八年级数学《轴对称变换》教案2 新人教版

合集下载

初中数学《轴对称变换》教案

初中数学《轴对称变换》教案

初中数学《轴对称变换》教案25.3轴对称变换教学任务分析教学目标知识技能 1. 通过实例认识轴对称变换,认识轴对称变换的性质和定义.能利用轴对称变换的性质作出简单平面图形关于一条直线的轴对称图形.2. 能尝试利用轴对称变换设计图案.数学思考用轴对称变换的方式去认识几何图形,并能逐步完成从“具体-抽象-具体”的认知过程.解决问题 1. 经历轴对称变换的操作、观察、交流探索轴对称变换的性质和定义.2. 利用轴对称变换进行作图和图案设计,发展学生用数学的能力.情感态度 1.通过学生亲自操作,培养学生的动手能力.2.通过欣赏和设计图案,让学生形成学数学、用数学的意识,并培养学生的创新能力.重点轴对称变换性质及利用轴对称变换作图.难点轴对称变换性质的利用.教学流程安排活动流程图活动内容和目的活动1 创设情境,引入新课活动2 实践活动,探求新知:理解轴对称变换的性质和定义活动3 运用新知:利用轴对称变换的性质作图,归纳作图方法,然后练习巩固活动4欣赏利用轴对称变换设计的图案,并对学生提出设计要求活动5 课堂小结,布置作业创设问题情境,提出问题,让学生带着疑问有目的的学习.经历操作、观察、交流、讨论,得到各图例的共同点,从而归纳出轴对称变换的性质和定义.作已知三角形关于直线的对称图形,进一步理解利用轴对称变换的性质,掌握轴对称变换的作图方法.让学生感觉对称的静态美及利用轴对称变换设计图案过程中的动态美,培养学生欣赏美和创造美的能力.回顾知识要点,畅谈收获.教学过程设计问题与情境师生行为设计意图[活动1]如果只知道轴对称图形的一半,你能得到另一半吗?怎么得到另一半?学生欣赏轴对称图案思考教师提出的问题,由此引入新课,教师板书课题.通过创设情境,提出相应问题,给学生思考的空间,也给学生学习本节课指出了方向.[活动2]问题1:在一张半透明纸的左边部分画一只左脚印,你怎么得到相应的右脚印呢?观察图形提问:连接对称点的线段与对称轴有什么关系?问题2:观察前四朵花的形成过程后提问:①图案形成过程中有几条对称轴,它们有什么关系?②如果想得到更多的花,你有什么方法?问题3:如果对称轴的方向和位置发生变化,得到的新图形与原图形有哪些相同之处,又有哪些不同之处?问题4:同学们在纸上画一个自己喜欢的几何图形,将这张纸折叠,描图,再打开,你能得到什么?如果改变对称轴的方向再重复,你又能得到什么?问题5:以上图形的变换有什么共性?从以下几个方面进行讨论:①新图形与原图形的形状、大小有什么关系?②新图形上的点能在原图形上找到相应的点吗?③连接对应点的线段与对称轴有什么关系?练习:出示课本图要练说,得练看。

新人教版八年级数学上册《轴对称》教案

新人教版八年级数学上册《轴对称》教案

轴对称轴对称(一)教学目标知识与技能:通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形、轴对称及其对称轴,并能作出轴对称图形和成轴对称的图形的对称轴;说出轴对称图形与两个图形关于某条直线对称的区别与联系;过程与方法:在丰富的现实情境中,经历观察生活中的轴对称现象,探索轴对称现象共同特征等活动,进一步发展空间观念。

情感态度价值观:欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的应泛运用和它的丰富文化价值。

教学重点轴对称图形的概念.教学难点能够识别轴对称图形并找出它的对称轴.教学过程Ⅰ.创设情境,引入新课我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.轴对称是对称中重要的一种,从这节课开始,我们来学习第十四章:轴对称.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.Ⅱ.导入新课出示课本的图片,观察它们都有些什么共同特征.这些图形都是对称的.这些图形从中间分开后,左右两部分能够完全重合.小结:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.我们的黑板、课桌、椅子等.我们的身体,还有飞机、汽车、枫叶等都是对称的.如课本的图14.1.2,把一张纸对折,剪出一个图案(折痕处不要完全剪断),•再打开这张对折的纸,就剪出了美丽的窗花.观察得到的窗花和图14.1.1中的图形,你能发现它们有什么共同的特点吗?窗花可以沿折痕对折,使折痕两旁的部分完全重合.不仅窗花可以沿一条直线对折,使直线两旁重合,上面图14.1.1中的图形也可以沿一条直线对折,使直线两旁的部分重合.结论:如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)•对称.了解了轴对称图形及其对称轴的概念后,我们来做一做.取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,•将纸打开后铺平,你得到两个成轴对称的图案了吗?与同伴进行交流.结论:位于折痕两侧的图案是对称的,它们可以互相重合.由此可以得到轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.接下来我们来探讨一个有关对称轴的问题.有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条。

八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计 (新版)新人教版

八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计 (新版)新人教版

八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计(新版)新人教版一. 教材分析《新人教版八年级数学上册》第13.1节介绍了轴对称的概念和性质。

本节内容是学生对几何图形变换的一次重要学习,它不仅巩固了学生对平面几何图形的认识,而且为后续学习其他几何变换打下基础。

教材通过丰富的实例,引导学生认识轴对称,探索轴对称的性质,提高学生的空间想象能力和抽象思维能力。

二. 学情分析八年级的学生已经掌握了基本的几何知识,具备一定的观察、分析和推理能力。

但轴对称概念较为抽象,学生可能难以理解。

因此,在教学过程中,教师应注重引导学生通过具体实例去发现和探索轴对称的性质,让学生在实践中掌握知识。

三. 教学目标1.让学生了解轴对称的概念,理解轴对称的性质。

2.培养学生观察、分析和推理的能力。

3.引导学生运用轴对称的性质解决实际问题。

四. 教学重难点1.轴对称的概念及性质。

2.如何运用轴对称的性质解决实际问题。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。

通过生动有趣的实例,引导学生发现轴对称的性质,激发学生的学习兴趣。

在小组合作学习中,培养学生团队合作精神和沟通能力。

六. 教学准备1.准备与轴对称相关的实例图片和练习题。

2.准备课件,展示轴对称的性质和应用。

3.准备黑板,用于板书重要知识点。

七. 教学过程1. 导入(5分钟)利用生活中常见的实例,如剪纸、折纸等,引导学生发现这些实例中存在一种对称现象。

提问:“这种现象叫做什么?”让学生回答,引出本节课的主题——轴对称。

2. 呈现(10分钟)展示轴对称的定义和性质。

通过PPT呈现轴对称的图片,让学生观察并总结轴对称的性质。

同时,教师在黑板上画出轴对称的图形,标注出对称轴,让学生更直观地理解轴对称。

3. 操练(15分钟)让学生分组讨论,每组找出生活中的一个实例,运用轴对称的性质进行解释。

讨论结束后,每组选代表进行分享。

教师对每组的分享进行点评,指出优点和需要改进的地方。

轴对称变换教案和教案说明

轴对称变换教案和教案说明

《轴对称变换》教案和教案说明教学目标:(一)知识与技能1. 通过实际操作,了解轴对称变换的概念和性质。

2.能作出一个图形经过一次或两次轴对称变换后的图形。

3.能利用轴对称变换设计一些简单的图案。

(二)过程与方法1.经历实际操作,认真体验知识的产生过程,在感受数学知识的探索乐趣。

2.逐步学会用“动态”的眼观去看待几何图形,发展学生理性的抽象思维。

3.通过实践,真正领会轴对称变换在实际生活中的应用。

(三)情感态度与价值观1.鼓励学生积极参与数学活动,在观察美、发现美的同时,从内心萌发创造美的热情。

2.初步认识数学和人类生活的密切联系,体验活动充满着探索与创造,感受数学的应用意识。

3.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心。

教学重点:运用变换设计图案教学难点:探索归纳得出轴对称变换的特征教学方法:直观演示法、实验发现法,设疑诱导法等。

教具准备:1.教师准备:教学课件2.学生自备:作图的学习用具教学过程设计:(一)创设情境,引入新课师:同学们,我们前面已经研究了什么是轴对称图形,并且会寻找简单图形的对称轴。

在课前,先请大家欣赏几组精美的图片,并认真思考:这些漂亮的图案是如何制作的呢?学生自由发言。

我们相信通过学习本课――轴对称变换,同学们能创作出更加精美的图案。

(二)动手操作,感受变换。

师:问题1:在老师手中的纸上我画了一个简单的图案,你们知道用什么方法能快速地得出对称的另一支图案吗?学生可能会列举出多种不同的方法,如:戳点、描图等,可让其比较后,得出最佳方法。

(让学生动手作图)活动1:两人合作,先在一张半透明的纸上画一个简单的图案,并用戳点的方法快速地得出对称的另一个图案,共同实现对特征的探究。

问题2:如果我想得到多个这样的图案,又该怎么做?怎样做最快?问题3:你能从中总结一下什么是轴对称变换吗?我安排充足的时间让学生先独立思考,再与同桌自由交流,并适时的演示课件,引导学生观察生活中的轴对称变换现象,抽象出图形轴对称变换的特点。

人教版数学八年级上册12.1《轴对称》教案

人教版数学八年级上册12.1《轴对称》教案

人教版数学八年级上册12.1《轴对称》教案一. 教材分析人教版数学八年级上册第12.1节“轴对称”是初中数学中的一个重要概念。

它不仅巩固了学生对几何图形的认识,还为后续学习几何图形的性质和应用打下基础。

本节内容通过引入轴对称的概念,使学生了解轴对称图形的性质,并能运用轴对称解决一些实际问题。

二. 学情分析学生在学习本节内容前,已经掌握了基本的几何图形知识,如点、线、面的性质,以及一些基本的几何变换。

但他们对轴对称的概念可能还很陌生,因此需要通过实例和操作来理解和掌握。

三. 教学目标1.了解轴对称的概念,能识别轴对称图形。

2.掌握轴对称图形的性质,并能运用轴对称解决一些实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.轴对称的概念和轴对称图形的识别。

2.轴对称图形的性质及其应用。

五. 教学方法1.采用直观演示法,通过实物和图形,让学生直观地理解轴对称的概念。

2.采用启发式教学法,引导学生通过观察、思考、讨论,探索轴对称图形的性质。

3.运用实例教学法,让学生通过解决实际问题,巩固轴对称的知识。

六. 教学准备1.准备一些具有轴对称性质的实物和图形,如剪刀、纸张、图片等。

2.准备多媒体教学设备,用于展示和演示。

3.准备一些实际问题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)通过展示一些具有轴对称性质的实物和图形,引导学生思考:这些实物和图形有什么共同的特点?从而引出轴对称的概念。

2.呈现(10分钟)讲解轴对称的定义,让学生了解轴对称图形的特征。

通过示例,演示轴对称图形的变换过程,让学生直观地感受轴对称的作用。

3.操练(10分钟)让学生分组讨论,每组找出一些具有轴对称性质的图形,并尝试解释其轴对称的性质。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)请学生上台演示和讲解他们找到的轴对称图形,让大家共同验证其正确性。

同时,教师挑选一些错误的例子,让学生找出错误之处,并加以改正。

新人教版八年级数学上册第13章《轴对称》全章教案

新人教版八年级数学上册第13章《轴对称》全章教案

轴对称教学目标:1、通过生活中的具体实例认识轴对称,让学生掌握轴对称图形和关于直线成轴对称这两个概念。

2、培养学生的观察能力、思维能力、操作能力、归纳能力。

3、让学生体会数学的对称美在生活中的广泛应用和体现。

教学重点:准确掌握轴对称图形和关于直线成轴对称这两个概念的实质。

教学难点:轴对称图形和关于直线成轴对称的区别和联系。

学生课前准备:每人准备一张纸和一把剪刀教学过程:一、情景创设在生活中,许多事物与图形紧密联系在一起。

现在老师给大家准备了一些生活中的常见的事物图案和标志,请大家观赏。

(投影显示)[教学说明:创设情景将生活中的对称图案和标志展示出来,引导学生将生活中的对称美牵引到数学中来]二、探索研讨做一做(活动)将同学们准备好的一张纸对折后,用笔沿着折线画一条直线,然后从折叠处剪出一个你喜欢的图形,想一想,展开后会是一个什么样的图形?[教学说明:让同学们从动手实践中总结出结论:剪出来的图形关于折线对称](引出课题)看一看,想一想细心观察一些日常生活中常见的动物图片如:蝴蝶、蜻蜓、对称简笔画等,能发现它们有什么共同特征?(投影显示)[教学说明:让学生通过观察、讨论得出规律。

]请同学们细心观察动画后,总结出轴对称图形的概念(投影显示)轴对称图形定义:如果一个图形沿着某条直线对折,对折后的两面部分能够完全重合,就称这样的图形为轴对称图形。

这条直线叫做这个图形的对称轴。

在我们的现实生活中有很多物体的平面图形是轴对称图形,你能举例说说吗?3、例题讲解:请同学们细心观察,下列轴对称图形各有多少条对称轴?[教学说明:让学生从本题中总结出轴对称图形的对称轴不仅仅只一条,有可能有2条、3条、4条等,对称轴的方向不仅仅是垂直的,有可能是水平的或倾斜的。

]练一练判断下列图形哪些是轴对称图形,如果是,请找出所有对称轴。

(1) (2) (3)(4) (5)(结论:一般的三角形,一般的梯形,一般的平行四边形不是轴对称图形(可以通过折纸验证。

《轴对称变换》教案及教案说明

《轴对称变换》教案及教案说明

人教版数学八年级上册第十四章轴对称变换【一】教学目标1.知识目标:通过具体的实例认识轴对称变换,探索它的定义和基本性质。

能按要求作出简单平面图形经过一次或两次轴对称变换后的图形,能够利用轴对称变换进行简单的图案设计。

2.能力目标:用轴对称变换的方式去认识和构建几何图形,发展形象思维,并尝试用轴对称变换进行推理。

3.情感目标:结合教材内容,让学生体会数学来源于生活,数学美化生活,数学是我们生活中不可缺少的一部分,并培养学生空间想象能力,动手实践能力,以及善于合作、勇于创新的精神。

【二】教学重点、难点;教学重点:轴对称变换及轴对称作图;教学难点:利用轴对称变换认识和构建几何图形;突破重、难点的方法是设置问题,让学生观察思考、动手操作,合作探究,充分发挥他们的活力和创造力。

教学过程设计意图与时间安排<一>情境欣赏精美的轴对称作品在日常生活中,只要细心观察,就会处处发现数学的影子。

所以先让学生欣赏一些轴对称图片,感受数学巧妙的存在在生活中。

1、欣赏图片2、生活中人们办喜事时,都喜欢在门、窗上张贴大红的“囍”字,增添了很多喜庆的气氛。

让学生观察上面的“囍”字剪纸作品。

提问1:这些“囍”字有什么特点?这些“囍”字剪纸作品都是轴对称图形,它们的对称轴就是把它们左右对折后折痕所在的直线。

提问2:如何剪这个“囍”字?分析:这个“囍”字是轴对称图形,对称轴就是中间这条直线。

在对称轴左右两边的图形是完全一样的。

因此只要把一张红纸对折,剪出其中的一半图形,再展开就可以了。

从生活中引出例子,既使课堂的学习贴近生活,又说明了数学来源于生活。

同时,展示我国民间传统的剪纸艺术,说明我中华文明的源远流长,博大精深,激发学生的爱国热情。

用时约3分钟就像在一张纸上画我们的两只脚印,只要画一只左脚印,把纸对折后描图,再打开,就能得到相应的右脚印。

左、右两个脚印关于折痕所在的直线成轴对称。

【四】教案设计说明在初中的教学中,我崇尚并践行这样的教学理念:数学来源于现实,存在于现实,且应用于现实,数学教师的任务之一就是帮助学生构造数学现实,把现实“数学化”,积极引导学生通过探索、实践、思考,获得知识,形成技能,发展思维,学会学习。

新人教版第十三章《轴对称》全章教案

新人教版第十三章《轴对称》全章教案

§轴对称(1)教学目标:1.了解轴对称图形和两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系.2.探索成轴对称的两个图形的性质和轴对称图形的性质,体会由具体到抽象认识问题的过程,感悟类比方法在研究数学问题中的作用.3.了解线段垂直平分线的概念.教学重、难点:轴对称的概念和性质教学过程:一、问题导入:引言对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!二、课本精讲:问题1 如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.教师:你能举出一些轴对称图形的例子吗?问题2观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.教师:你能再举出一些两个图形成轴对称的例子吗?教师:你能结合具体的图形说明轴对称图形和两个图形成轴对称有什么区别与联系吗?两者的联系:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合.问题3 如图,△ABC 和△A′B′C′关于直线MN 对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN 有什么关系?教师:你能说明其中的道理吗?上面的问题说明“如果△ABC 和△A′B′C′关于直线MN 对称,那么,直线MN 垂直线段AA′,BB′和CC′,并且直线MN 还平分线段AA′,BB′和CC′”.如果将其中的“三角形”改为“四边形”“五边形”…其他条件不变,上述结论还成立吗?问题3 如图,△ABC 和△A′B′C′关于直线MN 对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN 有什么关系?经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.教师:你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.即对称点所连线段被对称轴垂直平分;对称轴垂直平分对称点所连线段.问题4 下图是一个轴对称图形,你能发现什么结论?能说明理由吗?结论:直线l 垂直线段AA′,BB′,直线l平分线段AA′,BB′(或直线l 是线段AA′,BB′的垂直平分线).教师:你能用数学语言概括前面的结论吗?轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.三、巩固提高:教科书60页练习1、2四、课堂小结:(1)本节课学习了哪些主要内容?(2)轴对称图形和两个图形成轴对称的区别与联系是什么?(3)成轴对称的两个图形有什么性质?轴对称图形有什么性质?我们是怎么探究这些性质的?五、课后作业:教科书习题13.1第1、2、3、4、5题课后反思:轴对称(2)教学目标:1.理解线段垂直平分线的性质和判定.2.能运用线段垂直平分线的性质和判定解决实际问题.3.会用尺规经过已知直线外一点作这条直线的垂线,了解作图的道理.教学重、难点:线段垂直平分线的性质.教学过程:一、问题导入:探索并证明线段垂直平分线的性质如图,直线l 垂直平分线段AB,P1,P2,P3,…是l 上的点,请猜想点P1,P2,P3,…到点A 与点B 的距离之间的数量关系.教师:你能用不同的方法验证这一结论吗?二、课本精讲:请在图中的直线l 上任取一点,那么这一点与线段AB 两个端点的距离相等吗?线段垂直平分线上的点与这条线段两个端点的距离相等.证明:“线段垂直平分线上的点到线段两端点的距离相等.”已知:如图,直线l⊥AB,垂足为C,AC =CB,点P 在l 上.求证:PA =PB.用符号语言表示为:∵CA =CB,l⊥AB,∴PA =PB线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.教师:反过来,如果PA =PB,那么点P 是否在线段AB 的垂直平分线上呢?点P 在线段AB 的垂直平分线上.已知:如图,PA =PB.求证:点P 在线段AB 的垂直平分线上.用数学符号表示为:∵PA =PB,∴点P 在AB 的垂直平分线上.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.教师:你能再找一些到线段AB 两端点的距离相等的点吗?能找到多少个到线段AB 两端点距离相等的点?这些点能组成什么几何图形?在线段AB 的垂直平分线l 上的点与A,B 的距离都相等;反过来,与A,B 的距离相等的点都在直线l上,所以直线l 可以看成与两点A、B 的距离相等的所有点的集合.教师:如何用尺规作图的方法经过直线外一点作已知直线的垂线?三、巩固提高:教科书62页练习1、2.四、课堂小结:(1)本节课学习了哪些内容?(2)线段垂直平分线的性质和判定是如何得到的?两者之间有什么关系?(3)如何判断一条直线是否是线段的垂直平分线?五、课后作业:教科书习题13.1第6、9题课后反思:轴对称(3)教学目标:1.能用尺规作线段的垂直平分线.2.进一步了解作图的一般步骤和作图语言,了解作图的依据.3.运用尺规作图的方法解决简单的作图问题.教学重点:作线段的垂直平分线.教学难点:作线段的垂直平分线.教学过程:一、问题导入:有时我们感觉两个平面图形是轴对称的,如何验证呢?不折叠图形,你能准确地作出轴对称图形的对称轴吗?二、课本精讲:作线段的垂直平分线我们已能用尺规完成:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)经过已知直线外一点作这条直线的垂线.教师:那么利用尺规还能解决什么作图问题呢?例1 如图,点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?教师:怎样作线段AB 的垂直平分线呢?作法:如图.(1)分别以点A,B 为圆心,以大于AB的为半径作弧,两弧相交于C,D 两点;(2)作直线CD.CD 就是所求作的直线.教师:这种作法的依据是什么?教师:这种作图方法还有哪些作用?确定线段的中点.教师:如果两个图形成轴对称,怎样作出图形的对称轴?如果两个图形成轴对称,其对称轴是任何一对对应点所连线段的垂直平分线.因此,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.如图中的五角星,请作出它的一条对称轴.你能作出这个五角星的其他对称轴吗?它共有几条对称轴?三、巩固提高:教科书64页练习1、2、3四、课堂小结:(1)本节课学习了哪些内容?(2)作线段的垂直平分线的依据是什么?举例说明这种作法有哪些运用?(3)如何用尺规作轴对称图形的对称轴?五、课后作业:教科书习题13.1第10、12题.课后反思:13.2 画轴对称图形(1)教学目标:1.理解图形轴对称变换的性质.2.能按要求画出一个平面图形关于某直线对称的图形.教学重点:画轴对称图形.教学难点:画轴对称图形.教学过程:一、问题导入:在一张半透明纸张的左边部分,画出左脚印,如何由此得到相应的右脚印?二、课本精讲:请动手在一张纸上画一个你喜欢的图形,将这张纸折叠,描图,再打开纸,看看你得到了什么?由一个平面图形得到与它关于一条直线对称的图形.一个平面图形和与它成轴对称的另一个图形之间有什么关系?由一个平面图形可以得到与它关于一条直线l 对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l 的对称点;连接任意一对对应点的线段被对称轴垂直平分.教师:如果有一个图形和一条直线,如何作出这个图形关于这条直线对称的图形呢?例1 如图,已知△ABC 和直线l,画出与△ABC关于直线l 对称的图形.画法:(1)如图,过点A 画直线l 的垂线,垂足为点O,在垂线上截取OA′=OA,点A′就是点A 关于直线l 的对称点;(2)同理,分别画点B,C 关于直线l 的对称点B′,C′;(3)连接A′B′,B′C′,C′A′,得到的△A′B′C′即为所求.教师:如何验证画出的图形与△ABC 关于直线l 对称?已知一个几何图形和一条直线,说一说画一个与该图形关于这条直线对称的图形的一般方法.几何图形都可以看作由点组成.对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.三、巩固提高:教科书68页练习1、2四、课堂小结:(1)本节课学习了哪些内容?(2)一个平面图形和与它成轴对称的另一个图形之间有什么关系?(3)画轴对称图形的一般方法是什么?依据是什么?五、课后作业:教科书习题13.2第1题.课后反思:13.2 画轴对称图形(2)教学目标:1.理解在平面直角坐标系中,已知点关于x 轴或y 轴对称的点的坐标的变化规律.2.掌握在平面直角坐标系中作出一个图形的轴对称图形的方法.教学重、难点:在平面直角坐标系中关于x 轴或y轴对称的点的变化规律和作出与一个图形关于x 轴或y轴对称的图形.教学过程:一、问题导入:如图,如果以天安门为原点,分别以长安街和中轴线为x轴和y 轴建立平面直角坐标系,对应于东直门的坐标,你能找到西直门的位置,说出西直门的坐标吗?二、课本精讲:探究并归纳已知点关于坐标轴对称的点的坐标变化规律对于平面直角坐标系中任意一点,你能找出其关于x 轴或y 轴对称的点的坐标吗?它们之间有什么规律?在平面直角坐标系中,画出下列已知点及其关于x 轴对称的点,把它们的坐标填入表格中.教师:观察下图中关于x 轴对称的每对对称点的坐标有怎样的变化规律?关于x 轴对称的每对对称点的横坐标相等,纵坐标互为相反数.教师:观察关于y 轴对称的每对对称点的坐标有怎样的变化规律?关于y 轴对称的每对对称点的横坐标互为相反数,纵坐标相等.教师:请你再找几个点,分别画出它们的对称点,检验一下你发现的规律.点(x,y)关于x 轴对称的点的坐标为(___,____);点(x,y)关于y 轴对称的点的坐标为(___,____).例如图,四边形ABCD 的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD 关于x 轴和y 轴对称的图形.教师:归纳画一个图形关于x 轴或y 轴对称的图形的方法和步骤.先求出已知图形中一些特殊点(多边形的顶点)的对称点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.步骤简述为:(1)求特殊点的坐标;(2)描点;(3)连线.三、巩固提高:教科书70页练习1、2、3四、课堂小结:(1)本节课学习了哪些内容?(2)在平面直角坐标系中,已知点关于x 轴或y 轴的对称点的坐标有什么变化规律,如何判断两个点是否关于x 轴或y 轴对称?(3)说一说画一个图形关于x 轴或y 轴对称的图形的方法和步骤.五、课后作业:教科书习题13.2第2、4、5题.课后反思:13.3 等腰三角形(1)教学目标:1.探索并证明等腰三角形的两个性质.2.能利用性质证明两个角相等或两条线段相等.3.结合等腰三角形性质的探索与证明过程,体会轴对称在研究几何问题中的作用.教学重、难点:探索并证明等腰三角形性质.教学过程:一、问题导入:如图所示,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点?教师:仔细观察自己剪出的等腰三角形纸片,你能发现这个等腰三角形有什么特征吗?教师:同学们剪下的等腰三角形纸片大小不同,形状各异,是否都具有上述所概括的特征?二、课本精讲:教师:在练习本上任意画一个等腰三角形,把它剪下来,折一折,上面得出的结论仍然成立吗?由此你能概括出等腰三角形的性质吗?等腰三角形的特征:(1)等腰三角形的两个底角相等;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.教师:利用实验操作的方法,我们发现并概括出等腰三角形的性质1和性质2.对于性质1,你能通过严格的逻辑推理证明这个结论吗?(1)你能根据结论画出图形,写出已知、求证吗?(2)结合所画的图形,你认为证明两个底角相等的思路是什么?(3)如何在一个等腰三角形中构造出两个全等三角形呢?从剪图、折纸的过程中你能获得什么启发?已知:如图,△ABC 中,AB =AC.求证:∠B = ∠C.你还有其他方法证明性质1吗?可以作底边的高线或顶角的角平分线.教师:性质2可以分解为三个命题,本节课证明“等腰三角形的底边上的中线也是底边上的高和顶角平分线”.教师:在等腰三角形性质的探索过程和证明过程中,“折痕”“辅助线”发挥了非常重要的作用,由此,你能发现等腰三角形具有什么特征?等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.三、巩固提高:教科书77页练习1、2四、课堂小结:(1)本节课学习了哪些主要内容?(2)我们是怎么探究等腰三角形的性质的?(3)本节课你学到了哪些证明线段相等或角相等的方法?五、课后作业:教科书习题13.3第1、2、4、6题.课后反思:13.3 等腰三角形(2)教学目标:1.探索等腰三角形判定定理.2.理解等腰三角形的判定定理,并会运用其进行简单的证明.3.了解等腰三角形的尺规作图.教学重、难点:理解和运用等腰三角形的判定定理教学过程:一、问题导入:问题等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?性质定理的条件是:一个三角形中有两条边相等.结论:这两条边所对的角相等.二、课本精讲:思考性质定理证明方法是什么?作顶角的平分线或底边上的高或底边的中线,将一个三角形的问题转化为两个全等三角形来证明两个角相等.问题一个三角形满足什么条件是等腰三角形?思考1 如果一个三角形有两个角相等,那么这两个角所对的边有什么关系?这两个角所对的边相等.思考2 这个命题的题设和结论又分别是什么呢?如何证明这个命题?题设:一个三角形有两个角相等.结论:这两个角所对的边相等.问题类比等腰三角形性质定理的证明方法,你能选择一种来证明这个命题吗?已知:如图,在△ABC 中,∠B =∠C. 求证:AB =AC.教师:你还有其他证明方法吗?思考能作底边BC 上的中线吗?等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).符号语言:∵在△ABC 中,∠B =∠C,∴AB =AC.思考与等腰三角形性质进行比较看有什么区别?例1 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1 =∠2,AD∥BC.求证:AB =AC.例2 已知等腰三角形底边长为a ,底边上的高的长为h ,求作这个等腰三角形.作法:(1)作线段AB =a;(2)作线段AB 的垂直平分线MN,与AB 相交于点D;(3)在MN上取一点C,使DC =h;(4)连接AC,BC,则△ABC 就是所求作的等腰三角形.三、巩固提高:教科书79页练习1、2、3、4四、课堂小结:(1)本节课学习了哪些内容?(2)等腰三角形的判定方法有哪几种?(3)结合本节课的学习,谈谈等腰三角形性质和判定的区别和联系.五、课后作业:教科书习题13.3第2、5题.课后反思:13.3 等腰三角形(3)教学目标:1.探索等边三角形的性质和判定.2.能运用等边三角形的性质和判定进行计算和证明.教学重、难点:探索等边三角形的性质与判定.教学过程:一、问题导入:问题满足什么条件的三角形是等边三角形?三条边都相等的三角形是等边三角形.二、课本精讲:请分别画出一个等腰三角形和等边三角形,结合你画的图形说出它们有什么区别和联系?联系:等边三角形是特殊的等腰三角形;区别:等边三角形有三条相等的边,而等腰三角形只有两条.问题等腰三角形有哪些特殊的性质呢?从边的角度:两腰相等;从角的角度:等边对等角;从对称性的角度:轴对称图形、三线合一.思考将等腰三角形的性质用于等边三角形,你能得到什么结论?结合等腰三角形的性质,你能填出等边三角形对应的结论吗?图形边角轴对称图形等腰三角形两边相等(定义)两底角相等(等边对等角)是(三线合一)一条对称轴等边三角形三边相等(定义)对“等边三角形的三个内角都相等,并且每一个角都等于60°”这一结论进行证明.已知:△ABC 是等边三角形求证:∠A =∠B =∠C =60°.证明:∵△ABC 是等边三角形,∴BC =AC,BC =AB.∴∠A =∠B,∠A =∠C .∴∠A =∠B =∠C .∵∠A +∠B +∠C =180°,∴∠A =60°.∴∠A =∠B =∠C =60°.等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°.符号语言:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°思考利用所学知识判断,等边三角形是轴对称图形吗?若是轴对称图形,请画出它的对称轴.问题等边三角形除了用定义(即用边)来判定以外,能否利用角来判定呢?思考1 一个三角形的三个内角满足什么条件是等边三角形?思考2 一个等腰三角形满足什么条件是等边三角形?三个角都相等的三角形或者一个角为60°的等腰三角形.请你将得到的这两个命题进行证明.等边三角形的判定定理1:三个角都相等的三角形是等边三角形.符号语言:在△ABC 中,∵∠A=∠B =∠C ,∴△ABC 是等边三角形.等边三角形的判定定理2:有一个角为60°的等腰三角形是等边三角形.符号语言:在△ABC 中,∵BC =AC,∠A =60°,∴△ABC 是等边三角形.判定等边三角形的方法:从边的角度:等边三角形的定义;从角的角度:等边三角形的两条判定定理.等边三角形的判定定理1:三个角都相等的三角形是等边三角形.等边三角形的判定定理2:有一个角为60°的等腰三角形.例1 如图,△ABC 是等边三角形,DE∥BC, 分别交AB,AC 于点D,E.求证:△ADE 是等边三角形.三、巩固提高:教科书80页练习1、2四、课堂小结:(1)本节课学习了等边三角形的性质和判定;(2)等边三角形与等腰三角形相比有哪些特殊的性质?共有几种判定等边三角形的方法?(3)结合本节课的学习,谈谈研究三角形的方法.五、课后作业:教科书习题13.3第12、14题.课后反思:13.3 等腰三角形(4)教学目标:1.探索含30°角的直角三角形的性质.2.理解含30°角的直角三角形的性质,并会应用它进行有关的证明和计算.教学重、难点:探索并理解含30°角的直角三角形的性质.教学过程:一、问题导入:问题已知△ABC 中,∠A =60°,().请你在括号内补充一个条件,使△ABC 能成为等边三角形.二、课本精讲:思考1 等边三角形是轴对称图形,若沿着其中一条对称轴折叠,能产生什么特殊图形?思考2 这个特殊的直角三角形相比一般的直角三角形有什么不同之处,它有什么特殊性质?活动用两个全等的含30°角的直角三角尺,你能拼出怎样的三角形?能拼出等边三角形吗?请说说你的理由.问题你能借助这个图形,找到含30°角的直角△ABC 的直角边BC 与斜边AB 之间有什么数量关系吗?猜想在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.问题请说一说你猜想的命题中,条件和结论分别是什么?并结合图形,用符号语言表述出来.思考这个命题是真命题吗?请进行证明.已知:如图,在Rt△ABC 中,∠C =90°,∠A =30°.求证:BC = AB.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.符号语言:∵在Rt△ABC 中,∠C =90°,∠A =30°,∴BC = AB.例如图是屋架设计图的一部分,点D 是斜梁AB的中点,立柱BC、DE 垂直于横梁AC,AB =7.4 cm,∠A =30°,立柱BC、DE 要多长?三、巩固提高:教科书81页练习四、课堂小结:(1)本节课学习了哪些内容?(2)在应用含30°角的直角三角形的性质时,能解决哪些问题?需要注意哪些问题?五、课后作业:教科书习题13.3第15题.课后反思:(A)(B)(C)(D)第十三章 轴对称13.1《轴对称(1)》导学案班级: 姓名:一、学习目标:1.理解轴对称图形及轴对称的定义,认识轴对称与全等的关系,了解轴对称图形与轴对称的联系与区别 。

八年级数学上册轴对称教案2(新版)新人教版

八年级数学上册轴对称教案2(新版)新人教版

《轴对称》教学目标知识技能1.在生活中认识轴对称,理解轴对称的概念,了解轴对称图形的性质;2.掌握线段垂直平分线的概念及其性质;3.掌握作图形轴对称图的方法.数学思考1.通过丰富的生活实例认识轴对称,能识别简单的轴对称图形及其对称轴;2.探究线段垂直平分线的性质,培养学生认真探究、积极思考的能力;3.在探究过程中,培养学生观察、分析和归纳能力.情感态度1.通过对丰富的轴对称现象的认识,进一步培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力和审美能力的提高;2.在探究的过程中,更大程度的激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力.教学重点和难点重点:1.轴对称图形的概念以及轴对称的性质;2.线段垂直平分线的性质.难点:1.找出轴对称图形的对称轴;2.体验轴对称的特征;3.探索轴对称图形对称轴的作法.教学过程与流程设计1.观察图形,认识轴对称图形把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就剪出了美丽的窗花.观察得到的窗花,你能发现什么共同的特点?轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫过轴对称图形,这条直线就是它的对称轴.课堂练习1:下列图形是轴对称图形吗?如果是,你能指出它的对称轴吗?2.观察,认识图形关于轴对称观察下面的每对图形有什么共同特点?像上面这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么说这两个图形关于这条折线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.课堂练习2:下面给出的每幅图形中的两个图案是轴对称的吗?如果是,使者找出它们的对称轴,并找出一对对称点.3.自己动手,小组合作,探究两个图形对称的性质,学习垂直平分线的定义如图,△ABC 和△A ′B ′C ′关于直线MN 对称,点A ′、B ′、C ′分别是点A 、B 、C 的对称点,线段A A ′、B B ′、CC ′与直线MN 有什么关系? 简单证明你的结论.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段. 垂直平分线:经过线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线.思考:(1)线段是轴对称图形吗?如果是,找出它的对称轴;如果不是,说明理由.(2)如果两个图形关于某条直线对称,则对称轴是任何一对对应点连线的_____.轴A BC A ′ B ′ C ′ M N P对称图形的对称轴是任何一对对应点所连线段的_________ .4.自主探究垂直平分线的性质在一张半透明的纸上作一条线段AB,将线段AB对折,使A、B重合,画出折痕l,即直线l是线段AB的垂直平分线.在直线l上取点P1,P2,P3,分别量出P1,P2,P3到A与B 的距离,你有什么发现?垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.课堂练习3:如图,△ABC中,BC=10,边BC的垂直平分线分别交AB、BC于点E、D.BE=6,求△BCE的周长.再次讨论,探究垂直平分线性质定理的逆定理是否成立?下图是由一根木棒和一根弹性均匀的橡皮筋做成的一个简易的“弓”,现在要使“箭”从木棒中央的孔射出去,怎样才能保证射出箭的方向与木棒垂直呢?为什么?与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.课堂练习3:5.从例题学习中,学习线段垂直平分线的作法例如图,点A和点B关于某条直线称轴对称,你能作出这条直线吗?作法:如图课堂练习4:6.课堂小结(1)学习本内容中,你有什么收获?(2)还有什么疑问吗?。

初中数学轴对称教案

初中数学轴对称教案

初中数学轴对称教案初中数学轴对称教案(精选10篇)作为一名优秀的教育工作者,有必要进行细致的教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。

那么大家知道正规的教案是怎么写的吗?下面是小编整理的初中数学轴对称教案,欢迎阅读与收藏。

初中数学轴对称教案篇1教学目的1.使学生对整章的学习内容做一回顾,系统地把握全章的知识要点和基本技能。

2.通过例题和练习,使学生能较好地运用本章知识和技能解决有关问题。

重点、难点判断图形是否是轴对称图形,线段的垂直平分线、角平分线的性质、等腰三角形的性质和判定及其应用是教学重点,而灵活运用上述性质解决问题、轴对称图案的设计是教学难点。

教学过程一、知识回顾问题1:轴对称图形的定义是什么?它是判断图形是否是轴对称图形的依据。

问题2:是否会画轴对称图形的对称轴?找出轴对称图形的任一组对称点,连结对称点,画对称点所连线段的垂直平分线,即得到该图形对称轴。

问题3:轴对称图形对称点的连线与对称轴有什么关系?轴对称图形对称点的连线被对称轴垂直平分。

问题4:线段垂直平分线、角平分线具有什么性质?线段垂直平分线上的点到线段两端的距离相等;角平分线上的点到角两边的距离相等。

问题5:等腰三角形有什么性质?等腰三角形底边的中线、高线、顶角的平分线互相重合,等腰三角形的两个底角相等(等边对等角),等边三角形的三个角都等于60。

问题6:如何判断三角形是等腰三角形?等边三角形?如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);有两个角是60的三角形是等边三角形,有一个角是60的等腰三角形是等边三角形。

二、例题1.书本中下列是轴对称图形的有( )A.1个 D.2个 C.3个 D.4个2.所示,已知,OC平分AOB,D是OC上一点,DEOA,DFOB,垂足为E、F点,那么(1)DEF与DFE相等吗?为什么?(2)OE与OF相等吗?为什么?三、巩固练习所示,已知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=l0cm,A=491454.求△BCD的周长和DBC度数。

(八年级数学教案)轴对称变换2

(八年级数学教案)轴对称变换2

轴对称变换2八年级数学教案教学目标(一)教学知识点1. 能够按要求作出简单平面图形经过轴对称后的图形.2•轴对称的简单应用.(二)能力训练要求1. 能够按要求作出简单平面图形经过轴对称后的图形.2. 培养学生运用轴对称解决实际问题的基本能力.3•使学生掌握数学知识的衔接与各部分知识间的相互联系.(三)情感与价值观要求1•积极参与数学学习活动,对数学有好奇心和求知欲.2•在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点能够按要求作出简单平面图形经过轴对称后的图形教学难点应用轴对称解决实际问题.教学方法讲练结合法.教具准备多媒体课件,方格纸数张.教学过程I •提出问题,创设情境[师]上节课我们学习了轴对称变换的概念,?知道了一个图形经过轴对称变换可以得到它的轴对称图形,那么具体过程如何操作呢?这就是我们这节课要学习的•?下面同学们来仔细观察一个图案.(课件演示)以虚线为对称轴画出图的另一半:[生甲]这个图案(1)左右两边应该完全相同,画出的整个图案的形状应该是个脸.[生乙]图案(2)画出另一半后应该是一座小房子.[师]大家能把这两个图案的另一半画出来吗?[师]我们利用方格纸来试着画一画(教师发给每人一张方格纸,且纸上画有图).[师]画好了吧?我们今天就来学习作出简单平面图形经过轴对称后的图形.II •导入新课[师]如何作一个图形经过轴对称后的图形呢?我们知道:任何一个图形都是由点组成的.因为我们来作一个点关于一条直线的对称点•由已经学过的知识知道:? 对应点的连线被对称轴垂直平分•所以,已知对称轴L和一个点A,要画出点A关于L?的对应点A'可采取如下方法:(1) 过点A作对称轴L的垂线垂足为B;(2) 在垂线上截取BA使BA =AB.点A就是点A关于直线L的对应点.好,大家来动手画一点A关于直线L对称的对应点,教师口述,大家来画图,要注意作图的准确性.[师]画好了没有?[生]画好了.[师]好,现在我们会画一点关于已知直线的对称点,那么一个图形呢??大家请看大屏幕.(演示课件)[例1]如图(1),已知△ ABC和直线L作出与A ABC关于直线L对称的图形.[师]同学们讨论一下.[生甲]可以在已知图形上找一些点,然后作出这些点关于这条直线的对应点,再按图形上点的顺序连结这些点•这样就可以作出这个图形关于直线L的对称图形了.[师]说说看,找几个什么样的点就行呢?[生乙]△ ABC可以由三个顶点的位置确定,只要找A、B、C三点就可以了.[师]好,下面大家一起动手做.作法:如图(2).(1) 过点A作直线L的垂线,垂足为点0,在垂线上截取0A =0点A就是点A 关于直线L的对称点;(2) 类似地,作出点B、C关于直线L的对称点B、C;(3) 连结A BB CC需到厶A B即为所求.[师]大家做完后,?我们共同来归纳一下如何作出简单平面图形经过轴对称后的图形.归纳:几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对称点,再连结这些对应点,就可得到原图形的轴对称图形;对于一些由直线、?线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对应点,连结这些对应点,就可以得到原图形的轴对称图形.[师]看来在作一个平面图形关于直线轴对称的图形,找一些特殊点是关键•下图中,要作出图形的另一半,哪些点可以作为特殊点?并画出图形的另一半.[师]大家作个简单讨论,共同来完成这个题.[生]在图形(1)上找三个点,在图形(2)中找一个点就可以,如下图:[师]现在我们来做练习.皿.随堂练习(一)课本P129练习1、2.1•如图,把下列图形补成关于直线L对称的图形.提示:找特殊点.答案:图(略)2•用纸片剪一个三角形,分别沿它一边的中线、高、角平分线对折,?看看哪些部分能够重合,哪些部分不能重合.答案:本题答案不唯一,要求学生尽可能用准确的数学语言将自己剪出的三角形的情况进行表述.(二)阅读课本P127~P130然后小结.IV.课时小结本节课我们主要研究了如何作出简单平面图形经过轴对称后的图形•在按要求作图时要注意作图的准确性.求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的点关于这条直线的对称点•对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段的端点)的对称点,连结这些对称点,就可以得到原图形的轴对称图形.V.课后作业(一)课本P133习题一1 5、& 9题.(二)预习内容P130~P132.W •活动与探究[探究1]如图(1).要在燃气管道L上修建一个泵站,分别向A、B两镇供气.?泵站修在管道的什么地方,可使所用的输气管线最短?你可以在L上找几个点试一试,能发现什么规律吗?过程:把管道L近似地看成一条直线如图(2),设B是B的对称点,?将问题转化为在L上找一点C使AC与CB的和最小,由于在连结AB的线中,线段AB最短•因此,线结AB与直线L的交点C的位置即为所求.结果:作B关于直线L的对称点B'连结AB交直线L于点C,C为所求.[探究2]为什么在点C的位置修建泵站,就能使所用的输管道最短?过程:将实际问题转化为数学问题,该问题就是证明AC+CB最小.结果:如上图,在直线L上取不同于点C的任意一点C由于B点是B点关于L的对称点,所以BC 二B'故'A, +BC =AC +在△:A' ,B '中CAC +BC &gt;AB而 ,AB'二AC+CB 二AC+CB,AC+CB&lt;AC '八年级数学教案+C由于C点的任意性,所以C点的位置修建泵站,可以使所用输气管线最板书设计§ 1421.2轴对称变换(二)一、已知对称轴L和一个点A,要画出点A关于L的对称点A'方法如下:(1)过点A作对称轴L的垂线,垂足为B.(2)在垂线上截取BA =AB.则点A'就是点A关于直线L的对应点,二、例1三、随堂练习四、课时小结五、课后作业备课资料参考练习1.已知△ ABC过点A作直线L.求作:△ A B'使它与厶ABC关于L对称.作法:(1)作点C关于直线L的对称点C;(2)作点B关于直线L的对称点B';⑶点A在L上,故点A的对称点A与A重合;(4)连结A B'B'、C A .则厶A Bl就是所求作的三角形.2•已知a丄b,a、b相交于点0,点P为a、b外一点.求作:点P关于a、b的对称点M、N,并证明0M=0N不许用全等).作法:(1)过点P作PC丄a,并延长PC到M,使CM二PC.⑵过点P作PD丄b,并延长PD到N,使得DN=PD.则点M、N就是点P关于a、b的对称点.证明:T点P与点M关于直线a对称,二直线a是线段PM的中垂线.••• 0P=0M.同理可证:0P=0N.• 0M=0N.3.为美化校园,学校准备在一块圆形空地上建花坛,现征集设计方案,?要求设计的图案由圆、三角形、矩形组成(三种几何图案的个数不限),并且使整个圆形场地成轴对称图形,请你画出你的设计方案.答案:略。

八年级数学上册第13章《轴对称》全章教案(人教版)

八年级数学上册第13章《轴对称》全章教案(人教版)

13.1轴对称13.1.1轴对称1.在生活实例中认识轴对称图形.(重点)2.分析轴对称图形,理解轴对称的概念.(重点)3.通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴.(难点)一、情境导入请同学们认真观看动画片,听故事,思考最后的问题.(配合动画讲故事)故事:在小河边的花丛中,有一只美丽的蝴蝶正在采花蜜.忽然,来了一只蜻蜓在它面前飞来飞去,蝴蝶生气地说:“谁在跟我捣乱?”蜻蜓笑嘻嘻地说:“你怎么连一家人都不认识了,我是来找你玩的.”这时蝴蝶更生气了,说道:“你是蜻蜓,我是蝴蝶,我们怎么可能是一家呢?”于是,蜻蜓就落在了旁边的一片叶子上,说:“这你就不知道了吧,不仅蜻蜓、蝴蝶是一家,有些树叶,还有我们身边的很多物体都和我们是一家呢.”(播放动画)思考问题:为什么蜻蜓、蝴蝶、树叶是一家?二、合作探究探究点一:轴对称图形【类型一】轴对称图形的识别下列体育运动标志中,从图案看不是轴对称图形的有( )A.4个 B.3个 C.2个 D.1个解析:根据轴对称图形的概念可得(1)(2)(4)都不是轴对称图形,只有(3)是轴对称图形.故选B.方法总结:要确定一个图形是否是轴对称图形要根据定义进行判断,关键是寻找对称轴,图形两部分折叠后可重合.【类型二】判断对称轴的条数下列轴对称图形中,恰好有两条对称轴的是( )A .正方形B .等腰三角形C .长方形D .圆解析:A.正方形有四条对称轴;B.等腰三角形有一条对称轴;C.长方形有两条对称轴;D.圆有无数条对称轴.故选C.方法总结:判断对称轴的条数,仍然是根据定义进行判断,判断轴对称图形的关键是寻找对称轴,注意不要遗漏.探究点二:轴对称及轴对称图形的性质【类型一】 应用轴对称的性质求角度如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD ,其中∠BAD =150°,∠B =40°,则∠BCD 的度数是( )A .130°B .150°C .40°D .65°解析:∵这种滑翔伞的形状是左右成轴对称的四边形ABCD ,其中∠BAD =150°,∠B =40°,∴∠D =40°,∴∠BCD =360°-150°-40°-40°=130°.故选A.方法总结:轴对称其实就是一种全等变换,所以轴对称往往和三角形的内角和、外角的性质综合考查.【类型二】 利用轴对称的性质求阴影部分的面积如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为( )A .4cm 2B .8cm 2C .12cm 2D .16cm 2解析:根据正方形的轴对称性可得,阴影部分的面积等于正方形ABCD 面积的一半,∵正方形ABCD 的边长为4cm ,∴S 阴影=12×42=8(cm)2.故选B. 方法总结:正方形是轴对称图形,根据图形判断出阴影部分的面积等于正方形面积的一半是解题的关键.【类型三】 用轴对称的性质证明线段之间的关系如图,O 为△ABC 内部一点,OB =72,P 、R 为O 分别以直线AB 、BC 为对称轴的对称点.(1)请指出当∠ABC 是什么角度时,会使得PR 的长度等于7?并完整说明PR 的长度为何在此时等于7的理由.(2)承(1)小题,请判断当∠ABC 不是你指出的角度时,PR 的长度小于7还是大于7?并完整说明你判断的理由.解析:(1)连接PB 、RB ,根据轴对称的性质可得PB =OB ,RB =OB ,然后判断出点P 、B 、R 三点共线时PR =7,再根据平角的定义求解;(2)根据三角形的任意两边之和大于第三边解答.解:(1)如图,∠ABC =90°时,PR =7.证明如下:连接PB 、RB ,∵P 、R 为O 分别以直线AB 、BC 为对称轴的对称点,∴PB =OB =72,RB =OB =72.∵∠ABC =90°,∴∠ABP +∠CBR =∠ABO +∠CBO =∠ABC =90°,∴点P 、B 、R 三点共线,∴PR =2×72=7; (2)PR 的长度小于7,理由如下:∠ABC ≠90°,则点P 、B 、R 三点不在同一直线上,∴PB +BR >PR ,∵PB +BR =2OB =2×72=7,∴PR <7.方法总结:利用轴对称的性质可以将线段进行转化,然后结合三角形的任意两边之和大于第三边的性质予以解答,总之熟记各性质是解题的关键.【类型四】 轴对称在折叠问题中的应用如图,将长方形纸片先沿虚线AB 向右对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,那么打开后的展开图是( )解析:∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A.∵再展开可知两个短边正对着,∴选择答案D ,排除B 与C.故选D.方法总结:对于此类问题,要充分发挥空间想象能力,或亲自动手操作答案即可呈现.三、板书设计轴对称图形1.轴对称图形的定义;2.对称轴; 3.轴对称图形的设计方法.这节课充分利用多媒体教学,给学生以直观指导,主动向学生质疑,促使学生思考与发现,形成认识,独立获取知识和技能.另外,借助多媒体教学给学生创设宽松的学习氛围,使学生在学习中始终保持兴奋、愉悦、渴求思索的心理状态,有利于学生主体性的发挥和创新能力的培养.13.1.2线段的垂直平分线的性质第1课时线段的垂直平分线的性质和判定1.掌握线段垂直平分线的性质.(重点)2.探索并总结出线段垂直平分线的性质,能运用其性质解答简单的问题.(难点)一、情境导入如图所示,有一块三角形田地,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB 于E,量得△BDC的周长为17m,你能帮测量人员计算BC的长吗?二、合作探究探究点一:线段垂直平分线的性质【类型一】应用线段垂直平分线的性质求线段的长如图,在△ABC中,AB=AC=20cm,DE垂直平分AB,垂足为E,交AC于D,若△DBC的周长为35cm,则BC的长为( )A.5cmB.10cmC.15cmD.17.5cm解析:∵△DBC的周长=BC+BD+CD=35cm,又∵DE垂直平分AB,∴AD=BD,故BC+AD+CD=35cm.∵AC=AD+DC=20cm,∴BC=35-20=15cm.故选C.方法总结:利用线段垂直平分线的性质,可以实现线段之间的相互转化,从而求出未知线段的长.【类型二】 线段垂直平分线的性质与全等三角形的综合运用如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .解析:(1)根据AD ∥BC 可知∠ADC =∠ECF ,再根据E 是CD 的中点可求出△ADE ≌△FCE ,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB =BF 即可.证明:(1)∵AD ∥BC ,∴∠ADC =∠ECF .∵E 是CD 的中点,∴DE =EC .又∵∠AED =∠CEF ,∴△ADE ≌△FCE ,∴FC =AD .(2)∵△ADE ≌△FCE ,∴AE =EF ,AD =CF .∵BE ⊥AE ,∴BE 是线段AF 的垂直平分线,∴AB =BF =BC +CF .∵AD =CF ,∴AB =BC +AD .方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.【类型三】 线段垂直平分线与角平分线的综合运用如图,在四边形ADBC 中,AB 与CD 互相垂直平分,垂足为点O .(1)找出图中相等的线段;(2)OE ,OF 分别是点O 到∠CAD 两边的垂线段,试说明它们的大小有什么关系.解析:(1)由垂直平分线的性质可得出相等的线段;(2)由条件可证明△AOC ≌△AOD ,可得AO 平分∠DAC ,根据角平分线的性质可得OE =OF .解:(1)∵AB 、CD 互相垂直平分,∴OC =OD ,AO =OB ,且AC =BC =AD =BD ;(2)OE =OF ,理由如下:在△AOC 和△AOD 中,∵⎩⎪⎨⎪⎧AC =AD ,OC =OD ,AO =AO ,∴△AOC ≌△AOD (SSS),∴∠CAO =∠DAO .又∵OE ⊥AC ,OF ⊥AD ,∴OE =OF .方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.探究点二:线段垂直平分线的判定如图所示,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,试说明AD 与EF 的关系.解析:先利用角平分线的性质得出DE =DF ,再证△AED ≌△AFD ,易证AD 垂直平分EF .解:AD 垂直平分EF .∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴∠EAD =∠FAD ,DE =DF .在△ADE 和△ADF 中,∵⎩⎪⎨⎪⎧∠DAE =∠DAF ,∠AED =∠AFD ,AD =AD ,∴△ADE ≌△ADF ,∴AE =AF ,∴A 、D 均在线段EF 的垂直平分线上,即直线AD 垂直平分线段EF .方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计线段的垂直平分线1.线段的垂直平分线的作法.2.线段的垂直平分线性质定理和逆定理.3.三角形三边的垂直平分线交于一点.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.第2课时 线段的垂直平分线的有关作图1.作出轴对称图形的对称轴,即线段垂直平分线的尺规作图.(重点)2.依据轴对称的性质找出两个图形成轴对称及轴对称图形的对称轴.(重点)一、情境导入有时我们感觉两个平面图形成轴对称,如何验证呢?不折叠图形,你能准确地作出轴对称图形的对称轴吗?二、合作探究探究点一:作线段的垂直平分线【类型一】 作某条线段的垂直平分线如图,点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?(注:作一对对应点的对称轴就是作线段AB 的垂直平分线)解析:本题其实就是作线段AB 的垂直平分线,根据线段垂直平分线的作法作出即可.解:作法:(1)分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧相交于E 、F 两点;(2)作直线EF ,EF 即为所求的直线.同样,对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.方法总结:要熟练掌握线段垂直平分线的作法,作出的图形中的作图痕迹要保留.【类型二】 垂直平分线的作法与垂直平分线的性质的综合如图,已知点A 、点B 以及直线l .(1)用尺规作图的方法在直线l 上求作一点P ,使PA =PB .(保留作图痕迹,不要求写出作法);(2)在(1)中所作的图中,若AM =PN ,BN =PM ,求证:∠MAP =∠NPB .解析:(1)利用线段垂直平分线的作法作出即可;(2)利用全等三角形的判定方法以及利用其性质得出即可.解:(1)如图所示:(2)在△AMP 和△BNP 中,∵⎩⎪⎨⎪⎧AM =PN ,PM =BN ,AP =BP ,∴△AMP ≌△PNB (SSS),∴∠MAP =∠NPB .方法总结:解决此类问题首先要正确作出图形,然后运用相关的知识解决其他问题.【类型三】 垂直平分线作法的应用如图,某地由于居民增多,要在公路l 边增加一个公共汽车站,A ,B 是路边两个新建小区,这个公共汽车站C 建在什么位置,能使两个小区到车站的路程一样长(要求:尺规作图,保留作图痕迹,不写画法)?解析:作线段AB的垂直平分线,由垂直平分线的定理可知,垂直平分线上的点到A,B的距离相等.解:连接AB,作AB的垂直平分线交直线l于O,交AB于E.∵EO是线段AB的垂直平分线,∴点O到A,B的距离相等,∴这个公共汽车站C应建在O点处,才能使到两个小区的路程一样长.方法总结:对于作图题首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.【类型四】线段垂直平分线与角平分线作法的综合运用如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)解析:到两条公路的距离相等,在这两条公路的夹角的平分线上;到两所大学的距离相等,在这两所大学两个端点的连线的垂直平分线上,所画两条直线的交点即为所求的位置.解:如图,点P为所求.方法总结:通过本题要熟练地掌握角平分线的作法以及线段垂直平分线的作法.探究点二:对称轴的画法【类型一】画出已知图形的对称轴画出下列轴对称图形的所有对称轴(不考虑颜色).解析:利用轴对称图形的性质分别得出其对称轴即可.解:如图所示:方法总结:画轴对称图形的对称轴,先找出对称点,然后作对称点的垂直平分线即可.【类型二】补全图形,并画出对称轴如图,在4×3的正方形网格中,阴影部分是由4个正方形组成的一个图形,请你用两种方法分别在如图方格内填涂2个小正方形,使这6个小正方形组成的图形是轴对称图形,并画出其对称轴.解析:根据轴对称的性质画出图形即可.解:如图所示:方法总结:解答此类问题,一般要先设计出轴对称图形,然后根据图形的特点,画出对称轴.三、板书设计线段的垂直平分线的有关作图1.线段垂直平分线的作法.2.作轴对称图形的对称轴的方法.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.13.2画轴对称图形第1课时画轴对称图形1.理解图形轴对称变换的性质.(难点)2.能按要求画出一个图形关于某直线对称的另一个图形.(重点)一、情境导入观察下面的图形:(1)这些图案有什么共同特点?(2)能否根据其中一部分画出整个图案?二、合作探究探究点一:轴对称变换【类型一】剪纸问题将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,再得到的图案是( )解析:严格按照图中的顺序先向右上翻折,再向左上翻折,剪去左上角,展开得到图形B.故选B.方法总结:此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【类型二】折叠问题如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD =( )A.20° B.30° C.40° D.50°解析:根据图形翻折变换后全等可得△ADE≌△FDE,∴∠EAD=∠EFD=90°.∵∠EFB=60°,∴∠CFD=30°,故选B.方法总结:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.探究点二:作轴对称图形【类型一】画一个图形关于已知直线对称的另一个图形画出△ABC关于直线l的对称图形.解析:分别作出点A、B、C关于直线l的对称点,然后连接各点即可.解:如图所示:方法总结:我们在画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连接即可得到.【类型二】在方格中设计轴对称图形在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.解析:对称轴可以随意确定,根据你确定的对称轴去画另一半对称图形即可.解:如图所示:方法总结:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.【类型三】利用轴对称设计图案某居民小区搞绿化,要在一块矩形空地(如下图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在下边矩形中画出你的设计方案.K解析:矩形是轴对称图形,而正方形和圆也是轴对称图形,设计出的图案只要折叠重合即可.解:如图所示:方法总结:利用轴对称可以设计出精美的图案,一个图形经过不同位置的几次变换,若再结合平移、旋转等,便可以得到非常美丽的图案.三、板书设计作轴对称图形1.如何由一个平面图形得到它的轴对称图形.2.利用轴对称设计图案.本节课尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容.重视动手操作,实践探究,但如果只有操作,而没有数学体验,数学课很容易上成劳技课,所以,本节课的设计在重视活动的同时,又重视知识的获取,因为动手操作的目的本身就在于更直观地发现新知识.练习的设计具有一定的层次性,使不同的学生在学习数学的过程中得到不同的发展.第2课时用坐标表示轴对称1.直角坐标系中关于x轴、y轴对称的点的特征.(重点)2.直角坐标系中关于某条直线对称的点的特征.(难点)一、情境导入十一黄金周,北京吸引了许多游客.一天,小红在天安门广场玩,一位外国友人向小红问西直门的位置,可小红只知道东直门的位置,不过,小红想了想,就准确的告诉了他.你知道为什么吗?结合老北京的地图向学生介绍:老北京城关于中轴线成轴对称设计,东直门、西直门就关于中轴线对称.如果以天安门为原点,分别以长安街和中轴线为x轴和y轴,就可以在这个平面图上建立直角坐标系,各个景点的地理位置就可以用坐标表示出来.提问:这些景点关于坐标轴的对称点你可以找出来吗?这些对称点的坐标与已知点的坐标有什么关系呢?二、合作探究探究点一:用坐标表示轴对称【类型一】求一个点关于坐标轴的对称点的坐标在平面直角坐标系中,与点P(2,3)关于x轴或y轴成轴对称的点是( )A.(-3,2) B.(-2,-3)C.(-3,-2) D.(-2,3)解析:点P(2,3)关于x轴对称的点的坐标为(2,-3),关于y轴对称的点的坐标为(-2,3),故选D.方法总结:关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数.关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变.【类型二】关于坐标轴对称的点与方程的综合已知点A(2a-b,5+a),B(2b-1,-a+b).(1)若点A、B关于x轴对称,求a、b的值;(2)若A、B关于y轴对称,求(4a+b)2016的值.解析:(1)根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数可得2a-b =2b -1,5+a -a +b =0,解方程(组)即可;(2)根据关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变可得2a -b +2b -1=0,5+a =-a +b ,解方程(组)即可.解:(1)∵点A 、B 关于x 轴对称,∴2a -b =2b -1,5+a -a +b =0,解得a =-8,b=-5;(2)∵A 、B 关于y 轴对称,∴2a -b +2b -1=0,5+a =-a +b ,解得a =-1,b =3,∴(4a +b )2016=1.方法总结:根据关于x 轴、y 轴对称的点的特征列方程(组)求解.【类型三】 关于坐标轴对称的点与不等式(组)的综合已知点P (a +1,2a -1)关于x 轴的对称点在第一象限,求a 的取值范围.解析:点P (a +1,2a -1)关于x 轴的对称点在第一象限,则点P (a +1,2a -1)在第四象限.解:依题意得P点在第四象限,∴⎩⎪⎨⎪⎧a +1>0,2a -1<0,解得-1<a <12,即a 的取值范围是-1<a <12. 方法总结:根据点的坐标关于坐标轴对称,判断出对称点所在的象限,由各象限内坐标的符号,列不等式(组)求解.探究点二:作关于坐标轴对称的图形【类型一】 作关于x 轴或y 轴对称的图形在平面直角坐标系中,已知点A (-3,1),B (-1,0),C (-2,-1),请在图中画出△ABC ,并画出与△ABC 关于y 轴对称的图形.解析:作出A ,B ,C 三点关于y 轴的对称点,顺次连接各点即可.解:如图所示,△DEF 是△ABC 关于y 轴对称的图形.方法总结:在坐标系中作出关于坐标轴的对称点,然后顺次连接,此类问题一般比较简单.【类型二】 与对称点有关的综合题如图,在10×10的正方形网格中,每个小方格的边长都是1,四边形ABCD 的四个顶点在格点上.(1)若以点B 为原点,线段BC 所在直线为x 轴建立平面直角坐标系,画出四边形ABCD关于y 轴对称的四边形A 1B 1C 1D 1;(2)点D 1的坐标是________;(3)求四边形ABCD 的面积.解析:(1)以点B 为原点,线段BC 所在直线为x 轴建立平面直角坐标系,然后作出各点关于y 轴对称的点,顺次连接即可;(2)根据直角坐标系的特点,写出点D 1的坐标;(3)把四边形ABCD 分解为两个直角三角形,求出面积.解:(1)如图所示;(2)点D 1的坐标为(-1,1);(3)四边形ABCD 的面积为12×1×3+12×1×2=52. 方法总结:轴对称变换作图,基本作法是:(1)先确定图形的关键点;(2)利用轴对称性质作出关键点的对称点;(3)按原图形中的方式顺次连接对称点.求多边形的面积可将多边形转化为规则图形的面积的和或差求解.三、板书设计用坐标表示轴对称1.直角坐标系中关于x 轴、y 轴对称的点的特征.2.直角坐标系中关于某条直线对称的点的特征.从本节课的授课过程来看,灵活运用了多种教学方法,既有教师的讲解,又有讨论,在教师指导下的自学,组织学生活动等.调动了学生学习的积极性,充分发挥了学生的主体作用.课堂拓展了学生的学习空间,给学生充分发表意见的自由度.13.3 等腰三角形13.3.1 等腰三角形第1课时 等腰三角形的性质1.理解并掌握等腰三角形的性质.(重点)2.经历等腰三角形的探究过程,能初步运用等腰三角形的性质解决有关问题.(难点)一、情境导入探究:如图所示,把一张长方形的纸按照图中虚线对折并减去阴影部分,再把它展开得到的△ABC有什么特点?二、合作探究探究点一:等腰三角形的概念【类型一】利用等腰三角形的概念求边长或周长如果等腰三角形两边长是6cm和3cm,那么它的周长是( )A.9cm B.12cmC.15cm或12cm D.15cm解析:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm 时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15(cm).故选D.方法总结:在解决等腰三角形边长的问题时,如果不明确底和腰时,要进行分类讨论,同时要养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.探究点二:等腰三角形的性质【类型一】利用“等边对等角”求角度等腰三角形的一个内角是50°,则这个三角形的底角的大小是( )A.65°或50° B.80°或40°C.65°或80° D.50°或80°解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故选A.方法总结:等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论.【类型二】利用方程思想求等腰三角形角的度数如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.解析:设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.解:设∠A =x .∵AD =BD ,∴∠ABD =∠A =x .∵BD =BC ,∴∠BCD =∠BDC =∠ABD +∠A =2x .∵AB =AC ,∴∠ABC =∠BCD =2x .在△ABC 中,∠A +∠ABC +∠ACB =180°,∴x +2x +2x =180°,∴x =36°,∴∠A =36°,∠ABC =∠ACB =72°.方法总结:利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x .【类型三】 利用“等边对等角”的性质进行证明如图,已知△ABC 为等腰三角形,BD 、CE 为底角的平分线,且∠DBC =∠F ,求证:EC ∥DF .解析:先由等腰三角形的性质得出∠ABC =∠ACB ,根据角平分线定义得到∠DBC =12∠ABC ,∠ECB =12∠ACB ,那么∠DBC =∠ECB ,再由∠DBC =∠F ,等量代换得到∠ECB =∠F ,于是根据平行线的判定得出EC ∥DF .证明:∵△ABC 为等腰三角形,AB =AC ,∴∠ABC =∠ACB .又∵BD 、CE 为底角的平分线,∴∠DBC =12∠ABC ,∠ECB =12∠ACB ,∴∠DBC =∠ECB .∵∠DBC =∠F ,∴∠ECB =∠F ,∴EC ∥DF .方法总结:证明线段的平行关系,主要是通过证明角相等或互补.【类型四】 利用等腰三角形“三线合一”的性质进行证明如图,点D 、E 在△ABC 的边BC 上,AB =AC .(1)若AD =AE ,求证:BD =CE ;(2)若BD =CE ,F 为DE 的中点,如图②,求证:AF ⊥BC .解析:(1)过A 作AG ⊥BC 于G ,根据等腰三角形的性质得出BG =CG ,DG =EG 即可证明;(2)先证BF =CF ,再根据等腰三角形的性质证明.证明:(1)如图①,过A 作AG ⊥BC 于G .∵AB =AC ,AD =AE ,∴BG =CG ,DG =EG ,∴BG -DG =CG -EG ,∴BD =CE ;(2)∵BD =CE ,F 为DE 的中点,∴BD +DF =CE +EF ,∴BF =CF .∵AB =AC ,∴AF ⊥BC . 方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.【类型五】 与等腰三角形的性质有关的探究性问题如图,已知△ABC 是等腰直角三角形,∠BAC =90°,BE 是∠ABC 的平分线,DE ⊥。

数学八年级上册-《轴对称》全章教学设计-人教版

数学八年级上册-《轴对称》全章教学设计-人教版

数学八年级上册-《轴对称》全章教学设计-人教版一、教学目标1. 了解轴对称的基本概念和特点。

2. 掌握轴对称图形的判断方法。

3. 学会在平面中绘制具有轴对称性的图形。

4. 能够解决与轴对称有关的简单问题。

二、教学内容1. 轴对称的概念和特点。

2. 轴对称图形的判断方法。

3. 绘制具有轴对称性的图形。

4. 解决与轴对称有关的简单问题。

三、教学步骤步骤一:导入新知1. 利用教学图片或实物,引导学生观察并思考:什么是轴对称?轴对称有什么特点?2. 引导学生回顾前面学过的对称图形,与轴对称进行对比,并找出区别和联系。

步骤二:讲解轴对称的概念和特点1. 通过示例,解释轴对称的概念:一个图形,如果可以绕一个轴旋转180度后,与原图形重合,那么这个图形就是轴对称的。

2. 引导学生发现轴对称图形的特点:图形的两侧完全相同,可以通过轴对称线进行折叠重叠。

步骤三:判断轴对称图形的方法1. 教师给出一些图形,引导学生观察并找出轴对称图形。

2. 讲解判断轴对称图形的方法:通过折叠或旋转判断是否可以使图形重合。

步骤四:绘制轴对称图形1. 教师引导学生绘制具有轴对称性的图形,如正方形、矩形等。

2. 学生根据给定条件或提示,自行绘制具有轴对称性的图形。

步骤五:解决与轴对称有关的问题1. 教师提供一些与轴对称相关的问题,引导学生思考并解答。

2. 学生独立完成与轴对称有关的练题。

四、教学评价1. 教师观察学生在课堂上对轴对称概念的理解情况。

2. 教师检查学生绘制的轴对称图形是否准确。

3. 教师评价学生解决与轴对称有关的问题的能力。

五、教学延伸1. 提供更多的轴对称图形让学生观察和判断。

2. 引导学生设计自己的轴对称图形,并解释其特点和轴对称性。

六、教学反思本节课通过引导学生观察和思考,让学生初步了解了轴对称的概念和特点。

通过判断轴对称图形和绘制轴对称图形的练,培养了学生的观察能力和图形绘制能力。

在解决与轴对称有关的问题中,学生能够运用所学知识,提高了问题解决能力。

新人教版八年级数学第13章《轴对称》教案

新人教版八年级数学第13章《轴对称》教案

第十三章《轴对称》教材分析一、教材内容本章的主要内容是从生活中的图形入手,学习轴对称及其基本性质,了解轴对称在现实生活中的广泛应用,并利用轴对称变换,探索等腰三角形的性质,学习等腰三角形的判定方法,并进一步学习等边三角形的性质.在本章第1小节“轴对称”中,教科书立足于学生的生活经验和数学活动经历,从观察现实生活中的对称现象开始,引出轴对称图形和图形的轴对称的概念,概括出轴对称的特征.结合探索对称点的关系,归纳得出对应点连线被对称轴垂直平分的性质,并结合这一性质的得出,讨论了垂直平分线的性质定理及其逆定理.在第2节“画轴对称图形”中,首先通过操作对轴对称的性质进行了归纳,然后通过例题给出了画简单平面图形关于给定对称轴的对称图形的一般方法,最后用坐标从数量关系的角度刻画了轴对称.教科书从观察和实验入手,归纳得出坐标平面上一个点关于x轴或y轴对称的点的坐标的规律,并进一步探讨了如何利用这种规律在平面直角坐标系中画出一个图形关于x轴或y轴对称的图形.本章第3节等腰三角形是一种特殊的三角形,它除了具有一般三角形的所有性质外,还有许多特殊的性质.等腰三角形的许多特殊性质,又都和它是轴对称图形有关,这也是教科书把这部分内容安排在本章的一个重要原因.在本章第3小节“等腰三角形”中,利用等腰三角形的轴对称性,得出了“等边对等角”“三线合一”等性质,并进一步讨论了等腰三角形的判定方法以及等边三角形的性质与判定方法等内容.本章第4节是“课题学习最短路径问题”.教科书在这一节中安排了两个问题,分别是“牧马人饮马问题”和“造桥选址问题”,解决这两个问题的关键是通过轴对称和平移等变化把问题转化为关于“两点之间,线段最短”的问题,在解决这两个问题的过程中渗透了化归的思想.二、教学目标1、知识与技能(1)通过具体实例认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质.(2)探索简单图形之间的轴对称关系,能够按照要求画出简单平面图形(点、线段、直线、三角形等)关于给定对称轴的对称图形;认识并欣赏自然界和现实生活中的轴对称图形.(3)理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上.(4)了解等腰三角形的概念,探索并证明等腰三角形的性质定理;探索并掌握等腰三角形的判定定理;探索等边三角形的性质定理及等边三角形的判定定理.2、过程与方法(1)在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;(2)在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。

八年级数学轴对称变换 第1课时教案 新课标 人教版

八年级数学轴对称变换 第1课时教案 新课标 人教版

轴对称变换第1课时【目标预设】一、知识与能力利用轴对称变换的特征作出简单图形经轴对称变换后的图形二、过程与方法根据图形轴对称的判医方法三、情感、态度、价值观充分调动学生的积极性、主动性,增强学生的自信心【教学重难点】作出平面图形的特殊关键点的对称点【教学设备】投影仪【预习导学】预习书本P128页至P130页【教学过程】一、创设情景,谈话导入1、请同学们观看书P128页图14 -2-2,图14-2-3这些美丽的图案,思考这些图象是如何制作的?2、请同学们自己动手制作:在一张半透明的纸张的左半部分画出自己的左手印,折后用笔描出右手印。

归纳1、轴对称变换的定义:由一个平面图形得到它的轴对称图形叫做轴对称变换。

2、轴对称变换的性质:(1)轴对称变换前后两个图形全等。

(2)对应点连线被对称轴垂直平分。

二、精讲点拔,质疑问题思考:如何作出△ABC关于直线L的对称请学生回答问题:(1)△ABC关于直线L的对称的图形是什么形状?(2)△ABC关于直线L的对称的图形可以由几个点确定?(3)在△ABC上,取哪几个点作出关于直线L的对称点?归纳:画一个图形关于一条直线的对称图形关键:作出图形特殊点关于直线L的对称点。

三、课堂活动,强化训练例1、把下列图形补成关于直线L对称的图形例2、已知如图所示点A、B、C不在同一直线上,作直线l1、l2、l3使A、B关于直线l1对称,B、C关于直线l2对称,A、C关于直线l3对称四、延伸拓展,巩固内化例3、如图,请你以AB为对称轴,画出下面图形的轴对称图形。

例4、在图中,如果将左边的图形沿某条直线进行轴对称变换,哪一个能变成右边的图形()例5、请同学根据本节课所学内容,自己设计一幅美丽的图画,用投影仪投出效果,看看同学们的创作能力。

五、布置作业课本P135 1、5 【教后反思】。

八年级数学上 14 . 2 轴对称变换 教案人教版

八年级数学上 14 . 2  轴对称变换 教案人教版

14.2 轴对称变换教学目标知识技能1.通过实际操作,了解什么叫做轴对称变换;2.如何作出一个图形关于一条直线的轴对称图形;3.在平面直角坐标系中,探索关于x轴、y轴对称的点的坐标规律,利用这个规律作出关于x轴、y轴对称的图形.数学思考1.经历实际操作、认真体验的过程,发展学生的思维空间,并从实践中体会轴对称变换在实际中的应用;2.在探索关于x轴、y轴对称的点的坐标规律的过程中,发展学生数形结合的思维意识.情感态度1.鼓励学生积极参与数学活动,培养学生的数学兴趣;2.在探索规律的过程中,提高学生的求知欲和强烈的好奇心.教学重点和难点重点:1.能够作出简单平面图形的轴对称图形;2.理解图形上的点的坐标的变化和图形的轴对称变换之间的关系;3.在用坐标表示轴对称时发展形象思维能力和数形结合的意识.难点:1.作出简单平面图形的轴对称图形;2.用坐标表示轴对称.教学过程与流程设计1.自己动手,体会轴对称变换的含义在一X纸的左边部分,画出一个图形,把这X纸对折后描图,打开对折的纸,可以得到两个图形,这两个图形关于折线对称.连接任意一对对称点的线段被对称轴垂直平分.类似,可以作出许多美丽的图案.归纳规律:像上面这样,有一个平面图形对到它的对称图形叫做轴对称变换.2.从实践中,探讨如何作出一个图形关于一条直线对称的图形例如图,已知△ABC和直线l,作出与△ABC关于直线l对称的图形.作法:如图归纳:课堂练习1:(1)如图,把下列图形补成关于直线l对称的图形.(2)用纸片剪一个三角形,分别沿它一边的中线、高、角平分线对折,看看哪些部分能够重合,哪些部分不能重合.3.探究轴对称的简单应用如果,要在燃气管道l上修建一个气站,分别向A、B两镇供气.气站修在管道的什么地方,可使所用的输气管线最短?(学生自主探究完成此问题,要求完成132页的思考题)4.用坐标表示轴对称学生任意写出几个点的坐标,在平面直角坐标系中作出这些点的对称点,并求出他们对称点的坐标,总结规律.规律:(1)点(x,y)关于x轴对称的点的坐标为(x,-y)(2)点(x,y)关于y轴对称的点的坐标为(-x,y)例四边形ABCD的四个顶点的坐标分别为A(-5,1)、B(-2,1)、C(-2,5)、D(-5,4),分别作出于四边形ABCD关于y轴和x轴对称的图形.课堂练习2:5.探究图形关于平行于x轴或y轴的直线对称的规律如图,分别作出 PQR关于直线x=1(记为m)和直线y=-1(几位n)对称的图形.你能发现他们的对应点的坐标之间分别有什么关系吗?6.课堂小结(1)学习本内容中,你有什么收获?(2)还有什么疑问吗?7.作业习题14.2 第四题(作业本)其他做在课本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辽宁省大连市八年级数学《轴对称变换》教案2 新人教版 教学目标 在平面直角坐标系中,确定轴对称变换前后两个图形中特殊点的位置关系,再利用轴对称的性质作出成轴对称的图形
教学重点
用坐标表示轴对称
教学难点
利用转化的思想,确定能代表轴对称图形的关键点 教学过程:
一、复习轴对称图形的有关性质
二、新授:
1.学生探索:
点(x,y)关于x 轴对称的点的坐标(x,-y);点(x,y)关于y 轴对称的点的坐标(-x,y);点(x,y)关于原点对称的点的坐标(-x,-y)
2.例3 四边形ABCD 的四个顶点的坐标分别为A(-5,1)、B(-2,1)、C(-2,5)、D(-5,4),分别作出与四边形ABCD 关于x 轴和y 轴对称的图形.
(1)归纳:与已知点关于y 轴或x 轴对称的点的坐标的规律;
(2)学生画图
(3)对于这类问题,只要先求出已知图形中的一些特殊点的对应点的坐标,描出并顺次连接这些特殊点,就可以得到这个图形的轴对称图形.
3、探究问题
分别作出△PQR 关于直线x=1(记为m)和直线y=-1(记为n)对称的图形,你能发现它们的对应点的坐标之间分别有什么关系吗?
(1)学生画图,由具体的数据,发现它们的对应点的坐标之间的关系
(2)若△P 1Q 1R 1中P 1(x 1,y 1)关于x=1(记为m)轴对称的点的坐标P 2 (x 2,y 2) , 则m x x =+2
21,y 1= y 2. 若△P 1Q 1R 1中P 1(x 1,y 1)关于y=-1(记为n)轴对称的点的坐标P 2 (x 2,y 2) , 则x 1= x 2,2
21y y +=n .
三、小结本节内容
四、训练:课本135页的第1~3题
五、作业:课本136页的第5~7题
课后练习〈课堂感悟与探究〉。

相关文档
最新文档