零件的参数设计-97A
ANSI_AGMA_1106_A97
ANSI/AGMA 1106-A97ANSI/AGMA 1006-A97米制单位版美国国家标准塑料齿轮齿形尺寸AGMA标准美国国家标准塑料齿轮齿形尺寸ANSI/AGMA 1106-A97(ANSI/AGMA 1006-A97 米制单位版)美国国家标准的批准,需要由美国全国标准学会审核,查明标准编制部门业已达到应履行的程序、一致同意和其他审批准则的要求。
当根据美国全国标准学会标准评审委员会的裁决,涉及直接利害和物质利害关系方业已达成相当多数同意时,一致同意即告成立。
相当多数同意表示比简单多数要多得多,但不一定无异议。
一致同意要求一切观点和异议均加以考虑,并协同努力达成彼此的消解。
美国国家标准的采用纯属志愿性的;不拘是否赞同该标准,国家标准的实行毫不妨碍任何人不遵照它开展制造、营销、采购,或运用产品、方法或程序等活动。
美国全国标准学会不制订标准,也决不对任何美国国家标准作解释。
此外,无人有权或被授权以美国全国标准学会的名义,发表对美国国家标准的解释。
有关对本标准解释的要求,应该发送给美国齿轮制造商协会。
指示:AGMA(美国齿轮制造商协会)技术出版物依发展经历而定,持续进行改进、修订或撤销。
一切参阅任何AGMA技术出版物的人员,应该查明该出版物应是能从该协会取得的该论题最新版本。
[可以引用或摘录表格或其他内容独立的段落。
应注明文献出处,格式如下:承出版者美国齿轮制造商协会(the American Gear Manufacturers Association,1500 King Street ,Suite 201,Alexandria,Virginia 22314)许可,摘录自ANSI/AGMA 1106-A97“塑料齿轮齿形尺寸”(Tooth Proportions for Plastic Gears)]批准日期1997年8月7日摘要本标准介绍一种新版基本齿条AGMA PT,此新版基本齿条采取全圆型齿根圆角,可以在塑料制齿轮的许多应用场合优先选用。
燕山大学数学建模竞赛简介
全国大学生数学建模竞赛简介
此项竞赛的突出特点是,所有赛题都是来
源于工程技术和管理科学等领域,都是经 过数学家简化加工而成的实际问题,模拟 学生毕业参加工作时可能遇到的情况,是 大学阶段难得的一次近似于“真刀真枪” 的训练。
全国大学生数学建模竞赛简介
与以往所说的那种数学竞赛(那是纯数学竞赛) 不同,它要用到计算机,甚至离不开计算机,但 却不是纯粹的计算机竞赛,它涉及物理、化学、 生物、医学、电子、农业、管理等各学科、各领 域的知识,但也不是这些学科、领域里的纯知识 竞赛,它涉及各学科、各领域,但又不受任何一 个具体的学科、领域的局限。它要用到各方面的 综合的知识,但还不限于此.选手们不只是要有 各方面的知识,还要有驾驭这些知识,应用这些 知识处理实际问题的能力。
历届竞赛赛题基本解法
97A零件的参数设计 97B截断切割的最优排列 98A一类投资组合问题 非线性规划 随机模拟、图论 多目标优化、非线性规划
98B灾情巡视的最佳路线
99A自动化车床管理 99B钻井布局 00A DNA序列分类 00B钢管订购和运输
图论、组合优化
随机优化、计算机模拟 0-1规划、图论 模式识别、Fisher判别、人工神经网络 组合优化、运输问题
什么是数学模型?
通常我们把现实问题的一个模拟称为 模型,如交通图、地质图、航空模型和建 筑模型等. 利用数学的语言、公式、图、 表或符号等来模拟现实的模型称为数学模 型. 我们知道,对一个现实问题的研究, 一般不需要甚至不可能直接研究现实问题 的本身,而是研究模拟该现实问题的模型.
数学建模包含哪些步骤?
MCM简介-----答卷形式
在三天的参赛时间内参赛者可以使用包括
计算机、软件包、教科书、杂志和手册等 资源。比赛时要求就选定的赛题每个队在 连续三天的时间里写出论文,它包括:问 题的适当阐述;合理的假设;模型的分析、 建立、求解、验证;结果的分析;模型优 缺点讨论等。
优化方法PPT课件
无约束优化 m in f ( x ) x n
F(x)
Xl Xg
最优解都是局部最 优解,全局最优解只 能从局部最优解的 X 比较中得到.
梯 度 : f(x ) ( f, f, x 1 x 2
, x fn ) T ,H e s s ia n 矩 阵 : 2 f(x ) ( x i2 fx j)m n
必 要 条 件 :若 x * 为 的 极 小 点 , 则 f(x * ) 0
充 要 条 件 :若 f(x * ) 0 , 2f(x * )正 定 , 则 x * 是 极 小 点
唯一极小 (全局极小)
f 0.298
f 0
f( x 1x 2 ) 2 x 1 2 2 x 1 x 2 x 2 2 3 x 1 x 2
多局部极小
f 0.298
求解方法:搜索算法(数值迭代)
在迭代的每一步,确定一个搜索方向和一个步长,使沿此方向和 此步长走一步到达下一点时,函数f(X)的值下降.
步长的选择:搜索方向 d k 确定后,求步长实际上是一个一维d k
优化问题 m ifn(xk dk)
称为一维搜索
成功-失败法 黄金分割法(0.618法)
停 止 迭 代 ,X *X k. 否 则 ,转 向 ( 3 ) ;
⑷ 令Sk f Xk ,从 Xk 出发,沿Sk 进行一维搜索, 基
即求k使得:
minf Xk Sk
0
f
Xk kSk
;
本 算
⑸ 令Xk1Xk kSk,k=k+1返回⑵.
法
最速下降法是一种最基本的算法,它在最优化方法中占有重要地位.最
速下降法的优点是工作量小,存储变量较少,初始点要求不高;缺点是收敛
数学建模中的图论方法
数学建模中的图论方法一、引言我们知道,数学建模竞赛中有问题A和问题B。
一般而言,问题A是连续系统中的问题,问题B是离散系统中的问题。
由于我们在大学数学教育内容中,连续系统方面的知识的比例较大,而离散数学比例较小。
因此很多人有这样的感觉,A题入手快,而B题不好下手。
另外,在有限元素的离散系统中,相应的数学模型又可以划分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。
但是这类问题在MCM中非常少见,事实上,由于竞赛是开卷的,参考相关文献,使用现成的算法解决一个P类问题,不能显示参赛者的建模及解决实际问题能力之大小;还有一类所谓的NP问题,这种问题每一个都尚未建立有效的算法,也许真的就不可能有有效算法来解决。
命题往往以这种NPC问题为数学背景,找一个具体的实际模型来考验参赛者。
这样增加了建立数学模型的难度。
但是这也并不是说无法求解。
一般来说,由于问题是具体的实例,我们可以找到特殊的解法,或者可以给出一个近似解。
图论作为离散数学的一个重要分支,在工程技术、自然科学和经济管理中的许多方面都能提供有力的数学模型来解决实际问题,所以吸引了很多研究人员去研究图论中的方法和算法。
应该说,我们对图论中的经典例子或多或少还是有一些了解的,比如,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。
图论方法已经成为数学模型中的重要方法。
许多难题由于归结为图论问题被巧妙地解决。
而且,从历年的数学建模竞赛看,出现图论模型的频率极大,比如:AMCM90B-扫雪问题;AMCM91B-寻找最优Steiner树;AMCM92B-紧急修复系统的研制(最小生成树)AMCM94B-计算机传输数据的最小时间(边染色问题)CMCM93B-足球队排名(特征向量法)CMCM94B-锁具装箱问题(最大独立顶点集、最小覆盖等用来证明最优性)CMCM98B-灾情巡视路线(最优回路)等等。
这里面都直接或是间接用到图论方面的知识。
要说明的是,这里图论只是解决问题的一种方法,而不是唯一的方法。
运筹学的优化算法
数学建模竞赛常用算法(1)
1. 蒙特卡罗方法(Monte-Carlo方法, MC)
该算法又称计算机随机性模拟方法,也称统计试验 方法。MC方法是一种基于“随机数”的计算方法,能够 比较逼真地描述事物的特点及物理实验过程,解决一些 数值方法难以解决的问题。 MC方法的雏型可以追溯到十九世纪后期的蒲丰随机 投针试验,即著名的蒲丰问题。 MC方法通过计算机仿 真(模拟)解决问题,同时也可以通过模拟来检验自己 模型的正确性,是比赛中经常使用的方法。
98 年B 题、00年B 题、95 年锁具装箱等问题体 现了图论问题的重要性。
16
数学建模竞赛常用算法(5)
5. 计算机算法设计中的问题
计算机算法设计包括很多内容:动态规划、回溯搜 索、分治算法、分枝定界等计算机算法.
92 年B 题用分枝定界法 97 年B 题是典型的动态规划问题 98 年B 题体现了分治算法
这方面问题和ACM 程序设计竞赛中的问题类似, 可看一下与计算机算法有关的书。
17
分枝定界法
原问题的松驰问题: 任何整数规划(IP),凡放弃某些约束 条件(如整数要求)后,所得到的问题 (P) 都称为(IP)的松驰问题。 最通常的松驰问题是放弃变量的整数性 要求后,(P)为线性规划问题。
18
去掉整数约束,用单纯形法 IP LP
12
数学建模竞赛常用算法
97年的A题 每个零件都有自己的标定值,也都有自
己的容差等级,而求解最优的组合方案将要面对着的是一 个极其复杂的公式和108种容差选取方案,根本不可能去求 解析解,那如何去找到最优的方案呢?随机性模拟搜索最 优方案就是其中的一种方法,在每个零件可行的区间中按 照正态分布随机的选取一个标定值和选取一个容差值作为 一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从 中选取一个最佳的。 02年的B题 关于彩票第二问,要求设计一种更好的方 案,首先方案的优劣取决于很多复杂的因素,同样不可能 刻画出一个模型进行求解,只能靠随机仿真模拟。
数学建模简介
有关数学建模竞赛的介绍
美国数学建模竞赛(MCM):
1. 2. 3. 4. 5. 每年的2月份左右举行,4天=96小时; 学校选拔不超过7个队; 每个队3名同学组成; 参赛费用,每个队伍45美元; 参赛范围,全球,主要为美国、中国、 印度、英国等国家。
美国数学建模竞赛主页
/undergraduate/contests/ mcm 提供有关数学建模竞赛的信息; 往年的竞赛试题与评奖结果; 有关资料; 竞赛结果分析等
怎样学习数学建模
数学建模与其说是一门技术,不如说是一门 艺术,技术大致有章可循,艺术无法归纳成普 遍适用的准则
想象力 洞察力 判断力
学习、分析、评价、改进别人作过的模型 亲自动手,认真作几个实际题目
建模教程学习的基本要领:三步阅读法。 对于任何一本教材,一份资料里介绍的一种数学模 型的建立,或者一种算法,你都要问自己三个问题: 1. 这个模型叫什么名字? 2. 这个模型属于什么类型,能够解决具有哪类特 征的问题? 3. 这个模型的具体操作步骤怎么实现? 当你能够学完教材上的这个模型,并能够查找相关 资料,实例加以巩固,自己能够非常清晰地回答以 上三个问题,那么,这个模型就完全印在你的脑子 里而融会贯通了。
从问题的解决方法上分析
用到插值拟合的问题有4个; 用到神经网络的4个; 用灰色系统理论的2个; 用到时间序列分析的至少2个; 用到综合评价方法的至少2个; 机理分析方法和随机模拟都多次用到; 其它的方法都至少用到一次。 大部分题目都可以用两种以上的方法来解决,即综 合性较强的题目有21个,占75%。
有关学习网站
1.本网站是国防科技大学所办的一个数学建模网站,上面有 许多的参赛过程以及参赛经验之谈; 2. 本网站也提供一些优秀论文的下载,BBS交流等信息; 3.本网站同时也提供一些有用的数学建模所用的软件下载 服务等;
Met-L-Chek FP-97A(M) 产品说明书
) dye penetrant inspection process. All Met-L-Chek penetrants are qualified to AMS-2644 and are sold under the Met-L-Chek ® and Pen-Chek ® trademarks.FP-97A(M) is approved to AMS-2644 as a fluorescent (Type 1); Methods “B”, “C”, and “D”; sensitivity level 4 post emulsifiable inspection penetrant . It is approved with Method “B” emulsifier E-57 and Method “D” emulsifier E-58D. For Method “C” applications it is used with E-59, E-59A, R-503, and R-504. FP-97A(M) is applied by immersion, spray, or wipe on. FP-97A(M) meets requirements for high sensitivity aerospace applications.FP-97A(M) is listed on the Qualified Products List for AMS-2644. It meets the requirements of AMS-2647, ASME Boiler and Pressure Vessel Code Section V , ASTM E-165, and ASTM E-1417, for penetrant inspectionmaterials. It is low in sulfur and halogens and is safe for use on all metal surfaces.Fluorescent Penetrant Guide to METHOD “B ” (lipophilic) processing per ASTM E-14171.Part must be clean, dry and at a temperature of 4.4˚-52˚C (40˚-125˚F) before penetrant is applied.2.Apply FP-97A(M) using spray, immersion, or wipe on.3.Wait a minimum of 10 minutes; 20 minutes if temperature is4.4˚-10˚C (40-50˚F).4.Immerse part in and out of E-57 emulsifier, or flow on emulsi -fier; drain time < 3 minutes.5.Wash part; water temperature 10˚-38˚C (50˚-100 ˚F). Water pressure < 275kPa (< 40 psi); if a hydro-air nozzle is used limit pressure to < 172kPa (<25 psi). Distance >30cm (>12 inches). Wash time- only long enough to remove surface fluorescence un -der UV-A .6*. Dry part; temperature not to exceed 71˚C (160˚F), time - only long enough to dry surface.7.Apply dry powder developer, form “a” (D-72A ), by dusting, or non aqueous developer, form “d”(D-70), by spraying.7A*. If water based developers forms “b “(D-76B ) or “c”(D-78B )are used they are applied by immersion or spray, prior to step 6 drying.8.Wait a minimum of 10 minutes before inspection. Maximum time is 1 hour for form “d ” (non aqueous), maximum 2 hours for forms “b & c” (aqueous), and maximum 4 hours for form “a” (dry powder). If times are exceeded, clean part and e UV-A illumination of >1000 µw/cm 2 @ 15inches (38.1 cm)in a darkened area of <21 lux visible light (<2 foot candles).Fluorescent Penetrant Indications Type 1 (FP-97A(M ), Method D (E-58D ), Level 3, form “a”(D-72A).Guide to METHOD “D” (hydrophilic) processing per ASTM E-14171.Part must be clean, dry and at a temperature of 4.4˚-52˚C (40˚-125˚F) before penetrant is applied.2. Apply FP-97A(M) penetrant using spray, immersion, or wipe on 3.Wait a minimum of 10 minutes; 20 minutes if temperature is 4.4˚-10˚C (40-50˚F). 4.Pre-rinse part with water. Water temperature 10˚-38˚C (50˚-100˚F). Water pressure < 275kPa (< 40 psi);only long enough to remove bulk of surface penetrant. This step may be skipped when emulsifier is applied by spray.5.Immerse part in gently agitated E-58D emulsifier dilut -ed to 17-20%. for 30 seconds to 2 minutes depending upon part roughness For spray applications emulsifier concentra -tion should be 1-5% and spray contact for less than 2 minutes.6.Wash part; water temperature 10˚-38˚C (50˚-100 ˚F). Water pres -sure < 275kPa (< 40 psi); if a hydro-air nozzle is used limit pressure to < 172kPa (<25 psi). Distance >30cm (>12 inches). Wash time- only long enough to remove surface fluorescence under UV-A .7*. Dry part; temperature not to exceed 71˚C (160˚F), time - only long enough to dry surface.8.Apply dry powder developer, form “a” (D-72A ), by dusting, or non aqueous developer, form “d”(D-70), by spraying.8A*. If water based developers forms “b” (D-76B ) or “c”(D-78B )are used they are applied by immersion or spray, prior to step 6 drying.9.Wait a minimum of 10 minutes before inspection. Maximum time is 1 hour for form “d ” (non aqueous), maximum 2 hours for forms “b & c” (aqueous), and maximum 4 hours for form “a” (dry powder). If times are exceeded, clean part and e UV-A illumination of >1000 µw/cm 2 @ 15inches (38.1cm)in a darkened area of <21 lux visible light (<2 foot candles).Product AvailabilityTypical Physical Properties Fluorescent PenetrantUnited States McGean Phone: +1-216-441-4900Fax: +1-216-441-1377United Kingdom M cGean UK Phone: +44-1902-456563Fax: +44-1902-457443Singapore McGean Singapore Phone: +65-6863-2296Fax: +65-6863-2297BEFORE USING ANY OF THESE PRODUCTS, YOU MUST BECOME COMPLETELY FAMILIAR WITH THE INFORMATION CONTAINED IN MCGEAN’S SAFETY DATA SHEETS. All information contained therein or in this document regarding handling, personal protection, and other safety measures must be followed during use. McGean presents the information herein without warranty and disclaims any liability, including any consequential, special, or indirect damages, arising from its use and misuse. Because the use, the conditions of use, product or product composition, and/or applicable laws may differ from one location to another and/or may change with time, the purchaser and/or user is solely responsible for determining whether the product is appropriate for use. McGean recommends use of this product solely in commercial processes which are specified by McGean and which do not violate any third-party patent rights or any laws or regulations or otherwise adversely impact human health and the environment. Users must make their own investigations and determine the suitability of the product for their particular purposes. McGean does not guarantee the accuracy of any data provided by its suppliers. MCGEAN MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE EXCEPT AS EXPRESSLY STATED IN THE SELLER’S SALES CONTRACT OR SALES ACKNOWLEDGEMENT FORM. USE OF ANY MCGEAN PRODUCT IS AT THE USER’S RISK. Contact UsForm: yellow green liquid Density: 964 g/L Flash Point: > 93˚C (> 200˚F)Viscosity 8.9 mm 2/s Fluorescent Brightness: (AMS-2644 requirement > 90%): 107.5 % Corrosion of aluminum: none Corrosion of carbon steel: none Corrosion of magnesium: none Corrosion of stainless steel: none Corrosion of titanium: none Chloride content: < 100 ppm (0.01%)Fluoride content: < 50 ppm (0.005%)Sodium content: < 100 ppm (0.01%)Sulfur content: < 100 ppm (0.01%)Mercury: none VOC’s: 0 g/L Ozone layer depleting substances: none PCB’s: noneSpecificationsISO-3452AMS-2644 AMS-2647 ASTM E-165 ASTM E-1417RR RPS-702-7 R-R Omat # 651D BAC 5423 HONEYWELL EMS 52309P&W PMC #4353Snecma sensibilité S3ASME B & PV code Sec V6 x 1 pint (0.4L) can with dauber 1 gallon (3.7L) plastic bottle 5 gallon (18.9L) plastic jug with our spout 55 gallon (208L) plastic drum。
数学建模-黑龙江省精品课程网络制作系统2007高校版(精)
美国大学生数学建模竞赛题 2003--2004
• 03A The Stunt Person mcm03.doc • 03B Gamma Knife Treatment Planning • 03C Aviation Baggage Screening Strategies: To Screen or Not to Screen, That is the Question icm03.doc • 04A Are Fingerprints Unique? • 04B A Faster Quick Pass System • 04C To Be Secure or Not to Be? mcm04.doc
SST
参考网址:
中国工业与应用数学学会 /mcm/ 全国大学生数学建模竞赛 美国:数学及其应用联合会 /undergraduate/ 中国数学建模网站 / 04 研究生 “中国电机工程学会杯”全国大学生电工数学建模竞赛 / 04电力AB 哈工大综合信息服务—公告公示—学生活动 /class/1_1_26.htm
SST
哈工大数学建模竞赛题 2002--2004
• • • • • • 02A 02B 03A 03B 04A 04B 垃圾运输问题 02工大.doc 奥运会场馆的人员疏散问题 SARS疫情分析与预测 不同水厂的水分界线 03工大.doc 西大直街的交通线联动信号控制问题 股市全流通方案的设想 04工大.doc
SST
全国大学生数学建模竞赛题 2003--2004
• • • • • • • • 03A 03B 03C 03D 04A 04B 04C 04D SARS的传播 露天矿生产的车辆安排 SARS的传播 抢渡长江 奥运会临时超市网点设计 电力市场的输电阻塞管理 饮酒驾车 公务员招聘 03A.doc 03B.doc 03C.doc 03D.doc 04A.doc 04B.doc 04C.doc 04D.doc
数学建模的介绍
4.模型假设与符号说明 在数学建模时,要根据问题的特征 和建模目的,抓住问题的本质,忽略 次要因素,对问题进行必要的简化, 做出一些合理的做设。模型假设部分 要求用精练、准确的语言列出问题中 所给出的假设,以及为了解决问题作 者所做的必要、合理的假设。
假设做得不合理或太简单,会导致错 误的或无用的模型;假设做得过分详尽, 试图把复杂对象的众多因素都考虑进 去,会使工作变得很难或无法继续下 去,因此常常需要在合理与简化之间 作出恰当的折中。因为这一项是论文 评奖中的重要指标之一,所以必须逐 一书写清楚。
数 学 建 模
1、数学建模简介; 2、数学建模论文写作; 3、数学建模资料查询; 4、数学建模竟赛的解题方法总结。
数学建模简介
什么是数学模型?数学模型应 该说是每个人都十分熟悉的. 譬如你一定解过这样的所谓"航 行问题":甲乙两地相距750千米,船 从甲到乙顺水航行需30小时,从乙到 甲逆水航行需50小时,问船的速度是 多少.
为使模型易懂,可借助于适当的图形、 表格来描述问题或数据。因为这一部 分是论文的核心内容,也是评奖中的 重要指标之一,主要反映在"建模的创 造性"上,所以必须认真撰写。
6.模型求解 使用各种数学方法或软件包求解数 学模型。此部分应包括求解过程的公 式推导、算法步骤及计算结果。为求 解而编写的计算机程序应放在附录部 分。有时需要对求解结果进行数学上 的分析,如结果的误差分析、模型对 数据的稳定性或灵敏度分析等。
这里提请读者注意,摘要在整篇论文 评阅中占有重要权重,需要认真书写。 在地区和全国评阅时。首先根据摘要 和论文整体结构及概貌对论文优劣进 行初步筛选,然后再根据论文的内容 确定获奖等级。
3.问题重述 数学建模竞赛要求解决给定的具体 问题,所以论文中应叙述给定问题。 撰写这部分内容时,有的学生不动脑 筋,照抄原题,这样不太好,应把握 住问题的实质,用较精练的语言叙述 原问题,并提出数学建模需要解决的 问题。
机械设计图纸标注知识 工程制图标注 标注方法、方式要点
零件上(如孔、齿、槽等)的表面和用细实线连接不连续的同一表面,其表面粗糙度代(符)号只注一次。
同一表面上有不同的表面粗糙度要求时,应用细实线
画出其分界线,并注出相应的表面粗糙度代号和尺寸。
齿轮、螺纹等工作表面没有画出齿(牙)
2)过渡配合孔与轴装配时,可能有间隙或过盈的配合。孔的公差带与轴的公差带互相交叠。3)过盈配合孔与轴装配时有过盈(包括最小过盈等于零)的配合。孔的公差带在轴的公差带之下。/http_imgload.cgi?/rurl4_b=7fd9c7b35aec9232f3e4b36e 3754afdb498f97a258c3cac4664066745e803bef79a8cb1357f418e99c9eeff1e26ee1219 141cad62bec33263d3c7352d65ad8b35f501591e1d86753a00a9c23c297e0494b489ee7 &a=59&b=59基准制:在制造配合的零件时,使其中一种零件作为基准件,它的基本偏差一定,通过改变另一种非基准件的基本偏差来获得各种不同性质配合的制度称为基准制。根据生产实际的需要,国家标准规定了两种基准制。1)基孔制(如左下图所示)基孔制--是指基本偏差为一定的孔的公差带与不同基本偏差的轴的公差带形成各种配合的一种制度。见左下图。基孔制的孔称为基准孔,其基本偏差代号为H,其下偏差为零。
机械图纸标注知识
1.轴套类零件
这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。
第一章 统计建模
聚类分析
聚类分析是一种数值分类方法。所研究的样 本或者变量之间存在程度不同的相似性,要 求设法找出一些能够度量它们之间相似程度 的统计量作为分类的依据,将相似程度大的 样本聚合为一类,把另外一些彼此之间相似 程度大的样本聚合为另外一类⋯⋯关系密切 的聚合到一个小的分类单位,关系疏远的聚 合到一个大的分类单位,直到把所有样品都 聚合完毕,把不同的类型一个个划分出来, 形成一个由小到大的分类系统。
判别分析
判别分析是在已知研究对象分成若干类型(或 组别)并已取得各种类型的一批已知样品的观 测数据,在此基础上根据某些准则建立判别式, 然后对未知类型的样品进行判别分类。对于聚 类分析来说,一批给定样品要划分的类型事先 并不知道,正需要通过聚类分析来给以确定类 型的。正因为如此,判别分析和聚类分析往往 联合起来使用,例如判别分析是要求先知道各 类总体情况才能判断新样品的归类,当总体分 类不清楚时,可先用聚类分析对原来的一批样 品进行分类,然后再用判别分析建立判别式以 对新样品进行判别。
第三部分
往年试题分析
历年来的CUMCM题
1992年A题:施肥效果分析 B题:实验数据分解 1993年A题:非线性交调的频率设计 B题:足球队排名次 1994年A题:逢山开路 B题:锁具装箱 1995年A题:一个飞行管理问题 B题:天车与冶炼炉的作业调度
第二部分
统计学基础知识简介
统计学基础知识简介
统计是“认识社会的最有力的武器之 一”——列宁 什么是统计学?
一封统计学博士的情书
亲爱的莲: 我们的感情,在组织的亲切关怀下、 在领导的亲自过问下,一年来正沿着健康 的道路蓬勃发展。这主要表现在: (一)我们共通信121封,平均3.01天一 封。其中你给我的信51封,占42.1%; 我给你的信70封,占57.9%。每封信平 均1502字,最长的达5215字,最短的也 有624字。
数学建模历年赛题的分析与思考
• 题型:属于社会事业和管理问题,主要包括 长江水质现状的评价、未来污染的发展趋势与 控制措施等的问题。 • 特点:数据量大、数据冗余、结构复杂,即 时性、综合性、实用性和开放性强。 • 方法:主题方法数据的处理、综合评价、微 分方程、回归拟合、灰色关联分析与预测、时 间序列和神经网络等。 • 结果:不唯一,有些结果在一定的范围和确 定的趋势。
• 大部分题目都可以用两种以上的方法来解决
2019,/8即/26 综合性较强的信息题工程目大学有信息2工5程个学院,占83.3%。
12
一、CUMCM历年赛题的分析
4、从问题的题型上分析
(1)“即时性”较强的问题有10个,占35.7%
:
1993B:足球队排名问题;
1998B:灾情巡视路线问题;
2000A:DNA序列分类问题;
2019/8/26
信息工程大学 信息工程学院
20
(7) 2005C:雨量预报方法的评价问题
• 题型:属于农业生产管理与社会事业问题, 主要包括预报方法和预报方法的评价等问题。 • 特点:数据较大,综合性、实用性、算法要 求较强。 • 方法:主题方法插值与拟合和数据误差分析 等。 • 结果:不唯一。
2019/8/26
信息工程大学 信息工程学院
14
一、CUMCM历年赛题的分析
5、近几年题目的特点
(1)综合性:一题多解,方法融合,结果多样,
学科交叉。
(2)开放性:题意的开放性,思路的开放性,方
法的开放性,结果的开放性。
(3)实用性:问题和数据来自于实际,解决方法
切合于实际,模型和结果可以应用于实际。
1999年:(A)自动化机床控制管理问题(北大:孙山泽) (B)地质堪探钻井布局问题(郑州大学:林诒勋) (C)煤矸石堆积问题(太原理工大学:贾晓峰)
ASTM D149-97a(R2004)
Designation:D149–97a(Reapproved2004)An American National Standard Standard Test Method forDielectric Breakdown Voltage and Dielectric Strength ofSolid Electrical Insulating Materials at Commercial Power Frequencies1This standard is issued under thefixed designation D149;the number immediately following the designation indicates the year oforiginal adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.Asuperscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope1.1This test method covers procedures for the determina-tion of dielectric strength of solid insulating materials at commercial power frequencies,under specified conditions.2,3 1.2Unless otherwise specified,the tests shall be made at60 Hz.However,this test method may be used at any frequency from25to800Hz.At frequencies above800Hz,dielectric heating may be a problem.1.3This test method is intended to be used in conjunction with any ASTM standard or other document that refers to this test method.References to this document should specify the particular options to be used(see5.5).1.4It may be used at various temperatures,and in any suitable gaseous or liquid surrounding medium.1.5This test method is not intended for measuring the dielectric strength of materials that arefluid under the condi-tions of test.1.6This test method is not intended for use in determining intrinsic dielectric strength,direct-voltage dielectric strength, or thermal failure under electrical stress(see Test Method D3151).1.7This test method is most commonly used to determine the dielectric breakdown voltage through the thickness of a test specimen(puncture).It may also be used to determine dielec-tric breakdown voltage along the interface between a solid specimen and a gaseous or liquid surrounding medium(flash-over).With the addition of instructions modifying Section12, this test method may be used for proof testing.1.8This test method is similar to IEC Publication243-1.All procedures in this method are included in IEC243-1.Differ-ences between this method and IEC243-1are largely editorial.1.9This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.Specific hazard statements are given in Section7.Also see6.4.1.2.Referenced Documents2.1ASTM Standards:4D374Test Methods for Thickness of Solid Electrical Insu-lationD618Practice for Conditioning Plastics for TestingD877Test Method for Dielectric Breakdown V oltage of Insulating Liquids Using Disk ElectrodesD1711Terminology Relating to Electrical InsulationD2413Practice for Preparation of Insulating Paper and Board Impregnated with a Liquid DielectricD3151Test Method for Thermal Failure of Solid Electrical Insulating Materials Under Electric StressD3487Specification for Mineral Insulating Oil Used in Electrical ApparatusD5423Specification for Forced-Convection Laboratory Ovens for Electrical Insulation2.2IEC Standard:Pub.243-1Methods of Test for Electrical Strength of Solid Insulating Materials—Part1:Tests at Power Frequencies51This test method is under the jurisdiction of ASTM Committee D09on Electrical and Electronic Insulating Materials and is the direct responsibility of Subcommittee D09.12on Electrical Tests.Current edition approved March1,2004.Published March2004.Originally approved st previous edition approved in1997as D149–97a.2Bartnikas,R.,Chapter3,“High V oltage Measurements,”Electrical Propertiesof Solid Insulating Materials,Measurement Techniques,V ol.IIB,Engineering Dielectrics,R.Bartnikas,Editor,ASTM STP926,ASTM,Philadelphia,1987.3Nelson,J.K.,Chapter5,“Dielectric Breakdown of Solids,”Electrical Properties of Solid Insulating Materials:Molecular Structure and Electrical Behavior,V ol.IIA,Engineering Dielectrics,R.Bartnikas and R.M.Eichorn, Editors,ASTM STP783,ASTM,Philadelphia,1983.4For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.5Available from the International Electrotechnical Commission,Geneva,Swit-zerland.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States. --`,`,`,,``,`,,```,`,,,```,,-`-`,,`,,`,`,,`---2.3ANSI Standard:C68.1Techniques for Dielectric Tests,IEEE Standard No.463.Terminology 3.1Definitions:3.1.1dielectric breakdown voltage (electric breakdown voltage),n —the potential difference at which dielectric failure occurs under prescribed conditions in an electrical insulating material located between two electrodes.(See also Appendix X1.)3.1.1.1Discussion —The term dielectric breakdown voltage is sometimes shortened to “breakdown voltage.”3.1.2dielectric failure (under test),n —an event that is evidenced by an increase in conductance in the dielectric under test limiting the electric field that can be sustained.3.1.3dielectric strength ,n —the voltage gradient at which dielectric failure of the insulating material occurs under spe-cific conditions of test.3.1.4electric strength ,n —see dielectric strength.3.1.4.1Discussion —Internationally,“electric strength”is used almost universally.3.1.5flashover ,n —a disruptive electrical discharge at the surface of electrical insulation or in the surrounding medium,which may or may not cause permanent damage to the insulation.3.1.6For definitions of other terms relating to solid insulat-ing materials,refer to Terminology D 1711.4.Summary of Test Method4.1Alternating voltage at a commercial power frequency (60Hz,unless otherwise specified)is applied to a test specimen.The voltage is increased from zero or from a level well below the breakdown voltage,in one of three prescribed methods of voltage application,until dielectric failure of the test specimen occurs.4.2Most commonly,the test voltage is applied using simple test electrodes on opposite faces of specimens.The specimens may be molded or cast,or cut from flat sheet or plate.Other electrode and specimen configurations may be used to accom-modate the geometry of the sample material,or to simulate a specific application for which the material is being evaluated.5.Significance and Use5.1The dielectric strength of an electrical insulating mate-rial is a property of interest for any application where an electrical field will be present.In many cases the dielectric strength of a material will be the determining factor in the design of the apparatus in which it is to be used.5.2Tests made as specified herein may be used to provide part of the information needed for determining suitability of a material for a given application;and also,for detecting changes or deviations from normal characteristics resulting from pro-cessing variables,aging conditions,or other manufacturing orenvironmental situations.This test method is useful for process control,acceptance or research testing.5.3Results obtained by this test method can seldom be used directly to determine the dielectric behavior of a material in an actual application.In most cases it is necessary that these results be evaluated by comparison with results obtained from other functional tests or from tests on other materials,or both,in order to estimate their significance for a particular material.5.4Three methods for voltage application are specified in Section 12:Method A,Short-Time Test;Method B,Step-by-Step Test;and Method C,Slow Rate-of-Rise Test.Method A is the most commonly-used test for quality-control tests.How-ever,the longer-time tests,Methods B and C,which usually will give lower test results,may give more meaningful results when different materials are being compared with each other.If a test set with motor-driven voltage control is available,the slow rate-of-rise test is simpler and preferable to the step-by-step test.The results obtained from Methods B and C are comparable to each other.5.5Documents specifying the use of this test method shall also specify:5.5.1Method of voltage application,5.5.2V oltage rate-of-rise,if slow rate-of-rise method is specified,5.5.3Specimen selection,preparation,and conditioning,5.5.4Surrounding medium and temperature during test,5.5.5Electrodes,5.5.6Wherever possible,the failure criterion of the current-sensing element,and5.5.7Any desired deviations from the recommended proce-dures as given.5.6If any of the requirements listed in 5.5are missing from the specifying document,then the recommendations for the several variables shall be followed.5.7Unless the items listed in 5.5are specified,tests made with such inadequate reference to this test method are not in conformance with this test method.If the items listed in 5.5are not closely controlled during the test,the precisions stated in 15.2and 15.3may not be realized.5.8Variations in the failure criteria (current setting and response time)of the current sensing element significantly affect the test results.5.9Appendix X1.contains a more complete discussion of the significance of dielectric strength tests.6.Apparatus6.1Voltage Source —Obtain the test voltage from a step-up transformer supplied from a variable sinusoidal low-voltage source.The transformer,its voltage source,and the associated controls shall have the following capabilities:6.1.1The ratio of crest to root-mean-square (rms)test voltage shall be equal to =265%(1.34to 1.48),with the test specimen in the circuit,at all voltages greater than 50%of the breakdown voltage.6.1.2The capacity of the source shall be sufficient to maintain the test voltage until dielectric breakdown occurs.For most materials,using electrodes similar to those shown in Table 1,an output current capacity of 40mA is usually satisfactory.For more complex electrode structures,or for6Available from American National Standards Institute (ANSI),25W.43rd St.,4th Floor,New York,NY10036.2testing high-loss materials,higher current capacity may be needed.The power rating for most tests will vary from0.5kV A for testing low-capacitance specimens at voltages up to10kV, to5kV A for voltages up to100kV.6.1.3The controls on the variable low-voltage source shall be capable of varying the supply voltage and the resultant test voltage smoothly,uniformly,and without overshoots or tran-sients,in accordance with12.2.Do not allow the peak voltage to exceed1.48times the indicated rms test voltage under any circumstance.Motor-driven controls are preferable for making short-time(see12.2.1)or slow-rate-of-rise(see12.2.3)tests.6.1.4Equip the voltage source with a circuit-breaking device that will operate within three cycles.The device shall disconnect the voltage-source equipment from the power service and protect it from overload as a result of specimen breakdown causing an overload of the testing apparatus.If prolonged current follows breakdown it will result in unnec-essary burning of the test specimens,pitting of the electrodes, and contamination of any liquid surrounding medium.6.1.5The circuit-breaking device should have an adjustable current-sensing element in the step-up transformer secondary, to allow for adjustment consistent with the specimen charac-teristics and arranged to sense specimen current.Set the sensing element to respond to a current that is indicative of specimen breakdown as defined in12.3.6.1.6The current setting can have a significant effect on the test results.Make the setting high enough that transients,such as partial discharges,will not trip the breaker but not so high that excessive burning of the specimen,with resultant electrode damage,will occur on breakdown.The optimum current setting is not the same for all specimens and depending upon the intended use of the material and the purpose of the test,it may be desirable to make tests on a given sample at more than one current setting.The electrode area may have a significanteffect upon what the current setting should be.6.1.7The specimen current-sensing element may be in theprimary of the step-up transformer.Calibrate the current-sensing dial in terms of specimen current.6.1.8Exercise care in setting the response of the currentcontrol.If the control is set too high,the circuit will notrespond when breakdown occurs;if set too low,it may respondto leakage currents,capacitive currents,or partial discharge(corona)currents or,when the sensing element is located in theprimary,to the step-up transformer magnetizing current.6.2Voltage Measurement—A voltmeter must be providedfor measuring the rms test voltage.A peak-reading voltmetermay be used,in which case divide the reading by=2to get rms values.The overall error of the voltage-measuring circuitshall not exceed5%of the measured value.In addition,theresponse time of the voltmeter shall be such that its time lagwill not be greater than1%of full scale at any rate-of-riseused.6.2.1Measure the voltage using a voltmeter or potentialtransformer connected to the specimen electrodes,or to aseparate voltmeter winding,on the test transformer,that isunaffected by the step-up transformer loading.6.2.2It is desirable for the reading of the maximum appliedtest voltage to be retained on the voltmeter after breakdown sothat the breakdown voltage can be accurately read and re-corded.6.3Electrodes—For a given specimen configuration,thedielectric breakdown voltage may vary considerably,depend-ing upon the geometry and placement of the test electrodes.Forthis reason it is important that the electrodes to be used bedescribed when specifying this test method,and that they bedescribed in the report.TABLE1Typical Electrodes for Dielectric Strength Testing of Various Types of Insulating Materials AA These electrodes are those most commonly specified or referenced in ASTM standards.With the exception of Type5electrodes,no attempt has been made to suggest electrode systems for other thanflat surface material.Other electrodes may be used as specified in ASTM standards or as agreed upon between seller and purchaser where none of these electrodes in the table is suitable for proper evaluation of the material being tested.B Electrodes are normally made from either brass or stainless steel.Reference should be made to the standard governing the material to be tested to determine which, if either,material is preferable.C The electrodes surfaces should be polished and free from irregularities resulting from previous testing.D Refer to the appropriate standard for the load force applied by the upper electrode assembly.Unless otherwise specified the upper electrodes shall be5062g.E Refer to the appropriate standard for the proper gap settings.F The Type6electrodes are those given in IEC Publication243-1for testing offlat sheet materials.They are less critical as to concentricity of the electrodes than are the Types1and2electrodes.G Other diameters may be used,provided that all parts of the test specimen are at least15mm inside the edges of the electrodes.H The Type7electrodes,as described in the table and in Note G,are those given in IEC Publication243-1for making tests parallel to the surface.36.3.1One of the electrodes listed in Table1should be specified by the document referring to this test method.If no electrodes have been specified,select an applicable one from Table1,or use other electrodes mutually acceptable to the parties concerned when the standard electrodes cannot be used due to the nature or configuration of the material being tested. See references in Appendix X2for examples of some special electrodes.In any event the electrodes must be described in the report.6.3.2The electrodes of Types1through4and Type6of Table1should be in contact with the test specimen over the entireflat area of the electrodes.6.3.3The specimens tested using Type7electrodes should be of such size that all portions of the specimen will be within and no less than15mm from the edges of the electrodes during test.In most cases,tests using Type7electrodes are made with the plane of the electrode surfaces in a vertical position.Tests made with horizontal electrodes should not be directly com-pared with tests made with vertical electrodes,particularly when the tests are made in a liquid surrounding medium. 6.3.4Keep the electrode surfaces clean and smooth,and free from projecting irregularities resulting from previous tests. If asperities have developed,they must be removed.6.3.5It is important that the original manufacture and subsequent resurfacing of electrodes be done in such a manner that the specified shape andfinish of the electrodes and their edges are maintained.Theflatness and surfacefinish of the electrode faces must be such that the faces are in close contact with the test specimen over the entire area of the electrodes. Surfacefinish is particularly important when testing very thin materials which are subject to physical damage from improp-erlyfinished electrodes.When resurfacing,do not change the transition between the electrode face and any specified edge radius.6.3.6Whenever the electrodes are dissimilar in size or shape,the one at which the lowest concentration of stress exists,usually the larger in size and with the largest radius, should be at ground potential.6.3.7In some special cases liquid metal electrodes,foil electrodes,metal shot,water,or conductive coating electrodes are used.It must be recognized that these may give results differing widely from those obtained with other types of electrodes.6.3.8Because of the effect of the electrodes on the test results,it is frequently possible to obtain additional informa-tion as to the dielectric properties of a material(or a group of materials)by running tests with more than one type of electrode.This technique is of particular value for research testing.6.4Surrounding Medium—The document calling for this test method should specify the surrounding medium and the test temperature.Sinceflashover must be avoided and the effects of partial discharges prior to breakdown mimimized, even for short time tests,it is often preferable and sometimes necessary to make the tests in insulating liquid(see6.4.1). Breakdown values obtained in insulating liquid may not be comparable with those obtained in air.The nature of the insulating liquid and the degree of previous use may influence the test values.Testing in air may require excessively large specimens or cause heavy surface discharges and burning before breakdown.Some electrode systems for testing in air make use of pressure gaskets around the electrodes to prevent flashover.The material of the gaskets or seals around the electrodes may influence the breakdown values.6.4.1When tests are made in insulating oil,an oil bath of adequate size shall be provided.(Caution—The use of glass containers is not recommended for tests at voltages above about10kV,because the energy released at breakdown may be sufficient to shatter the container.Metal baths must be grounded.)It is recommended that mineral oil meeting the requirements of Specification D3487,Type I or II,be used.It should have a dielectric breakdown voltage as determined by Test Method D877of at least26kV.Other dielectricfluids may be used as surrounding mediums if specified.These include,but are not limited to,siliconefluids and other liquids intended for use in transformers,circuit breakers,capacitors,or cables.6.4.1.1The quality of the insulating oil may have an appreciable effect upon the test results.In addition to the dielectric breakdown voltage,mentioned above,particulate contaminants are especially important when very thin speci-mens(25µm(1mil)or less)are being tested.Depending upon the nature of the oil and the properties of the material being tested,other properties,including dissolved gas content,water content,and dissipation factor of the oil may also have an effect upon the results.Frequent replacement of the oil,or the use offilters and other reconditioning equipment may be necessary to minimize the effect of variations of the quality of the oil on the test results.6.4.1.2Breakdown values obtained using liquids having different electrical properties may not be comparable.(See X1.4.7.)If tests are to be made at other than room temperature, the bath must be provided with a means for heating or cooling the liquid,and with a means to ensure uniform temperature. Small baths can in some cases be placed in an oven(see6.4.2) in order to provide temperature control.If forced circulation of thefluid is provided,care must be taken to prevent bubbles from being whipped into thefluid.The temperature shall be maintained within65°C of the specified test temperature at the electrodes,unless otherwise specified.In many cases it is specified that specimens to be tested in insulating oil are to be previously impregnated with the oil and not removed from the oil before testing(see Practice D2413).For such materials,the bath must be of such design that it will not be necessary to expose the specimens to air before testing.6.4.2If tests in air are to be made at other than ambient temperature or humidity,an oven or controlled humidity chamber must be provided for the tests.Ovens meeting the requirements of Specification D5423and provided with means for introducing the test voltage will be suitable for use when only temperature is to be controlled.6.4.3Tests in gasses other than air will generally require the use of chambers that can be evacuated andfilled with the test gas,usually under some controlled pressure.The design of such chambers will be determined by the nature of the test program to beundertaken. 46.5Test Chamber —The test chamber or area in which the tests are to be made shall be of sufficient size to hold the test equipment,and shall be provided with interlocks to prevent accidental contact with any electrically energized parts.A number of different physical arrangements of voltage source,measuring equipment,baths or ovens,and electrodes are possible,but it is essential that (1)all gates or doors providing access to spaces in which there are electrically energized parts be interlocked to shut off the voltage source when opened;(2)clearances are sufficiently large that the field in the area of the electrodes and specimen are not distorted and that flashovers and partial discharges (corona)do not occur except between the test electrodes;and (3)insertion and replacement of specimens between tests be as simple and convenient as possible.Visual observation of the electrodes and test specimen during the test is frequently desirable.7.Hazards7.1Warning —Lethal voltages may be present during this test.It is essential that the test apparatus,and all associated equipment that may be electrically connected to it,be properly designed and installed for safe operation.Solidly ground all electrically conductive parts that any person might come into contact with during the test.Provide means for use at the completion of any test to ground any parts which:were at high voltage during the test;may have acquired an induced charge during the test;may retain a charge even after disconnection of the voltage source.Thoroughly instruct all operators in the proper way to conduct tests safely.When making high-voltage tests,particularly in compressed gas or in oil,the energy released at breakdown may be sufficient to result in fire,explosion,or rupture of the test chamber.Design test equip-ment,test chambers,and test specimens so as to minimize the possibility of such occurrences and to eliminate the possibility of personal injury.7.2Warning —Ozone is a physiologically hazardous gas at elevated concentrations.The exposure limits are set by gov-ernmental agencies and are usually based upon recommenda-tions made by the American Conference of Governmental Industrial Hygienists.7Ozone is likely to be present whenever voltages exist which are sufficient to cause partial,or complete,discharges in air or other atmospheres that contain oxygen.Ozone has a distinctive odor which is initially discernible at low concentrations but sustained inhalation of ozone can cause temporary loss of sensitivity to the scent of ozone.Because of this it is important to measure the concentration of ozone in the atmosphere,using commercially available monitoring devices,whenever the odor of ozone is persistently present or when ozone generating conditions e appropriate means,such as exhaust vents,to reduce ozone concentrations to acceptable levels in working areas.8.Sampling8.1The detailed sampling procedure for the material being tested should be defined in the specification for that material.8.2Sampling procedures for quality control purposes should provide for gathering of sufficient samples to estimate both the average quality and the variability of the lot being examined;and for proper protection of the samples from the time they are taken until the preparation of the test specimens in the laboratory or other test area is begun.8.3For the purposes of most tests it is desirable to take samples from areas that are not immediately adjacent to obvious defects or discontinuities in the material.The outer few layers of roll material,the top sheets of a package of sheets,or material immediately next to an edge of a sheet or roll should be avoided,unless the presence or proximity of defects or discontinuities is of interest in the investigation of the material.8.4The sample should be large enough to permit making as many individual tests as may be required for the particular material (see 12.4).9.Test Specimens9.1Preparation and Handling :9.1.1Prepare specimens from samples collected in accor-dance with Section 8.9.1.2When flat-faced electrodes are to be used,the surfaces of the specimens which will be in contact with the electrodes shall be smooth parallel planes,insofar as possible without actual surface machining.9.1.3The specimens shall be of sufficient size to prevent flashover under the conditions of test.For thin materials it may be convenient to use specimens large enough to permit making more than one test on a single piece.9.1.4For thicker materials (usually more than 2mm thick)the breakdown strength may be high enough that flashover or intense surface partial discharges (corona)may occur prior to breakdown.Techniques that may be used to prevent flashover,or to reduce partial discharge (corona)include:9.1.4.1Immerse the specimen in insulating oil during the test.See X1.4.7for the surrounding medium factors influenc-ing breakdown.This may be necessary for specimens that have not been dried and impregnated with oil,as well as for those which have been prepared in accordance with Practice D 2413,for example.(See 6.4.)9.1.4.2Machine a recess or drill a flat-bottom hole in one or both surfaces of the specimen to reduce the test thickness.If dissimilar electrodes are used (such as Type 6of Table 1)and only one surface is to be machined,the larger of the two electrodes should be in contact with the machined surface.Care must be taken in machining specimens not to contaminate or mechanically damage them.9.1.4.3Apply seals or shrouds around the electrodes,in contact with the specimen to reduce the tendency to flashover.9.1.5Materials that are not in flat sheet form shall be tested using specimens (and electrodes)appropriate to the material and the geometry of the sample.It is essential that for these materials both the specimen and the electrodes be defined in the specification for the material.9.1.6Whatever the form of the material,if tests of other than surface-to-surface puncture strength are to be made,define the specimens and the electrodes in the specification for the material.7Available from the American Conference of Governmental Industrial Hygien-ists,Building No.D-7,6500Glenway Ave.,Cincinnati,OH45211.5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
y0 1.5
要求xi 0 , t i , i 1, 2,..,7, 使得 Z(x 0 , t)最小.
y f (x1 , x 2 ,..., x 7 ) ~产品的参数,随机变量
第i种零件param et er的x i ~ N (x i 0 , i2 ),i 1, 2,..., n
标定值容许范围 C等 B等 A等 • x1 [0.075,0.125] / 25 / • x2 [0.225,0.375] 20 50 / • x3 [0.075,0.125] 20 50 200 • x4 [0.075,0.125] 50 100 500 • x5 [1.125,1.875] 50 / / • x6 [12,20] 10 25 100 • x7 [0.5625,0.935] / 25 100
c(t) ci (t i )
i 1
n
第i种零件param et er的x i ~ N (x i 0 , i2 ),i 1, 2,..., n
每件产品成本由质量损失和制造成本组成,平均为
Z(x 0 ,t)=Q(x 0 ,t)+c(t)=E(L(y))+c(t)
c(t) ci (t i )
或
4.2 基本模型
本题要求的是使总费用最少的设计方案。总费用由 两部分组成:零件成本和y偏离y0造成的质量损失。
设零件参数为相互独立的随机变量x1,x2,…,x7,其期 望值为x 0(i),标准差为 (i) ,容差为r(i)=3 (i) ,相对容差 为t(i)=r(i)/ x 0(i),产品参数y可以看成是x1,x2,…,x7的函数, 记为y=f(x1,…,x7)也是随机变量。质量损失应该为x0和t 的函数,损失函数记为L(y),均值 Q(x0,t)=E[L(y)] 零件制造成本只取决于零件的相对容差 ,设第i种零件 的制造成本为 ci(ti),则七种零件总成本为
2 x 1.16 4 x2
3
2 y ? Ey y0 )2 ?
? Ey y0 ) ?
2 y 2
x4 1 2.62 1 0.36 0.85 x2 x1 x3 y 174.42 x6 x7 x5 x2 x1
模型的分析及求解
5 7 7 10 5 2 2 2 2 min Z (x 0 , t) 10 (y y0 ) di ti xi 0 ci (t i ) i 1 9 i 1 s.t.a i xi 0 bi , i 1, 2,...,7.
t i 0.01,0.05,0.1. 模型中xi 0取值在[a i , bi ], 而 t i 只有三种,是离散的.
结果不唯一 a97A1.m
Z(x 0 ,t)=Q(x 0 ,t)+c(t)=E(L(y))+c(t)
y0 1.5
c(t) ci (t i )
i 1
n
y f (x1 , x 2 ,..., x 7 )
第i种零件的x i ~ N (x i 0 , i2 ),i 1, 2,..., n
Q(x 0 , t) E (L(y)) E{k(y y0 )2 }
数学模型为:
5 7 7 10 5 2 2 2 2 min Z (x 0 , t) 10 (y y0 ) di ti xi 0 ci (t i ) i 1 9 i 1 s.t.a i xi 0 bi , i 1, 2,...,7.
t i 0.01,0.05,0.1.
0.56
2 x 1.16 4 x2
3
近似计算,设:
7
第i种零件的x i ~ N (x i 0 , i2 ),i 1, 2,..., n
f y f (x 0 ) di (x i x i 0 ), 其中d i i 1 xi
Ey f (x 0 ), D(y)
• 三、参数的说明 • y 表示粒子分离器的某参数 • y0 表示粒子分离器的该参数的目标值, 为1.50 • X0 表示七个零件参数的标定值向量 • X0=(x1,x2,x3,x4,x5,x6,x7) r(i) 表示第i种零件的容差 i=1 2…7 (i) 表示第i种零件的均方差 i=1 2…7 t(i) 表示第i种零件的相对容差 i=1 2…7 r(i) =3(i),
Z =748.7元
*
x0 =(0.075,0.375,0.125,0.1185,1.1616,19.96,0.5625) t (0ห้องสมุดไป่ตู้05,0.05,0.05,0.1,0.1,0.05,0.05)=(B,B,B, C,C,B,B)
利用Matlab编程求解得到一个结果:
x= 0.0750 0.3750 0.1250 0.1200 1.3608 13.5229 0.6020 fval = 748.7368
qiu97A1.lg4
5 7 7 10 5 2 2 2 2 min Z (x 0 , t) 10 (y y0 ) di ti xi 0 ci (t i ) i 1 9 i 1 s.t.a i xi 0 bi , i 1, 2,...,7.
t i 0.01,0.05,0.1.
kE{(y E(y) E(y) y0 ) 2 } k{E{[y Ey] } ( Ey y0 ) } k{ ( Ey y0 ) }
2 2 2 y 2
设零件的参数y
y f (x1 , x 2 ,..., x 7 )
0.56
x4 1 2.62 1 0.36 x 0.85 2 x1 x3 y 174.42 x6 x7 x5 x2 x1
2 y 7 i 1
, i 1, 2,...,7.
x x0
di2 D(x i )
di2 i2
i 1
7
又第i个参数的容差规定为均方差的3倍. r (i) 3 i , 相对容差t(i) ti t (i) r (i) / x i 0 ,i 1, 2,...,7.
ti xi 0 i2 3
25 50 50 100 / 100 25
/ / 200 500 / 100
现进行成批生产,每批产量1,000个。在原设计中,7个零 件参数的标定值为: x1=0.1,x2=0.3,x3=0.1,x4=0.1,x5=1.5,x6=16,x7=0.75; 容差均取最便宜的等级。 请你综合考虑y偏离y0造成的损失和零件成本,重新 设计零件参数(包括标定值和容差),并与原设计比较, 总费用降低了多少?
9
i 1
di2ti2 xi20
ci (t i )
i 1
7
可对每一固定的t,分别求解一系列子问题,得到最优 解,比较得到问题的最优解. 混合非线性整数规划问题,可用Lingo软件求解. 一个参考最优解:
Z* =748.7元
x0 =(0.075,0.375,0.125,0.1185,1.1616,19.96,0.5625) t (0.05,0.05,0.05,0.1,0.1,0.05,0.05)=(B,B,B, C,C,B,B)
一.问题:
试通过如下的具体问题给出一般的零件参数设计方法。 粒子分离器某参数(记作y)由7个零件的参数(记作 x1,x2,...,x7)决定,经验公式为:
x4 1 2.62 1 0.36 x 0.85 2 x1 x3 Y 174.42 x6 x7 x5 x2 x1
B等 25 50 50 100 / 25 25
A等 / / 200 500 / 100 100
标定值容许范围 C等 B等
A等
• • • • • • •
x1 x2 x3 x4 x5 x6 x7
[0.075,0.125] / [0.225,0.375] 20 [0.075,0.125] 20 [0.075,0.125] 50 [1.125,1.875] 50 [12,20] 10 25 [0.5625,0.935] /
0.56
2 x 1.16 4 x2
3
y的目标值(记作y0)为1.50。当y偏离y0 0.1时,产品为 次品,质量损失为1,000元;当y偏离y0 0.3时,产品为 废品,损失为9,000元。 零件参数的标定值有一定的容许范围;容差分为A、 B、C三个等级,用与标定值的相对值表示,A等为 1%,B等为 5%,C等为 10%。7个零件参数标定值的容 许范围,及不同容差等级零件的成本(元)如下表(符 号/表示无此等级零件):
零件参数的标定值有一定的容许范围;容差分为A、B、 C三个等级,用与标定值的相对值表示,A等为 1%, B等为 5%,C等为 10%。7个零件参数标定值的容许范 围,及不同容差等级零件的成本(元)如下表(符号/ 表示无此等级零件):
标定值容许范围 C等 • x1 [0.075,0.125] / • x2 [0.225,0.375] 20 • x3 [0.075,0.125] 20 • x4 [0.075,0.125] 50 • x5 [1.125,1.875] 50 • x6 [12,20] 10 • x7 [0.5625,0.935] /
2
2 2 2 d 2 2 i xi 0ti y di D(x i ) i 1 i 1 9 7 7
2 Z(x 0 ,t)=Q(x 0 ,t)+c(t)=E(L(y))+c(t) 105{ y ( Ey y0 )2 } c(t)
5 7 7 10 5 2 2 2 2 10 (y y0 ) di ti xi 0 ci (t i ) i 1 9 i 1