第13章 组合逻辑电路
第13数字电子技术基础
第三节 时序逻辑电路 一、 RS触发器
2 同步RS触发器 1.电路结构和逻辑符号 为使基本RS触发器能在时钟源的控制下工作,在基本RS 触发器输入端加两个两输入与非门作为引导门,如图所示。
第三节 时序逻辑电路 一、 RS触发器
2.逻辑功能
第三节 时序逻辑电路 一、 RS触发器
13.3 逻辑代数及逻辑函数化简
一、 逻辑代数基本公式
返回
13.3 逻辑代数及逻辑函数化简
一、 逻辑代数基本公式
3.逻辑代数的基本规则 (1)代入规则。在任何一个逻辑等式中,如果等式两边出现相同的变量, 如变量A,可以将所有含A的地方代之以同一个逻辑函数F,等式仍然成立, 这个规则就称为代入规则。 (2)反演规则。对逻辑等式F取非 (即求其反函数)称为反演。可以通过 反复使用摩根定律求得,也可以运用由摩根定律得到的反演规则一次写出。 (3)对偶规则。如果两个逻辑式相等,那么它们的对偶式也一定相等, 这就是对偶规则。
(4)数码显示器
三、
组合逻辑电路的种类
半导体数码管 半导体数码管是将7个发光二极管 排列成“日”字形状制成的
三、
组合逻辑电路的种类
数码显示译码器 数码显示译码器的原理图如图13-18(a)所示。输入的是8421BCD码,输出 的是相应a、b、c、d、e、f、g端的高、低电平。 若数码显示译码器驱动的是共阴数码管,如图13-18(b)所示。
第14章 组合逻辑电路和时序逻辑电路 第一节 集成门电路
一、TTL集成逻辑门电路 1、TTL集成逻辑门电路 TTL是三极管-三极管逻辑门电路的英文缩写,它具有 工作速度快、带负载能力强、工作稳定等到优点。 常用的TTL门电路有反相器、与非门、或非门、OC门、 三态门等。 2、其他类型TTL逻辑门 (1)、OC门 把集电极开路的与非门称为OC门。几个OC门电路并联 在一起,只要外接一个负载电阻即可,它能实现线与功能。 (2)、三态门(TSL门) 具有3种输出状态高电平、低电平、高电阻的门电路, 称为三态门电路。在高阻态下,输出端相当于开路。它能 实现信号的单向传输、双向传输的控制。
第章组合逻辑电路习题解答
第章组合逻辑电路习题解答公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]复习思考题3-1 组合逻辑电路的特点从电路结构上看,组合电路只由逻辑门组成,不包含记忆元件,输出和输入之间无反馈。
任意时刻的输出仅仅取决于该时刻的输入,而与电路原来的状态无关,即无记忆功能。
3-2 什么是半加什么是全加区别是什么若不考虑有来自低位的进位将两个1位二进制数相加,称为半加。
两个同位的加数和来自低位的进位三者相加,称为全加。
半加是两个1位二进制数相加,全加是三个1位二进制数相加。
3-3 编码器与译码器的工作特点编码器的工作特点:将输入的信号编成一个对应的二进制代码,某一时刻只能给一个信号编码。
译码器的工作特点:是编码器的逆操作,将每个输入的二进制代码译成对应的输出电平。
3-4 用中规模组合电路实现组合逻辑函数是应注意什么问题中规模组合电路的输入与输出信号之间的关系已经被固化在芯片中,不能更改,因此用中规模组合电路实现组合逻辑函数时要对所用的中规模组合电路的产品功能十分熟悉,才能合理地使用。
3-5 什么是竞争-冒险产生竞争-冒险的原因是什么如何消除竞争-冒险在组合逻辑电路中,当输入信号改变状态时,输出端可能出现虚假信号----过渡干扰脉冲的现象,叫做竞争冒险。
门电路的输入只要有两个信号同时向相反方向变化,这两个信号经过的路径不同,到达输入端的时间有差异,其输出端就可能出现干扰脉冲。
消除竞争-冒险的方法有:接入滤波电容、引入选通脉冲、修改逻辑设计。
习 题3-1试分析图所示各组合逻辑电路的逻辑功能。
解: (a)图 (1) 由逻辑图逐级写出表达式:)()(D C B A Y ⊕⊕⊕=(2) 化简与变换:令DC Y B A Y ⊕=⊕=21则 21Y Y Y ⊕=(3)由表达式列出真值表,见表。
输入中间变量中间变量 输出 A B C DY 1 Y 2 Y 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 10 1 1 0 00 1 1 0 1(4)分析逻辑功能:由真值表可知,该电路所能完成的逻辑功能是:判断四个输入端输入1的情况,当输入奇数个1时,输出为1,否则输出为0。
电子技术基础(电工Ⅱ)李春茂主编_机械工业出版社_课后习题答案
1-9 有 A、B、C 3 只晶体管,测得各管的有关参数与电流如题表 1-2 所示,试填写表中空白的栏目。
表 1-2 题 1-9 表
电流参数
管号
iE / mA iC / mA iB / μA ICBO / μA ICEO / μA
A
1
0.982
18
2
111
0.982
B
0.4
0.397
3
1
132.3 0.99
目录
第一章 双极型半导体器件∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 第二章 基本放大电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7 第三章 场效应晶体管放大电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18 第四章 多级放大电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙23 第五章 集成运放电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙33 第七章 直流稳压电源∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙46 第九章 数字电路基础知识∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙51 第十章 组合逻辑电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙61 第十一章 时序逻辑电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙73 第十二章 脉冲波形的产生和整形∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙90 第十三章 数/模与模/数转换电路∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙96
组合逻辑电路 课后答案
第4章[题].分析图电路的逻辑功能,写出输出的逻辑函数式,列出真值表,说明电路逻辑功能的特点。
图P4.1B YAP 56P P =图解:(1)逻辑表达式()()()5623442344232323232323Y P P P P P CP P P P CP P P C CP P P P C C P P P P C P PC ===+=+=++=+ 2311P P BP AP BABAAB AB AB ===+()()()2323Y P P C P P CAB AB C AB ABC AB AB C AB AB CABC ABC ABC ABC=+=+++=+++=+++(2)真值表(3)功能从真值表看出,这是一个三变量的奇偶检测电路,当输入变量中有偶数个1和全为0时,Y =1,否则Y=0。
[题] 分析图电路的逻辑功能,写出Y 1、、Y 2的逻辑函数式,列出真值表,指出电路完成什么逻辑功能。
图P4.3B1Y 2[解]解: 2Y AB BC AC =++12Y ABC A B C Y ABC A B C AB BC AC ABC ABC ABC ABC =+++=+++++=+++()())由真值表可知:、C 为加数、被加数和低位的进位,Y 1为“和”,Y 2为“进位”。
[题] 图是对十进制数9求补的集成电路CC14561的逻辑图,写出当COMP=1、Z=0、和COMP=0、Z=0时,Y 1~Y 4的逻辑式,列出真值表。
图P4.4[解](1)COMP=1、Z=0时,TG1、TG3、TG5导通,TG2、TG4、TG6关断。
,(2)COMP=0、Z=0时,Y1=A1,Y2=A2,Y3=A3,Y4=A4。
、COMP=1、Z=0时的真值表、Z=0的真值表从略。
[题] 用与非门设计四变量的多数表决电路。
当输入变量A、B、C、D有3个或3个以上为1时输出为1,输入为其他状态时输出为0。
[解] 题的真值表如表所示,逻辑图如图(b)所示。
组合逻辑电路
⒊ 8-3线优先编码器74LS148
7.2.2 译码器
将给定的二值代码转换为相应的输出信号或另一种形式 二值代码的过程,称为译码。 能实现译码功能的电路称为译码器(Decoder)。译码 是编码的逆过程。 ⒈ 工作原理 为便于分析理解,以2-4线译码器为例。
⒉ 3-8线译码器74LS138
⒊ 译码器应用举例 【例7-6】 试利用74LS138和门电路实现例7-3中要求的 3人多数表决逻辑电路。 解:3人表决逻辑最小项表达式为:
⑵ 现象Ⅱ
⒉ 竞争与冒险的含义 ⑴ 竞争:门电路输入端的两个互补输入信号同时向相反 的逻辑电平跳变的现象称为竞争。 ⑵ 冒险:门电路由于竞争而产生错误输出(尖峰脉冲) 的现象称为竞争-冒险。 对大多数组合逻辑电路来说,竞争现象是不可避免的。 但竞争不一定会产生冒险,而产生冒险必定存在竞争。
⒊ 判断产生竞争-冒险的方法 ⑴ 或(或非)门,在某种条件下形成 时, 会产生竞争现象;与(与非)门,在某种条件下形成 时,会产生竞争现象。 ⑵ 卡诺图中有相邻的卡诺圈相切。
8选1数据选择器74LS151/251
数据选择器应用 【例7-10】 试利用74LS151实现例7-3中要求的3人多 数表决逻辑电路。 解:3人表决逻辑最小项表达式为: Y=
7.2.5 加法器
⒈ 半加器(Half Adder) ⑴ 定义:能够完成两个一位二进制数A和B相加的组 合逻辑电路称为半加器。 ⑵ 真值表:半加器真值表如表7-13,其中S为和, CO为进位。 ⑶ 逻辑表达式:S= =AB;CO=AB ⑷ 逻辑符号:半加器逻辑符号如图7-20所示。
⒉ 全加器(Full Adder)
⑴ 定义:两个一位二进制数A、B与来自低位的进位 CI三者相加的组合逻辑电路称为全加器。
数字电路组合逻辑电路
分),如下图。 2)数字电路与数字系统
元
辑
件
符
号
根据前面所述,提出数字电路地概念。数字电路是指以逻辑门为核心元件
连接关系
,以分立元件为辅助元件,根据设计电路所得元件引脚地连接关系组合而成地电路。
逻辑门地输入输出引脚承载地物理量是稳定地电压,只有高,低两种电平,在逻辑上
认为实现了1,0数字地传递。核心电路组合后,我们主要针对电路(函数)输入
形图体现地随时间数据变化地规律,就能找到时序电路地逻辑功能,但在组合电路里,转化为真值表
方法分析电路功能会更好。
8 1.2组合逻辑电路分析
组组合合逻逻辑析辑电电路路分分析 组合逻辑电路设计 电路竞争与冒险 常用组合逻辑电路
3)组合电路分析步骤 要分析逻辑电路功能,就要得到电路地逻辑图,转变为函数,真值表或波形图,然后按照 前面所述去分析其功能。 (1)根据逻辑门组成地电路,确定输入输出变量,从输入端开始,逐级写出每个逻辑门 地逻辑表达式,直到写出所有输出表达式为止。然后利用化简逻辑函数地方法对函数进 行化简,得到最简化地表达式。 (2)根据逻辑表达式列出真值表,根据真值表分析逻辑功能 (3)根据表达式与真值表分析电路地功能确定最后地电路功能,与实践相联系,确定 应用性功能。 该电路实现了或非门地功能。 (4)观察图形,分析电路可能存在地问题 实例1分析如图所示电路,要求: (1)列出逻辑表达式 (2)列真值表 (3)分析逻辑功能 (4)电路使用了几个芯片,哪里不合理?说明原因。
1
第3章
组合逻辑电路分析 组合逻辑电路设计 电路竞争与冒险 常用组合逻辑电路
言宜慢,心宜善
阅 解
推
逻辑 设计
2
组合逻辑电路分析 组合逻辑电路设计 电路竞争与冒险 常用组合逻辑电路
组合逻辑电路设计例题
9.4、组合逻辑电路的分析与设计习题1、在一旅游胜地,有两辆缆车可供游客上下山,请设计一个控制缆车正常运行的逻辑电路。
要求:缆车A 和B在同一时刻只能允许一上一下的行驶,并且必须同时把缆车的门关好后才能行使。
设输入为A、B、C,输出为Y。
(设缆车上行为“1”,门关上为“1”,允许行驶为“1”)(1) 列真值表;(2)写出逻辑函数式;(3)用基本门画出实现上述逻辑功能的逻辑电路图。
解:(1)列真值表:(3)逻辑电路图:)()(____________BACBABACCBABCAF⊕=+=+=2、某同学参加三类课程考试,规定如下:文化课程(A)及格得2分,不及格得0分;专业理论课程(B)及格得3分,不及格得0分;专业技能课程(C)及格得5分,不及格得0分。
若总分大于6分则可顺利过关(Y),试根据上述内容完成:(1)列出真值表;(2)写出逻辑函数表达式,并化简成最简式;(3)用与非门画出实现上述功能的逻辑电路。
(3)逻辑电路图(2)逻辑函数表达式BCACABCBABCCBABCCBAABCBCAABCCBABCAF+=+=+=+=++=++=)()(__________________ABFAFBCAFBC3、中等职业学校规定机电专业的学生,至少取得钳工(A)、车工(B)、电工(C)中级技能证书的任意两种,才允许毕业(Y )。
试根据上述要求:(1)列出真值表;(2)写出逻辑表达式,并化成最简的与非—与非形式;(3)用与非门画出完成上述功能的逻辑电路。
(3)逻辑电路: (2)逻辑表达式:最简的与非—与非形式:ABC C AB C B A BC A F +++=_____________________________________________________________________________________________________________AB BC AC AB BC AC AB BC AC AB BC AC F ••=•+=++=++=4、用基本逻辑门电路设计一个一位二进制全加器,输入变量有:A 为被加数,B 为加数,C 为较低位的进位,输出函数为本位和S 及向较高位的进位H 。
《组合逻辑电路》公开课教案
《组合逻辑电路》公开课教案第一章:组合逻辑电路概述1.1 教学目标让学生了解组合逻辑电路的定义和特点使学生掌握组合逻辑电路的基本构成要素培养学生理解组合逻辑电路在数字电路中的应用1.2 教学内容组合逻辑电路的概念组合逻辑电路的特点组合逻辑电路的基本构成要素组合逻辑电路的应用1.3 教学方法采用讲授法,讲解组合逻辑电路的基本概念和特点采用案例分析法,分析组合逻辑电路的应用实例采用互动讨论法,引导学生探讨组合逻辑电路的构成要素1.4 教学准备教案、PPT、教学设备组合逻辑电路的相关案例资料1.5 教学过程1.5.1 导入利用生活中的实例引入组合逻辑电路的概念1.5.2 讲解讲解组合逻辑电路的定义和特点讲解组合逻辑电路的基本构成要素1.5.3 案例分析分析组合逻辑电路的应用实例1.5.4 互动讨论引导学生探讨组合逻辑电路的构成要素第二章:组合逻辑电路的设计方法2.1 教学目标让学生掌握组合逻辑电路的设计方法培养学生运用设计方法解决实际问题的能力2.2 教学内容组合逻辑电路的设计方法组合逻辑电路设计实例2.3 教学方法采用讲授法,讲解组合逻辑电路的设计方法采用案例分析法,分析组合逻辑电路设计实例采用互动讨论法,引导学生探讨设计方法的应用2.4 教学准备教案、PPT、教学设备组合逻辑电路设计的相关案例资料2.5 教学过程2.5.1 导入复习组合逻辑电路的概念,引出设计方法的话题2.5.2 讲解讲解组合逻辑电路的设计方法2.5.3 案例分析分析组合逻辑电路设计实例2.5.4 互动讨论引导学生探讨设计方法的应用第三章:组合逻辑电路的仿真与测试3.1 教学目标让学生掌握组合逻辑电路的仿真与测试方法培养学生运用仿真与测试方法诊断和优化电路的能力3.2 教学内容组合逻辑电路的仿真方法组合逻辑电路的测试方法组合逻辑电路仿真与测试实例3.3 教学方法采用讲授法,讲解组合逻辑电路的仿真与测试方法采用案例分析法,分析组合逻辑电路仿真与测试实例采用互动讨论法,引导学生探讨仿真与测试方法的应用3.4 教学准备教案、PPT、教学设备组合逻辑电路仿真与测试的相关案例资料3.5 教学过程3.5.1 导入复习组合逻辑电路的设计方法,引出仿真与测试的话题3.5.2 讲解讲解组合逻辑电路的仿真方法讲解组合逻辑电路的测试方法3.5.3 案例分析分析组合逻辑电路仿真与测试实例3.5.4 互动讨论引导学生探讨仿真与测试方法的应用第四章:组合逻辑电路的应用实例4.1 教学目标让学生了解组合逻辑电路在实际应用中的典型实例培养学生运用组合逻辑电路解决实际问题的能力4.2 教学内容组合逻辑电路的应用实例4.3 教学方法采用讲授法,讲解组合逻辑电路的应用实例采用案例分析法,分析组合逻辑电路应用实例采用互动讨论法,引导学生探讨应用实例的设计与实现4.4 教学准备教案、PPT、教学设备组合逻辑电路应用实例的相关资料4.5 教学过程4.5.1 导入复习组合逻辑电路的仿真与测试,引出应用实例的话题4.5.2 讲解讲解组合逻辑电路的应用实例4.5第五章:组合逻辑电路的综合设计实例5.1 教学目标让学生掌握组合逻辑电路的综合设计方法培养学生运用综合设计方法解决实际问题的能力5.2 教学内容组合逻辑电路的综合设计方法组合逻辑电路综合设计实例5.3 教学方法采用讲授法,讲解组合逻辑电路的综合设计方法采用案例分析法,分析组合逻辑电路综合设计实例采用互动讨论法,引导学生探讨综合设计方法的应用5.4 教学准备教案、PPT、教学设备组合逻辑电路综合设计的相关案例资料5.5 教学过程5.5.1 导入复习组合逻辑电路的应用实例,引出综合设计的话题5.5.2 讲解讲解组合逻辑电路的综合设计方法5.5.3 案例分析分析组合逻辑电路综合设计实例5.5.4 互动讨论引导学生探讨综合设计方法的应用第六章:组合逻辑电路的优化6.1 教学目标让学生了解组合逻辑电路的优化方法培养学生运用优化方法提高电路性能的能力6.2 教学内容组合逻辑电路的优化方法组合逻辑电路优化实例6.3 教学方法采用讲授法,讲解组合逻辑电路的优化方法采用案例分析法,分析组合逻辑电路优化实例采用互动讨论法,引导学生探讨优化方法的应用6.4 教学准备教案、PPT、教学设备组合逻辑电路优化的相关案例资料6.5 教学过程6.5.1 导入复习组合逻辑电路的综合设计,引出优化的话题6.5.2 讲解讲解组合逻辑电路的优化方法6.5.3 案例分析分析组合逻辑电路优化实例6.5.4 互动讨论引导学生探讨优化方法的应用第七章:组合逻辑电路的troubleshooting 与维护7.1 教学目标让学生掌握组合逻辑电路的troubleshooting 与维护方法培养学生运用troubleshooting 与维护方法解决实际问题的能力7.2 教学内容组合逻辑电路的troubleshooting 方法组合逻辑电路的维护方法组合逻辑电路troubleshooting 与维护实例7.3 教学方法采用讲授法,讲解组合逻辑电路的troubleshooting 与维护方法采用案例分析法,分析组合逻辑电路troubleshooting 与维护实例采用互动讨论法,引导学生探讨troubleshooting 与维护方法的应用7.4 教学准备教案、PPT、教学设备组合逻辑电路troubleshooting 与维护的相关案例资料7.5 教学过程7.5.1 导入复习组合逻辑电路的优化,引出troubleshooting 与维护的话题7.5.2 讲解讲解组合逻辑电路的troubleshooting 方法讲解组合逻辑电路的维护方法7.5.3 案例分析分析组合逻辑电路troubleshooting 与维护实例7.5.4 互动讨论引导学生探讨troubleshooting 与维护方法的应用第八章:组合逻辑电路在现代电路中的应用8.1 教学目标让学生了解组合逻辑电路在现代电路中的应用领域培养学生运用组合逻辑电路解决现代电路问题的能力8.2 教学内容组合逻辑电路在现代电路中的应用领域组合逻辑电路在现代电路中的应用实例8.3 教学方法采用讲授法,讲解组合逻辑电路在现代电路中的应用领域采用案例分析法,分析组合逻辑电路在现代电路中的应用实例采用互动讨论法,引导学生探讨组合逻辑电路在现代电路中的应用8.4 教学准备教案、PPT、教学设备组合逻辑电路在现代电路中的应用领域的相关资料8.5 教学过程8.5.1 导入复习组合逻辑电路的troubleshooting 与维护,引出现代电路应用重点和难点解析1. 教学内容的选取与编排:确保教学内容既能够覆盖组合逻辑电路的基础知识,又能够结合实例深入讲解,使学生能够理解并应用所学知识。
组合逻辑电路
电工学
(四)、逻辑函数的化简
20
在对逻辑函数进行化简时,一般是首先把逻辑函数 化为最简与或式,然后再将其转化为其它形式的最简式, 这是由于从最简与或表达式可以方便地转化为其它形式 的最简式。 在对逻辑函数进行化简时,一般是首先把逻辑函数 化为最简与或式,然后再将其转化为其它形式的最简 式,这是由于从最简与或表达式可以方便地转化为其 它形式的最简式。 在对逻辑函数化简时,主要应用前面讨论的逻辑代 数的基本公式和运算规则。
电工学
15
A B
C
F
信息与控制工程学院 电工电子教学与实验中心电工学课程组
电工学
[例8-2] 已知输出逻辑函数F与输入逻辑变量A、B、C 的波形图如下图所示,试列出该函数的真值表,写出函 数表达式,画出逻辑图。
A B
C
16
F
信息与控制工程学院 电工电子教学与实验中心电工学课程组
电工学
解:①根据波形图求真值表
电工学
1
组合逻辑电路
第八章
本章开始我们将介绍数字电路,数字电路与模拟电路是不 同的,它的特点是,输入与输出信号在时间上和大小上都是不 连续的,电子器件工作在非线性状态,数字电路主要研究输出 与输入信号之间的逻辑关系,因此也将其称为逻辑电路。
第一节 逻辑运算与逻辑门
数字逻辑电路中的输入变量和输出变量之间是逻辑关系,因此 在分析与设计数字逻辑电路时,要用到逻辑运算。本节将讨论逻 辑运算的基本规则和定律以及常用的逻辑门。
(2)由真值表可以确定输入信号 在不同状态下输出函数的状态, 如果输入变量和输出函数的1状态 用高电平表示,0状态用低电平表 示,则可以画出输出与输入之间 的波形图(也叫时序图)。
0 0 0 1 1 1 1 0 1 1 0 0 1 1
第十三章 时序逻辑电路习题及答案
第十三章时序逻辑电路习题及答案一、填空题1、数字逻辑电路常分为组合逻辑电路和两种类型。
2、时序逻辑电路是指任何时刻电路的稳定输出信号不仅与当时的输入信号有关,而且与有关。
3、时序逻辑电路由两大部分组成。
4、时序逻辑电路按状态转换来分,可分为两大类。
5、时序逻辑电路按输出的依从关系来分,可分为两种类型。
6、同步时序电路有两种分析方法,一种是另一种是。
7、同步时序电路的设计过程,实为同步时序电路分析过程的过程。
8、计数器种类繁多,若按计数脉冲的输入方式不同,可分两大类。
9、按计数器进制不同,可将计数器分为。
10、按计数器增减情况不同,可将计数器分。
11、二进制计数器是逢二进一的,如果把n个触发器按一定的方式链接起来,可枸成。
12、一个十进制加法计数器需要由 J-K触发器组成。
13、三个二进制计数器累计脉冲个数为;四个二进制计数器累计脉冲个数为。
14、寄存器可暂存各种数据和信息,从功能分类,通常将寄存器分为。
15、数码输入寄存器的方式有;从寄存器输出数码的方式有。
16、异步时序逻辑电路可分为和。
17、移位寄存器中,数码逐位输入的方式称为。
18、计数器可以从三个方面进行分类:按__ _ _方式,按_________________方式,按______________方式。
19、三位二进制加法计数器最多能累计__个脉冲。
若要记录12个脉冲需要___个触发器。
20、一个四位二进制异步加法计数器,若输入的频率为6400H Z,在3200个计数脉冲到来后,并行输出的频率分别为______H Z,_____ H Z,____ H Z,_____ H Z。
一个四位二进制加法计数器起始状态为1001,当最低位接收到4个脉冲时,各触发器的输出状态是:Q0为__;Q1为__;Q2为__;Q3为__。
21、时序逻辑电路的特点是:任意时刻的输出不仅取决于______________,而且与电路的______有关。
22、寄存器一般都是借助有________功能的触发器组合起来构成的,一个触发器存储____二进制信号,寄存N位二进制数码,就需要__个触发器。
《数字逻辑与电路》复习题及答案
《数字逻辑与电路》复习题第一章数字逻辑基础(数制与编码)一、选择题1.以下代码中为无权码的为 CD。
A. 8421BCD码B. 5421BCD码C.余三码D.格雷码2.以下代码中为恒权码的为 AB 。
码 B. 5421BCD码 C. 余三码 D. 格雷码3.一位十六进制数可以用 C 位二进制数来表示。
)A. 1B. 2C. 4D. 164.十进制数25用8421BCD码表示为 B 。
A. 10 101B. 0010 0101C. 100101D. 101015.在一个8位的存储单元中,能够存储的最大无符号整数是 CD 。
A.(256)10B.(127)10C.(FF)16D.(255)106.与十进制数()10等值的数或代码为 ABCD 。
A. (0101 8421BCDB.16C.2D.87.与八进制数8等值的数为:AB 。
—A.2B.16C. )16D. 28.常用的BC D码有C D 。
A.奇偶校验码B.格雷码码 D.余三码二、判断题(正确打√,错误的打×)1. 方波的占空比为。
(√)2. 8421码1001比0001大。
(×)3. 数字电路中用“1”和“0”分别表示两种状态,二者无大小之分。
(√)4.格雷码具有任何相邻码只有一位码元不同的特性。
(√)~5.八进制数(17)8比十进制数(17)10小。
(√)6.当传送十进制数5时,在8421奇校验码的校验位上值应为1。
(√)7.十进制数(9)10比十六进制数(9)16小。
(×)8.当8421奇校验码在传送十进制数(8)10时,在校验位上出现了1时,表明在传送过程中出现了错误。
(√)三、填空题1.数字信号的特点是在时间上和幅值上都是断续变化的,其高电平和低电平常用 1和 0来表示。
2.分析数字电路的主要工具是逻辑代数,数字电路又称作逻辑电路。
3.在数字电路中,常用的计数制除十进制外,还有二进制、八进制、十六进制。
电工学组合逻辑电路
组
合
信号输入端 A
≥1
逻
信号控制端 B
F
辑
电
路 当 B = 0 时,F = A 门打开
当 B = 1 时,F = 1 门关闭
大连理工大学电气工程系
4
第 12
章 或门还可以起控制门的作用
组
合
信号输入端 A
≥1
逻
信号控制端 B
F
辑
电
路 当 B = 0 时,F = A 门打开
当 B = 1 时,F = 1 门关闭
大连理工大学电气工程系
第 12
章 二、 与门电路
组 合
+U
真值表
逻 辑
AB F
F
00 0
电
路
A
01 0
B
10 0
11 1
A
&
F
B
6
F=A·B A ·0 = 0 A ·1 = A A ·A = A A ·A = 0
与运算 (逻辑乘)
与逻辑和与门
大连理工大学电气工程系
7
第 12
章 与门也可以起控制门的作用
C3
CI CO
Σ CI CO
C2
Σ CI CO
C1
Σ
C0
CI CO
F4
F3
F2
F1
4 位全加器逻辑图
大连理工大学电气工程系
29
第
12
章
12.5 编码器
组 可实现编码功能的组合逻辑电路。
合
逻
辑
控制信息
编码器
二进制代码
电
路
二进制编码器
编码器的分类
普通编码器 二-十进制编码器
第13章门电路和组合逻辑电路-习题
第13章 门电路和组合逻辑电路A 选择题13.1.1 图13.01所示的门电路中,Y 恒为0的是图( )。
图13.01 习题13.1.1的图 13.1.2 图13.02所示门电路的逻辑式为( )。
(1)A Y = (2)0•=A Y (3)0•=A Y图13.02 习题13.1.2的图 图13.03 习题13.1.3的图 13.1.3 图13.03所示门电路的逻辑式为( )。
(1)C AB Y += (2)0••=C AB Y (3)AB Y = 13.4.1 与C B A ++相等的为( )。
(1)C B A •• (2)C B A •• (3)C B A ++ 13.4.2 与D C B A •••相等的为( )。
(1)D C B A ••• (2))()(D C B A +•+ (3)D C B A +++ 13.4.3 与BC A A +相等的为( )。
(1)A+B (2)A+BC (3)BC A +13.4.4 图13.04所示门电路中,Y=1的是图( )。
图13.04 习题13.4.4的图 13.4.5 图13.05所示组合电路的逻辑式为( )。
(1)A Y = (2)A Y = (3)1=Y图13.05 习题13.4.5的图 图13.06 习题13.4.6的图 13.4.6 图13.06所示组合电路的逻辑式为( )。
(1)AB Y = (2)B A Y = (3)B A Y =13.4.7 图13.07所示组合电路的逻辑式为( )。
(1)C B AB Y •= (2)C B AB Y •= (3)C B AB Y +=图13.07 习题13.4.7的图 图13.08 习题13.4.8的图 13.4.8 图13.08所示组合电路的逻辑式为( )。
(1)CA BC AB Y ++= (2)CA BC AB Y ++= (3)CA BC AB Y ++= 13.4.9 若1=+=AC B A Y ,则( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 0 0 0 1 1 1 1
真值表
A B C
0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1
L
0 1 1 1 1 1 1 0
时,输出为“1”,所以这个
电路称为“不一致电路”。
2013年7月14日
5
例13-2 分析图13-2(a)所示电路的逻辑功能。
2013年7月14日 21
一、包含无关条件的组合 逻辑电路设计
据此,可建立描述 该问题的真值表如 表4.4所示。
根据真值表可写出F的逻辑表达式为 F(A,B,C,D) = ∑m(7,9,11,12)+∑d(0,1,2,13,14,15)
2013年7月14日 22
不考虑无关项: 函数F的卡诺图如图 (a)所示,合并 卡诺图上的1方格,可得到化简后的逻辑表达式为 F(A,B,C,D)=ABD+ABCD+ABCD
一、包含无关条件的组合逻辑电路设计 在某些实际问题中,常常由于输入变量之间存在的 相互制约或问题的某种特殊限定等,使得输入变量的某 些取值组合根本不会出现,或者虽然可能出现,但对在 这些输入取值组合下 函数的值是为1还是为0并不关心。 通常把这类问题称为包含无关条件的逻辑问题;与这些 输入取值组合对应的最小项称为无关最小项,简称为无 关项或者任意项;描述这类问题的逻辑函数称为包含无 19 2013年7月14日 关条件的逻辑函数。
若考虑无关项: F的卡诺图如图 (b)所示,根据合并
的需要将卡诺图中的无关项d(13,14,15)当成1处理, 而把d(0,1,2)当成0处理,可得到化简后的逻辑表达式 为 F(A,B,C,D)=AB+AD+BCD
显然,后 一个表达 式比前一 个表达式 更简单。
2013年7月14日 23
一、包含无关条件的组合逻辑电路设计 假定采用与非门组成实现给定逻辑功能的电路, 可将F的最简表达式变换成"与非-与非"表达式:
2013年7月14日 12
(2)列真值表; 把逻辑关系转换成数字表示形式;
表13-2 例13-4真值表
A B C 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 2013年7月14日 1
Y 0 0 0 1 0 1 1 1
(3) 由真值表写逻辑表 达式,并化简;
一、包含无关条件的组合逻辑电路设计 例6 设计一个组合逻辑电路,用于判别以余3码表 示的1位十进制数是否为合数。 解 由题意可知,该电路输入为1位十进制数的余 3码,输出为对其值进行判断的结果。 设输入变量为A、B、C、D,输出函数为F, 当ABCD表示的十进制数为合数(4、6、8、9)时, 输出F为1,否则F为0。 因为按照余3码的编码规则,ABCD的取值组 合不允许为0000、0001、0010、1101、1110、1111, 故该问题为包含无关条件的逻辑问题,与上述6种 取值组合对应的最小项为无关项,即在这些取值组 合下输出函数F的值可以随意指定为1或者为0,通 常记为"d"。
11
2. 组合逻辑电路设计方法举例。
例13-4 一火灾报警系统,设有烟感、温感和 紫外光感三种类型的火灾探测器。为了防止误报警, 只有当其中有两种或两种以上类型的探测器发出火 灾检测信号时,报警系统产生报警控制信号。设计
一个产生报警控制信号的电路。
解:(1)分析设计要求,设输入输出变量并逻辑赋值; 输入变量:烟感A 、温感B,紫外线光感C; 输出变量:报警控制信号Y。 逻辑赋值:用1表示肯定,用0表示否定。
① 建立给定问题的逻辑描述 要使二进制数A=B,则必须满足a3=b3且a2=b2且 a1=b1;而ai=bi,则ai和bi同时为0或者同时为1两种可 能,因此,该问题可用逻辑表达式描述如下:
2013年7月14日 16
② 求出逻辑函数最简表达式 假定将上述逻辑表达式展开成“与-或”表达式, 则表达式中包含8个6变量“与项”。所以该函数不 能化简 ③ 选择逻辑门类型并进行逻辑函数变换 假定采用异或门和或非门实现给定功能,可将逻 辑表达式作如下变换:
化简 组 合逻 辑 电路
2013年7月14日
变换 逻 辑表 达 式 最 简表 达 式 真 值表 逻 辑功 能
3
2. 举例说明组合逻辑电路的分析方法
例13-1 组合电路如图所示,分析该电路的逻辑功能。
& A B C & P & & ≥1
L
图13-1 例13-1逻辑电路图
解:(1)由逻辑图逐级写出表达式(借助中间变量P)。
2013年7月14日
C F1 AB AB
7
表13-2 例13-2真值表
该电路实现两个一位
二进制数相加的功能。S
是它们的和,C是向高位
的进位。由于这一加法器
S = A⊕B C = AB
电路没有考虑低位的进位,
所以称该电路为半加器。
根据S和C的表达式,将原
电路图改画成图13-2(c)
所示的逻辑图。
P ABC
L AP BP CP AABC BABC C ABC
2013年7月14日 4
解:(1)由逻辑图逐级写出表达式(借助中间变量P)。
P ABC
L AP BP CP AABC BABC C ABC
(2)化简与变换:
L ABC ( A B C ) ABC A B C ABC ABC
A1 A2 Ai
2013年7月14日
每一个输出变量是全部
L1
或部分输入变量的函数:
组合 逻辑 电路
„
„
L2 Lj
L1=f1(A1、A2、…、Ai)
L2=f2(A1、A2、…、Ai) ……
2 Lj=fj(A1、A2、…、Ai)
组合电路的一般结构
13.1 组合逻辑电路的分析方法
所谓组合逻辑电路的分析,就是根据给定的逻辑 电路图,求出电路的逻辑功能。 1. 分析的主要步骤如下: (1)由逻辑图写表达式; (2)化简表达式; (3)列真值表; (4)描述逻辑功能,并对原电路的设计方案进 行评定,必要时提出改进意见和改进方案 。
一、包含无关条件的组合逻辑电路设计 例如,假定用A、B、C表示计算机中的+、-、×运 算,并令变量取值1执行相应运算,则A、B、C三个 变量不允许两个或两个以上同时为1,从而A、B、C 只允许出现000,001,010,100四种取值组合; 不允许出现110 ,101, 011 , 111四种组合,即包含 无关最小项 ABC,ABC, , ABC ABC 。与A、B、C相关 的逻辑函数称为包含无关条件的逻辑函数。 当采用最小项之和表达式描述一个包含无关条件的 逻辑问题时,函数表达式中是否包含无关项以及对无 关项是令其值为1还是为0,并不影响函数的实际逻辑 功能。因此,在化简这类逻辑函数时,利用这种随意 性往往可以使逻辑函数得到更好地简化,从而使设计 20 2013年7月14日 的电路达到更简。
相应的逻辑电路图如 图所示。 可见,设计包含无关 条件的组合逻辑电路 时,恰当地利用无关 项进行函数化简,通 常可使设计出来的电 路更简单。
2013年7月14日 24
二、多输出函数的组合逻辑电路设计
实际问题中,大量存在着由同一组输入变 量产生多个输出函数的问题,实现这类问题的 组合逻辑电路称为多输出函数的组合逻辑电路。 设计多输出函数的组合逻辑电路时,如果 只是孤立地求出各输出函数的最简表达式,然 后画出相应逻辑电路图并将其拼在一起,通常 不能保证逻辑电路整体最简。 因为各输出函数之间往往存在相互联系, 具有某些共同的部分,因此这类电路达到最简 的关键是在函数化简时找出各输出函数的公用 项,使之在逻辑电路中实现对逻辑门的共享, 从而达到电路整体结构最简。 25 2013年7月14日
格雷码
G 3 G 2 G1 G 0
B3 B3 B 2 B 2 B1 B1 B0
② 真值表 ③ 分析功能 自然二进制码至格雷码的转 换电路。
2013年7月14日
B3B2B1B0 G3G2G1G0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0
图13-2(b)
2013年7月14日
图13-2(a) 例13-2逻辑电路图
6
解:为了方便写表达式,在图中标注中间变 量,比如F1、F2和F3。 S F2 F3
AF1 BF1 A AB B AB A AB B AB ( A B )( A B ) AB A B A B
10
13.2 组合逻辑电路的设计方法
与分析过程相反,组合逻辑电路的设计是根据给 定的实际逻辑问题,求出实现其逻辑功能的最简单的 逻辑电路。 1.组合逻辑电路的设计步骤:
(1)分析设计要求,设置输入输出变量并逻辑赋值;
(列真值表;
(3)写出逻辑表达式,并化简; (4)画逻辑电路图。
化简 实 际逻 辑 问题 2013年7月14日 真 值表 逻 辑表 达 式 变换 最 简( 或 最 合 理) 表 达式 逻 辑图
化简得最简式:
13
得最简与—或表达式:
A B