第1课时 有理数的加法

合集下载

第1课时有理数的加法法则(39张PPT)数学

第1课时有理数的加法法则(39张PPT)数学

B
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解析
答案
解析 -(-1)+|-1|=-(-1)+1=1+1=2,故选B.
3.下列运算正确的是( )A.(-2)+(-2)=0 B.(-6)+(+4)=-10C.0+(-3)=3 D.0.56+(-0.26)=0.3
1
2
3
4
5
6
7
8
9
10
11
答案
同号两数相加,取与 相同的符号,并把 相加;异号两数相加,取 的符号,并用 减去_____________;互为 的两个数相加得0;一个数同0相加,仍得这个数.
类型2
利用有理数的加法法则运算

例2 (教材例1针对训练)计算:
(2)(-39)+(-11).
解 (-39)+(-11)=-(39+11)=-50.

(4)(-10)+0.
解 (-10)+0=-10.
归纳总结 两个有理数相加的运算方法:(1)同号→确定符号(与加数同号)→把绝对值相加;(2)异号→确定符号(取绝对值较大的加数符号)→较大绝对值减较小绝对值;(3)数+0=原数.
0
-8
典例精析
类型1
利用数轴表示两个有理数相加
例1 (教材补充例题)在数轴上表示以下两数相加,并写出结果.(1)(-5)+(+3).

解 (-5)+(+3)=-2.

(2)(-2)+(-4).
解 (-2)+(-4)=-6.
归纳总结 利用数轴表示两个有理数相加的步骤:(1)画数轴;(2)从0开始进行移动;(3)根据终点确定和.

《有理数的加法》PPT(第1课时)

《有理数的加法》PPT(第1课时)

/sucai/ /tubiao/ /powerpoint/
资料下载: . /ziliao/
范文下载: . /fanwen/
试卷下载: . /shiti/
教案下载: . /jiaoan/
ppt论坛: . .cn
ppt课件: . /kejian/
语文课件: . /kejian/yuwen/ 数学课件: . /kejian/shuxue/
法 1.互为相反数的两个数相加得0 则 2.一个数同0相加,仍得这个数
知识讲解
例1 计算:
(1)(+8)+(+5);(2)(+2.5)+(-2.5);
(3)
1 2
+( 1
3
);
(4)
( 1
2
)+( 3
4
).
解: (1)(+8)+(+5) =+(8+5) =+13.
同号两数相加,取相同的符号, 并把绝对值相加.
写成算式为:( -3)+(-5)= -8
知识讲解
加数

加数

结果↓
(+3) + (+4) = +7
(- 3) + (-5) = -8
探究一:观察以上两个算式,完成以下3个问题。 (1)每个算式中两个加数的符号有什么关系? 相同 (2)每个算式中结果的符号与两个加数的符号有什么关系? 相同 (3)每个算式中结果的绝对值与两个加数的绝对值有什么关系?
0
1
2
3
4
+5
写成算式为: ( -3 )+( +5 ) = +2

有理数的加法的教学设计(第一课时)

有理数的加法的教学设计(第一课时)

2.4有理数的加法(第一课时)一、教学目标:知识与技能:1.通过学生经历探索有理数加法法则的过程,理解有理数加法的意义2.掌握有理数加法法则,并能正确运用法则进行有理数加法的运算。

3.了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算过程与目标:通过对有理数加法法则的探索,向学生渗透分类讨论、归纳、转化等数学思想方法。

情感态度与价值观:在合作学习与解决问题的过程中,体会与同伴合作交流的重要性。

二、教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。

三、教学难点:有理数加法中的异号两数如何进行运算四、教材分析:有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要、最基础的内容之一。

熟练掌握有理数的加法运算是学习有理数其它运算的前提。

同时,也为后继学习实数、代数式运算等知识奠定基础,有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。

就本章而言,有理数的加法是本章的重点之一,学生能否接受和形成有理数范围内进行的各种运算的思考方式,关键在于这一节的学习。

五、教学方法:情境教学六、教具:小汽车模型,带刻度的木板七、课时:1课时八、教学过程:况,并在数轴上表示出来。

板书设计:教学反思:本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此不必要把时间过多地放在复习这些旧知识上,而应以活动课的方式展开本节课的教学。

有理数的加法法则实际上是一种规定,要让学生经历从问题情境中得到算式并体验规定的合理性,同时鼓励学生在交流的基础上用自己的语言表达运算法则。

在教学过程中,体现教师的导向作用和学生的主体地位。

本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,为学生提供足够的时间和空间,帮助学生主动探究鼓励学生表达与交流,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时,发展智力、受到教育。

2.1.1 有理数的加法第1课时 有理数的加法法则 课件 人教版(2024)数学七年级上册

2.1.1  有理数的加法第1课时 有理数的加法法则  课件 人教版(2024)数学七年级上册
总结
例1 计算:(1)(-4)+(-8);(2)(-5)+13;(3)0+(-7); (4)(-4.7)+4.7.
解:(1)(-4)+(-8) =-(4+8) =-12 (2)(-5)+13=+(13-5)=8 (3)0+(-7)=-7 (4)(-4.7)+3.9=-(4.7-3.9)=-0.8
如果小狗先向西行走3米,然后在原地休息,则小狗向哪个方向行走了多少米?

小狗向西行走了3米.写成算式为:
(-3)+0= -3(米)
想一想
有理数加法法则三:
一个数与0相加,仍得这个数.
有理数加法法则:1.同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.2.绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差.互为相反数的两个数相加得0.3. —个数与0相加,仍得这个数.
解:因为│a│= 8,│b│= 2,所以a= ±8,b= ±2.
(1) 因为a、b同号,所以a= 8,b= 2或a= -8,b= -2.
所以a+b= 8+2=10,或a+b=- 8+(-2)=-10.
(2) 因为a、b异号,所以a= 8,b=- 2或a= -8,b= 2.
所以a+b= 8+(-2)=6,或a+b=- 8+2=-6.
若|x-3|与|y+2|互为相反数,求x+y的值.
变式训练
解:由题意得|x-3|+|y+2|=0,又|x-3|≥0,|y+2|≥0,所以x-3= 0,y+2=0,所以x=3 ,y=-2.
所以x+y=3-2=1.
2
知识点
有理数的加法法则的一般应用

1.3.1 第1课时 有理数的加法法则

1.3.1 第1课时 有理数的加法法则
第1课时 有理数的加法法则
第一章 有理数
1.3 1.3.1 第1课时 有理数的加法法则
学习指南
知识管理
归类探究
当堂测评
分层作业
课件目录
首页
末页
第1课时 有理数的加法法则
学习指南
教学目标 理解有理数加法的意义,初步掌握有理数的加法法则,并能准确地进行 有理数的加法运算. 情景问题引入 (多媒体展示)回答下列问题:
课件目录
首页
末页
第1课时 有理数的加法法则
9.规定一种新的运算:a⊗b=1a+1b,那么(-2)⊗(-3)= -56 . 10.已知|a|=8,|b|=2. (1)当 a,b 同号时,求 a+b 的值; (2)当 a,b 异号时,求 a+b 的值.
课件目录
首页
末页
第1课时 有理数的加法法则
解:(1)因为|a|=8,|b|=2,且 a,b 同号, 所以 a=8,b=2 或 a=-8,b=-2, 所以 a+b=10 或 a+b=-10. (2)因为|a|=8,|b|=2,且 a,b 异号, 所以 a=8,b=-2 或 a=-8,b=2, 所以 a+b=6 或 a+b=-6.
合适吗?请说明理由.
课件目录
首页
末页
第1课时 有理数的加法法则
解:(1)8+1=9,所以东京时间为上午 9:00. (2)不合适.15-13=2,也就是说纽约时间正好是凌晨 2:00,正在睡觉, 所以不合适.
课件目录
首页
末页
第1课时 有理数的加法法则
分层作业
点击进入word链接
课件目录
首页
末页
第1课时 有理数的加法法则
课件目录
首页
末页

人教版七年级数学上册有理数的加减法.1有理数的加法第1课时 有理数的加法法则

人教版七年级数学上册有理数的加减法.1有理数的加法第1课时 有理数的加法法则

2.计算: (1)3+(+5)=____8; (-7)+(-4)=____-__1_1_; (2)4+(-12)=_____-__8_; 13+(-5)=____;8 (3)0+(-6)=_____-_;6 (-5)+5=____.0
3.(202X·湖州)计算(-20)+16的结果是( A) A.-4 B.4 C.-202X D.202X 4.(202X·呼和浩特)互为相反数的两个数的和为( A) A.0 B.-1 C.1 D.2 5.(202X·温州)计算(+5)+(-2)的结果是( C) A.7 B.-7 C.3 D.-3
七年级数学上册(人教版)
第一章 有理数
1.3 有理数的加减法
1.3.1 有理数的加法 第1课时 有理数的加法法则
有理数加法法则: (1)同号两数相加,取___相__同___的符号,并把绝对值_相__加____; (2)绝对值不相等的异号两数相加,取绝对值__较__大____的加数的符号,并 用较大的绝对值___减__去___较小的绝对值.互为相反数的两个数相加得____, 即0若a,b互为相反数,则a+b=____; 0 (3)一个数同0相加,仍得__这__个__数____,即a+0=__a__.
练习.计算: (1)(-7)+(-4)=____-__1_1_; (2)3+(-12)=_-__9_;
(3)7+(-7)=___0_.
知识点一:有理数加法法则 1.(1)+4与2的和的符号取__+__号; (2)-4与-2的和的符号取_-___号; (3)+4与-2的和的符号取_+___号; (4)-4与2的和的符号取_-___号;
D.-3
14.若x的相反数是3,|y|=5,则x+y的值为( D ) A.-8 B.2 C.8或-2 D.-8或2 15.若|a+b|=|a|+|b|,则a,b的关系是( D ) A.a,b的绝对值相等 B.a,b异号 C.a+b的值是非负数 D.a,b同号或至少有一个为0

1.3.1有理数的加法 课时1 教案

1.3.1有理数的加法 课时1 教案
教学难点:有理数加法中的异号两数如何进行加法运算。
教学准备:
PPT课件和微课等。
教学过程
一、温故知新、引入新课
1、比较下列各数的大小:
7______4 7____-4 -7_____4 -7_____-4
2、如果向东走5米记作+5米,那么向西走3米记作_________.
3、已知a=-5,b=+3,︱a︳+︱b︱=_______
三、巩固训练、深化提高
1、计算下列各式(1)(-11)+(-9)(2)(-3.5)+(+7)
(3)(-1.08)+0(4)(+)+(说明理由
(如果认为结论不成立,请举例说明)
(1)若两个数的和是0,则这两个数都是0.
(2)任意的两个数相加,和不小于任何一个加数.
(3)(—5 )+0;(4)(+2 )+(—2.2);
【拓展应用】
3.(1)a+|a|=0,a是什么数?(2)若|a+1|=2,那么a=?
教学反思:
本节课基本上能采用以建构主义为依据,以学生为学习主体教师为主导的方式进行合作探究的教学方法。通过创设问题情境,提供开展自主、合作、交流的学习的背景;整个探究新知的教学过程基本上由5个问题统领,在教师引导下,学生能对有理数的加法法则进行探究。学生积极思考问题大部分主动参与讨论,敢于发表自己的见解.学生能多样化理解有理数的加法法则,并运用类比、数形结合、游戏等手段形象具体地理解有理数的加法法则。以问题为主线,能减少教师占用课堂时间,把主要时间交还给学生去探索新知识,避免教师“讲得太多”。
【让学生经历观察、猜测、验证思考的过程,放手让学生去探索有理数加法法则。给学生充分的动手操作,合作交流的时间和空间,让学获得丰富的活动经验,进行数形结合思想的渗透。】

1.3.1 第1课时 有理数的加法法则

1.3.1 第1课时 有理数的加法法则

第一章有理数1.3 有理数的加减法1.3.1 有理数的加法第1课时有理数的加法法则学习目标:1、探索有理数加法法则,理解有理数的加法法则;2、能运用有理数加法法则,正确进行有理数加法运算;3、经历探索有理数加法法则的过程,体验数学来源于实践并为实践服务的思想,同时培养学生探究性学习的能力.学习难点:师生共同合作探索有理数加法法则的过程及和的符号的确定.课堂活动:一、有理数加法的探索1.汽车在公路上行驶,规定向东为正,向西为负,据下列情况,分别列算式,并回答:汽车两次运动后方向怎样?离出发点多远?(1)向东行驶5千米后,又向东行驶2千米,(2)向西行驶5千米后,又向西行驶2千米,(3)向东行驶5千米后,又向西行驶2千米,(4)向西行驶5千米后,又向东行驶2千米,(5)向东行驶5千米后,又向西行驶5千米,(6)向西行驶5千米后,静止不动,2. 足球队甲、乙两队比赛,主场甲队4:1胜乙队,赢了3球,客场甲队1:3负乙队,输了2球,甲队两场比赛累计净胜球1个,你能把这个结果用算式表示出来吗?议一议:比赛中胜负难料,两场比赛的结果还可能哪些情况呢?动动手填表:你还能举出一些应用有理数加法的实际例子吗?请同学们积极思考.二、有理数加法的归纳探索:两个有理数相加,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?说一说:两个有理数相加有多少种不同的情形?议一议:在各种情形下,如何进行有理数的加法运算?归纳:有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数与0相加,仍得这个数.三、实践应用问题1.计算(1)(+8)+(+5) (2)(-8)+(-5) (3)(+8)+(-5)(4)(-8)+(+5) (5)(-8)+(+8) (6)(+8)+0;问题2.(单位:万元)(1) 该公司前两年盈利了多少万元?(2)该公司三年共盈利多少万元?问题3.判断(1)两个有理数相加,和一定比加数大. ( )(2)绝对值相等的两个数的和为0.( )(3)若两个有理数的和为负数,则这两个数中至少有一个是负数.( )四、课堂反馈:1.一个正数与一个负数的和是( )A 、正数B 、负数C 、零D 、以上三种情况都有可能2.两个有理数的和( )A 、一定大于其中的一个加数B 、一定小于其中的一个加数C 、大小由两个加数符号决定D 、大小由两个加数的符号及绝对值而决定3.计算 (1)(+10)+(-4) (2)(-15)+(-32) (3)(-9)+ 0(4)43+(-34) (5)(-10.5)+(+1.3) (6)(-21)+31知识巩固一、选择题 1.若两数的和为负数,则这两个数一定( )A .两数同负B .两数一正一负C .两数中一个为0D .以上情况都有可能2.两个有理数相加,若它们的和小于每一个加数,则这两个数( )A.都是正数B.都是负数C.互为相反数D.符号不同3.如果两个有理数的和是正数,那么这两个数( )A.都是正数B.都是负数C.都是非负数D.至少有一个正数4.使等式x x +=+66成立的有理数x 是 ( )A.任意一个整数B.任意一个非负数C.任意一个非正数D.任意一个有理数5.对于任意的两个有理数,下列结论中成立的是 ( )A.若,0=+b a 则b a -=B.若,0>+b a 则0,0>>b aC.若,0<+b a 则0<<b aD.若,0<+b a 则0<a6.下列说法正确的是 ( )A.两数之和大于每一个加数B.两数之和一定大于两数绝对值的和C.两数之和一定小于两数绝对值的和D.两数之和一定不大于两数绝对值的和二、判断1.若某数比-5大3,则这个数的绝对值为3.( )2.若a>0,b<0,则a+b>0.( )3.若a+b<0,则a ,b 两数可能有一个正数.( )4.若x+y=0,则︱x ︱=︱y ︱.( )5.有理数中所有的奇数之和大于0.( )三、填空1.(+5)+(+7)=_______; (-3)+(-8)=________;(+3)+(-8)=________; (-3)+(-15)=________;0+(-5)=________; (-7)+(+7)=________.2.一个数为-5,另一个数比它的相反数大4,这两数的和为________.3.(-5)+______=-8; ______+(+4)=-9._______+(+2)=+11; ______+(+2)=-11;5. 如果,5,2-=-=b a 则=+b a ,=+b a四、计算(1)(+21)+(-31) (2)(-3.125)+(+318) (3)(-13)+(+12)(4)(-313)+0.3 (5)(-22 914)+0 (6)│-7│+│-9715│五、土星表面夜间的平均气温为-150℃,白天的平均气温比夜间高27℃,那么白天的平均气温是多少?六、一位同学在一条由东向西的跑道上,先向东走了20米,又向西走了30米,能否确定他现在位于原来的哪个方向,与原来位置相距多少米?七、潜水员原来在水下15米处,后来上浮了8米,又下潜了20米,这时他在什么位置?要求用加法解答。

2.1.1 有理数的加法(第1课时 有理数的加法法则)(课件)七年级数学上册(人教版2024)

2.1.1 有理数的加法(第1课时 有理数的加法法则)(课件)七年级数学上册(人教版2024)
+2 两次运动的最后结果是,物体从起点向右运动了2m, 用算式表示是: (﹣3)+(+5)=+2.
简记为: (﹣3)+5=2. ③
新知探究
问题4:如果物体沿着一条直线先向右运动3m,再向左运动5m,
那么两次运动的最后结果是什么?如何用算式表示?
﹣5
+3
-5 -4 -3 -2 -﹣1 2 0
123
45
当堂巩固
口算下列各题,并说明理由: (+3)+(+5); (﹣3)+(﹣5); (+3)+(﹣5); (﹣3)+(+5); (+4)+(﹣4); (+9)+(﹣2); (﹣9)+(+2); (﹣9)+0.
能力提升
1. 用“> ”或“<”填空: ①如果a>0,b>0,那么a+b > 0; ②如果a<0,b<0,那么a+b < 0; ③如果a>0,b<0,|a|>|b|,那么a+b > 0; ④如果a<0,b>0,|a|<|b|,那么a+b > 0.
+5
-5 -4 -3 -2 -1 0 1 2 3 4 5
﹣5
-5 -4 -3 -2 -1 0 1 2 3 4 5
用算式表示为: 5+0=5或(﹣5)+0=﹣5. ⑥
探索归纳
5+0=5或(﹣5)+0=﹣5. ⑥ 算式⑥表明:一个数与0相加,结果仍是这个数.
思考归纳
有理数加法的分类
5+3=8. (﹣5)+(﹣3)=﹣8.

有理数的加法第一课时教学设计

有理数的加法第一课时教学设计

有理数的加法(1)教学设计本节课选自人教版教材七年级(上),是本册书第一章第三节第一课时的内容。

下面我从教学内容分析、教学目标设置、学生学情分析、教学策略分析、教学过程五个方面谈一谈我对本节课的理解与设计。

一、教学内容分析有理数的有关概念和运算是整个学段“数与代数”领域内容的基础,直接关系到实数运算、代数式运算、解方程等内容的学习。

有理数的加法是本章的一个重点,是学生接触的第一种有理数运算,又因为减法运算可以统一为加法运算,所以学生能否接受和形成在有理数范围内进行的各种运算的思考方式,关键在于这一节的学习。

在学习有理数的加法之前,教材从实例出发引出负数,接着引进数轴、相反数、绝对值等关于有理数的一些概念,一方面加深对有理数(特别是负数)的认识,另一方面,也为学习本节有理数的加法做准备。

在此基础上,通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,即为什么要进行运算,运算意味着什么;同时在学生体会运算应用的过程中,培养学生一定的应用意识和能力。

因此,本节课的教学重点是:有理数加法法则的理解与运用。

在法则的探索过程中,利用数轴体现了数形结合的基本思想,而法则的归纳总结,渗透了有特殊到一般的思想。

二、教学目标设置《数学课程标准》要求,学生通过义务教育阶段的数学学习,经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能。

有理数一章的学习,要使学生能够进行有理数的运算,并能解决一些简单的实际问题。

根据课程标准和以上对教学内容的分析,制定教学目标如下:1、通过实例,了解有理数加法的意义;2、经历探索法则的过程,培养学生归纳总结的能力;3、会根据有理数加法法则进行有理数的加法运算;4、在探索的过程中,感受数形结合的数学思想,渗透由特殊到一般的辩证唯物主义思想。

三、学生学情分析小学阶段算术运算的学习,是学生学习有理数加法的一个前提;负数、数轴、相反数、绝对值的学习,既加深了对有理数的认识,也已经为学习有理数的加法做好了准备。

有理数的加法(第一课时)教案精选全文完整版

有理数的加法(第一课时)教案精选全文完整版

可编辑修改精选全文完整版
有理数的加法(第一课时)教案
教学目标
1.知识与技能
经历探索有理数的加法法则,理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.
2.过程与方法
①有理数加法法则的导出及运用过程中,训练学生独立分析问题的能力及口头表达能力.
②渗透数形结合的思想,培养学生运用数形结合的方法解决问题的能力.
3.情感、态度与价值观
①通过观察、归纳、推断得到数学猜想,体验数学充满探索性和创造性.
②运用知识解决问题的成功体验.
教学重点难点
重点:有理数的加法法则的理解和运用.
难点:异号两数相加.
教与学互动设计
(一)创设情境,导入新课
课件展示下午放学时,小新的车子坏了,他去修车,不能按时回家,怕妈妈担心,打电话告诉妈妈,可妈妈坚持要去接他,问他在什么地方修车,他说在我们学校门前的东西方向的路上,你先走20米,再走30米,就能看到我了.于是妈妈来到校园门口.
(二)合作交流,解读探究
讨论妈妈能找到他吗?
讨论交流若规定向东为正,向西为负.
(1)若两次都向东,很显然,一共向东走了50米.
算式是:20+30=50
即这位同学位于学校门口东方50米.这一运算可用数轴表示为。

《1.3.1有理数的加法》教学设计(第一课时)

《1.3.1有理数的加法》教学设计(第一课时)
3、注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听别人的意见和建议.
1.3.1有理数的加法(1)
教学
目标
1、理解有理数加法的实际意义;
2、会作简单的加法计算;
3、感受到原来用减法算的问题现在也可以用加法算。
教学
重点
和的符号的确定。
教学
难点
异号两数相加。
教学互动设计
设计意图
一、创设情境导入新课
回顾用正负数表示数量的实际例子;
在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?
(学生思考回答)
思考:请同学们想想,这支球队在这场比赛中还可能出现其他的什么情况?你能列出算式吗?与同伴交流。
学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况.
2、借助数轴来讨论有理数的加法.I
一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作-5 m.
(1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义.
(2)交流汇报.(对学习小组的汇报结果,算式由教师写在黑板上)
(3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?
(4)在学生归纳的基础上,教师出示有理数加法法则.
3、有理数加法法则:
⑴同号两数相加,取相同的符号,并把绝对值相加.
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.

新人教版六年级数学下册《有理数的加法(1)》教案

新人教版六年级数学下册《有理数的加法(1)》教案

7.3.1 第一课时 有理数的加法一、教学目标(一)学习目标1.经历探索有理数加法法则的过程;2.初步理解有理数的加法法则;3.会正确进行有理数的加法运算.(二)学习重点有理数的加法法则的理解和运用.(三)学习难点异号两数相加.二、教学设计(一)课前设计1.预习任务有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.2.预习自测(1)计算-2+3的结果是( )A .-5B .1C .-1D .5【知识点】有理数的加法【解题过程】解:1)23(32=-+=+-【思路点拨】根据绝对值不相等的异号两数相加的法则即可求解.【答案】B(2)下列计算结果是负数的是( )A .0+[-(-3)]B .21211+-C .75.2431+-D .|)31(21-+-| 【知识点】有理数的加法法则【解题过程】解:[]330)3(0=+=--+;121211-=+-;175.2431=+-;65)31(21=-+-.故应选B. 【思路点拨】根据有理数的加法法则即可求解.【答案】B(3)下列运算中正确的是( )A .0)7(7=-+-;B .17107-=+- ;C .21)43(41=++- ;D .6)313()322(-=-+--. 【知识点】有理数的加法【解题过程】解:14)7(7-=-+-,故A 错误;3107=+-,故B 错误;21)43(41=++-,C 正确;32)313(322)313()322(-=-+=-+--,故D 错误. 【思路点拨】根据有理数的加法法则即可求解.【答案】C(4)小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( )A .4℃ B.9℃ C.-1℃ D.-9℃【知识点】有理数的加法【解题过程】解:小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为-5+4=-1℃.【思路点拨】根据有理数的加法法则即可求解.【答案】C.(二)课堂设计1.知识回顾(1)数轴的三要素是什么?(2)绝对值的法则是什么?2.问题探究探究一 探索有理数加法法则★●活动我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.例如,在本章引言中,把收入记作正数、支出记作负数,在求“结余”时,需要计算8.5+(-4.5),4+(-5.2)等.这里用到正数与负数的加法.【设计意图】通过情景引入,让学生体会有理数的加法在实际生活中运用的必要性.●活动②看下面的问题:问题:一个物体作左右方向的运动,我们规定向左为负,向右为正,向右运动5 m记作+5 m,向左运动5 m记作-5 m.1.如果物体先向右运动5 m,再向右运动3 m,那么两次运动后的结果是什么?两次运动后物体从起点向右运动了8 m,写成算式就是5+3=8.2.如果物体先向左运动5 m,再向左运动3 m,那么两次运动后的结果是什么?两次运动后物体从起点向左运动了8 m,写出算式就是(-5)+(-3)=-8.这个运算也可以用数轴表示,其中假设原点为运动起点(见课本P17图1.3-2).【设计意图】通过实际问题,让学生能将实际问题转化成数学问题,体会数学建模的重要性.●活动③:1.如果物体先向右运动5 m,再向左运动3 m,那么两次运动后物体从起点向右运动了2 m,写成算式就是5+(-3)=2.这个运算也可以用数轴表示,其中假设原点为运动起点,你能用数轴表示吗?2.探究:利用数轴,求以下情况时物体两次运动的结果:(1)先向右运动3m,再向左运动5m,物体从起点向左运动了 2 m;(2)先向右运动5m,再向左运动5m,物体从起点向左/右运动了0 m;(3)先向左运动5m,再向右运动5m,物体从起点向左/右运动了0 m.【设计意图】通过实际问题,让学生能将实际问题转化成数学问题,体会数学建模的重要性.同时通过学生之间的互助与合作,激发学生学习数学的热情.探究二初步理解有理数的加法法则★●活动①:师问:你能从算式中发现有理数加法的运算法则吗?学生举手抢答总结:有理数加法法则:(1)同号两数相加,取相同符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.注:进行有理数的加法运算时,一定是先确定结果的符号,再定结果的绝对值.【设计意图】通过小组合作学习及老师问题的层层设置,培养学生团结协作的能力以及归纳总结的能力,激发学生学习的热情.探究三 会正确进行有理数的加法运算★▲.●活动①:例1 计算:(1))9()3(-+-;(2))5()8(++-【知识点】有理数的加法【解题过程】解:(1)12)93()9()3(-=+-=-+-;(2)3)58()5(8-=--=++-【思路点拨】利用有理数的加法法则即可求解.【答案】(1)-12; (2)-3练习:计算:(1)(+5)+(+7);(2)(-3)+(-8);(3)(-7)+(+5) ;(4)(-3)+(+8)【知识点】有理数的加法【解题过程】(1)12)75()7(5+=++=+++;(2)(-3)+(-8)=-(3+8)=-11;(3)(-7)+(+5)=-(7-5)=-2;(4)(-3)+(+8)=+(8-3)=+5【思路点拨】根据有理数的加法法则即可求解.【答案】(1)+12;(2)-11; (3)-2; (4)+5【设计意图】通过练习,让学生能根据算式的结构,合理选择相应的计算法则,同时学会有理数加法运算的简单书写过程.●活动②例2 计算:(1)9.3)7.4(+-;(2))32(21-+. 【知识点】有理数的加法【解题过程】解:(1)8.0)9.37.4(9.3)7.4(-=--=+-(2)61)2132()32(21-=--=-+.【思路点拨】根据有理数的加法法则即可求解.【答案】(1)8.0-; (2)61-. 练习:计算:(1))213(312-+;(2))6.7(525-+;(3))69.1()71.2()533(++-+-. 【知识点】有理数的加法.【解题过程】解:(1)67)312213()213(312-=--=-+ (2)2.2)4.56.7()6.7(525-=--=-+; (3)62.4)69.171.26.3()69.1()71.2()533(-=-+-=++-+- 【思路点拨】根据有理数的加法法则即可求解.【答案】(1)67-;(2)2.2-; (3)62.4-. 【设计意图】通过练习,使学生能灵活运用有理数的加法法则进行计算,让学生在运算中提升计算能力.●活动例3 甲地海拔高度是-28 m ,乙地比甲地高32 m ,求乙地的海拔高度.【知识点】有理数的加法【解题过程】解:甲地海拔高度是-28 m ,乙地比甲地高32 m ,则乙地的海拔高度为 -28+32=4m .【思路点拨】根据有理数的加法法则即可求解.【答案】-28+32=4m练习:一个数是11,另一个数比11的相反数大2,求这两个数的和【知识点】有理数的加法【解题过程】解:由题意可得: 2119,9211=+--=+-【思路点拨】根据有理数的加法法则即可求解.【答案】2.【设计意图】通过练习,让学生会用有理数的加法解决实际问题,提高学生解决实际问题的能力.●活动④例4 若3||=x ,2||=y ,且y x <,求y x +的值.【知识点】有理数的加法,绝对值. 【解题过程】解:因为2,3==y x ,所以2,3±=±=y x ,又y x <,所以2,3±=-=y x ,故1-=+y x 或5-=+y x【思路点拨】先根据绝对值等于一个正数的数有两个,求出y x ,的值,再根据条件确定y x ,的值,最后代入即可求解.【答案】1-=+y x 或5-=+y x练习:已知|a |=2,|b |=2,|c |=3,且有理数a ,b ,c 在数轴上的位置如图所示,计算a +b +c 的值.【知识点】有理数的加法.【数学思想】数形结合.【解题过程】解:由数轴上a 、b 、c 的位置知:b <0,0<a <c ;又∵|a |=2,|b |=2,|c |=3,∴a =2,b =﹣2,c =3;故a +b +c =2﹣2+3=3.【思路点拨】根据数轴上a 、b 、c 和原点的位置,判断出三个数的取值,然后再代值求解.【答案】a +b +c =2﹣2+3=3【设计意图】通过练习,让学生能运用有理数的加法的相关知识解决较复杂的问题,培养学生的综合解题能力.3.课堂总结知识梳理有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.重难点归纳(1)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;(2)进行有理数的加法时,一定是先确定结果的符号,再确定结果的绝对值.(三)课后作业基础型 自主突破1.计算(-3)+(-9)的结果等于( )A .12B .-12C .6D .-6【知识点】有理数的加法【解题过程】解:12)93()9()3(-=+-=-+-【思路点拨】根据有理数的加法法则即可求解.【答案】B2.下列计算中,不正确的是( )A .-(-6)+(-4)=2B .(-9)+[-(-4)]=-5C .-|-9|+4=13D .-(+9)+[+(-4)]=-13【知识点】有理数的加法【解题过程】解:由题意可知:A 、B 、D 的计算结果均是正确的,只有C 是错误的,因为 54949-=+-=+--【思路点拨】根据有理数的加法法则计算后即可判断.【答案】C3.两个数相加,其和小于每一个加数,那么( )A .这两个加数必有一个数是0B .这两个加数必是两个负数C .这两个加数一正一负,且负数的绝对值较大D .这两个加数的符号不确定【知识点】有理数的加法【解题过程】解:两个数相加,若其和小于每一个加数,那么这两个数必定均为负数.故应选B【思路点拨】根据有理数的加法法则即可判断.【答案】B4.填空:①若a >0,b >0,则a +b 0;②若a <0,b <0,则a +b 0;③若a >0,b <0,且│a │>│b │,则a +b 0;④若a >0,b <0,且│a │<│b │,则a +b 0.【知识点】有理数的加法【解题过程】解:①若a >0,b >0,则a +b > 0;②若a <0,b <0,则a +b < 0;③若a >0,b <0,且│a │>│b │,则a +b > 0;④若a >0,b <0,且│a │<│b │,则a +b < 0.【思路点拨】根据有理数的加法法则即可判断.【答案】>,<,>,<,5.计算:(1)(-34)+(+76) ;(2))43()31(-+-(3))32(21-++ ;(4))312()433(++-. 【知识点】有理数的加法.【解题过程】解:(1)42)3476()76()34(=-+=++-; (2)1213)4331()43()31(-=+-=-+-; (3)61)2132()32()21(-=--=-++; (4)1251)312433(312433-=--=⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-【思路点拨】根据有理数加法法则即可求解.【答案】(1)42;(2)1213-;(3)61-;(4)1251-.6.已知|a |=8,|b |=2;(1)当a 、b 同号时,求a +b 的值;(2)当a 、b 异号时,求a +b 的值.【知识点】有理数加法【解题过程】解:(1)∵|a |=8,|b |=2,且a ,b 同号,∴a =8,b =2;a =﹣8,b =﹣2,则a +b =10或﹣10;(2)∵|a |=8,|b |=2,且a ,b 异号,∴a =8,b =﹣2;a =﹣8,b =2,则a +b =6或﹣6.【思路点拨】各项根据题意,利用绝对值的代数意义求出a 与b 的值,即可求出a +b 的值.【答案】(1)a +b =10或﹣10;(2)a +b =6或﹣6.能力型 师生共研1.若a 、b 互为相反数,则=-+|5|b a .【知识点】有理数的加法【解题过程】解:因为a 、b 互为相反数,所以0=+b a ,5505=-=-+b a【思路点拨】根据互为相反数的两个数的和为零即可求解.【答案】52.(1)已知:a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a = ;b = ;c = .(2)若|x |=3,|y |=4,|b |=1且b<0,a =1且ay <0,求a +b +x +y 的值.【知识点】有理数的加法.【数学思想】分类讨论.【解题过程】解:∵a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数, ∴a =1,b =﹣1,c =0;故答案为1,﹣1,0.(2)因为a =1,由于ay <0,所以y <0.因为|x |=3,|y |=4,所以x =±3,y =﹣4.当a =1,b =﹣1,x =3,y =﹣4时a +b +x +y =1+(﹣1)+3+(﹣4)=﹣1;当a =1,b =﹣1,x =﹣3,y =﹣4时a +b +x +y =1+(﹣1)+(﹣3)+(﹣4)=﹣7.【思路点拨】(1)根据最小的正整数是1,最大的负整数是﹣1,0的绝对值最小确定a 、b 、c 的值;(2)由绝对值的意义,求出x 、y ,再由ay <0,确定y 的值.代入代数式求出a +b +x +y 的值.【答案】(1)1,﹣1,0.(2)-1或-7探究型 多维突破1.计算:++++++++++= .【知识点】有理数的加法【解题过程】解:原式=×(+++…+)=×(1﹣﹣…+﹣)=×(1﹣)=×=. 【思路点拨】先提取,然后利用拆项裂项法求解即可. 【答案】.2.若规定b a b a f +=),(.如43)4,3(+=f =7.试求)]4,3(,4[--f f 的值.【知识点】有理数的加法【解题过程】解:314)1,4())4,3(,4(,143)4,3(-=+-=-=--=+-=-f f f f【思路点拨】根据题目要求,抓关键信息即b a b a f +=),( 即可.【答案】-3.自助餐1.计算3+(-3)的结果是( )A .6B .-6C .1D .0【知识点】有理数的加法【解题过程】解:3+(-3)=0【思路点拨】根据有理数的加法法则即可计算.【答案】D2.下列运算错误的有( )① (-21)+(+21)=0; ②(-6)+(+4)= -10;③ 0+(-13)=+13; ④32)61()65(=-++A .1个B .2个C .3个D .4个【知识点】有理数的加法【解题过程】解: ① (-21)+(+21)=0,正确;②(-6)+(+4)= -10,错误,(-6)+(+4)=-2;③ 0+(-13)=+13,错误,0+(-13)=-13; ④正确;故错误的个数为2个.【思路点拨】根据有理数的加法法则即可求解.【答案】B3.若|a |=7,b 的相反数是2,则a +b 的值是 .【知识点】有理数的加法.【数学思想】分类讨论.【解题过程】解:∵|a |=7,∴a =±7,∵b 的相反数是2,∴b =﹣2,①当a =7,b =﹣2时,a +b =7+(﹣2)=5;②当a =﹣7,b =﹣2时,a +b =﹣7+(﹣2)=﹣9;故答案为:5或﹣9.【思路点拨】分别求出a b 的值,分为两种情况:①当a =7,b =﹣2时,②当a =﹣7,b =﹣2时,分别代入求出即可.【答案】5或﹣9.4.在数﹣5、1、﹣3、5、﹣2中任取三个数相加,其中最大的和是 ,最小的和是 .【知识点】有理数的加法【解题过程】解:5+1+(﹣2)=4,(﹣5)+(﹣3)+(﹣2)=﹣10.答:其中最大的和是4,最小的和是﹣10.【思路点拨】由题意可知,要任取三个不同的数相加,使其中最大,则取其中三个较大的数相加即可;使其中的和最小,则取其中三个较小的数相加即可.【答案】4,﹣10.5.计算:(1))75()41(-++ (2))851()3(++- (3))57.1()61.7(++- (4)659)5.11(+- 【知识点】有理数的加法【解题过程】解:(1)()()34417575)41(-=--=-++;(2)()83185138513-=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++-;(3)()()()04.657.161.757.161.7-=--=++-(4)()356595.116595.11-=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++- 【思路点拨】根据有理数的加法法则即可求解.【答案】(1)-34;(2)831-;(3)04.6-; (4)35- 6.股民小王上星期五以收盘价67元买进某公司股票1000股,下表为本周内每日该股票的涨跌情况:(1)星期三收盘时,每股多少元?(2)本周内每股买最高价多少元?最低价多少元?【知识点】有理数的加法【解题过程】解:(1)67+(+4)+(+4.5)+(﹣1)=74.5(元),故星期三收盘时,每股74.5元;(2)周一:67+4=71元,周二:71+4.5=75.5元,周三:75.5+(﹣1)=74.5元,周四:74.5+(﹣2.5)=72元,周五:72+(﹣6)=66元,∴本周内最高价为75.5元,最低价66元.【思路点拨】(1)用买进的价格加上周一周二周三的涨跌价格,然后根据有理数加法运算法则进行计算即可求解;(2)分别求出这五天的价格,然后即可得解.【答案】(1)星期三收盘时,每股74.5元;(2)本周内最高价为75.5元,最低价66元。

有理数的加法(第1课时)-教学设计

有理数的加法(第1课时)-教学设计

北师大版数学七年级上册《第二章有理数及其运算》“4.有理数的加法(第1课时)”教学设计一、教学内容及其解析1.教学内容:经历探索有理数的加法法则,初步掌握有理数加法法则,并会进行有理数的加法运算.2.教学内容的地位与作用:本节课内容有理数的加法是小学算术加法运算的拓展,是初中数学运算最基础的内容之一. 熟练掌握有理数的加法是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础. 有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践. 就本章而言,有理数的加法是本章的重点之一. 学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习.二、学情分析学生在小学时已经熟悉正数加正数,正数加零的情况. 经过第二章前面三节的学习,对于数的分类、数轴、绝对值的相关知识已经掌握. 且初一学生较为活跃,善于形象思维,能够积极参与讨论.三、教学目标(1)经历探索有理数的加法法则,理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.(2)通过观察、归纳、总结得到有理数加法法则,训练学生独立分析问题的能力及口头表达能力,体验数学充满探索性和创造性.(3)渗透数形结合的思想,培养学生运用数形结合的方法解决问题的能力.四、教学重点、难点1.教学重点:有理数的加法法则的理解与运用.2.教学难点:异号两数相加的法则.五、教学过程设计(一)过程设计1、新课导入教师提问:我们小学学过“正数+ 正数”和“正数+ 0”两种形式的算式. 引入负数之后,有理数的加法还会出现哪些新的情况呢?播放一段篮球比赛视频.【师生活动】教师引导,学生思考,师生互动. 引导学生写出两个有理数相加的不同情形并进行归类.【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤. 同时也增强了孩子们学习的信心,因为在几种不同的情况中,学生们仅剩两种需要攻克. 引导学生对有理数相加的不同情境进行分类,从而引出本节学习任务.2、讲授新课探究1 :一只小猴子做左右方向的运动,我们规定向右为正,向左为负. 它先向右运动5 m,记作5 m;再向右运动3 m,记作3 m;那么两次运动的结果是向______运动_________ ?如何用算式表示?【师生活动】(1)借助数轴写出算式的结果.+5+ (+3)=学生容易得出结果为+8.(2)明确算式中“+”符号表示的意义.教师引导学生明白+5,+3前面的+号表示运动方向向右,中间的+号为运算符号.探究2 :如果小猴子先向左运动2 m,记作-2 m;再向左运动3 m,记作-3 m,那么两次运动的最后结果是什么?如何用算式表示?【师生活动】(1)借助数轴写出算式的结果.(-2) + (-3)=学生容易得出结果为-5.(2)明确算式中“+”和“-”符号表示的意义.教师提出问题:(-2) + (-3) = -5,-5这个结果合理吗?“-”是什么意思?5又代表什么?引导学生回答:“-”表示运动方向向左.(3)综合探究1和2,引导学生归纳出同号两数相加的法则.你能根据刚才所举的两个例子总结出同号两个有理数相加的法则吗?引导学生得到:同号两数相加,取相同的符号,并把绝对值相加.探究1和2【设计意图】通过将生活情境抽象出来,借助实际例子和数轴,引导学生自主探探索归纳得到同号两数相加的法则. 该学习过程强调学生借助生活情境的自主探索,而不是采用直接告诉的方式. 同时,教师可以通过引导学生思考分析:我们不能碰到任何一个有理数加法算式都从生活中的实例来推答案,所以找到有理数的加法规律看来很必要,让学生理解法则的重要性和意义. 本环节也为学习异号两数相加的法则作铺垫.探究3:如果小猴子先向左运动8 m,再向右运动5 m,那么两次运动的最后结果是什么?如何用算式表示?【师生活动】借助数轴写出算式的结果并解释其意义.(-8) + (+5) =教师提问学生该算式的结果,学生容易得出结果为-3,需要学生解释得到-3的过程. 教师引导学生从符号和绝对值两方面进行思考.探究4:如果小猴子先向右运动2 m,再向左运动5 m,那么两次运动的最后结果是什么?如何用算式表示?【师生活动】(1)借助数轴写出算式的结果并解释其意义.+2 + (-5) =学生能够马上得出结果为-3.(2)综合探究3和4,引导学生归纳出异号两数相加的法则.教师提问:类比前面的做法,你能从符号和绝对值两个方面概括异号两数相加的情况吗?学生思考后,能够归纳得到异号两数相加的法则为:异号两数相加,结果取绝对值较大的加数的符号,并将较大的绝对值减较小的绝对值.探究3和4【设计意图】在同号两数相加的基础上,通过实际生活例子展示异号两数相加的情形. 学生通过类比归纳出异号两数相加的法则,其实是主动的获取知识和技能. 同时,鼓励学生用自己的语言概括法则,可以提高学生的概括能力和语言表达能力.探究5:如果小猴子先向右运动8 m,再向左运动8 m,那么两次运动的最后结果是什么?如何用算式表示?【师生活动】借助数轴写出算式结果,教师引导学生得到互为相反数的两个数相加得0.(+8) + (-8) =学生容易得出结果为0. 学生在这一过程中可以非常清楚地认识到互为相反数的两个数相加得0.探究5【设计意图】借助数轴,学生能够理解直观理解互为相反数的两个数相加得0.探究6:如果小猴子第一秒先向右运动5 m,第二秒原地不动,你能用算式表示吗?如果小猴子第一秒先向左运动6 m,第二秒原地不动,又怎么表示呢?【师生活动】借助数轴写出算式结果并归纳法则.学生能马上得出结果为5 + 0 = 5,(-6) + 0 = -6.探究6【设计意图】学生能够归纳得出一个数同0相加,仍得这个数.3、归纳总结【师生活动】教师提问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?一个有理数通0相加,和是多少?引导学生总结:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.(3)一个数同0相加,仍得这个数.【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力.4、习题检测:【师生活动】学生完成巩固练习题目,教师指出学生错误之处,并进一步强调算理.1. 计算:(1)(-4) + (-8);(2)(-5) + 13;(3)0 + (-7);(4)(-4.7) + 4.7.2. 若x的相反数是3,|y|=5,则x+y=.3. 股民默克上星期五以收盘价67元买进某公司股票1000股,下表为本周内每日该股票的涨跌情况:(1)星期三收盘时,每股多少元?(2)本周内每股最高价为多少元?最低价为多少元?【设计意图】练习应用有理数加法法则进行计算,提高学生掌握法则的熟练程度. 既要培养学生的计算能力,又要让学生在练习中不断总结计算技巧.(二)板书设计六、作业设计1.必做题:完成教材第36页随堂练习;习题2.4第1题、第2题和第3题.【设计意图】巩固所学知识,学生能够熟练进行有理数加法的运算,教师发现学生在学习中存在的问题.2.选做题:习题2.4第4题和第5题.【设计意图】发散学生思维,培养学生将数学知识与实际生活联系的能力;培养学生分类讨论的思想,进一步提升学生的思维能力. 学习由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间.附:教学反思本节课的主要内容是有理数加法的法则和利用数轴表示直观地阐释有理数加法的法则,以学生易于接受的实际生活例子引入有理数加法. 为此,本节课安排较多的时间用于探索加法法则,以学生作为探索的主体,结合学生的实际,因材施教,为每一个学生创造发挥自己的空间. 这很大程度上调动了学生的学习积极性,特别是学生的创造性得到了充分的展示,增强了学生的求知欲. 这正是新课程理念所倡导的,即课程不再只是知识的载体,而是教师和学生共同探究新知识的过程,只有真正被学生经历、理解和接受了的东西才称得上是课程.经过探究、讨论、相互交流,对有理数的加法运算,同学们基本都能理解并掌握,但仍然有的同学不善于利用加法法则来进行运算以及常出现符号之类的错误,特别是异号两数相加的和的符号的确定,模糊不清. 接下来教师要进一步强调计算要以法则为依据,加强用法则的熟练程度.双师互动课堂安排。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考 (1)如果物体先向右运动5 m,再向右运动
了3 m,那么两次运动的最后结果是什么?可以
用怎样的算式表示?
5
+3
-1 0 1 2 3 4 5 6 7 8
8 (+5)+(+3) = 8
(2)如果物体先向左运动5 m,再向左运动
3 m,那么两次运动的最后结果是什么?可以用
怎样的算式表示?
-3 +
2.绝对值不相等的异号两数相加,取绝对值较 大的加数的符号,并用较大的绝对值减去较小的绝 对值,互为相反数的两个数相加得0.
3.一个数同0相加,仍得这个数.
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
教学反思
本课时可从学生熟悉的问题入手,让学生在 具体问题中经历探索有理数加法的过程,理解有 理数加法法则,并应用于实际计算中,教学采用 合作探究式方法,让学生在合作中学习知识、掌 握方法.教师在指导学生解决实际问题时强调,计 算时先确定和的符号,再把绝对值相加或相减, 不要疏忽出错.
-4+7=3 7-5=2
2.口算: -10
(1)(-4)+(-6); (2) 4+(-6);-2 (3)(-4)+6; 2 (4)(-4)+4; 0 (5)(-4)+14;10 (6)(-14)+4; -10 (7) 6+(-6); 0 (8) 0+(-6).-6
基础巩固
随堂演练
1.两个有理数的和为负数,则这两个数一定 ( C ).
• 学习目标: 1.能叙述并理解有理数加法法则. 2.会用有理数加法法则正确进行有理数加法运算.
• 学习重、难点: 重点:有理数的加法法则. 难点:分情况讨论有理数的加法法则思路的建立; 异号两数相加的法则.
推进新课
思考 小学学过的加法类型是正数与正数相加、 正数与0相加.引入负数后,加法的类型还有哪 几种呢?
第一个加数 第二个加数
正数
正数 正数+正数
0 0+正数
负数 负数+正数0来自正数+00+0
负数+0
负数
正数+负数 0+负数 负数+负数
结论:共三种类型.
即:(1)同号两个数相加;(2)异号两个数相加; (3)一个数与0相加.
知识点1 探究有理数加法的法则
一个物体作左右方向的运动,我们规定向左 为负,向右为正.比如:向右运动5 m记作5 m, 向左运动5 m记作-5 m.
-5
-8 -7 -6 -5 -4 -3 -2 -1
-8 (-5)+(-3)=-8
01
(+5)+(+3)= 8 (-5)+(-3)=-8
注意关注加数的 符号和绝对值
根据以上两个算式能否尝试总结同号两数相 加的法则?
结论: 同号两数相加,取相同符号,并把绝 对值相加.
探究 利用数轴,求以下物体两次运动的结果,并用
1.3 有理数的加减法
1.3.1 有理数的加法
第1课时 有理数的加法
R·七年级上册
新课导入
在小学,我们学过正数及0的加法运算.引入 负数后,怎样进行加法运算呢?
实际问题中,有时也会遇到与负数有关的加 法运算.例如,在本章引言中,把收入记作正数, 支出记作负数,在求“结余”时,需要计算8.5+ (-4.5),4.0+(-5.2)等.
A.都是负数
B.只有一个负数
C.至少有一个负数
D.无法确定
综合应用 2.请你用生活中的例子解释算式(+3)+
(-3) = 0;(-1)+(-2) = -3.
解:①冬季某天早晨温度为0度,到中午气 温上升了3度,再到下午又下降了3度,下午气 温为0度;
②取向东为正方向,先向西走了1 km,后 又走了2 km,一共向西走了3 km.
拓展延伸
3.数a,b表示的点如图所示,则 (1)a + b __>___ 0; (2)a + (-b)__<___ 0; (3)(-a) + b __>___ 0; (4)(-a) + (-b) __<___0. (填“>”“<”或“=”)
课堂小结
有理数加法法则:
1.同号两数相加,取相同符号,并把绝对值相 加.
(-3)+5= 2 3+(-5)=-2
注意关注加数的 符号和绝对值
(-5)+5= 0 根据以上三个算式能否尝试总结异号两数相 加的法则?
结论:绝对值不相等的异号两数相加,取绝 对值较大的加数的符号,并用较大的绝对值减去 较小的绝对值,互为相反数的两个数相加得0 .
如果物体第1 s向右(或左)运动5 m,第2 s 原地不动,那么2 s后物体从起点向右(或左)运 动了5 m.如何用算式表示呢?
例 计算: (1)(-3)+(-9); (2)(-4.7)+3.9; (3) 0+(-7); (4)(-9)+(+9).
解:
把绝对值相加
(1)(-3)+(-9)= -(3+9)=-12;
同号两数相加 取相同符号 (2)(-4.7)+3.9= -(4.7-3.9)=-0.8;
异号两数相加 取绝对值较大 用较大的绝对值 加数的符号 减较小的绝对值
解: (3) 0+(-7)=-7; (4)(-9)+(+9)= 0.
可要记住哟!
有理数加法的运算步骤:
一要辨别加数的类型(同号、异号); 二要确定和的符号; 三要计算绝对值的和(或差).
即“一看、二定、三算”.
教科书 第18页 练习
1.用算式表示下面的结果: (1)温度由-4 ºC上升7ºC; (2)收入7元,又支出5元.
5+0=5. 或 (-5)+0=-5.
结论: 一个数同0相加,仍得这个数.
有理数加法法则:
1.同号两数相加,取相同符号,并把绝对值相 加.
2.绝对值不相等的异号两数相加,取绝对值较 大的加数的符号,并用较大的绝对值减去较小的绝 对值,互为相反数的两个数相加得0.
3.一个数同0相加,仍得这个数.
知识点2 有理数加法的运算
算式表示:
(1)先向左运动3 m,再向右运动5 m, 物体从起点向__右__运动了__2__m,_(_-__3_)+__5_=__2__;
(2)先向右运动了3 m,再向左运动了5 m, 物体从起点向__左__运动了__2__m,3_+__(_-__5_)_=__-__2;
(3)先向左运动了5 m,再向右运动了5 m, 物体从起点运动了__0__m,_(_-__5_)_+__5_=__0__.
相关文档
最新文档