之一,是研究随机事件的规律,通过对较简单事件规律的研究去掌握更复杂事件的规律.下面我们来介绍事件之间的关系和事件之间的运算规律.1.1.3 事件的关系及运算因为事件是一个集合,因而事件间的关系和运算是按集合间的关系和运算来处理的.下面给出这些关系和运算在概率中的提法,并根据“事件发生”的含义,给出它们在概率中的含义.设随机试验E 的样本空间为Ω,,,(1,2,)k A B A k =是Ω的子集.1. 事件的关系(1) 事件的包含与相等:若事件A 发生必然导致事件B 发生,则称事件A 包含于事件 B ,记为A B ⊃或者B A ⊂.:{}A B A,B ⊂∈∈ωω则.见文氏(Venn )图1.1.若B A ⊂且A B ⊂,即B A =,则称事件A 与事件B 相等.(2) 事件的和:事件A 与事件B 至少有一个发生的事件称为事件A 与事件B 的和事件, 记为A B .事件A B 发生意味着:或事件A 发生,或事件B 发生,或事件A 与事件B 都发生.{}A B A,B =∈∈ωω或.见文氏(Venn )图1.1.推广121ni n i A A A A ==,表示12,,,n A A A 至少有一个发生, 121i i A A A ∞==,表示12,,A A 至少有一个发生.(3) 事件的积:事件A 与事件B 都发生的事件称为事件A 与事件B 的积事件,记为A B ,也简记为AB .事件A B (或AB )发生意味着事件A 发生且事件B 也发生,即A 与B 都发生.{}A B A,B =∈∈ωω且.见文氏图1.1.推广121ni n i A A A A ==,表示12,,,n A A A 同时发生, 121i i A A A ∞==,表示12,,A A 同时发生.(4) 事件的差:事件A 发生而事件B 不发生的事件称为事件A 与事件B 的差事件,记为B A -,}A B {A,B -=ω∈ω∉且.见文氏图1.1.注:A B A AB -=-.(5) 互不相容事件(互斥): 若事件A 与事件B 不能同时发生,即AB =∅,则称事件A 与事件B 是互斥的,或称它们是互不相容的.见文氏图1.1.若事件12,,,n A A A 中的任意两个都互斥,则称这些事件是两两互斥的. (6) 对立事件:“A 不发生”的事件称为事件A 的对立事件,记为A .A 和A 满足:A A =Ω,AA =∅.见文氏图1.1:注:① __A A =Ω-;②在一次随机试验中A 和A 有一个发生而且只有一个发生.图1.1事件的关系图 由上述可见概率论中事件间的关系与集合论中集合之间的关系是一致的,于是事件之间的运算规律与集合之间的运算规律也是一致的.2.事件的运算规律设C B A ,,为事件,则事件之间的运算满足:(1) 交换律:A B B A =,BA AB =.(2) 结合律:()()A B C A B C =,)()(BC A C AB =.(3) 分配律:()()()A B C AC BC =,()()()AB C A C B C =. (4) 对偶律:A B AB =;___AB A B =.例1.1.4 甲,乙,丙三人各射一次靶,记事件A ={甲中靶},事件B ={乙中靶},事件C ={丙中靶},用上述三个事件的运算来分别表示下列各事件:(1)“甲未中靶”;(2)“甲中靶而乙未中靶”;(3)“三人中只有丙未中靶”;(4)“三人中恰好有一人中靶”;(5)“ 三人中至少有一人中靶”;(6)“三人中至少有一人未中靶”;(7)“三人中恰有两人中靶”;(8)“三人中至少两人中靶”;(9)“三人均未中靶”;(10)“三人中至多一人中靶”;(11)“三人中至多两人中靶”.解(1)“甲未中靶”=A;=;(2)“甲中靶而乙未中靶”AB=;(3)“三人中只有丙未中靶”ABC=;(4)“三人中恰好有一人中靶”ABC ABC ABC=;(5)“三人中至少有一人中靶”A B C==ABC;(6)“三人中至少有一人未中靶”A B C=;(7)“三人中恰有两人中靶”ABC ABC ABC=;(8)“三人中至少两人中靶”AB AC BC=;(9)“三人均未中靶”ABC=;(10)“三人中至多一人中靶”ABC ABC ABC ABC==A B C.(11)“三人中至多两人中靶”ABC注:用其它事件的运算来表示一个事件,方法往往不唯一,如上例1.1.4中的(6)和(11)所表示的事件实际上是同一事件.1.2 随机事件的概率在一次随机试验中,除必然事件一定发生,不可能事件不发生外,一般的随机事件可能发生,也可能不发生,于是需要知道它发生的可能性到底有多大.概率是用来描述随机事件发生的可能性的大小的一种数量指标,它是逐步形成和完善起来的.下面我们就先引入频率的概念,然后研究频率的性质,进而引出概率的定义.1.2.1事件的频率定义 1.2.1 对于一个随机事件A 来说,在n 次重复试验中,记A n 为随机事件A 出现的次数,又A n 称为事件A 的频数,称()n f A = A n n为事件的频率. 由上述定义,对于事件的频率,我们很容易得到如下性质:(1)0()1n f A ≤≤;(2)()1n f Ω=;(3)对于k 个两两互斥的事件12,,,k A A A ,有11()k kn i n i i i f A f A ==⎛⎫= ⎪⎝⎭∑.根据上述定义可知频率反应了一个随机事件发生的频繁程度,人们经过长期的实践发现,虽然个别随机事件在某次试验或观察中可能出现也可能不出现,但在大量试验中它却呈现出明显的规律性——频率稳定性.在掷一枚均匀的硬币时,既可能出现正面,也可能出现反面,在大量试验中出现正面和反面的频率,都应接近于50%,为了验证这点,历史上曾有不少数学家做过这个试验,其结果如下:又如,在英语中某些字母出现的频率远远高于另外一些字母.而且各个字母被使用的频率相当稳定.例如,下面就是英文字母使用频率的一份统计表.对一随机事件来说,如果它发生的频率越大,自然这个事件在一次试验中发生的可能性就越大,所以频率在一定程度上反映了事件发生可能性的大小.如上述两个试验,尽管每做n 次试验,所得到的频率()n f A 各不相同,但随着试验次数n 的增加,事件A 的频率()n f A 与会逐渐稳定在一个常数附近,而实际上这一常数即为事件A 的概率.下面给出概率的一个严密的定义.20世纪30年代中期,柯尔莫哥洛夫给出了概率的严密的公理化定义.定义1.2.2 设Ω是随机试验E 的样本空间,对于E 的每一个随机事件A ,定义一个实数()P A 与之对应.若实值集合函数()P ⋅满足下列条件:(1)非负性:对于每个随机事件A ,都有()0;P A ≥(2)规范性:()1P Ω=;(3)可列可加性:若事件12,,,A A 两两互斥,则有 11()i i i i P A P A ∞∞==⎛⎫= ⎪⎝⎭∑, (1.2.1)则称()P ⋅为概率,()P A 为事件A 的概率.由概率的定义,可得到概率的以下性质:性质1 ()0P ∅=.性质2 (有限可加性) 设12,,,n A A A 是两两互斥的事件,则 121()()nn k k P A A A P A ==∑ (1.2.2)性质3 对任意事件A ,有()1()P A P A =-.性质4 对任意事件,A B ,若,A B ⊂则()()()P B A P B P A -=-. (1.2.3)性质5 若,B A ⊂则有()()P B P A ≥.性质6 对于任一事件A ,有0()1P A ≤≤.性质7(减法公式) 对任意事件,A B ,有()()()P B A P B P AB -=-. (1.2.4) 证 因为B A B AB -=-,且AB B ⊂,由(1.2.3),()()()()P B A P B AB P B P AB -=-=-.性质8 (加法公式) 对任意事件,A B ,有()()()() P P AB A P B P AB =+-.(1.2.5) 证 由于 ()A B A B AB =-,且(),A B AB -=∅于是有()()()()()()P A B P A P B AB P A P B P AB =+-=+-.推广 ,,A B C 是任意三个事件,则有()()()()()()()().P A B C P A P B P C P AB P AC P BC P ABC =++---+一般,对于任意n 个事件12,,,n A A A 有1121111()()()()...(1)()n n n i i i j i j k n i i j n i j k n i P A P A P A A P A A A P A A A -=≤<≤≤<<≤==-+++-∑∑∑.1.3 古典概率模型古典概型是人们最初讨论的一种随机试验,本节即要讨论古典概型中随机事件的概率.下面先看第1节的三个例子:1E : 抛一枚硬币,观察出现正面还是反面.(分别用“H ” 和“T ” 表示出正面和反面); 2E :抛两枚硬币,观察出现的结果;3E :掷一颗骰子,观察出现的点数.上述三个例子即为古典概型随机试验,它们有共同的特点:(1)样本空间只包含有限个样本点;(2)每个样本点在每次随机试验中等可能出现.凡是具有上述两个特点的随机试验就称为是古典概型,那么在古典概型中随机事件的概率应该如何计算?定义1.3.1 随机试验E 是古典概型,样本空间Ω共含有n 个样本点,随机事件A 含有r 个样本点,则定义事件A 的概率为: () A r P A n==Ω中本中本样点个数 样点个数. (1.3.1) 古典概型中许多概率的计算相当困难而富有技巧,按照上述概率的计算公式,计算的要点是给定样本点,并计算它的总数,而后再计算所求事件中含的样本点的数目.下面我们看一些典型的古典概率计算的例子.例1.3.1 将一枚硬币抛掷两次,设事件1A ={恰有一次出现正面};事件2A ={至少有一次出现正面},求1()P A 和2()P A .解 正面记为“H ”,反面记为“T ”,则随机试验的样本空间为{,,,}HH HT TH TT Ω=, 而 {}1,A HT TH =,{},,2A HH HT TH =,于是121()42P A ==,23()4P A =. 例1.3.2 有10个电阻,其电阻值分别为1210ΩΩ⋯Ω,,,,从中取出三个,求取出的三个电阻,一个小于5Ω,一个等于5Ω,另一个大于5Ω的概率.解 把从10个电阻中取出3个的各种可能取法作为样本点全体,这是古典概型,样本空间的样本点数为103⎛⎫ ⎪⎝⎭,所求事件含样本点数为⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛151114.故所求概率为 41511111063P ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎝⎭⎝⎭⎝⎭==⎛⎫ ⎪⎝⎭. 例1.3.3 30名学生中有3名运动员,将这30名学生平均分成3组,求:(1)每组有一名运动员的概率;(2)3名运动员集中在一个组的概率.解 设事件A={每组有一名运动员},B={3名运动员集中在一组},30名学生平均分成3组共有30201030!10101010!10!10!⎛⎫⎛⎫⎛⎫= ⎪⎪⎪⎝⎭⎝⎭⎝⎭种分法. (1)保证每组有一名运动员则有27!3!9!9!9!分法,所以50()30!20310!10!10!P A =27!3!9!9!9!=; (2)让3名运动员集中在一个组,则有272010371010⎛⎫⎛⎫⎛⎫⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭分法,所以27201037101018()30!20310!10!10!P B ⎛⎫⎛⎫⎛⎫⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭==. 例1.3.4(摸球模型)(1) (无放回地摸球)设袋中有M 个白球和N 个黑球,现从袋中无放回地依次摸出m n +个球,求所取球恰好含m 个白球,n 个黑球的概率.解 样本空间所含样本点总数为,M N m n +⎛⎫⎪+⎝⎭所求事件含的样本点数为,M N m n ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭所以所求概率为 M N m n P M N m n ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭=+⎛⎫ ⎪+⎝⎭. (2) 有放回地摸球设袋中有4只红球和6只黑球,现从袋中有放回地摸球3次,求前2 次摸到黑球、第3 次摸到红球的概率.解 样本空间点总数为310101010⨯⨯=,所求事件所含样本点数为664⨯⨯,故 366410P ⨯⨯= 0.144=. 例1.3.5(盒子模型)设有n 个球,每个都能以相同的概率被放到N 个盒子()N n ≥的每一个盒子中,试求:(1)某指定的n 个盒子中各有一个球的概率;(2)恰好有n 个盒子中各有一个球的概率.解 设事件A={某指定的n 个盒子中各有一个球},B={任意n 个盒子中各有一个球}. 由于每个球可落入N 个盒子中的任一个,所以n 个球在N 个盒子中的分布相当于从N 个元素中选取n 个进行有重复的排列,故共有nN 种可能分布.对于事件A ,相当于n 个球在那指定的n 个盒子中全排列,总数为!n ,所以 !()n n P A N=. 对于事件B ,n 个盒子可以任意,即可以从N 个盒子中任意选出n 个来,这种选法共有⎪⎪⎭⎫ ⎝⎛n N 种,对于每种选定的n 个盒子,再全排列,所以事件B 放法共有!N n n ⎛⎫ ⎪⎝⎭种,所以!()n N n n P B N⎛⎫ ⎪⎝⎭=. 上述例子是古典概型中一个比较典型的问题,不少问题都可以归结为它.例如概率论历史上有一个颇为有名的问题:要求参加某次集会的n 个人中没有两个人生日相同的概率.若把n个人看作上面问题中的n 个球,而把一年的365天作为盒子,则365N =,这时按照上述事件B 概率的求法就给出所求的概率.例如当40n =时,0109P =.,即40人中至少有两个人生日相同的概率为0891.,这个概率已经相当大了.例1.3.6 袋中有a 只黑球,b 只白球,它们除颜色不同外,其他方面没有差别,把球均匀混合,然后随机取出来,一次取一个,求第k 次取出的球是黑球的概率()1k a b ≤≤+. 解 设事件A ={第k 次取出的球是黑球}.法1 把a 只黑球及b 只白球都看作是不同的(例如设想把它们进行编号),若把取出的球依次放在排列成一行的a b +个位置上,则可能的排列法相当于把a b +个元素进行全排列,总数为()!a b +,把它们作为样本点全体.A 事件所含样本点数为(1)!a a b ⨯+-,这是因为第k 次取得黑球有a 种取法,而另外1a b +-次取球相当于1a b +-只球进行全排列,有(1)!a b +-种取法,故所求概率为(1)!()()!a a b a P A a b a b⨯+-==++, 结果与k 无关.实际上本例就是一抽签模型,例如在体育比赛中进行抽签,对各队机会均等,与抽签的先后次序无关.法2 把a 只黑球看作是没有区别的,把b 只白球也看作是没有区别的.仍把取出的球依次放在排列成一行的a b +位置上,因若把a 只黑球的位置固定下来则其他位置必然是放白球,而黑球的位置可以有⎪⎪⎭⎫⎝⎛+b b a 种放法,以这种放法作为样本点.对于事件A ,由于第k 次取得黑球,这个位置必须放黑球,剩下的黑球可以在1a b +-个位置上任取1a -个位置,因此共有⎪⎪⎭⎫ ⎝⎛--+11a b a 种放法.所以所求概率为b a a a b a a b a P k +=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛--+=11. 两种不同的解法答案相同,两种解法的区别在于,选取的样本空间不同.在[法一]中把球看作是“有区别的”,而在[法二]中则对同色球不加区别,因此在第一种解法中要顾及各黑球及各白球间的顺序而用排列,第二种解法则不注意顺序而用组合,但最后还是得出了相同的答案.由本例,我们必须注意,在计算样本点总数及所求事件含的样本点数时,必须对同一个确定的样本空间考虑,因此其中一个考虑顺序,另一个也必须考虑顺序,否则结果一定不正确.1.4 条件概率在许多实际问题中,除了考虑()P B 外,有时还需要考虑在一定条件下事件B 发生的概率,比如,已知事件A 发生的条件下,事件B 发生的概率,我们称这种概率为事件A 发生的条件下事件B 发生的条件概率,记为(|)P B A .1.4.1 条件概率的定义引例 盒中有4个外形相同的球,分别标有1,2,3,4,现在从盒中有放回的取两次球,每次取一球.则该试验的所有可能的结果为(1,1) (1,2) (1,3) (1,4)(2,1) (2,2) (2,3) (2,4)(3,1) (3,2) (3,3) (3,4)(4,1) (4,2) (4,3) (4,4)其中(,)i j 表示第一次取i 号球,第二次取j 号球,设A ={ 第一次取出球的标号为2},B ={ 取出的两球标号之和为4}, 则事件{(13),(2,2),(3,1)}B =,,因此事件B 的概率为 ()316P B =. 下面我们考虑在事件A 发生的条件下,事件B 发生的概率(|)P B A .由于已知事件A 已经发生,{(21),(2,2),(2,3),(2,4)}A =,,这时,事件B 在事件A 已经发生的条件下发生,那么只可能出现样本点(2,2),因此A 发生的条件下B 发生的概率为14,即 1(|)4P B A =. 由引例可以看出,事件B 在“条件A 已发生”这附加条件下的概率与不附加这个条件的概率是不同的.那么如何计算条件概率(|)P B A 呢?定义1.4.1 设A 、B 是两个随机事件,()0P A >,称()(|)()P AB P B A P A = (1.4.1) 为在事件A 已发生的条件下事件B 发生的条件概率. 在上述引例中,41(),()1616P A P AB ==,显然有()(|)()P AB P B A P A ==14. 例1.4.1 10个产品中有7个正品,3个次品,按照不放回抽样,每次一个,抽取两次,求(1) 两次都抽到次品的概率;(2 ) 第二次才取到次品的概率;(3)已知第一次取到次品,第二次又取到次品的概率.解 设A ,B 分别表示第一次和第二次抽到的是次品.(1) ()P AB =32110915⨯⨯=; (2) 737()10930P AB ⨯==⨯;(3) 12()215(|)39()1510P AB P B A P A ====.例 1.4.2 某种动物由出生算起活20岁以上的概率为0.8,活到25岁以上的概率为0.4, 如果现在有一个20岁的这种动物,问它能活到25岁以上的概率是多少?解 设事件A ={能活20岁以上},事件B ={能活25岁以上},即要求条件概率P(B A),由题()0.8P A =,()0.4P B =,()()P AB P B =,于是()(|)()P AB P B A P A =0.410.82==. 1.4.2 条件概率)|(A P ⋅的性质容易验证条件概率|P A ⋅()也有非负性、规范性和可列可加性三条性质: (1) 非负性:对任意的B ,(|)P B A ≥0; (2) 规范性: (|)1P A Ω=;(3) 可列可加性:对任意的一列两两互斥的事件,(1,2,)i B i ⋯=,有 11(|)(|)i i i i P B A P B A ∞∞===∑.因此,条件概率仍然是概率,所以条件概率也具有有限可加性、减法公式、加法公式等无条件概率所具有的一些性质.如对任意的12,B B ,有:(1) 121212(|)(|)(|)(|)P B B A P B A P B A P B B A =+-;(2)12112(|)(|)(|)P B B A P B A P B B A -=-; (3)若()(|)1()P B A B P B A P A ⊂==,则. 例1.4.3 一张储蓄卡的密码共6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.解 设事件A ={任意按最后一位数字,不超过2次就按对},事件i A ={第i 次按对密码}(1,2i =),则__112()A A A A =,(1)因为事件1A 与事件12A A 互斥,由概率的加法公式得__1121911()()()101095P A P A P A A ⨯=+=+=⨯;(2)事件B ={最后一位按偶数},则____112112(|)(()|)(|)(|)P A B P A A A B P A B P A A B ==+14125545⨯=+=⨯. 1.4.3 乘法公式由条件概率定义的(1.4.1)可得,当()0P A >时,有()(|)P AB P A P B A =(), (1.4.2) 及()0P B >时,()(|)P AB P B P A B =(). (1.4.3) 推广 12,,,n A A A 为n 个事件,且12n-1()0P A A A >,则有 12n 121321n 121()()(|)(|)(|)n P A A A P A P A A P A A A P A A A A -=. (1.4.4)特别的,当3n =时,有()(|)(|)P ABC P A P B A P C AB =().乘法公式一般用于计算多个事件同时发生的概率.例1.4.4设袋中装有r 只红球,t 只白球.每次取一只观察其颜色并放回,并同时再放入a 只同色球,连续取四次,试求第一次、第二次取到红球且第三、四次取到白球的概率.解 以i A 表示事件“第i 次取到红球”1,2,3,4i =,则43,A A 分别表示第三次、第四次取到白球,即要求事件1234A A A A 的概率,由乘法公式(1.4.4)得12341213124123()()(|)(|)(|)P A A A A P A P A A P A A A P A A A A =r r a t t ar t r t a r t a a r t a a a ++=⋅⋅⋅++++++++++ ()()()()(2)(3)rt r a t a r t r t a r t a r t a ++=+++++++.1.4.4全概率公式和贝叶斯公式全概率公式和贝叶斯公式是概率论中两个比较重要的公式,它们将一个比较复杂事件的概率转化为不同条件下发生的比较简单的条件概率来计算.下面首先介绍一下样本空间划分的概念.定义 1.4.2 设Ω是随机试验E 的样本空间,12,,,n B B B 是E 的一列随机事件,若 (1),,,1,2,,i j B B i j i j n =∅≠=;(2)12n B B B =Ω,则称12,,,n B B B 为样本空间Ω的一个有限划分.定理 1.4.1 (全概率公式)设12,,,n B B B 是样本空间Ω的一个有限划分,且()0,1,2,i P B i n >=,则对任一事件A ,有()1()(|)iii P A P B P A B ∞==∑. (1.4.5)证1()()[()]ni i P A P A P A B ==Ω=1(())ni i P AB ==,对任意i j i j,B B ≠=∅,得()i AB ()()=Φi j AB AB ,由概率的有限可加性得11(())()nn i i i i P AB P AB ===∑=1()(|)ni i i P B P A B =∑.例1.4.5 有一批同一型号的产品,其中由甲厂生产的占30%,乙厂生产的占50%,丙厂生产的占20%,又知这甲、乙、丙三个厂的产品次品率分别为2%,1%,1%,问从这批产品中任取一件,取到次品的概率是多少?解 设事件A 为“任取一件为次品”,事件123,,B B B 分别为产品由甲、乙、丙厂生产,显然123,B B B =Ω且,,1,2,3i j B B i j =∅=,即123B ,B ,B 构成样本空间的划分.所以由(1.4.5)112233()()()()()()()P A P A B P B P A B P B P A B P B =++,123()0.02()0.01()0.01P A B P A B P A B ===,,,故112233()()()()()()()P A P A B P B P A B P B P A B P B =++0020300105001020013.......=⨯+⨯+⨯=.定理 1.4.2 (贝叶斯公式)设12,,,n B B B 是样本空间Ω的一个划分,()i P B 0>,1,2,3,,i n =,对任意事件A ,有1()(|)(|),1,2,...()(|)i i i njjj P B P A B P B A i n P B P A B ===∑. (1.4.6)证 i i P(B A )P(B A )P(A )=1i i njj j P(A B )P(B ),P(A B)P(B )==∑ 1,2,,i n =.例1.4.6 (续例1.4.5) 有一批同一型号的产品,其中由甲厂生产的占30%,乙厂生产的占50%,丙厂生产的占20%,又知这甲、乙、丙三个厂的产品次品率分别为2%,1%,1%,问从这批产品中任取一件,发现是次品,那么它分别由甲、乙、丙厂生产的概率是多少?解 123(),(),()P B A P B A P B A 即为所要求的条件概率,由贝叶斯公式(1.4.6),11131()(|)0.020.3(|)0.460.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑;22231()(|)0.010.5(|)0.380.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑;33331()(|)0.010.2(|)0.150.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑.例1.4.7袋中有4个红球,6个白球,作不放回的摸球两次,求(1)第二次摸到红球的概率;(2)已知第二次摸到红球,求第一次摸到的也是红球的概率.解 设A ={第一次摸到红球},A ={第一次摸到白球},B ={第二次摸到红球}.显然11114634(),(),(|),(|)101099P A P A P B A P B A ====; (1)由全概率公式(1.4.5)111143642()()(|)()(|)1091095P B P A P B A P A P B A =+=⨯+⨯=; (2)由贝叶斯公式(1.4.5)1111111()(|)1(|)()(|)()(|)3P A P B A P A B P A P B A P A P B A ==+.例1.4.8 某一地区患有癌症的人占0.005,患者对一种试验反应是阳性的概率为0.95,正常人对这种试验反应是阳性的概率为0.04,现抽查了一个人,试验反应是阳性,问此人是癌症患者的概率有多大?解 设A ={抽查的人患有癌症},B ={试验结果是阳性},则__A ={抽查的人没有患癌症}.()0.005, ()0.995 ,(|)0.95, (|)0.04P A P A P B A P B A ====.由贝叶斯公式(1.4.5),得()(|)(|)0.1066 ()(|)()(|)P A P B A P A B P A P B A P A P B A ==+.这表明某人的试验结果为阳性,但此人确患癌症的概率却非常小,只有0.1066,即平均来说,1000个检查结果呈阳性的人中大约只有107人确患癌症.那是否说明该试验对于诊断一个人是否患有癌症没有意义?我们来分析一下.如果不做试验,随机抽取一人,那么他是癌症患者的概率为()0.005P A =,若进行试验,试验后呈阳性反应,则根据试验得到的信息:此人是癌症患者的概率为P (|)0.1066A B =.概率从0.005增加到0.1066,约增加了21倍,说明试验对于诊断一个人是否患癌症有意义.至于试验结果呈阳性患癌症的概率还如此低,是由癌症的患病率非常低0.005导致的.1.5 事件的独立性条件概率(|)P B A 通常来说与()P B 不相等,这反映了事件A 的发生与否对事件B 有影响;若(|)P B A 与()P B 相等,则反映了事件A 的发生与否对事件B 无影响.如:抛硬币两次,事件A ={第一次正面向上},B ={第二次正面向上}.1()(|)2P B P B A ==. 所以两个事件A 、B 其中一个发生与否,不影响另一件事件发生的可能性大小,此时 (|)()P B A P B =,即:()(|)()()P AB P B A P B P A ==, 于是得到()()()P AB P A P B =,我们称A 与B 相互独立.定义 1.5.1 对事件A 和B ,如果()()()P AB P A P B =,则称事件A 与事件B 相互独立.定理1.5.1 设A ,B 是两个事件, 且0)(>A P ,若A ,B 相互独立,则)()|(A P B A P =. 定理1.5.2 设事件A ,B 相互独立,则A 与B ,A 与B ,A 与B 各对事件也相互独立. 证 因为____()A A A BB ABA B =Ω==,显然__,AB A B 互斥,故______()()()()()()()P A P ABAB P AB P AB P A P B P AB ==+=+,于是____()()()()()(1())()()P A B P A P A P B P A P B P A P B =-=-=,所以A 与B 相互独立.由A ,B 相互独立可以推出A 与B 相互独立,于是,A 与B 相互独立可推出A 与B 相互独立,再由B =B ,又可推出A 与B 相互独立.定理1.5.3 若事件A ,B 相互独立,且0()1P A <<,则__(|)(|)()P B A P B A P B ==.证()()()(|)()()()P AB P A P B P B A P B P A P A ===,__________()()()(|)()()()P A B P A P B P B A P B P A P A ===. 定义1.5.2 (三个事件相互独立) 设C B A ,,为三个事件,若等式),()()()(),()()(),()()(),()()(C P B P A P ABC P C P B P BC P C P A P AC P B P A P AB P ====同时满足,则称事件C B A ,,相互独立.类似的可以定义n 个事件相互独立.定义1.5.3 设12,,,n A A A 是n 个事件,若对其中任意k 个事件12,,,k i i i A A A(2)k n ≤≤有1212()()()()k k i i i i i i P A A A P A P A P A =,则称这n 个事件是相互独立的.定义 1.5.4 设有n 个事件12,,,n A A A (3≥n ),若对其中任意两个事件i A 与)1(n j i A j ≤<≤有)()()(j i j i A P A P A A P =则称这n 个事件是两两相互独立的.显然,若n 个事件12,,,n A A A 相互独立,则n 个事件一定是两两相互独立,但反之不一定成立.在实际应用中,独立性的判断一般不会采用定义判断,而是根据问题的实际意义去判断,如抛硬币两次,事件A ={第一次正面向上},B ={第二次正面向上},第一次出现哪一面并不影响第二次出现正面的概率,所以事件,A B 相互独立.例1.5.1甲、乙两射手独立地向同一目标射击一次,其中命中率分别为0.9和0.8, (1) 求目标被击中的概率;(2) 现已知目标被击中,求它是由甲击中的概率. 解 设A ={甲命中},B ={乙命中},C ={目标被击中},(1) () () ()()()()0.90.80.90.80.98P C P A B P A P B P A P B ==+-=+-⨯=; (2) ()()(|)()[()()()()]P AC P A P A C P C P A P B P A P B ==+-0.90.920.98==. 例1.5.2 设高射炮每次击中飞机的概率为0.2,问至少需要多少门这种高射炮同时独立发射(每门射一次)才能使击中飞机的概率达到95%以上?解 设需要n 门高射炮,A ={飞机被击中},A i ={第i 门高射炮击中飞机},12)i n =⋯(,,,,则12()()n P A P A A A =⋯=_____________________121()n P A A A -______121()n P A A A =-,由相互独立的性质____________1212()()()()n n P A A A P A P A P A =,于是______12()1()()()1(10.2)n n P A P A P A P A =-=--,令1(10.2)0.95n--≥,得08005n≤..,即得14n ≥.即至少需要14门高射炮才能有95%以上的把握击中飞机.例 1.5.3 一个元件能正常工作的概率称为这个元件的可靠性,一个系统能正常工作的概率称为这个系统的可靠性.设一个系统由四个元件按图示方式(图1.2)组成,各个元件相互独立,且每个元件的可靠性都等于)10(<<p p ,求这个系统的可靠性.。
《概率论与数理统计》1.1 随机试验与随机事件

i点 5, 6
}
在一起所构成的事件)
复合事件
事件 B = { 掷出奇数点 }
五. 随机事件间的关系及其运算
设试验 E 的样本空间为 S, A, B, Ak (k 1, 2, ) 是 S 的子集.
1. 事件的包含:如( A果中事的件每A个发样生本必点然都导包致含事在件BB中发)生.
注 ▲
则称 事件 B 包含事件 A 或 A 含于事 件 B 。记作:B A或 A B
从观察试验开始 研究随机现象,首先要对 研究对象进行观察或试验.
这里的试验指的是随机试验.
第一节 随机试验与随机事件
一. 试 验 : 为了研究随机现象,就要对客观事物进行 观察,观察的过程称之为试验。记为 E。
例1 E1:掷一枚硬币观察正面,反面出现的情况。 E2:记录一小时内,到某保险公司投保的户数 E3:射手射击一个目标,直到射中为止,观察 其射击的次数。 E4:从一批产品中抽取十件,观察其次品数。 E5:抛一颗骰子,观察其出现的点数。
A
B
为 A 与 B 的和 (并), 记作:
A B 或 A B x xA 或 xB
AB
注
▲ 它是由事件 A 和 B 所有样本点构成的集合 n
▲ 称 Ak 为 n 个事件 A1 , A2 , , An 的和事件
k1
k 1 Ak 为可列个事件 A1 , A2 ,
的和事件
4. 事件的积(交): 若 “两个事件A与 B 同时发生” 也是一个事件,
样本空间元素 是由试验目的 所确定的,不 同的试验目的 其样本空间也 是不一样的。
S
.e
样本点e
例 3.若试验 E是将一枚硬币抛掷两次. 试写出该试验 E 的样本空间.
自考概率论与数理统计(经管类)自学资料

自考概率论与数理统计(经管类)自学资料第一章随机事件与随机事件的概率1.1 随机事件例一,掷两次硬币,其可能结果有:{上上;上下;下上;下下}则出现两次面向相同的事件A与两次面向不同的事件B都是可能出现,也可能不出现的。
引例二,掷一次骰子,其可能结果的点数有:{1,2,3,4,5,6}则出现偶数点的事件A,点数≤4的事件B都是可能出现,也可能不出现的事件。
从引例一与引例二可见,有些事件在一次试验中,有可能出现,也可能不出现,即它没有确定性结果,这样的事件,我们叫随机事件。
(一)随机事件:在一次试验中,有可能出现,也可能不出现的事件,叫随机事件,习惯用A、B、C表示随机事件。
由于本课程只讨论随机事件,因此今后我们将随机事件简称事件。
虽然我们不研究在一次试验中,一定会出现的事件或者一定不出现的事件,但是有时在演示过程中要利用它,所以我们也介绍这两种事件。
必然事件:在一次试验中,一定出现的事件,叫必然事件,习惯用Ω表示必然事件。
例如,掷一次骰子,点数≤6的事件一定出现,它是必然事件。
不可能事件:在一次试验中,一定不出现的事件叫不可能事件,而习惯用φ表示不可能事件。
例如,掷一次骰子,点数>6的事件一定不出现,它是不可能事件。
(二)基本(随机)事件随机试验的每一个可能出现的结果,叫基本随机事件,简称基本事件,也叫样本点,习惯用ω表示基本事件。
例如,掷一次骰子,点数1,2,3,4,5,6分别是基本事件,或叫样本点。
全部基本事件叫基本事件组或叫样本空间,记作Ω,当然Ω是必然事件。
(三)随机事件的关系(1)事件的包含:若事件A发生则必然导致事件B发生,就说事件B包含事件A ,记作。
例如,掷一次骰子,A表示掷出的点数≤2,B表示掷出的点数≤3。
∴A={1,2},B={1,2,3}。
所以A发生则必然导致B 发生。
显然有(2)事件的相等:若,且就记A=B,即A与B相等,事件A等于事件B,表示A与B实际上是同一事件。
概率论与数理统计 1.1 随机事件及其概率

样本空间的元素是由试验目的决定的。
3. 随机事件
定义2 一般地,我们称试验E的样本空间Ω的子集为 随机事件,简称为事件,可用A , B , C , D等表示。 如:掷骰子试验中点数是偶数、奇数、大于3等都是 事件。
事件的表示方法:语言定性描述,用集合描述。 如:掷骰子试验中,掷出的点数为偶数可表示为: A={2,4,6} = “点数为偶数”。
概 率学 论时
(16 )
数
理 统 计
学 时
(28 )
第一章 随机事件及其概率
第一章
§1.1 随机事件及其运算 §1.2 频率与概率 §1.3 等可能概型 §1.4 条件概率 §1.5 事件的相互独立性
(8学时)
第一章
§1.1 随机事件及其运算
一、随机现象 二、随机试验及样本空间 三、随机事件 四、事件的关系及其运算
水。设事件Ak 表示第k号管道正常工作k = 1, 2, 3。 B表示城市能正常供水, B表示城市断水。试用
A1 , A2 , A3 表示 B, 。B
甲1
3
2
乙
城市
解: B A1 U A2 A3 B A1 U A2 A3
A1A2 U A3
例3 从一批100件的产品中每次取出一个(取后不放 回),假设100件产品中有5件是次品,用事件Ak表示
(a) 甲滞销,乙畅销; (b) 甲乙两种产品均畅销;
(c) 甲畅销;
(d) 甲滞销或乙畅销。
小结
(1) 随机现象 (了解概念) (2) 随机试验 (理解概念,三个特点);
样本空间 (能写出给定试验的样本空间); (3) 随机事件 (能用已知事件表示未知事件); (4) 事件运算及关系 (掌握并会应用,主要用于化简 和证明)。
1.1随机试验、样本空间、随机事件

随机试验E
例如:抛一颗骰子,观察其出现的点数.
样本点
可能的结果:1 点、2 点、3 点、4 点、5 点、6 点.
所有可能结果的集合:{1 点、2 点、3 点、4 点、5 点、6 点}.
样本空间
随机试验、样本空间、随机事件
定义 随机试验 E 的所有可能结果组成的集合,称为 E 的样本空间, 记为 S. 样本空间的元素,即 E 的每个结果,称为样本点,记为ei .
结合律: AU( BUC) = ( AUB) UC , ( AI B) I C = AI ( BI C) .
分配律: AU( BI C) = ( AUB) I ( AUC) , AI ( BUC) = ( AI B) U( AI C) .
德摩根律: A U B = A I B , A I B = A U B .
随机现象 概率论与数理统计
——研究和揭示随机现象统计规律性的一门数学学科!
随机试验、样本空间、随机事件
二、随机试验 E1:抛一枚硬币,观察其出现正面 H 、反面T 的情况; E2 :抛一颗骰子,观察其出现的点数; E3:抛一颗骰子,观察点数 2 是否出现; E4 :记录车站售票处一天内售出的车票数; E5 :任取同一生产线上生产的一只灯泡,测试其寿命; E6 :在[0,1]之间随机地投一点,记录该点的坐标.
随机试验、样本空间、随机事件
例 1 设 A、B、C 为三个事件,试用其运算关系表示下列事件:
(1)A、B、C 同时发生;
ABC
(2)A、B、C 至少有一个发生;
AU B UC
(3)A、B、C 至少有两个发生;
AB U BC U AC
(4)A、B、C 都不发生;
ABC
(5)A、B、C 不都发生.
1.1 随机事件及其运算

例如,在E1中
{1, 2, 3,4,5,6} 表示必然事件 ;
A {1, 3,5} B {1, 2, 3}
表示出现奇数点的事件;
表示出现点数小于 4 的事件;
C {2, 4, 6} 表示出现偶数点的事件 ; D {4,6}
表示出现大于2 的偶点事件 。
{出现7点}
表示不可能事件。
A
B A B ; A B A B. 和之逆即逆之积 ; 积之逆即逆之和
例1 电路如图所示。用A表示事件“信号灯点 亮”,用B,C,D 依次表示“继电器Ⅰ闭合” , “继电器Ⅱ闭合”,“继电器Ⅲ闭合” 。试给出 用 B,C,D 间的运算关系表示事件 A 的关系式。
AB
(C
D)
A BC
BD
ABC
ABC
6)A、B、C 中只有一个发生; ABC 8)A、B、C 中恰有两个发生. ABC
ABC ABC
ABC ABC
7)A、B、C 中不多于两个发生; ABC
ABC
集合的运算
一、补集与全集
定义: 一般地,设S是一个集合,A是S的一个 子集,由S中所有不属于A的元素组成的集合, 叫做S中子集A的补集,记作
概率论与数理统计
数学教研室
贺 丽 娟
一、概率论的诞生及应用
概率论与数理统计 是研究和揭
示随机现象统计规律性的数学学科。
1. 概率论的诞生——分赌本问题
甲、乙二人赌博,各出赌注30元,共60 元,每局甲、乙胜的机会均等,都是 1/2。约定:谁先胜满3局则他赢得全部 赌注60元,现已赌完3局,甲2胜1负,而 因故中断赌情,问这60元赌注该如何分 给2人,才算公平? 点
Ω
Ω
概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案完整版

随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题5.习题6.习题7习题8习题9习题10习题11习题12习题13习题14习题15习题16习题17习题18习题19习题20习题21习题22习题23习题24习题25习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3}, 定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为 P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3}; (3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知 P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为X 0123P 3512036120211201120习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.解答:由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,⋯,k,⋯.设第k次才取到正品(前k-1次都取到次品), 则随机变量X的分布律为P{X=k}=310×310×⋯×310×710=(310)k-1×710,k=1,2,⋯.习题10设随机变量X∼b(2,p),Y∼b(3,p), 若P{X≥1}=59,求P{Y≥1}.解答:因为X∼b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y∼b(3,p), 所以P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005, 在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数, n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{⋃0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2}, 即λ11!e-λ=λ22!e-λ⇒λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且 F(-∞)=0,F(+∞)=1,由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又 \becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为 p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ, 所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即 1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997, 因此 x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则 X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725, P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),c b+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,F Y(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述 fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32, 是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须 200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.因F(x)在x=π6处连续,故P{X=π6=12, 于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx), 其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx), 而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx), 即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx, 积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0, 故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率. 解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0), 求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1, 从而c=eλ a. 于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1-e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2)dx∫0.10.5(12x2-12x+3) dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且 F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且 a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以 fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即 K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴ F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为 fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为 FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\Y 1231 1/61/91/182 1/3a1/9求a.解答:由分布律性质∑i⋅jPij=1, 可知 1/6+1/9+1/18+1/3+a+1/9=1,解得 a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求: (1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求: (3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值: (0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:(2)P{Y=0}=P{X=-1,Y=0}+P{X=0,Y=0}+P{X=2,Y=0} =0+16+512=712,同样可求得 P{Y=13=112,P{Y=1}=13,关于的Y边缘分布见下表:Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732.(4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为 f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.(2)在X=2的条件下,Y的条件分布律为。
《概率论与数理统计》第一章知识点

第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。
2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。
二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。
(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。
2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。
1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。
2.基本事件:试验的每一可能的结果称为基本事件。
一个样本点w 组成的单点集{w}就是随机试验的基本事件。
3.必然事件:每次实验中必然发生的事件称为必然事件。
用Ω表示。
样本空间是必然事件。
4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。
1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。
2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。
3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。
4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。
5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。
概率论与数理统计第一章——随机事件及概率

ex2: 从0,1,2,3,4,5, 这六个数字中任取四 个,问能组成多少个四位偶数?
解:组成的四位数是偶数,要求末位为0,2或
4,可先选末位数,共P31 种,前三位数的选取方法有
P53 种,而0不能作首位,所以所组成的偶数个数为
P1 P3 − P1 P1 P2 = 156 (个)
◼ 为方便起见,记Φ为不可能事件,Φ不 包含任何样本点。
(三) 事件的关系及运算 ❖事件的关系(包含、相等)
1A B:事件A发生一定导致B发生
2A=B
A B
B A
B A
例:
✓ 记A={明天天晴},B={明天无雨} B A ✓ 记A={至少有10人候车},B={至少有5人候车}
B A
✓ 抛两颗均匀的骰子,两颗骰子出现的点数分别 记为x,y.记A={x+y为奇数},B={两次的骰子点
A
B
n Ai:A1, A2,An至少有一发生
i=1
n Ai:A1, A 2 ,An同时发生
i =1
✓当AB= Φ时,称事件A与B是互不相
容的,或互斥的。
A
B
A A= A B =
A的逆事件记为A, A A =
, 若 A B =
,
称A, B互逆(互为对立事件)
AA
A
B
事件A对事件B的差事件:
◼可以在相同条件下重复进行(重复性); ◼事先知道所有可能出现的结果(明确性); ◼每次试验前并不知道哪个试验结果会发生 (随机性)。
例: ❖抛一枚硬币,观察试验结果; ❖对某路公交车某停靠站登记下车人数; ❖对某批同型号灯泡,抽取其中一只测 验其使用寿命(按小时计)。
概率论与数理统计高教版第四版课后习题答案

当且仅当属于该集合的某一个样本点在试验中出现。不可 能事件就是空集Φ 。必然事件就是样本空间Ω 。于是事件 之间的关系和运算就可以用集合论的知识来解释。 为了直观,人们还经常用图形表示事件。表示方法与集 合论中表示集合的方法相同。 (三)事件之间的关系及其运算 1.事件的包含 如果事件A发生必然导致事件B发生,即属于A的每一 个样本点也属于B,则称事件B包含事件A,或称事件A包含于 事件B中。记作 B⊃A,A⊂B B⊃A的一个等价说法是:如果事件B不发生,必然导致事 件A也不会发生。显然对于任何事件A,有 Φ ⊂A⊂Ω 。
8. 完备事件组 若事件A1,A2,…,An为两两互不相容的事件,并且A1+A2+… +An=Ω ,则称A1,A2,…,An构成一个完备事件组。 例1,例2,例3,例4
7
§1.2 概率 概率论研究的是随机现象量的规律性。因此仅仅知道试验中 可能出现哪些事件是不够的,还需要对事件发生的可能性大小 的问题进行描述。 上面所提到的随机事件在一次试验中是否发生是不确定的, 但是在大量的重复试验中,它的发生确具有统计规律性,所以 应用中从大量的试验出发来研究它。 先来看看两个例子,掷一枚均匀硬币的试验中,出现文字 (反面)或国徽(正面)的事件,总体来看,在试验中两面中 总有一面会出现,而且他们出现的机会是相等的。但是在一次 是一次试验中,这两面中究竟哪一面出现我们无法确定,但我 们可以确定两面出现的机会是相等的。又如,掷一枚均匀的 骨殳子,在一次试验中,1点,2点,3点,4点,5点,6点都可
15
全非废品的概率。 例3 两封信随机的向标号为Ⅰ,Ⅱ,Ⅲ,Ⅳ的四个邮筒 投寄,求第二个邮筒恰好投入1封信的概率。 补充例题 例题1 随机地安排甲、乙、丙三人在一星期内各学习一 天,求: (1)恰好有一人在星期一学习的概率; (2)3人学习日期不相重的概率; 解:(1)基本事件的总数为7×7×7=343 甲、乙、丙三人中只有一人排在星期一由3种排法A31其余两 人排在其余的6天之中的任何一天,没人有6种排法,所以 三人中在一周内切恰有一人排在周一的排法共有A31×62=3× 36=108,所以恰好有一人在星期一学习的概率为108/343。
1_1随机事件

下页
2.和事件 事件A与B至少有一个发生,记作A∪B
2’ n个事件A1, A2,…, An至少有一个发生,记作
下页
i 1
Ai
n
3.积事件 : A与B同时发生,记作 A∩B=AB
3’ n个事件A1, A2,…, An同时发生,记作 A1A2…An
下页
4.差事件 :A-B称为A与B的差事件,表示事件A发生而B不发生
下页
有关赌博的最早一个数学问题出现在1494年意大利修 士、数学家巴乔罗(Luca Pacciolo)的著作《算术,几何,比 例和比值要义》中.
应该按赌博中止时甲乙已赢的局数分配赌本 .比如: s 3, a 2, b 1 就按2:1分配. 热衷于占星术和掷骰子的代数学家卡丹 (J.Cardan) 和 塔塔利亚(N.Tartanlia)指出巴乔罗的分法是错误的,认为巴 的分法没有考虑甲乙双方取得最终胜利还需要赢的局数 . 但是他们两人也没有给出正确的解法.
任课教师:
部 门:信息学院数学系 办公室:北校区文理大楼718室 E-mail:计
超纲内容 (不讲)
研究和揭示随机现象的 统计规律性的数学学科 在一定条件下必然发生的现象 向空中抛一物体必然落向地面; 水加热到100℃必然沸腾; 异性电荷相吸引; y f ( x) 放射性元素发生蜕变; ……… 随机现象 在试验或观察前无法预知出现什么结果 抛一枚硬币,结果可能正面(或反面)朝上; 向同一目标射击,各次弹着点都不相同; 某地区的日平均气温; 掷一颗骰子,可能出现的点数; ………
米泽斯定义事件的概率为该事件出现的频率的极限 , 而作为公理 就必须把这一极限的存在作为第一条公理,通常称为客观概率.
目前,绝大多数教科书都是采用柯尔莫哥洛夫的概率公理化体系.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若观察出现正面的次数 , 则样本空间为 { 0 , 1, 2 , 3 } .
说明
3. 建立样本空间,事实上就是建立随机现
象的数学模型. 因此 , 一个样本空间可以 概括许多内容大不相同的实际问题.
例如
只包含两个样本点的样本空间
{H , T }
它既可以作为抛掷硬币出现正面或出现反面的
统计推断、预测或者决策。
2.《概率论与数理统计》的地位
《概率论与数理统计》是高校理、工、农、 医科、经济类、管理类等本科专业必修的一门 重要的基础课,也是这些硕士研究生入学考试
的一门必考科目。
3.《概率论与数理统计》与其它学科 的联系及其应用
●《概率与数理统计》是一门应用性很强又 颇具特色的数学学科,它在工程技术、科学研 究、经济管理、企业管理、经济预测等众多领 域都有广泛的应用;
0 1 100 n 答案:( 1) { , , , } n n n ( 2 ) { 3 , 4 , ,10 }, ( 3 ) { 3 , 4 , } ( 4 ) {10 ,11 , }, ( 5 ) { AB , AC , AD , AE , BA , BC , BD , BE , CA , CB , CD , CE , DA , DB , DC , DE , EA , EB , EC , ED }, ( 6 ) {甲胜乙负,甲负乙胜, 平局 }
例如 可设 抛掷一枚骰子, 观察出现的点数. A = “点数不大于4”, B = “点数为奇数” 等 等.
随机事件与样本空间的关系
1. 随机事件 —— 某些样本点组成的集合, Ω的子集,常用A、B、C…表示. 2. 基本事件 —— Ω的单点集. 3. 必然事件 (Ω) 4. 不可能事件 (φ) —— 空集.
编,高等教育出版社
• 《概率论与数理统计教程》 魏宗舒 等编,高等教育出版社
统计软件包
• • • • Spss Sas Eviews Excel
第一章 随机事件及其概率
1.1 随机事件
1.1
随机事件
一、随机试验 二、样本空间
三、随机事件及其发生 四、事件之间的关系和运算
自然界所观察到的现象: 确定性现象 随机现象
子集{1,2,3,4}和{2,4,6}. 反过来, Ω的每个子集都对应了该试验的一个随 机事件.
随机事件的定义 随机试验 E 的样本空间Ω 的子集 称为 E 的随机事件, 简称事件. 当且仅当子集A中某个样本点出现时, 称事件A发生.
实例 抛掷一枚骰子, 观察出现的点数. 特别地:
基本事件
实例
由一个样本点组成的单点集
“出现1点”, “出现2点”, … , “出现6点”.
必然事件 随机试验中必然发生的事件.
实例 上述试验中 “点数不大于6” 就是必然事件.
不可能事件 随机试验中不可能发生的事件.
实例 上述试验中 “点数大于6” 就是不可能事件.
几点说明
1) 随机事件可简称为事件, 并以大写英文字母
A, B, C, 来表示事件
版)》龙永红 ,高等教育出版社
• 《概率论与数理统计》(第三版)龙永红 ,高等教育出版社 • 《概率论与数理统计》茆诗松 、成依明等编,高等教育出版社 • 《概率论与数理统计》陈希孺,中国科学技术大学出版社
• 《概率论与数理统计》第四版 (中山大学 邓集贤 杨维权 司徒荣 邓
永录) 编,高等教育出版社 • 《概率论与数理统计》第四版 (浙江大学 盛骤,谢式千,潘承毅 )
可能遇上各种颜色的交通
指挥灯.
实例6
出生的婴儿可
能是男,也可能是女. 实例7 明天的天气可
能是晴 , 也可能是多云
或雨. 随机现象的特征 条件不能完全决定结果
说明 (1) 随机现象揭示了条件和结果之间的非确定性
联系 , 其数量关系无法用函数加以描述.
(2) 随机现象在一次观察中出现什么结果具有偶
概率论与数理统计
Probability & Mathematical Statistics
电子邮箱:gltj2012@163.co 密码:gailvtongji
•曾经有一个学统计的学生,他开车的时候, 总是在十字路口加速,呼啸而过,然后再减 速。一天,他带着一个旅客,那个旅客被他 的驾驶方式弄得心惊胆战,问为什么要这么 开车。那个学生回答,“是这样的,从统计学 角度讲,十字路口是事故高发段,所以我要 尽可能的少花时间。”
同理可知下列试验都为随机试验.
(1) 抛掷一枚骰子,观察出现的点数.
(2) 从一批产品中,依次任选三件,记 录出现正品与次品的件数. (3) 记录某公共汽车站 某时刻的等车人数.
(4) 考察某地区 10 月
份的平均气温. (5) 从一批灯泡中任 取一只,测试其寿命.
二、样本空间 现代集合论为表述随机试验提供了一 个方便的工具 . 我们把随机试验的每个基本结果称为 样本点,记作e 或ω. 全体样本点的集合称为 样本空间. 样本空间用Ω表示. Ω
说明 (1) 随机试验简称为试验, 是一个广泛的术语.它包 括各种各样的科学实验, 也包括对客观事物进行 的 “调查”、“观察”或 “测量” 等. (2) 随机试验通常用 E 来表示.
实例 “抛掷一枚硬币,观 察正面、反面出现的情况”. 分析 (1) 试验可以在相同的条件下重复地进行; (2) 试验的所有可能结果: 正面、反面; (3) 进行一次试验之前不能 确定哪一个结果会出现. 故为随机试验.
(1) 确定性现象
在一定条件下必然发生 的现象称为确定性现象. 实例
“太阳不会从西边升起”,
“水从高处流向低处”,
“同性电荷必然互斥”,
确定性现象的特征
条件完全决定结果
(2) 随机现象
在一定条件下可能出现也可能不出现的现象 称为随机现象. 实例1 在相同条件下掷一枚均匀的硬币,观察 正反两面出现的情况.
四 随机事件间的关系与运算
事件是一个集合,其关系与运算可按照集合论中
集合的关系和运算来处理;
事件的关系
包含关系: A B,
A 发生必然导致 B 发生.
相等关系: A = B A B 而且 B A.
互不相容: A 和 B不可能同时发生,或互斥的.
事件的关系
和事件: A B, A 与 B 至少有一发生.
积事件:
生
A B = AB, A 与 B 同时发 A B, A发生但 B不发生
,A 不发生
差事件:
A
对立事件:
事件运算的图示法
AB
AB
AB
德摩根公式(对偶律)
A B A B A B A B
n n
A B A B;
n i Βιβλιοθήκη A A; n集合论
空间 空集 元素 A是B的子集 A与B无相同元素 A与B的并集 A与B的交集 A与B的差集 A的余集
事件域
设Ω为样本空间,F 是由Ω的子集组成的集合
类,若F 满足以下三点,则称 F 为事件域
1. 2. ΩF ;
若 AF ,则 A F ; A
3. 若 AnF ,n=1, 2, …, 则 1 AAn F . n n
结果有可能出现正面也可能出现反面.
实例2
用同一门炮向同
一目标发射同一种炮弹多 发 , 观察弹落点的情况.
结果: 弹落点会各不相同.
实例3 抛掷一枚骰子,观 结果有可能为:
察出现的点数.
1, 2, 3, 4, 5 或 6.
实例4
从一批含有正品
其结果可能为:
正品 、次品.
和次品的产品中任意抽取 一个产品. 实例5 过马路交叉口时,
然性, 但在大量试验或观察中, 这种结果的出现具 有一定的统计规律性 , 概率论就是研究随机现象 规律性的一门数学学科.
如何来研究随机现象? 随机现象是通过随机试验来研究的. 问题 什么是随机试验?
一、随机试验
在概率论中,把具有以下三个特征的试验称为随机
试验。 (1)可以在相同的条件下重复地进行; (2)每次试验的可能结果不止一个,并且能事先明确试 验的所有可能结果; (3)进行一次试验之前不能确定哪一个结果会出现。
● 《概率与数理统计》与其他数学分支 有着紧密的联系(如微积分(高等数学)、线
性代数等),是近代数学的重要组成部分;
● 《概率与数理统计》的理论与方法向 各个基础学科、工程学科的渗透,是近代科学 技术发展的特征之一;
在[0,1]区间上随机取数,取到有理数的概率?
● 《概率与数理统计》与基础学科相结
i i 1 i 1
i 1
n
Ai Ai
n
A B A B
Ai
n i n i
i 1
A A
i 1 i 1
i 1
Ai
i 1
记号
Ω φ AB AB=φ AB AB AB
A
概率论
样本空间, 必然事件 不可能事件 样本点 A发生必然导致B发生 A与B互不相容 A与B至少有一发生 A与B同时发生 A发生且B不发生 A不发生、对立事件
•三个统计学家去打猎,正好碰到挺大的一头鹿。 第一个统计学家开枪了,但是子弹偏左了大概1 米。第二个统计学家也跟着开枪了,同样没击中, 子弹偏右了1米。第三个统计学家放下枪,兴奋地 嚷道:“嗨,平均来讲,我们打中了!”
1.《概率论与数理统计》研究的内容
《概率论与数理统计》是研究和揭示随机 现象的统计规律性的一门数学学科。 概率论研究随机现象及统计规律性的数量 关系,而数理统计是以概率论为基础,研究如 何有效地收集、整理和分析随机数据,并做出
三、随机事件及其发生
随机事件:
通俗地讲
随机事件是指随机试验中可能发生也