信息论与编码课件第3章信道与信道容量分析
合集下载
第3章信道与信道容量-PPT精品

• 信道种类
1无干扰信道
2有干扰无记忆信道
3有干扰有记忆信道
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
3
3.1信道分类和表示参数
二进制对称信道(BSC)
1-p 0
p
0 p
1p p
P
p
1p
1
1
1-p
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
X
+
Y
pY(y/ai)
1 e(yai)2/22
2
G
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
6
3.1信道分类和表示参数
波形信道
x(t)
y(t)
+
n(t)
pY(y/x)pY(y1,y2,yL/x1,x2,xL)
pY(y/x)pxp,yx((xx,)y)pxp,yx((xx,)n)pn(n)
p (bj/a i)
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
13
3.2离散单个符号信道及其容量
对称信道容量
C=maIx(X;Y)ma[H x(X)H(X|Y)]
p(ai)
p(ai)
ma[H x(Y)H(Y| X)]
p(ai)
maHx(Y)H(Y/X)
p(ai)
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
7
3.2离散单个符号信道及其容量
信息传输率
信道在单位时间内平均传输的信息量定义为信 息传输速率
R=I(X;Y)=H(X)-H(X/Y) 比特/符号
Rt=I(X;Y)/t
信息论与编码课件第三章

离散无记忆信道的信道容量
I( x
0;Y )
2 j 1
p(b j
0) log
p(b j 0) p(b j )
log 2
I( x 2;Y ) log 2
而I( x
1;Y )
2 j 1
p(b j 1) log
p(b j 1) p(b j )
0
1
I( x 0;Y ) I( x 2;Y ) log 2, p(0) p(2) 0
C
I ( x ai ;Y )
m j 1
p(b j ai ) log
p(b j ai ) p(b j )
特殊DMC的信道容量
例:准对称信道
准对称信道
0.8 0.1 0.1 P3 0.1 0.1 0.8
1 p(a1 ) p(a2 ) 2
n
p(b j ) p(ai ) p(b j ai ) i 1
H (Y
|
a2 )
H(Y | an )
P 1 M
C
log
n
ห้องสมุดไป่ตู้
2
j
j1
P P 1 C p(bj ) p(ai )
达到信道容量时输入、输出概率分布的唯一性
例:
1 / 2 1 / 2 0 0
P
0
1/2 1/2
0
0 0 1/ 2 1/ 2
1 / 2 0 0 1 / 2
取
p(a1 )
p(a3 )
1, 2
p(a2 ) p(a4 ) 0
4
C
信息论与编码 第三章:信道容量

3.1 信道的数学模型和分类
信道分类
从工程物理背景——传输媒介类型; 从数学描述方式——信号与干扰描述方式; 从信道本身的参数类型——恒参与变参; 从用户类型——单用户与多用户;
信道的数学模型和分类
离散 无记忆 连续 信号类型 半离散 有记忆 半连续 无干扰:干扰少到可忽略; 信号与干扰类型 无源热噪声 线性叠加干扰 有源散弹噪声 脉冲噪声 干扰类型 有干扰 交调 乘性干扰 衰落 码间干扰
信道的数学模型和分类
出 Y x1 xn y1 ym 入 X p( x ) p( x ) →信道→ p( y ) p( y ) p ( x) p( y ) 1 n 1 m
其中: xi X
C maxI ( X ; Y ) max[ H (Y )] ( p log p p log
p ( xi ) p ( xi )
p ) n 1
单符号离散信道的信道容量
强对称离散信道的信道容量
强对称信道的信道容量
1 H (Y ) log n,当p ( y j ) 时,H (Y )达到最大值 n n 要获得这一最大值,通过公式p( y j ) p( xi ) p( y j / xi ), j 1, 2,, n
C = max[ H (Y )] H (q1 , q2 , , qm )
p ( xi )
log m H (q1 , q2 , , qm )
?
单符号离散信道的信道容量
准对称离散信道的信道容量
将H(Y)中的m项分成s个子集M1, M2,…, Ms,各子集分别 有m 1, m 2,…, m s个元素( m 1+ m 2+…+ m s= m ),则
信息论与编码第三章

模
型
P<Y1=V1,Y2=V2…Yn=Vn/X=U1…X=Un>
n
Õ = p(YR = UR / X = uR )
决定DMC特点的条件概率P<yj/xi>可写成矩阵形 式
P = [ pij ]
3.2.1
转移概率矩阵
æ p( y0 / x0) p( y1 / x0)
数
ç
学 模
P
=
ç ç
p( y0 / x1)
数 即P<Y=0/X=1>=P<Y=1/X=0>=P
学
模 型
P<Y=1/X=1>=P<Y=0/X=0>=1-P
01
这种对称二进二出的
0 é P P ù 信道叫做二进制对称信
P=1
ê ëê
P
ú P ûú
道,简称BSC信道.
3.2.1
信道模型:
数 学 模
1-P
0
0
P
型
P
1
1
1-P
这种信道的输出符号仅与对应时刻输 入符号有关,与以前输入无关,故称此信道是 无记忆信道的.
3.1
信道分类:
信
道
1.有线信道和无线信道
分
类
有线信道:明线、对称电缆、同轴电
缆及
光缆等.
无线信道:地波传播、短波电离层反 射、
超短波或微波视距中继、
3.1
2.恒参信道和随参信道
信 道
恒参信道:信道的统计特性不随时间而变化.如明
分 线、对称电缆、同轴电缆、光缆、卫星中继信道
类
一般被视为恒参信道.
p0,Q - 1 ö ÷
第三章信道及信道容量PPT课件

第三章 信道及信道容量
第一节 信道分类及表示参数 第二节 单符号离散信道及其容量 第三节 离散序列信道及其容量 第四节 连续信道及其容量
05.12.2020
1
研究信道容量的意义?
信道是信息传输的通道。由于干扰而丢失的信息为 H(X|Y ); 在接收端获取的关于发送端信源X的信息量是:
I(X;Y)=H(X)-H(X|Y) 即:信道中平均每个符号传送的信息量。对于信道,所关心的问 题是平均每个符号传送的最大信息量。这就是信道容量C=max I(X;Y) bit/符号
每个数字对应一种颜色(反之未必),数字已知,则颜色确 定,H(X|Y)=0。H(X,Y)=H(Y)=…..
6、2.21(3)信号放大问题。课上已经强调过,仍出错。
7、向孔祥品学习
05.12.2020
9
复习:第四节 连续信源的熵和互信息
一、单符号连续信源的熵 相对熵(差熵)
H c(X ) p X (x)lop X g (x)dx Hc(XY )p(xy)lopg(xy)dxdy Hc(Y/X )p(xy)lopg(y/x)dxdy
(2) 离散无记忆信道(DMC-Discrete Memoryless Channel)
仍是单符号离散信道,符号集中的符号数目大于2 。
05.12.2020
7
转移概率矩阵(传递阵矩)P :
P11 P12 P1m
P [
P ij
]
P21
P22
P2m
Pn1
Pn2
Pnm
m
m
转移概率矩 元阵 素中 之 1。 各 和 P(b 行 j等 |ai)的 于 Pij1
2 Pm2,通常m0,2 P,此时有:
H0C5.1(2X.202)0
第一节 信道分类及表示参数 第二节 单符号离散信道及其容量 第三节 离散序列信道及其容量 第四节 连续信道及其容量
05.12.2020
1
研究信道容量的意义?
信道是信息传输的通道。由于干扰而丢失的信息为 H(X|Y ); 在接收端获取的关于发送端信源X的信息量是:
I(X;Y)=H(X)-H(X|Y) 即:信道中平均每个符号传送的信息量。对于信道,所关心的问 题是平均每个符号传送的最大信息量。这就是信道容量C=max I(X;Y) bit/符号
每个数字对应一种颜色(反之未必),数字已知,则颜色确 定,H(X|Y)=0。H(X,Y)=H(Y)=…..
6、2.21(3)信号放大问题。课上已经强调过,仍出错。
7、向孔祥品学习
05.12.2020
9
复习:第四节 连续信源的熵和互信息
一、单符号连续信源的熵 相对熵(差熵)
H c(X ) p X (x)lop X g (x)dx Hc(XY )p(xy)lopg(xy)dxdy Hc(Y/X )p(xy)lopg(y/x)dxdy
(2) 离散无记忆信道(DMC-Discrete Memoryless Channel)
仍是单符号离散信道,符号集中的符号数目大于2 。
05.12.2020
7
转移概率矩阵(传递阵矩)P :
P11 P12 P1m
P [
P ij
]
P21
P22
P2m
Pn1
Pn2
Pnm
m
m
转移概率矩 元阵 素中 之 1。 各 和 P(b 行 j等 |ai)的 于 Pij1
2 Pm2,通常m0,2 P,此时有:
H0C5.1(2X.202)0
信息论与编码第3章 信道与信道容量

Rt 的单位:bit/符号÷s/符号=bit/s
定义3.1 设某信道的平均互信息量为I(X;Y),信道输
入符号的先验概率为p(x),该信道的信道容量C定义
为
C max{I ( X ;Y )} p(x)
上述的极值问题实际是有约束条件的,先验概率分布
p(x) 应当满足下列条件
p(x ai ) 0
第3章 信道与信道容量
吴晓青
目录
3.1信道分类 3.2 单符号离散信道及其容量
➢ 3.2.1 数学模型 ➢ 3.2.2信道容量 ➢ 3.2.3 离散信道容量的迭代算法
3.3 离散序列信道及其容量 3.4 信源与信道的匹配 3.5 连续信道及其容量
➢ 3.5.1 连续单符号加性信道 ➢ 3.5.2 多维无记忆加性连续信道 ➢ 3.5.3 加性高斯白噪声波形信道
定义3.3 如果信道转移概率矩阵中所有列矢量都是第 一列的某种置换,则称信道关于输出是对称的,这 种信道称为输出对称离散信道。
1 0 P 0.5 0.5
0 1
0.7 0.2 0.1 P 0.2 0.1 0.7
0.1 0.7 0.2
如果信道是输出对称的,那么当信道输入符号为等概 率分布时,信道输出也是等概率分布的。
前向概率、后验概率
由公式
p(ai ,bj ) p(ai ) p(bj | ai )
信道的条件转移概率p(bj|ai)通常称为前向概率,表 示在输入为ai时,通过信道后接收为bj的概率,描 述了信道噪声的特性。
由公式
p(ai , bj ) p(bj ) p(ai | bj )
p(ai|bj)称为后向概率,表示当接收符号为bj时,信 道输入为ai的概率,所以也称为后验概率。
信息论与编码(第三版) 第3章 信道与信道容量

2信道输入的先验分布不是最佳分布,那么信息传输率不 能够达到信息容量
3信息量R必须小于信道容量C,否则传输过程中会造成信 息损失,出现错误;
如果R<C成立端
噪声问题
无 映射(输 噪 入到输出)
条件转移 矩阵
H(Y|X)=0
Y X n
一对一
X:信道输入 Y:信道输出 n:信道噪声
p(bj|ai):后向概率
表示当接收符号为bj时, 信道输入为ai的概率,所 以也称为后验概率
贝叶斯公式
p(ai
| bj)
p(aibj ) p(bj )
p(ai ) p(bj | ai )
r
p(ai ) p(bj | ai )
i1
后验概率都是十分 重要的,可以通过
p(b1 )
p(a1 )
第3章 信道与信道容量
目录
3.1信道分类 3.2 单符号离散信道及其容量
➢ 3.2.1 数学模型 ➢ 3.2.2信道容量 ➢ 3.2.3 离散信道容量的迭代算法
3.3 离散序列信道及其容量 3.4 信源与信道的匹配 3.5 连续信道及其容量
➢ 3.5.1 连续单符号加性信道 ➢ 3.5.2 多维无记忆加性连续信道 ➢ 3.5.3 加性高斯白噪声波形信道
只能进行单方向的通信
也称多端信道,输入端或者 输出端至少有一端具有两个 或者两个以上用户,并且可
以实现双向通信
输入、输出的取值特性
离散信道
也称为数字信道,该类信道中输入空间、输出 空间均为离散事件集合,集合中事件数量是有 限的,或者有限可数的,随机变量取值都是离 散的
连续信道
也称为模拟信道,输入空间、输出空间均为连续事 件集合,集合中事件的数量是无限的、不可数的
3信息量R必须小于信道容量C,否则传输过程中会造成信 息损失,出现错误;
如果R<C成立端
噪声问题
无 映射(输 噪 入到输出)
条件转移 矩阵
H(Y|X)=0
Y X n
一对一
X:信道输入 Y:信道输出 n:信道噪声
p(bj|ai):后向概率
表示当接收符号为bj时, 信道输入为ai的概率,所 以也称为后验概率
贝叶斯公式
p(ai
| bj)
p(aibj ) p(bj )
p(ai ) p(bj | ai )
r
p(ai ) p(bj | ai )
i1
后验概率都是十分 重要的,可以通过
p(b1 )
p(a1 )
第3章 信道与信道容量
目录
3.1信道分类 3.2 单符号离散信道及其容量
➢ 3.2.1 数学模型 ➢ 3.2.2信道容量 ➢ 3.2.3 离散信道容量的迭代算法
3.3 离散序列信道及其容量 3.4 信源与信道的匹配 3.5 连续信道及其容量
➢ 3.5.1 连续单符号加性信道 ➢ 3.5.2 多维无记忆加性连续信道 ➢ 3.5.3 加性高斯白噪声波形信道
只能进行单方向的通信
也称多端信道,输入端或者 输出端至少有一端具有两个 或者两个以上用户,并且可
以实现双向通信
输入、输出的取值特性
离散信道
也称为数字信道,该类信道中输入空间、输出 空间均为离散事件集合,集合中事件数量是有 限的,或者有限可数的,随机变量取值都是离 散的
连续信道
也称为模拟信道,输入空间、输出空间均为连续事 件集合,集合中事件的数量是无限的、不可数的
信息论与编码(第三章PPT)

信息论与编码
Information and Coding Theory
第3章 信道容量
1
第3章 信道容量
3.1 信道基本概念 3.2 离散无记忆信道容量 3.3 组合信道的容量 3.4 连续无记忆信道的容量 3.5 波型信道的容量
2
3.1 信道基本概念
信道物理模型 输入消息X 输出消息Y 干扰
求X的概率分布 :由方程组
0.5z1 0.25z4 0.1
0z3.250z1.25zz24
0.4 0.4
0.25z1 0.5z4 0.1
求出解为: p1 p4 4 / 30, p2 p3 11/ 30.
pi (i 1,2,3,4)是一个概率分布,必是最佳分布, C是信道容量.
3.2 离散无记忆信道容量
log p(b1) C
(1 log
)log p(b2) log p(b2) (1 )log
p(b3) p(b3)
[C [C
log log
(1 )log(1 (1 )log(1
X
信道
Y
干扰
3
3.1 信道基本概念
信道分类 根据信道用户的多少 单用户信道 多用户信道 根据信道输入端与输出端的关系 无反馈信道 有反馈信道 根据信道的参数与时间的关系 固定参数信道 时变参数信道
4
3.1 信道基本概念
根据输入与输出 随机变量的取值分类 离散信道(数字信道: 时间、取值离散) 连续信道(模拟信道: 取值连续) 半连续信道( 时间、取值一个离散,另一个连续) 波形信道(时间、取值连续)
18
3.2 离散无记忆信道容量
例3-2-2 设DMC的转移概率矩阵为
Information and Coding Theory
第3章 信道容量
1
第3章 信道容量
3.1 信道基本概念 3.2 离散无记忆信道容量 3.3 组合信道的容量 3.4 连续无记忆信道的容量 3.5 波型信道的容量
2
3.1 信道基本概念
信道物理模型 输入消息X 输出消息Y 干扰
求X的概率分布 :由方程组
0.5z1 0.25z4 0.1
0z3.250z1.25zz24
0.4 0.4
0.25z1 0.5z4 0.1
求出解为: p1 p4 4 / 30, p2 p3 11/ 30.
pi (i 1,2,3,4)是一个概率分布,必是最佳分布, C是信道容量.
3.2 离散无记忆信道容量
log p(b1) C
(1 log
)log p(b2) log p(b2) (1 )log
p(b3) p(b3)
[C [C
log log
(1 )log(1 (1 )log(1
X
信道
Y
干扰
3
3.1 信道基本概念
信道分类 根据信道用户的多少 单用户信道 多用户信道 根据信道输入端与输出端的关系 无反馈信道 有反馈信道 根据信道的参数与时间的关系 固定参数信道 时变参数信道
4
3.1 信道基本概念
根据输入与输出 随机变量的取值分类 离散信道(数字信道: 时间、取值离散) 连续信道(模拟信道: 取值连续) 半连续信道( 时间、取值一个离散,另一个连续) 波形信道(时间、取值连续)
18
3.2 离散无记忆信道容量
例3-2-2 设DMC的转移概率矩阵为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b1 b2
: : :
bm
12
转移概率矩阵
b1
b2
bm
a1 p(b1 | a1) p(b2 | a1) p(bm | a1)
P
a2
p(b1 |
a2
)
p(b2 | a2)
p(bm | a2)
an
p(b1
|
an
)
p(b2 | an)
p(bm | an)
• P:转移概率矩阵
– 已知X,信道输出Y表现出来的统计特性
– 完全描述了信道的统计特性,其中有些概率是信 道干扰引起的错误概率,有些是正确传输的概率
m
p(bj | ai ) 1 i 1,2,n
j 1
13
• 反信道转移概率矩阵
– 已知Y,信道输入X表现出来的统计特性
a1
a2
an
b1 p(a1 | b1)
P
b2
p(a1 |
b2
)
p(a2 | b1) p(a2 | b2)
• 信道输入是n元符号
X∈{a1, a2, …, an} • 信道输出是m元符号
Y∈{b1, b2, …, bm}
• 转移矩阵
b1 b2 bm
p11 p12 p1m a1
P
p21
p22
p2m
a2
pn1
pn2
pnm
an
p11
a1
p12
p21
a2
p22
: : :
an
pnm
pij=p(bj|ai)
– 描述输入/输出的统计依赖关系,反映信道统计关 系
p(Y|X)
X
Y
信道
9
无干扰(无噪声)信道
• 无干扰(无噪声)信道
– 信道的输出信号Y与输入信号X之间有确定 的关系Y=f (X),已知X后就确知Y
– 转移概率:
p(Y
|
X)
1, 0,
Y f(X) Y f(X)
10
有干扰无记忆信道
• 有干扰无记忆信道
• 转移矩阵
1
P
p 0
1 p 1 q
0 q
p 0
1-p
2
1-q 1
q
16
3.2 离散单个符号信道 及其容量
17
信道容量
• 我们研究信道的目的是要讨论信道中平均每个 符号所能传送的信息量,即信道的信息传输率R
• 平均互信息I (X;Y):
– 接收到符号Y后平均每个符号获得的关于X
的信息量。
I(X;Y)
i
j
p(xi ) p(y j
|
xi ) log
p(y j | xi ) p(y j )
n
p( y j ) p(xi ) p( y j | xi ) i1
• 信道的信息传输率就是平均互信息
18
信道容量
• 信道容量C:
– 最大的信息传输率
C max I (X ;Y ) p(ai )
• 单位时间的信道容量:
– 用条件概率矩阵来描述。 • 离散有记忆信道:
– 可像有记忆信源中那样引入状态的概念。
8
3.1.2 信道参数
• 设信道的输入X=(X1, X2 … Xi,… ), Xi ∈{a1 … an} 输出Y= (Y1, Y2 … Yj,…), Yj ∈{b1 … bm}
• 信道转移概率矩阵p(Y|X):
p(an | b1)
p(an
|
b2
)
bm
p(a1
|
bm
)
p(a2 | bm)
p(an | bm)
• p(ai|bj):后向概率
– 已知信道输出端接收到符号bj但发送的输
入符号为ai的概率。
14
二进制离散信道BSC
• 二进制离散信道BSC
– 输入符号X取值{0,1}; – 输出符号Y取值{0,1}
道中传输的过程遵循不同的物理规律, 通信技 术必须研究信号在这些信道中传输时的特性
– 信息论不研究信号在信道中传输的物理过程, 并假定信道的传输特性已知,这样信息论就可 以抽象地将信道用下图所示的模型来描述。
输入量X (随机过程)
p(Y|X) 信道
输出量Y (随机过程)
5
3.1.1 信道分类
• 按输入/输出信号在幅度和时间上的取值:
• 设信道的输入X∈A={a1 … an},输出Y∈B={b1 … bm}
• 无嗓无损信道
– 输入和输出符号之间有确定的一一对应关系
0 i j p(bj | ai ) p(ai | bj ) 1 i j (i, j 1,2,3)
1 C max I (X ;Y )
T p(ai )
19
信道容量的计算
• 对于一般信道,信道容量计算相当复杂,我们只 讨论某些特殊类型的信道:
• 离散信道可分成: • 无干扰(无噪)信道
– 无嗓无损信道 – 有噪无损信道 – 无噪有损信道
• 有干扰无记忆信道 • 有干扰有记忆信道
20
3.2.1 无干扰离散信道
• 很重要的一种特殊信道 • 信道转移概率:
1-p
0
0
p
p
1
1
1-p
p(0|0) = 1-p p(0|1) = p
p(1|1) = 1-p p(1|0) = p
无错误传0输的概1 率 传输P发生1错pp误1的pp概 率10
15
二元删除信道BEC
• 二元删除信道BEC
– 输入符号X取值{0,1}; 0 – 输出符号Y取值{0,1,2}
信息论与编码
第三章
信道与信道容量
内容
3.1 信道分类和表示参数 3.2 离散单个符号信道及其容量 3.3 离散序列信道及其容量 3.4 连续信道及其容量
3
3.1 信道分类和表示参数
4
信道
• 信道:信息传输的通道
– 在通信中,信道按其物理组成常被分成微波信 道、光纤信道、电缆信道等。信号在这些信
• 无记忆信道:
– 信道的输出只与信道该时刻的输入有关,而 与其他时刻的输入无关
• 有无记忆信道:
– 信道的输出不但与信道现时的输入有关而且 还与输出信号之间的关系是否是确定关系:
• 无干扰信道:
– 输入/输出符号之间有确定的一一对应关系
• 有干扰信道:
– 输入/输出之间关系是一种统计依存的关系 • 输入/输出的统计关系: • 离散无记忆信道:
• 离散信道:
– 输入和输出的随机序列取值都是离散的信道
• 连续信道:
– 输入和输出的随机序列取值都是连续的信道
• 半离散(半连续)信道:
– 输入变量取值离散而输出变量取值连续
– 输入变量取值连续而输出变量取值离散
• 波形信道:
– 信道的输入和输出都是一些时间上连续的随
机信号。
6
信道分类
• 按输入/输出之间关系的记忆性来划分:
– 信道的输出信号Y与输入信号X之间没有确 定的关系,但转移概率满足:
p(Y | X ) p( y1 | x1) p( y2 | x2) p( yL | xL )
• 有干扰无记忆信道可分为: – 二进制离散信道 – 离散无记忆信道 – 离散输入、连续输出信道 – 波形信道
11
离散无记忆信道DMC