信道及信道容量
与信道容量

Department of Communication China Ji Liang University
25
第 三 章 信 道 与 信 道 容 量
③ 具有归并性能的无噪信道
这种信道如下图所示。 这种信道如下图所示。 n>m,输入 的符号集个数大于输出 的符号集个数。 的符号集个数大于输出Y的符号集个数 ,输入X的符号集个数大于输出 的符号集个数。
2012-4-6
Department of Communication China Ji Liang University
24
第 三 章 信 道 与 信 道 容 量
信道疑义度 H(X/Y)=0, I(X;Y)= H(X) -H(X/Y)= H(X) 。 ,
信道容量为: 信道容量为:
2012-4-6
2012-4-6
Department of Communication China Ji Liang University
10
第 三 章 信 道 与 信 道 容 量
b)二进制对称信道 ) (简称为 BSC信道 ) 信道
0 输入 p 1-p 0 输出
p 1 1-p 1
二进制对称信道
2012-4-6
Department of Communication China Ji Liang University
2012-4-6
Department of Communication China Ji Liang University
26
第 三 章 信 道 与 信 道 容 量
信道噪声熵 H(Y/X)=0。 信道容量为:
2012-4-6
Department of Communication China Ji Liang University
北工大信息论第四章 信道及信道容量

数学模型:{X , p( yn | xn ),Y}
如果有 p(yn j | xn i) p(ym j | xm i) ,则信道为平稳
的离散无记忆信道DMC。
二.单符号离散无记忆信道
1.定义:
输入符号X,x取值于A {a1, a2 ,, ar } 输出符号Y,y取值于B {b1, b2 ,, bs} {X , p(bj | ai ),Y}
输出扩展为:00,01,10,11
传递矩阵扩展为: p2 pp pp p2
P2
pp
p2
p2
pp
pp p2 p2 pp
p
2
pp
pp
p
2
请问: I (X N ;Y N ) 与I(X;Y)之间 的关系?
用两个定理回答这个问题
定理1:若信道的输入、输出分别为N长序列X和Y,且信
道是无记忆的,即: N
N
p( h | k ) p(bhi | aki ) i 1
I(X N ;Y N )
XN
YN
p(k h ) log
p(hk ) p(h ) p(k )
例4-4: 求二元无记忆对称信道的二次扩展信
道。
a1 0
1 p p
0 b1
X
p
Y
a2 1
1 p
1 b2
解:
输入扩展为:00,01,10,11
当ω=1/2 时,I (X ห้องสมุดไป่ตู้Y ) 1 H ( p)
1
即取极大值.
H ()
0 0.5 1
当信源固定, 即 ω是一个常数时,可 得到I(X;Y)是信道传递概率p的下凸 函数。
当p=0.5时, I(X;Y)=0, 在接收端未 获得信息量。
离散信道及其信道容量

信道的任务是以信号方式传输信息和存储信息。 研究信道中能够传送或存储的最大信息量,即信道容量。
2.1
信道的数学模型和分类
干扰源
信源
编码器
调制器
物理信道 实际信道
解调器
译码器
信宿
编码信道
等效信道
图2.1.1 数字通信系统的一般模型
一、信道的分类
根据载荷消息的媒体不同
邮递信道
C max { I ( X ;Y )}
解:X:{0,1} Y:{0,1,2} 此时,r =2,s =3, 传递矩阵为:
0 0 1 2 1
1- p
q
1
p 1 p 0 0 1 q q
符号“2”表示接收到了“0”、“1”以外的特殊符 号
• 一般离散单符号信道的传递概率可用矩阵形式表示,即 b1 b2 … bs
a1 P(b1|a1) P(b2|a1) … P(bs|a1) a2 P(b1|a2) P(b2|a2) … P(bs|a2) … …. … …
R = I(X;Y) = H(X) – H(X|Y) (比特/符号)
• 信道中每秒平均传输的信息量----信息传输速率Rt (设传递一个符号用时为t).
Rt = R/t = I(X;Y)/t = H(X)/t – H(X|Y)/t (比特/秒)
一、 信道容量的定义
I ( X ; Y ) I (Y ; X ) P( xy ) log
a1 a2 b1 b2
X
.
. ar
P(bj/ai)
.
. bs
Y
[例1] 二元对称信道,[BSC,Binary Symmetrical Channel] 解:此时,X:{0,1} ; Y:{0,1} ; r=s=2,a1=b1=0;a2=b2=1。 传递概率: 1-p
信道与信道容量

1.6.2 信道容量
根据香农信息论,对于连续信道,如果信道带宽为B, 并且受到加性高斯白噪声的干扰,则信道容量的理论公式为
C=B㏒2(1+S/N)(b/s) 式中。 N为白噪声的平均功率; S是信号的平均功率; S/N 为信噪比。信道容量C是指信道可能传输的最大信息速率 (即信道能达到的最大传输能力)。虽然上式是在一定条件 下获得的(要求输入信号也为高斯信号才能实现上述可能 性),但对其他情况也可作为近似式使用。
例1 已知彩色电视图象由5ⅹ105个像素组成。设每个像素有 64种彩色度,每种彩色度有16个亮度等级。设所有彩色度和 亮度等级的组合机会均等,并统计独立。(1)试计算每秒 传送100个画面所需信道容量;(2)如果接受机信噪比为 30dB,为了传送彩色图象所需信道带宽为多少?
例2 设有一个图像要在电话线路中实现传真传输。大约要传输2.25ⅹ106个 像素,每个像素有12个亮度等级。假设所有亮度等级都是等概率的,电 话电路具有3kHz带宽和30dB信噪比。试求在该标准电话线路上传输一 张传真图片需要的最小时间。
在数字通信系统中,如果仅研究编码和解码问题, 可得到另一种广义信道---编码信道。编码信道的范围是 从编码器输出端至解码器输入端。这是因为从编码和解 码角度来看,编码器是把信源产生的消息信号转化为数 字信号。反之,解码器是将数字信号恢复原来的消息信 号;而编码器输出端至解码器输入端之间的一切环节只 是起了传输数字信号的作用,所以可以把它看成一个整 体---编码信道。当然,根据研究问题的不同,还可以定 义其他广义信道。
解: Rb = RBN㏒2N
RBN= Rb/×106 / 29.9 ×103=0.269 ×103s=4.5min
例3 已知八进制数字信号的传输速率为1600波 特。试问变换成二进制数字信号时的传输速率为多 少? 解: Rb = RBN㏒2N = 1600× ㏒28 = 4800 b/s
信道、信道容量、数据传输速率

信道、信道容量、数据传输速率简介:信道、信道容量、数据传输速率(比特率)、电脑装置带宽列表一、信道的概念信道,是信号在通信系统中传输的通道,是信号从发射端传输到接收端所经过的传输媒质,这是狭义信道的定义。
广义信道的定义除了包括传输媒质,还包括信号传输的相关设备。
信道容量是在通信信道上可靠地传输信息时能够达到的最大速率。
根据有噪信道编码定理,给定信道的信道容量是其以任意小的差错概率传输信息的极限速率。
信道容量的单位为比特每秒、奈特每秒等等。
香农在第二次世界大战期间发展出信息论,并给出了信道容量的定义和计算信道容量的数学模型。
他指出,信道容量是信道的输入与输出的互信息量的最大值,这一最大取值由输入信号的概率分布决定。
二、信道的分类(一)狭义信道的分类狭义信道,按照传输媒质来划分,可以分为有线信道、无线信道和存储信道三类。
1. 有线信道有线信道以导线为传输媒质,信号沿导线进行传输,信号的能量集中在导线附近,因此传输效率高,但是部署不够灵活。
这一类信道使用的传输媒质包括用电线传输电信号的架空明线、电话线、双绞线、对称电缆和同轴电缆等等,还有传输经过调制的光脉冲信号的光导纤维。
2. 无线信道无线信道主要有以辐射无线电波为传输方式的无线电信道和在水下传播声波的水声信道等。
无线电信号由发射机的天线辐射到整个自由空间上进行传播。
不同频段的无线电波有不同的传播方式,主要有:地波传输:地球和电离层构成波导,中长波、长波和甚长波可以在这天然波导内沿着地面传播并绕过地面的障碍物。
长波可以应用于海事通信,中波调幅广播也利用了地波传输。
天波传输:短波、超短波可以通过电离层形成的反射信道和对流层形成的散射信道进行传播。
短波电台就利用了天波传输方式。
天波传输的距离最大可以达到400千米左右。
电离层和对流层的反射与散射,形成了从发射机到接收机的多条随时间变化的传播路径,电波信号经过这些路径在接收端形成相长或相消的叠加,使得接收信号的幅度和相位呈随机变化,这就是多径信道的衰落,这种信道被称作衰落信道。
信道、信道容量、数据传输速率

简介:信道、信道容量、数据传输速率(比特率)、电脑装置带宽列表一、信道的概念信道,是信号在通信系统中传输的通道,是信号从发射端传输到接收端所经过的传输媒质,这是狭义信道的定义。
广义信道的定义除了包括传输媒质,还包括信号传输的相关设备。
信道容量是在通信信道上可靠地传输信息时能够达到的最大速率。
根据有噪信道编码定理,给定信道的信道容量是其以任意小的差错概率传输信息的极限速率。
信道容量的单位为比特每秒、奈特每秒等等。
香农在第二次世界大战期间发展出信息论,并给出了信道容量的定义和计算信道容量的数学模型。
他指出,信道容量是信道的输入与输出的互信息量的最大值,这一最大取值由输入信号的概率分布决定。
二、信道的分类(一)狭义信道的分类狭义信道,按照传输媒质来划分,可以分为有线信道、无线信道和存储信道三类。
1. 有线信道有线信道以导线为传输媒质,信号沿导线进行传输,信号的能量集中在导线附近,因此传输效率高,但是部署不够灵活。
这一类信道使用的传输媒质包括用电线传输电信号的架空明线、电话线、双绞线、对称电缆和同轴电缆等等,还有传输经过调制的光脉冲信号的光导纤维。
2. 无线信道无线信道主要有以辐射无线电波为传输方式的无线电信道和在水下传播声波的水声信道等。
无线电信号由发射机的天线辐射到整个自由空间上进行传播。
不同频段的无线电波有不同的传播方式,主要有:地波传输:地球和电离层构成波导,中长波、长波和甚长波可以在这天然波导内沿着地面传播并绕过地面的障碍物。
长波可以应用于海事通信,中波调幅广播也利用了地波传输。
天波传输:短波、超短波可以通过电离层形成的反射信道和对流层形成的散射信道进行传播。
短波电台就利用了天波传输方式。
天波传输的距离最大可以达到400千米左右。
电离层和对流层的反射与散射,形成了从发射机到接收机的多条随时间变化的传播路径,电波信号经过这些路径在接收端形成相长或相消的叠加,使得接收信号的幅度和相位呈随机变化,这就是多径信道的衰落,这种信道被称作衰落信道。
第三章 信道和信道容量

I(X;Y):接收到Y前、后关于的平均不确定性 的消除 ;或发送X前、后关于Y的平
均不确定性的消除。
可见:熵只是平均不确定性的描述,而不确定性 的消除(两熵之差)才等于接收端所获得的信息 量。获得的信息量不能和不确定性混为一谈。
第三章 信道和信道容量
关于信道容量: 研究:信道中平均每个符号所能传送的信息量,
有损失,是无噪有损信 道,也称确定信道,即: 损失熵:H(X/Y) ≠ 0; 噪声熵:H(Y/X) = 0, I(X;Y)=H(Y)=H(X)-H(X/Y) <H(X)
第三章 信道和信道容量
信道容量仍是最大熵问题(最大H(Y)):
C=max H(Y)=log s bit/符号
P(X)
(设Y有s个符号)
不相交的子集mk,由mk组成的矩阵[P]k是对称矩阵 (具有可排列的性质),则称此信道为准对称信道, 其信道容量:
r为输入符号集个数 即信道矩阵行数 准对称信道中的 行元素 第k个子矩阵 中行元素之和
第k个子矩阵 中列元素之和
第三章 信道和信道容量
例3-1:二元对称删除 信道如图,计算信道容量。
例3-2:准对称信道的信道矩阵为: P(y/x)= 0.5 0.3 0.2 0.3 0.5 0.2 当输入概率分布为p(x1)=ɑ,p(x2)=1-ɑ
且:p=0时,信道无干扰; P=1/2时,信道干扰最为严重。
第三章 信道和信道容量
二、二元删除信道
难以区分原发送信号时,不硬性
判断0或1,而作删除处理。 删除信道中,p=q时,则为 对称删除信道。 三、Z信道 信道特性:0错成1的概率为0, 1错成0有一定可能。
1
0 1 0
p
1-p
1
第三章 信道和信道容量
通信课件信道及信道容量

• 信道的基本概念 • 信道数学模型:调制、编码信道模型 • 恒参信道特性及其对信号传输的影响 • 随参信道特性及其对信号传输的影响 • 分集接收技术 • Shannon信道容量公式
1
信道的基本概念
• 信道:信号通道,必不可少 • 影响通信系统可靠性能的两个主要因素:噪声和信道传输特性的
不理想。
• 由于多径使得确定的载波信号Acosω0t变成了包络和相位都受 到调制的窄带信号,衰落信号。从时域来看,多径时延扩散; 从频域来看,频率展宽
15
随参信道对信号传输的影响(续2)
• 时变多径信道
R(t)
t 时域:瑞利衰落(快衰落)
f0 频域:频率弥散
16
随参信道对信号传输的影响例举
• 以两条路径且衰减恒定为例
3
信道数学模型
• 反映信道输出和输入之间的关系。 • 调制信道模型:传输已调信号,关心的是信号的失真
情况及噪声对信号的影响。已调信号的瞬时值是连续 变化的,故也称调制信道为连续信号,甚至称为信道 。 • 编码信道模型:输出输入都是数字信号→数字序列变 换,离散或数字信道。包含调制信道→依赖于调制信 道的性能,噪声的干扰体现在误码上,关心的是误码 率而不是信号失真情况→使用转移概率来描述。
ui (t)cos[0t i (t)] ui (t) cos i (t) cosot ui (t) sin i (t) sin ot
X c (t) cosot X s (t) cosot V (t) cos[ot (t)]
V(t) Xc2(t) Xs2(t)
(t) arctg(Xc (t) Xs (t))
2
N
(bit/s)
Shannon公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学内容包括:信道模型及信道分类、单符号离散信道、多符号离散信道、多用户信道及连续信道
5
教学内容:
1、一般信道的数学模型
2、信道的分类
3、信道容量的定义
1、一般信道的数学模型
影响信道传输的因素:噪声、干扰。
噪声、干扰:非函数表述、随机性、统计依赖。
信道的全部特性:输入信号、输出信号,以及它们之间的依赖关系。
,
其中
,
二进制均匀信道容量曲线如图5.2.4所示。
C
1.0
P
0 0.5 1.0
5
教学内容:
1、对称信道的定义
2、信道容量
1、对称信道的定义:
如果一个矩阵的每一行都是同一集合 中诸元素的不同排列,我们称矩阵的行是可排列的;如果一个矩阵的每一列都是同一集合 中诸元素的不同排列,我们称矩阵的列是可排列的;如果一个矩阵的行和列都是可排列的,则称这个矩阵是可排列的,或称它具有可排列性。如果一个信道矩阵具有可排列性,它所表示的信道称为对称信道。
,
,
,
只要 , 达到最大值,即达到信道容量C。此时使 的信源概率分布 存在,但不是惟一的。这种信道的输入符号熵大于输出符号熵,即 。
综合以上三种无噪信道的分析,我们得出一个结论,无噪信道的信道容量C只决定于信道的输入符号数n,或输出符号数m,与信源无关,是表征信道特性的一个参量。
5
教学内容:
1、信道矩阵特点
3、具有归并性能的无噪信道
1、具有一一对应关系的无损信道
此时输入X和输出Y符号集的元素个数相等;
给出信道矩阵。
噪声熵H(Y/X)=0,信道疑义度H(X/Y)=0,固有
,
根据信道容量的定义,有
(5.2.1)
式(5.2.1)表明当信源呈等概率分布时,具有一一对应的确定关系的无噪信道达到信道容量,其值就是信源X的最大熵值。这个结果还表明,信道容量只决定于信道的输入符号数n,与信源无关,是表征信道特性的一个参量。
2、具有扩展性能的无噪信道
信道矩阵是
信道疑义度 。
故有
。
显然其信道容量
(5.2.2)
与一一对应信道不同的是,此时输入端符号熵小于输出端符号熵,即 。
3、具有归并性能的无噪信道
信道的噪声熵 ,但是信道疑义度 。
相应的信道容量为
尽管式中平均互信息I(X;Y)等于输出端符号熵H(Y),但是在求极大值时,调整的仍然是输入端的概率分布 ;而不能用输出端的概率分布 来代替。对于图5.2.3,其信道容量是 =1.585(bit/信道符号)。那么,要达到这一信道容量,对应信源的概率分布是什么呢?由信道矩阵有
2、特点
行具有可排列性,列不具有可排列性。但是把矩阵的前两列和后两列分成互不相交的子集,构成两个子矩阵,两个子矩阵的行和列均是可排列的,故信道 是准对称信道。
3、信道矩阵
4、信道容量
两个子矩阵的行和列均是可排列的,故信道 是准对称信道。由行的可排列性有
,
其信道矩阵如下图:
2、信道容量
根据平均互信息的定义
其中
,
类似于均匀信道的情况,Hmi也是与输入X无关的常数,故有 ,代入上式得
,
对应的信道容量为
(5.2.8)
式(5.2.7)与式(5.2.5)形式相同,只是此时的m≠n。由于对称信道的特点,容易证明,输入随机变量X等概率分布时,输出随机变量Y也是等概率分布,从而使Y的熵达到最大值 ,即达到信道容量C。
信道的一般数学模型:
2、信道的分类
输出随机信号
输入、输出随机变量个数
输入和输出的个数
信道上有无干扰
有无记忆特性
3、信道容量的定义
衡量一个信息传递系统的好坏,有两个主要指标:
速度指标:信息(传输)率 ,即信道中平均每个符号传递的信息量;
质量指标:平均差错率 ,即对信道输出符号进行译码的平均错误概率;
目标:速度快、错误少,即 尽量大而 尽量小。
4、意义:
研究信道,其核心问题就是求信道容量和最佳输入分布。根据定义,求信道容量问题就是求平均互信息量 关于输入概率分布 的最大值问题。一般来说,这是一个很困难的问题,只有对一些特殊信道,如无噪信道等,才能得到解析解,对于一般信道,必须借助于数值算法。
5
教学内容:
1、无损信道
2、具有扩展性能的无噪信道
信道容量:信息率 能大到什么程度;
若信道平均传送一个符号所需时间为t秒,则
(bit/s)
称 为信息(传输)速率。
分析:
对于给定的信道,总存在一个信源(其概率分布为 ),会使信道的信息率R达到最大。
( 是输入概率 的上凸函数,这意味着 关于 存在最大值)
每个给定的信道都存在一个最大的信息率,这个最大的信息率定义为该信道信道容量,记为 ,即5
教学内容:
1、定义
2、特点
3、信道矩阵
4、信道容量
1、定义
如果一个n行m列单符号离散信道矩阵[P]的行是可排列的,列不可排列。但是矩阵中的m列可分成s个不相交的子集,各子集分别有m1,m2,…,ms个元素(m1+m2+…+ms=m),若由n行mk(k=l,2,…,s)组成的子矩阵 具有可排列性,则称这信道为准对称信道。
bit/符号 (5.1.3)
信道容量也可以定义为信道的最大的信息速率,记为
(bit/s)(5.1.4)
解释:
(1)信道容量 是信道信息率 的上限,定量描述了信道(信息的)最大通过能力;
(2)使得给定信道的 达到最大值(即信道容量 )的输入分布,称为最佳输入(概率)分布,记为 ;
(3)信道的 与输入概率分布 和转移概率分布 两者有关,但信道容量 是信道的固有参数,只与信道转移概率 有关。
要获得这一最大值,可通过公式
寻找相应的输入概率分布。
现在观察信道矩阵,我们发现其特殊性:
信道矩阵中的每一行都是由同一集合 中的诸元素的不同排列组成,所以保证了当输入符号 是等概率分布,即 时,输出符号 一定是等概率分布,这时 。相应的信道容量为
(bit/信道符号)
当n=2时,就是二进制均匀信道,根据式(5.2.7)可计算出信道容量
2、信道容量计算
1、信道矩阵特点:
这类信道中总的错误概率是 ,对称平均地分配给(n-1)个输出符号。信道矩阵为(n×n)阶对称矩阵。
2、信道容量计算
其中条件熵
(5.2.4)
上式中
,
于信道的对称性,每一行都是同一集合诸元素的不同排列,所以
,
于是得信道容量
。
这就变成求一种输入分布 使 取最大值的问题了。现已知输出符号集 共有n个符号,则 。根据最大离散熵定理,只有当 ,即输出端呈等概率分布时, 才达到最大值 。