矩阵和行列式复习知识点(完整资料).doc
矩阵与行列式知识点总结
矩阵与行列式知识点总结矩阵和行列式是线性代数中的重要概念,广泛应用于数学、物理、计算机科学等领域。
本文将对矩阵和行列式的定义、性质以及相关运算进行总结,以便读者对这两个概念有更深入的了解。
一、矩阵的定义与性质矩阵是一个由数字组成的矩形阵列,包含m行n列,用记号A[m×n]表示。
其中,每个数字称作矩阵的元素,用aij表示第i行第j列的元素。
矩阵可以是实数矩阵、复数矩阵或其他数域上的矩阵。
矩阵的性质包括以下几点:1. 矩阵的大小由它的行数和列数决定,记作m×n。
2. 矩阵可以进行加法和数乘运算。
3. 矩阵的转置将行和列对换。
4. 矩阵可以相乘,但乘法不满足交换律。
5. 矩阵对应的行向量和列向量也有相应的定义和运算。
二、行列式的定义与性质行列式是一个与矩阵相关的特殊函数,对于方阵A[n×n],其行列式记作det(A)或|A|。
行列式是一个标量值,可以用于衡量矩阵的性质。
行列式的性质包括以下几点:1. 行列式的值可以是实数、复数或其他数域上的元素。
2. 行列式的值表示了矩阵所包含的信息,可用于判断矩阵的可逆性、线性相关性等。
3. 行列式满足代数运算的规律,如加法、数乘、转置等。
4. 行列式可以通过对换行或列、倍乘行或列等行列变换来计算。
5. 行列式的值等于其转置矩阵的值。
三、矩阵与行列式的运算矩阵与行列式之间存在着紧密的联系,它们可以进行多种运算。
1. 矩阵的加法和数乘运算:两个矩阵相加(减)时,先确定它们的大小是否一致,然后逐个对应元素相加(减)。
数乘运算即将一个矩阵的每个元素乘以一个常数。
2. 矩阵的乘法运算:两个矩阵相乘时,第一个矩阵的列数要等于第二个矩阵的行数。
将第一个矩阵的每一行与第二个矩阵的每一列进行对应元素的乘法运算,并求和得到结果矩阵的相应元素。
3. 矩阵的转置运算:矩阵的转置是将其行和列交换得到的新矩阵。
转置后的矩阵行数与原矩阵的列数相等,列数与原矩阵的行数相等。
考研数学 线代复习重点解析之行列式与矩阵.doc
矩阵是线性代数的核心,也是考研数学的重点考查内容。
考试单独考查本部分以小题为主,平均每年1至2题。
但是矩阵是线性代数的“活动基地”,线性代数的考题绝大部分是以矩阵为载体出题的,因此矩阵复习的成败基本决定了整个线性代数复习的成败。
该部分的常考题型有:矩阵的运算,逆矩阵,初等变换,矩阵方程,矩阵的秩,矩阵的分块。
其中逆矩阵考得最多。
结合考试分析,建议考生从以下方面把握该部分内容:
矩阵运算中矩阵乘法是核心,要特别注意乘法不满足交换律和消去律。
逆矩阵需注意三方面——定义、与伴随矩阵的关系、利用初等变换求逆矩阵。
伴随矩阵是难点,需熟记最基本的公式,并灵活运用。
对于矩阵的秩,着重理解其定义,及其与行列式及矩阵可逆性的关系。
辛勤的汗水必将浇开梦想之花。
祝福广大考生梦想成真。
矩阵与行列式知识梳理
矩阵与行列式知识梳理一、矩阵的概念1 将mn 个实数),,2,1;,,2,1(n j m i a ij ==排成m 行n 列的矩形数表(通常用圆括号把数表括起来):⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 212222111211称为一个m 行n 列的矩阵,简称n m ⨯矩阵,用______表示.简记为_____.数ij a 称为矩阵的元素.几种特殊类型的矩阵:行矩阵、列矩阵、方阵、单位矩阵、零矩阵. 2 对于关于y x ,的线性方程组⎩⎨⎧=+=+222111c y b x a c y b x a ,则矩阵⎪⎪⎭⎫⎝⎛2211b ab a 称为该线性方程组的系数矩阵. 矩阵⎪⎪⎭⎫⎝⎛222111c b a c b a 称为该线性方程组的增广矩阵. 3 矩阵的三种变换:(1) (2) (3)4 矩阵变换的目的是将线性方程组的系数矩阵变成单位矩阵,其增广矩阵的最后一列就是方程组的解.二、二阶行列式 1 定义:我们用记号2211b a b a 表示算式1221b a b a -,即12212211b a b a b a b a -=,记号2211b a b a 叫做行列式,因为它只有两行两列,所以把它叫做二阶行列式. 1221b a b a -叫做行列式2211b a b a 的展开式,其计算结果叫做2211b a b a 的值.1a 、2a 、1b 、2b 都叫做行列式2211b a b a 的元素.2 对角线法则:二阶行列式的展开式是主对角线上的两个数的乘积减去副对角线上的两个数的乘积.3作为判别式的二阶行列式:关于x 、y 的二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a ①其中1a 、2a 、1b 、2b 不全为零,行列式2211b a b a D =叫做方程组①的系数行列式. 设2211b c b c D x =,2211c a c a D y =.则当0≠D 时,方程组①有唯一解. 当0=D 且0==y x D D 时,方程组①有无穷多解. 当0=D ,x D 、y D 中至少有一个不为零时,方程组①无解. 三、三阶行列式1 三阶行列式的定义:把九个数排成三行三列的方阵,用记号333222111c b a c b a c b a ①表示算式 231312123213132321c b a c b a c b a c b a c b a c b a ---++②.我们把记号①叫做三阶行列式,把记号②叫做三阶行列式①的展开式,212121,,,,,c c b b a a 都叫做三阶行列式①的元素. 2 三阶行列式的展开方法:按对角线展开、按某一行(或一列)展开.3行列式333222111c b a c b a c b a 中某元素x 位于第i 行第j 列,其代数余子式等于它的余子式乘上j i +-)1(.4 【结论】三阶行列式等于它的任意一行(或一列)的所有元素与它们各自对应的代数余子式的乘积的和.如:111111333222111C c B b A a c b a c b a c b a ++=.其中33221c b c bA =,33221c a c a B -=,33221b a b a C -=【结论】三阶行列式的某一行(或一列)的各元素与另一行(或一列)对应元素的代数余子式的乘积的和等于零.5关于z y x ,,的三元一次方程组⎪⎩⎪⎨⎧=++=++=++333322221111d z c y b x a d z c y b x a d z c y b x a 的系数行列式为333222111c b a c b a c b a D =,当0≠D 时,方程组有唯一解. 当0=D 时,方程组无解或无穷多解.注意:三元一次方程组,当0=D 时,情况复杂,方程组的解不同于二元一次方程组!。
总复习-1矩阵与行列式
I 矩阵、行列式一、矩阵的概念及其初等变换 矩阵概念矩阵与行列式的区别:矩阵(数表)行列式(数)记号:1111n m n m a a a a ⎛⎫⎪⎪ ⎪⎝⎭m n A ⨯ ()ij m n a ⨯1111n m nn a a a a n Aij na 化简:1111m n m n a a a a ⎛⎫⎪⎪ ⎪→⎝⎭1111nm nn a a a a =矩阵的初等变换理论定义:(看书) 结论一对任一m n ⨯矩阵A ,设()R A r =,有1,11,1000000000110r n r r rn m n c c c c A A ++⨯⎛⎫⎪ ⎪ ⎪−−−→ ⎪⎪ ⎪ ⎪ ⎪⎝⎭行变(的行最简形矩阵)应用1 高斯消元法解线性方程组增广矩阵A −−−→行变行最简形矩阵(可直接写出解)应用2 列摆行变法判定向量组的线性相关性及求最大无关组、秩和线性表示式1,1111,12100(,,,)(,,,)0000000011,,r n r r r n r n r n c c c c J J εαααε+++⎛⎫⎪⎪ ⎪−−−→=⎪ ⎪⎪⎪⎪⎝⎭行变设则12,,,n ααα 与11,,,,,r r n J J εε+ 有相同的线性相关性。
应用3 行初等变换法求逆矩阵A -1、A -1B1(,)(,)A E E A -−−−→行变1(,)(,)A B E A B -−−−→行变结论二对任一m n ⨯矩阵A ,设()R A r =,有000r m n E A A ⨯⎛⎫−−−−→ ⎪⎝⎭列行变和变(的相抵标准形)应用1 初等变换法求矩阵的秩(可作列变)应用2 标准形思路:,,000rEA P Q P Q ⎛⎫= ⎪⎝⎭其中是可逆矩阵. 结论三 初等变换与初等矩阵的转化关系:箭号等号关系(“左行右列”)二、矩阵的运算加法、数乘、乘法、转置 关于矩阵乘法,注意:(1) 矩阵乘法与数的乘法不同之处不满足交换律AB BA ≠222()2A B A AB B +≠++ 22()()A B A B A B -≠+- ()k k k AB A B ≠注意:,A B 设均为方阵,则错误!未找到引用源。
线性代数各章要点整理
第一章行列式主要知识点一、行列式的定义和性质1.余子式和代数余子式的定义2.行列式按一行或一列展开的公式1)2)3.行列式的性质1)2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍. 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等.二、行列式的计算1.二阶行列式和三角形行列式的计算.2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算.3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.4.行列式中各行元素之和为一个常数的类型.5.范德蒙行列式的计算公式第二章矩阵主要知识点一、矩阵的概念1.要分清矩阵与行列式的区别2.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1.矩阵A , B的加、减、乘有意义的充分必要条件2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点).3.转置对称阵和反对称阵1)转置的性质2)若A T=A (A T= - A),则称A为对称(反对称)阵4.逆矩阵1)方阵A可逆(也称非异,非奇异,满秩)的充分必要条件是.当A可逆时,.2)方阵A的伴随阵的定义。
重要公式;与A -1的关系(当方阵A可逆时,)3)重要结论:若n阶方阵A,B满足AB=E,则A,B都可逆,且A-1=B ,B-1=A.4)逆矩阵的性质:; ; .5)消去律:设方阵A可逆,且AB=AC(BA=CA),则必有B=C。
(若不知A可逆,仅知A≠0结论不一定成立。
矩阵与行列式知识点
矩阵与行列式知识点矩阵和行列式是线性代数中的重要概念,广泛应用于数学、物理、工程等领域。
本文将介绍矩阵和行列式的基本定义与性质,以及它们在实际问题中的应用。
一、矩阵的定义与性质矩阵是由一些数按照矩形排列而成的表格。
我们用$m\timesn$表示一个矩阵,其中$m$代表矩阵的行数,$n$代表矩阵的列数。
一个矩阵的元素通常用小写字母(如$a_{ij}$)表示,其中$i$表示元素所在的行数,$j$表示元素所在的列数。
矩阵的转置是指行和列互换,转置后的矩阵用$A^T$表示。
矩阵可以进行一些基本的运算,如矩阵的加法和数乘。
对于两个相同维数的矩阵$A$和$B$,它们的加法定义为$A+B$,即将对应位置的元素相加得到新的矩阵。
对于一个矩阵$A$和一个标量$c$,它们的数乘定义为$cA$,即将矩阵$A$中的每个元素都乘以$c$得到新的矩阵。
矩阵的乘法是指两个矩阵相乘得到一个新的矩阵。
对于一个$m\times n$的矩阵$A$和一个$n\times p$的矩阵$B$,它们的乘积$AB$是一个$m\times p$的矩阵。
矩阵相乘的条件是第一个矩阵的列数等于第二个矩阵的行数。
二、行列式的定义与性质行列式是一个与方阵相关的标量值。
对于一个$n\times n$的方阵$A$,我们用$|A|$表示它的行列式。
行列式的计算主要依靠代数余子式和代数余子式矩阵。
对于方阵$A$的元素$a_{ij}$,它的代数余子式$M_{ij}$是去掉$a_{ij}$所在的行和列后的余下元素的行列式,即由$n-1$阶子方阵组成。
代数余子式矩阵$A^*$是由方阵$A$的每个元素的代数余子式按照一定的规则排布而成的矩阵。
行列式的计算方法有很多,包括拉普拉斯展开法、行列式按行展开法等。
其中,拉普拉斯展开法是最常用的方法,即选择方阵的任意一行或一列展开,并用代数余子式乘以对应元素后进行求和。
行列式具有很多重要的性质,如行列式的性质对换、行列式的性质正交等。
矩阵和行列式复习知识点汇总
矩阵和行列式复习知识点汇总一、矩阵的定义和运算:1.矩阵是一个按照矩形排列的数字集合。
一个m×n的矩阵有m行和n列。
2. 矩阵的元素通常用小写字母表示,如a_ij表示矩阵A的第i行第j列的元素。
3.矩阵的加法:若A和B是同型矩阵,则它们的和A+B也是同型矩阵,且相加的结果为对应位置的元素之和。
4.矩阵的数乘:若A是一个矩阵,k是一个标量,则kA是一个矩阵,且每个元素都乘以k。
5. 矩阵的乘法:若A是一个m×n的矩阵,B是一个n×p的矩阵,则AB是一个m×p的矩阵,其中C_ij等于A的第i行与B的第j列对应元素的乘积之和。
二、矩阵的特殊类型:1.零矩阵:所有元素都为0的矩阵。
2.对角矩阵:主对角线上元素以外的其他元素均为0的矩阵。
3.单位矩阵:主对角线上元素都为1,其他元素为0的对角矩阵。
4.转置矩阵:将矩阵A的行和列互换得到的矩阵,记作A^T。
5.逆矩阵:对于一个n阶方阵A,如果存在一个矩阵B使得AB=BA=I (其中I为单位矩阵),则称B为A的逆矩阵,记作A^(-1)。
只有非奇异矩阵才有逆矩阵。
三、行列式的定义和性质:1. 行列式是一个与方阵相关的标量值。
一个n阶方阵A的行列式通常用det(A)或,A,表示。
2. 二阶方阵A的行列式可表示为:det(A) = a11 * a22 - a12 *a213.计算三阶及以上行列式时,可利用代数余子式和拉普拉斯展开公式。
4.行列式的性质:a) 若A的其中一行(列)的元素全为0,则det(A) = 0。
b) 若A的两行(列)互换,则det(A)的符号会变化。
c) 若A的其中一行(列)的元素都乘以常数k,则det(kA) = k^n * det(A)。
d) 若A的两行(列)相等,则det(A) = 0。
e)若A的其中一行(列)的元素都乘以常数k,再加到另一行(列)上,对应行列式的值不变。
四、矩阵的行列式和逆矩阵:1. 对于一个n阶方阵A,若其行列式不为0(即det(A) ≠ 0),则A是一个非奇异矩阵,有逆矩阵A^(-1)。
矩阵和行列式知识要点
矩阵和行列式知识要点一、矩阵(Matrix)1.定义矩阵是按照一定规则排列的数(或变量)的矩形阵列。
一般用大写字母表示,如A、B,其元素用小写字母表示并用下标表示元素的位置。
2.类型根据矩阵的元素可以分为实矩阵(元素为实数)、复矩阵(元素为复数)、数值矩阵(元素为纯数值而不是变量)等。
3.运算(1)矩阵的加法:对应元素相加。
(2)矩阵的数乘:矩阵的每个元素乘以相同的数。
(3)矩阵的乘法:矩阵A的列数等于矩阵B的行数时,A乘以B的结果是一个新的矩阵C,C的第i行第j列的元素是A的第i行与B的第j列元素的乘积之和。
4.逆矩阵如果一个方阵A存在逆矩阵A-1,使得A与A-1相乘等于单位矩阵I,即A·A-1=I,那么称A为可逆矩阵或非奇异矩阵,A-1为A的逆矩阵。
5.矩阵的转置将一个矩阵的行变为同序数的列,列变为同序数的行,得到的新矩阵称为原矩阵的转置矩阵。
二、行列式(Determinant)1.定义行列式是一个表示线性变换对坐标的拉伸或者压缩程度的标量值。
一般用竖线“,,”或者方括号“[]”表示。
2.性质(1)行列式的值等于其转置矩阵的值。
(2)行列式对换两行(列)变号。
(3)行列式中如果有两行(列)相同,则行列式的值为0。
(4)行列式其中一行(列)的元素都是两数之和,行列式的值可以分开计算。
3.行列式的计算方法(1)拉普拉斯展开法:取行(列)进行展开,将问题逐步转化为计算较小规模的子行列式。
(2)数学归纳法:将行列式的展开按照第一行(列)来进行,用递归的方法逐步减小行列式的规模。
4.逆矩阵与行列式的关系若矩阵A可逆,则A的逆矩阵A-1的值等于A的行列式的倒数,即A-1=1/,A。
三、矩阵和行列式的应用1.线性方程组2.线性变换矩阵可以表示线性变换,通过矩阵与向量的乘法,可以实现向量的旋转、缩放等操作。
3.特征值和特征向量矩阵的特征值和特征向量是矩阵在线性变换下的固有性质,通过计算矩阵的特征值和特征向量,可以得到矩阵的重要信息,如对称矩阵的主对角线元素就是其特征值。
大学数学易考知识点线性代数中的矩阵与行列式
大学数学易考知识点线性代数中的矩阵与行列式大学数学易考知识点:线性代数中的矩阵与行列式在大学数学中,线性代数是一门重要的基础课程,其中矩阵与行列式是其核心内容之一。
掌握了矩阵与行列式的基本概念和操作方法,对于理解和应用线性代数具有极大的帮助。
本文将介绍线性代数中矩阵与行列式的相关知识点,帮助理清概念、加深理解,并为后续的学习奠定基础。
一、矩阵的基本概念与运算1. 矩阵的定义矩阵是一个由m行n列的数字按一定顺序排成的一个矩形阵列。
其常用表示形式为:A = [aij]m×n = |a11 a12 .. a1n||a21 a22 .. a2n||... ... .. ... ||am1 am2 .. amn|其中,a_ij表示矩阵A中第i行第j列的元素。
2. 矩阵的运算(1)矩阵的加法:若A = [aij]m×n,B = [bij]m×n为两个m×n矩阵,则矩阵A与B的和为C = [cij]m×n,其中cij = aij + bij。
(2)矩阵的数乘:若A = [aij]m×n为一个m×n矩阵,k为任意实数,则kA = [kaij]m×n。
(3)矩阵的乘法:若A = [aij]m×p为一个m×p矩阵,B = [bij]p×n为一个p×n矩阵,则矩阵A与B的乘积为C = [cij]m×n,其中cij =∑(k=1→p) aikbkj。
二、行列式的基本概念与性质1. 行列式的定义行列式是一个与矩阵相关的数。
对于一个n阶方阵A = [aij]n×n,其行列式记为|A|或det(A),定义为:|A| = ∑(s∈Sn) (sgn(s)·a1s(1)·a2s(2)·...·ans(n))其中,Sn为全排列的集合,sgn(s)为排列s的逆序数的(-1)^k次方。
矩阵和行列式知识要点
矩阵和行列式知识要点一、矩阵的定义与基本运算:1.矩阵的定义:矩阵是一个按照矩阵元素排列形成的矩形阵列。
通常用大写字母表示,如A。
2.矩阵的元素:矩阵中的每个数称为矩阵的元素,用小写字母表示,如a。
3.矩阵的维数:矩阵的行数和列数称为矩阵的维数。
若一个矩阵有m 行n列,称为m×n阶矩阵。
4.矩阵的运算:a.矩阵的加法:如果两个矩阵A和B的维数相同,则它们可以相加,A+B的结果是一个与A和B维数相同的矩阵,即对应元素相加。
b.矩阵的数乘:如果一个矩阵A乘以一个数k,那么结果是一个与A 维数相同的矩阵,即将A的每个元素乘以k。
c.矩阵的乘法:如果两个矩阵A和B可以相乘,那么它们的乘积AB 的结果是一个新的矩阵,其行数等于A的行数,列数等于B的列数。
矩阵乘法不满足交换律。
二、行列式的定义与性质:1.行列式的定义:对于一个n×n的矩阵,将它的元素按照一定的规则排列成一个方阵,方阵元素的排列称为一个排列,用行列式表示。
行列式实际上是对矩阵的一种性质的一种数学描述。
2.行列式的计算:a.二阶行列式:二阶行列式即2×2阶矩阵的行列式。
b. 三阶行列式:三阶行列式即3×3阶矩阵的行列式。
可以利用“Sarrus法则”进行计算。
c. n阶行列式:n阶行列式可以利用定义展开、代数余子式、Laplace定理等方法进行计算。
3.行列式的性质:a.行列式的性质1:行列式与它的转置行列式相等。
b.行列式的性质2:互换行列式的两行(两列),行列式变号。
c.行列式的性质3:若行(列)中有零元素,则行列式的值为0。
d.行列式的性质4:若行(列)的其中一元素可被另一行(列)的元素表示,则行列式的值为0。
e.行列式的性质5:行列式中有两行(两列)完全相同,则行列式的值为0。
三、逆矩阵与可逆矩阵:1.逆矩阵的定义:对于一个n×n的矩阵A,如果存在一个n×n的矩阵B,使得AB=BA=I(单位矩阵),则A称为可逆矩阵,B称为A的逆矩阵,且B=A^(-1)。
矩阵行列式复习总结
7
设 A为n方阵, 证明
(1) A 0 A 0 ( 2)
A A
n 1
证明:(1)如果A=O, 则结论显然成立. 如果A≠O,反证法 假设 A 0 ,则 A 可逆,由 AA A E O 两边右乘
( A ) 1 得A=O ,矛盾。
(2) 如果 A 0 , 由(1)结论成立。如果 A 0 ,
ai1 A j1 ai 2 A j 2 ain A j 2 a1i A1 j a2i A2 j ani Anj
例1 解:
1 1 求 A ( 2 A ) 5 A 设A为3阶方阵, , 2 A AA
1
1
1 1 A 2
( 2 A)
1 1 5 1 5 A A A 2 A1 2 2
-32-
E (1,2) A B
B BB
*
1
A A E (1,2)
1
1
A E (1,2)
*
9
A (ai j )mn , B (bi j )nl ,证明AB=0的充分必要条件
是B的每一列都是齐次线性方程组AX=0的解.
证 将A分成1 1块, B分成1 n块,
AB AB1 , AB2 ,
上下三角行列式的值对角线上元素之积3性质4特殊关系式baabn阶方阵的行列式n阶方阵的行列式5展开定理ijijnjnibaab当是奇数阶的时候成立成立baabbabaababab13a111154125当a与b可交换时有下面二项展开式称为纯量矩阵它与任何方阵可交换
矩阵
1. 矩阵的定义
一些特殊的矩阵:零矩阵、行矩阵、列矩阵、方阵、
1
矩阵与行列式的基本知识
矩阵与行列式的基本知识矩阵与行列式是线性代数中的重要概念和工具,广泛应用于数学、物理、计算机科学等各个领域。
本文将介绍矩阵与行列式的基本知识,包括定义、性质以及它们在实际问题中的应用。
一、矩阵的定义和性质矩阵是由m行n列元素排列成的一个矩形数表。
常用的表示方法是用大写字母表示矩阵,例如A, B, C等。
一个矩阵可以用一个m×n的数表表示,其中m表示矩阵的行数,n表示矩阵的列数。
矩阵中的每个元素可以是实数、复数或者其他数域中的元素。
矩阵中的元素可以用小写字母表示,例如a11, a12等。
矩阵中的元素按照行和列的顺序排列,例如矩阵A可以表示为:A = [a11 a12 a13][a21 a22 a23][a31 a32 a33]矩阵的运算包括矩阵加法、矩阵乘法以及数乘等。
矩阵加法的定义是对应元素相加,即若A和B是同型矩阵,则它们的和A + B的定义是一个矩阵,其中的每个元素是A和B中对应元素的和。
矩阵乘法的定义是第一个矩阵的行与第二个矩阵的列的对应元素相乘并求和。
若A是一个m×n的矩阵,B是一个n×p的矩阵,则它们的乘积AB的定义是一个m×p的矩阵,其中的每个元素由矩阵A的第i行和矩阵B的第j列的对应元素相乘并求和。
矩阵具有一些重要的性质,例如矩阵的转置、逆矩阵和对称矩阵等。
矩阵的转置是指将矩阵的行和列互换得到的新矩阵。
矩阵的逆矩阵是指与原矩阵相乘得到单位矩阵的矩阵。
对于方阵(行数等于列数的矩阵),若存在逆矩阵,则称该矩阵是可逆的。
二、行列式的定义和性质行列式是一个与矩阵相关的数值。
对于一个n阶方阵,它的行列式可以用|A|表示。
行列式的定义是一个关于矩阵元素的表达式。
|a11 a12 ... a1n||a21 a22 ... a2n||... ... ... ...||an1 an2 ... ann|一个2阶方阵A的行列式可以表示为:|A| = a11 * a22 - a12 * a21行列式可以用于判断矩阵的某些性质,例如矩阵的可逆性和线性方程组的解的情况。
线性代数背诵要点(全)
第一章 行列式一、行列式的概念、展开公式及其性质 (一)行列式的概念nnn n n n a a a a a a a a a A .. (2)12222111211=(二)行列式按行(列)展开公式公式为关于副对角线,其计算角线上元素的乘积三角行列式等于其主对下上的代数余子式为的余子式,而阶行列式,称之为列元素后的行及第中去掉第是其中.2......)(.1)1(1)1( (221122)11221122112211nnnn nn ij ij j i ij ij ijj i ij nj nj j j j j in in i i i i a a a a a a a a a a M a n j i A M M A A a A a A a A a A a A a A ⋅⋅⋅=******=******---=+++=+++=++11212)1(11211121)1(......n n n n n n n nn n na a a a a a a a a ⋅⋅⋅-=******=******---- B A OB A BA OB A B OA B O A n B m A mn ⋅-=*=*⋅=*=*)1(.3阶矩阵,则是阶矩阵,是开式,设两种特殊的拉普拉斯展(三)行列式的性质1.经转置的行列式的值不变,即T A A =2.行列式中某一行各元素如有公因数k ,则k 可以提到行列式符号外,若行列式某行元素全是零,则行列式的值为零3.如果行列式中某行的每个原色都是两个的和,则这个行列式可以拆成两个行列式的和mlb b a a 2121++=mlb a 11+mlb a 224对换行列中某两行的位置,行列式的值只改变正负号;若两行元素对应相对(成比例),则行列式的值为零 5.把某行的k 倍加至另一行,行列式的值不变(四)关于代数余子式的求和...0...)()(.2,.122112211=+++=+++nk nj k j k j jn in j i j i ij ij ij ij A a A a A a A a A a A a a A A a 乘积之和必为零对应元素的代数余子式列元素与另一行列行列式一行的取值无关与式值并不影响其代数余子所在行或列中的元素的只改变二、有关行列式的几个重要公式A k kA n A n =阶矩阵,则是若.1B A B A n B A •=阶矩阵,则是,若.211-1.3--*==AA n A AA n A n 阶可逆矩阵,则是若阶矩阵,则是若∏≤≤----==ni j j i n nn n n nx x A x x x x x x x x x A n A 1112112222121)( (1)...11.4,则阶范德蒙矩阵是若 ∏==ni i i A A n A 1.5λλ的特征值,则是阶矩阵,是若B A B A =,则若~.6三、关于克莱姆法则的系数换成常数项中的是把其中则方程组有唯一解方程组,如果系行列式个未知数的非齐次线性个方程对于j j n n x D D DDx D D x D D x A D n n ,,...,,,02211===≠=则方程组只有零解程组,系数行列式个未知数的齐次线性方个方程对于,0≠=A D n n 0==A D n n 数行列式程组,有非零解,则系个未知数的齐次线性方个方程对于逆序数的计算,从左至右,看每个数后面比它小的数的个数 经初等变换矩阵的秩不变第二章 矩阵及其运算一、矩阵的概念与几类特殊方阵 (一)矩阵及相关概念 1.矩阵阶方阵阶矩阵或是,则称若或矩阵,简记称为列的表格行排成的个数n n A n m a A n m a a a a a a a a a n m a n m n m ij mn m m n n ij =⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯,)( (21)2222111211 2.0矩阵00,则称为零矩阵,记作中所有元素而都是如果矩阵A 3.同型矩阵是同型矩阵与则称中如果,矩阵B A t n s m b B a A t s ij n m ij ,,,)(,)(====⨯⨯4.矩阵相等即对应的元素都相等同型矩阵),,(j i b a B A ij ij ∀=⇔= 1. 方阵的行列式 阶行列式其元素可构造对于方阵n a A ij )(=B A B A a a a a a a a a a A nnn n nn≠≠=得不到由,.............. (2)12222111211(二)几类特殊方阵1.单位矩阵 主对角线上的运算全是1,其余元素均为0的n 阶段方阵,称为n 阶单位矩阵, 记为E E A A AE EA ===0;2.对称矩阵),(,j i a a A A n A ji ij T ∀==即阶矩阵,如是设3.反对称矩阵对称矩阵反不一定是对称矩阵,但反也是对称矩阵,则反是同阶的若,即阶矩阵,如是设)()(,,)(,0),(-,-AB A B A B A B A a j i a a A A n A ii ji ij T λ-+=∀==4.对角矩阵、积仍然是对角矩阵同阶的对角矩阵的和差,对角矩阵记为阶矩阵,如是设Λ≠∀≡)(0j i a n A ij5.逆矩阵1,-==AA AB A E BA AB B n n A 记为的逆矩阵唯一的逆矩阵,是是可逆矩阵,,则称使阶矩阵阶矩阵,如存在是设6.正交矩阵T T T A A A E A A AA n A ===-1,是正交矩阵,则称阶矩阵,如是设 7.伴随矩阵*=A A A A A A A A A A A n A a A n a A nnnnn n ij ij ij 的伴随矩阵,记为,称为阶矩阵所构成的的代数余子式的各元素阶矩阵,则由行列式是设....................)(212221212111二、矩阵的运算(一)矩阵的线性运算 1.矩阵的加法C B A B A b a c C n m n m b B a A ij ij ij ij ij =++==⨯⨯==的和称为矩阵矩阵矩阵,则是两个设,)()()(),(2.矩阵的数乘kAA k b a ka n m k n m a A ij ij ij ij 记为的数乘,与矩阵称为数矩阵是一个常数,则矩阵,是设)()()(+=⨯⨯=3.矩阵的乘法nb r A r B Ax B AB A E A A A A B AB BA AB B A BA AB ABC B A b a b a b a b a c c C s m s n b B a A nk kj ik nj in j i j i ij ij ij ij ≤+≠======≠==≠==+++==⨯⨯==∑=)()(,00,0;0,;00,0)2(,)1(,...)()(),(212211则齐次方程组有非零解的解,若程中的每一列都是其次方应联想到或不能堆出,不能退出时,才能运算可交换即与只有换律矩阵的乘法一般没有交的乘积,记为与称为其中矩阵矩阵,则是两个设,命题成立矩阵,秩序是若不能退出的列数,则,且若可逆,则,且矩阵若立:以下两种情况消去率成,对于矩阵乘以不具有消去律n A r n m A C B A AC AB B A A r AB B A AB A AB =⨯=≠======≠=)(,,0,)3(0)(000),0(0(二)关于逆矩阵的运算规律A A =--11))(1( 111))(2(--=A kkA 111))(3(---=A B AB 11)())(4(--=T T A A 11)5(--=A A n n A A )())(6(11--=(三)关于矩阵转置的运算规律A A T T =))(1( T T kA kA =))(2( T T T AB AB =))(3( T T T B A B A +=+))(4((四)关于伴随矩阵的运算规律E A AA A A ==**)1( )2()2(1≥=-*n AA n )2())(3(2≥=-**n A AA n*-*=A k kA n 1))(4( **=)())(5(T T A A1)(,0)(;1)(,1)(;)(,)()6(-=-====***n A r A r n A r A r n A r n A r111-1-,)()(,1)()7(-**-**===A A A A A A AA A 可逆,则若(五)关于分块矩阵的运算法则⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡4433221143214321)1(B A B A B A B A B B B B A A A A ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡DW CY DZ CX BW AY BZ AX W Z Y X D C B A )2( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡T TT T TD B C A D C B A )3( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n n n C OO B C O O B )4( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--O B C O O C B O C O O B C O O B 111-1-1-1-)4(,三、矩阵可逆的充分必要条件.8,.70.6)(.5,.4)(.30.2.121的特征值全不为总有唯一解非齐次方程组只有零解齐次方程组向量线性无关行的列是初等矩阵其中,有阶方阵存在可逆,等价于阶方阵A b Ax b Ax A P P P P A nA r A E BA AB B n A n i s =∀=⋅⋅⋅==≠==四、矩阵的初等变换与初等矩阵 (一)矩阵的初等变换及相关概念 1.矩阵的初等变换下述三种对矩阵的行列实施的变换称为矩阵的初等行列变换 (1) 对调矩阵的两行列(2) 用非零常数k 乘以某行列中所有元素(3) 把矩阵某行列所有元素的k 倍加至另一行列对应的元素上去 (4) 求秩(行列变换可混用);求逆矩阵(只用行或只用列);求线性方程组的解(只用行变换) (5) 不要混淆矩阵的运算2.行阶梯形矩阵与行最简形矩阵(1)具体如下特征的矩阵称为行阶梯形矩阵①零行(即元素全为零的行)全都位于非零行的下方②各非零行坐起第一个非零元素的列指标由上至下是严格增大(2)如果其非零行的第一个非零元素为1,并且这些非零元素所在列的其他元素均为零,这个行阶梯形矩阵称为行最简形矩阵对于任何矩阵A ,总可以经过有限次初等行变换把它化为行阶梯形矩阵和行最简形矩阵(二)初等矩阵的概念单位矩阵经过一次初等变换所得到的矩阵称为初等矩阵(三)初等矩阵的性质逆是同类型的初等矩阵初等矩阵均可逆,且其同样的行列初等变换做了一次与就是对矩阵,所得乘右左用初等矩阵.2)()(.1P A AP PA A P)()(100013-001100013001)1()(100021000110002000100101010000101010011-11-11-k E k E kE k E EE ij ij i i ij ij -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---主对角线以外;主对角线;副对角线五、矩阵的等价(一)矩阵等价的概念的秩是矩阵阶单位矩阵是的等价标准形,其中后者是则称若等价,记作与则称矩阵矩阵经有限次初等变换变成矩阵A r r E A EA B A B A B A r r,,000~.~,⎥⎦⎤⎢⎣⎡ (二)矩阵等价的充分必要条件价向量组等价必有矩阵等向量可以互相线性表示;向量组等价是指两个等价是两个不同的概念矩阵的等价与向量组的使得阶可逆矩阵,阶可逆矩阵矩阵,则存在时设,使和存在可逆矩阵秩是同型矩阵且有相同的,等价于⎥⎦⎤⎢⎣⎡=⨯=000,.2.1~rE PAQ Q n P m n m A BPAQ Q P B A B A⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=====----*-O BC O O C B O C O O B C O O B AE E A A EE A A AA E BA E AB B 111-1-1-1-111)()();()(1,分块矩阵法初等变换法伴随矩阵法或使定义法,找出为阶梯形方程组列方程用高斯消元法化不可逆,则可设未知数,若方法可以先求出可逆,则若方法解题思路的列向量表出的每列可由有解等价于A AB A X A AB r A r A B B Ax 2,,1)()(.2.111--===的主对角线元素之和是矩阵T T αββα 若11,--==P PB A PBP A n n 则1-)(,P P A P A n n n Λ=Λ,令与先求特征值与特征向量求 行列变换与单位矩阵、初等矩阵运算的关系第三章 n 维向量一、n 维向量的概念与运算 (一)n 维向量的概念个分量称为向量的第的矩阵,数或维列向量,也就是维行向量或分别称为或维向量,记作构成的有序数组称为个数i a n n n n a a a a a a n a a a n i T n n n 11,),...,,(),...,,(,...,,212121⨯⨯(二)n 维向量的运算0),(......),(,0),(.4...),(.3),...,,(.2),...,,(.1),...,,(,),...,,(222212222122112122112121=⇔==+++=+++=====+++==+++=+==ααααααααααβαβααββαβααβαβαT n nT TT n n Tn T n n T n T n a a a a a a b a b a b a ka ka ka k b a b a b a b b b a a a 正交,,则若内积数乘加法如果二、线性组合与线性表出 1.线性组合若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组称为组合系数的一个线性组合,其中称为向量组所构成的向量个常数及维向量个由s s s s s s k k k k k k k k k s n s ,...,,,...,,...,...,,,...,,212122112121ααααααααα+++ 2.线性表出的线性组合是线性表出,或说可由则称的线性组合能表示成向量维向量如αααβαααββααααααβ,...,,,...,,...,...,,2121221121s s s s k k k n =+++3.向量组等价,则称两个向量等价量组可以互相线性表出线性表出;如果两个向可由向量组线性表出,则称向量组量组的每个向量都可以由向如过向量组)2()1(,...,,)2(,...,,)1(2121t s βββααα等价、则线性表出,可由向量组如果向量组不一定等价秩,但秩相同的向量组等价的向量具有相同的相同向量组所含向量的个数两个等价的线性无关的无关组等价向量组的任意两个极大无关组等价任一向量组和它的极大样,线性相关也可以不一但向量个数可以不一样、对称性、及反身性,等价向量组具有传递性)2()1(),2()1()2()1(.6.5.4.3.21r r =三、向量组的线性相关与线性无关 (一)线性相关与线性无关的概念 1.线性相关线性相关则称此向量组使得的数,如存在一组不全为维向量对于s s s s s k k k k k k n ααααααααα,...,,0...,...,,0,...,,2122112121=+++2.线性无关线性无关称此向量组,,必有不全为或者说如存在一组数线性无关则称此向量组,必有,如果维向量对于s s s s s s s s s k k k k k k k k k k k k n ααααααααααααααα,...,,0...0,...,,,...,,,0...0...,...,,212211212121221121≠+++=====+++(二)线性相关与线性无关的充分必要条件 1.线性相关的充分必要条件位向量一定线性相关个维向量线性相关个个向量线性表出可由其他存在某向量的个数有非零解齐次方程组线性相关,向量组n n n n s s r x x x s i s s s s 10,...,,1)(),...,,(0...),...,,(,...,,2121212121+=⇔-⇔⇔=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇔ααααααααααααα2.线性无关的充分必要条件个向量线性表出都不能用其他存在某向量的个数只有零解齐次方程组线性无关,向量组1)(),...,,(0...),...,,(,...,,21212121-⇔=⇔=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇔s s r x x x i s s s s αααααααααα3.几个重要结论组必然线性无关两两正交、非零的向量必然线性无关,,,延伸组线性无关,则它的任一若向量组必然线性无关个部分分组线性无关,则它的任一若向量组无关阶梯形向量组一定线性)4(...,...,,)3(,...,,,...,,)2()1(2211212121⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡s s s i i i s t βαβαβαααααααααα四、线性相关性与线性表出的关系ts t s s s t s s t s i i i s s s s s t ≤-线性无关,则线性表出,且可由向量组若向量组线性相关则线性表出,且可由向量组若向量组必然线性无关则它的任一个部分分组一线性表出,且表示法唯可由线性相关,则,线性无关,而向量组若向量组个向量线性表出可以用其余是线性相关,的充要条件向量组αααβββααααααβββαααααααααββαααααααααα,...,,,...,,,...,,)4(,...,,,,...,,,...,,)3(,...,,,...,,,...,,,...,,)2(1,...,,)1(2121212121212121212121五、向量组的秩与矩阵的秩(一)向量组的秩与矩阵的秩的概念 1.极大线性无关组是由原向量唯一确定的即个数都是关组中所含向量的个数个极大线性无关组是等价的,从而每的。
(完整word版)高二(上)矩阵、行列式知识要点复习
矩阵、行列式复习一、理解矩阵的概念并能正确的表示矩阵 1、矩阵的定义(1)n m ⨯个实数n j m i a ij ,,2,1;,,2,1,ΛΛ==排成m 行n 列的矩形数表⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn n m n n a a a a a a a a a A ΛMM ΛΛ212221211211叫做矩阵。
记作n m A ⨯,n m ⨯叫做矩阵的维数。
矩形数表叫做矩阵,矩阵中的每个数叫做矩阵的元素.(2)在矩阵中,水平方向排列的数组成的向量()12,,n a a a ⋅⋅⋅称为行向量;垂直方向排列的数组成的向量12n b b b ⎛⎫ ⎪ ⎪ ⎪⋅⋅⋅ ⎪⎝⎭称为列向量;由m 个行向量与n 个列向量组成的矩阵称为m n ⨯阶矩阵,m n ⨯阶矩阵可记做m n A ⨯。
有时矩阵也可用A 、B 等字母表示。
(3)当一个矩阵中所有元素均为0时,我们称这个矩阵为零矩阵。
如000000⎛⎫⎪⎝⎭为一个23⨯阶零矩阵。
(4)当一个矩阵的行数与列数相等时,这个矩阵称为方矩阵,简称方阵,一个方阵有n 行(列),可称此方阵为n 阶方阵,如矩阵512128363836232128⎛⎫ ⎪ ⎪ ⎪⎝⎭、2332441m n ⎛⎫⎪- ⎪ ⎪-⎝⎭均为三阶方阵。
在一个n 阶方阵中,从左上角到右下角所有元素组成对角线,如果其对角线的元素均为1,其余元素均为零的方阵,叫做单位矩阵。
如矩阵1001⎛⎫ ⎪⎝⎭为2阶单位矩阵,矩阵100010001⎛⎫⎪⎪ ⎪⎝⎭为3阶单位矩阵。
(5)如果矩阵A 与矩阵B 的行数和列数分别相等,那么A 与B 叫做同阶矩阵;如果矩阵A 与矩阵B 是同阶矩阵,当且仅当它们对应位置的元素都相等时,那么矩阵A 与矩阵B 叫做相等的矩阵,记为A B =。
2、线性方程组的系数矩阵和增广矩阵对于方程组231324244x y mz x y z x y nz ++=⎧⎪-+=⎨⎪+-=⎩中未知数z y x ,,的系数按原来的次序排列所得的矩阵2332441m n ⎛⎫ ⎪- ⎪⎪-⎝⎭,我们叫做方程组的系数矩阵;而矩阵2313242414m n ⎛⎫ ⎪- ⎪ ⎪-⎝⎭叫做方程组的增广矩阵。
矩阵与行列式基础知识-2022年学习资料
怎样求解矩阵方程?-AX=b-因此,有必要了解和学习矩阵和行列-式的相关知识,以便方便的求解矩阵方程。
矩阵的相关概念-相等矩阵-A=4与B=b同型,且-=b,i=1,,7n;j=1,,n-记为A=B.-特殊矩 -零矩阵:如-行矩阵、列矩阵:-6-10--12,-行矩阵、列矩阵也称为向量
对角矩阵:-C1-=diaga11,a22,am)-az称为对角元.-如A-9)=diae2--单位矩阵: =diag1,1,.,1
3.矩阵的数乘-设有一个矩阵A=a,是一个数,那么矩阵-入C11-λ412-入1n-22-M-入am-入m -称为矩阵A与数-的乘积(简称矩阵的数乘,记作入A.-矩阵的线性运算律:加法、数乘。-A+B=B+A-②+B+C=A+B+C-A十O=A-④-A+一A=O-1A=A
4.矩阵的乘法-我们]把矩阵C称为矩阵A与B的乘积,记作C=AB-1.乘法的定义:A=4mxs和B=b,x ,如果AB=C-则矩阵C中每个元素都是A的行,B的列对应元素之积的和。-即-Co=tky ti+aby = aby-i=1,2,L,m;j=1,2,L,n
方程组的矩阵和向量表示形式-aX+a12X3+八+anXn=b-·m个方程n个未知量的线性方程组:-a2x a22x2+A +aanx=b2-M-dmam2X2+anx=b-·向量形式-+X-即xa,+xC&2+∧ xnan=乃-·矩阵形式-即AX=-·若右端向量p=0则-却Ax=0为齐次线性方程组
矩阵与行列式基础知识-介绍
我们常常会碰到一些求解方程的问题:-2X2-3x4=-3x2+4x+7x4=-0-6x2-8x4-能否如一 一次方程一样求解?-ax b-X三
最完整的线代基础知识点
最完整的线代基础知识点第1章行列式1.1 n阶行列式1.1.1 二阶、三阶行列式起源:发现规律了,继续~从上述推倒可以看出,行列式说白了就是对方程求解的简化过程。
后续的所有变换也都是基于此的。
了解到根源了,就不难理解了。
知识点:(所有的知识其实都是不成体系的,体系都是人为归纳的,其实知识就是一个一个的点而已)1.对角线法则这个法则只能用在二阶和三阶,高阶有另外的算法,后面会介绍到,耐心往下看吧。
以后看到二三阶可以直接用这个算哦。
2.行列式应用(克莱姆法则)法则啥的就是别人先发现了,就是一个规律。
不用理解,直接记住。
(因为本来就是一个现象)小技巧:再算d1d2d3的时候默念一下d1换1(列)d2换2(列)d3换3(列)。
1.1.2 排列既逆序数起源:逆序数为奇数,为奇排列,偶数为偶排列。
知识点:1.任一排列经过对换后,必改变其奇偶性。
2.所有n阶排列中,奇排列与偶排列个数相同,各有n!/2个。
1.1.3 n阶行列式知识点:1.计算方法前面说了,n阶有其他方法,这个就是其中之一不过比较笨重难算一点。
只要看懂这个式子,这节就ok啦,看不懂的可以评论问我。
2.对角行列式对角行列式等于其对角元素的连乘,再加上一个逆序数。
因为除了去取对角之外但凡取到其他位置上的0,就会让这项变成0。
上三角行列式和下三角行列式与对角行列式类似,不能取0。
好题:1.对行列式中数字的选取规则理解如果不用分块矩阵的话,直接从定义出发,三行用两个书,必有一行选不到非零数。
1.2 行列式的性质知识点:1.行列式与它的转置行列式相同,即行与列为完全等价的。
2.互换行列式的两行或两列,行列式值变号3.若行列式有两行或两列元素相同则其行列式的值为04.行列式的某一行中所有元素都乘以k,等于用k数乘行列式5.如果行列式中某一行的元素都为0,则其值为06.若行列式有两列或两行元素成比例,则其为07.若两个行列式除了一行外相同,则可以相合。
相同的行不变,不同的行相加。
(整理)矩阵与行列式.
(整理)矩阵与行列式.第一章矩阵与行列式释疑解惑1.关于矩阵的概念:最难理解的是:矩阵它是一个“数表”,应当整体地去看它,不要与行列式实际上仅是一个用特殊形式定义的数的概念相混淆;只有这样,才不会把用中括号或小括号所表示的矩阵如a c b d ??写成两边各划一竖线的行列式如a c b d ,或把行列式写成矩阵等。
还要注意,矩阵可有(1)m ≥行和(1)n ≥列,不一定m n =;但行列式只有n 行n 列。
n 阶行列式是2n 个数(元素)按特定法则对应的一个值,它可看成n 阶方阵111212122212n n n n nn a a a a a a A a a a ??=的所有元素保持原位置而将两边的括号换成两竖线时由行列式定义确定的一个新的对象:特定的一个数值,记作det A 、A或n D ,即111det n ij k kk A A a a A ====∑(如二阶方阵a d A b c ??= ?所对应的行列式是这样一个新的对象:a d ac bd b c =-)。
也正因为于此,必须注意二者的本质区别,如当A 为n阶方阵时,不可把A λ与A λ等同起来,而是n A Aλλ=,等等。
2.关于矩阵的运算:矩阵的加(减)法只对同形矩阵有意义;数λ乘矩阵m n A ?是用数λ乘矩阵m n A ?中每一个元素得到的新的m n ?矩阵;二矩阵相乘与前述这两种线性运算有着实质上的不同,它不仅要求左矩阵的列数等于右矩阵的行数,而且积的元素有其特定的算法(即所谓行乘列),乘法的性质与前者的性质更有质的不同(如交换律与消去律不成立),对此要特别加以注意,也不要与数的乘法的性质相混淆。
3.关于逆阵:逆阵是由线性变换引入的,它可只由AB E =来定义(A 与B 互为逆阵),这是应用的基础。
要记住方阵可逆的充要条件为A ≠以及关系式*AA A E=,二者有着重要与广泛的应用。
要弄清A 的伴随方阵是矩阵() ijA a =的各元素代数余子式为元素的矩阵的转置,否则会出错。
矩阵与行列式的应用知识点总结
矩阵与行列式的应用知识点总结矩阵与行列式作为线性代数中的两个重要概念,在数学以及实际应用中有着广泛的应用。
本文将对矩阵与行列式的相关知识点进行总结,以帮助读者更好地理解和应用这些概念。
一、矩阵的基本概念和运算法则1.1 矩阵的定义与表示方法矩阵是由 m 行 n 列的数按一定顺序排列成的矩形阵列。
在数学中,常用大写字母表示矩阵,例如A、B、C,其中A 是一个m×n 的矩阵,即包含 m 行 n 列。
矩阵可以用方括号表示,如 A = [a_ij],其中 a_ij 表示矩阵 A 中第 i行第 j 列的元素。
1.2 矩阵的运算法则矩阵的加法:矩阵 A 和矩阵 B 的和记作 A + B,要求 A 和 B 的行数与列数相等,即同型矩阵,其和的计算是按照对应元素相加的规则进行的。
矩阵的减法:矩阵 A 和矩阵 B 的差记作 A - B,要求 A 和 B 的行数与列数相等,即同型矩阵,其差的计算是按照对应元素相减的规则进行的。
矩阵的数乘:矩阵 A 与一个标量 k 的乘积记作 kA,其计算是将 A的每个元素乘以 k。
矩阵的乘法:矩阵 A 和矩阵 B 的乘积记作 AB,要求 A 的列数等于B 的行数,其计算是按照矩阵乘法的规则进行的。
即 A 的第 i 行与 B 的第 j 列对应元素分别相乘,并求和。
二、行列式的基本概念和性质2.1 行列式的定义与表示方法行列式是由 n×n 的矩阵所构成的特殊数,一般用竖线或两条竖线扩起来表示,如 |A| 或 det(A),其中 A 表示一个 n×n 的矩阵。
2.2 行列式的计算方法二阶行列式:对于二阶行列式 A = |a_ij|,其计算公式为 |A| =a_11a_22 - a_12a_21。
三阶行列式:对于三阶行列式 A = |a_ij|,其计算公式为|A| = a_11a_22a_33 + a_12a_23a_31 + a_13a_21a_32 - a_13a_22a_31 - a_11a_23a_32 - a_12a_21a_33。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新整理,下载后即可编辑】
矩阵和行列式复习
知识梳理
9.1矩阵的概念: 矩阵:像[27],[
4202],[945
354
]的矩形数字(或字母)阵列称为矩阵.通常用大写字母A 、B 、C…表示
三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵;
① 矩阵行的个数在前。
② 矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。
行向量、列向量
单位矩阵的定义:主对角线元素为1,其余元素均为0的矩阵 增广矩阵的含义及意义:在系数矩阵的右边添上线性方程组等号右边的值的矩阵。
通过矩阵变换,解决多元一次方程的解。
9.2矩阵的运算 【矩阵加法】
不同阶的矩阵不可以相加;
记11122122A A A A A =⎡⎤
⎢⎥⎣⎦,11122122B B B B B =⎡⎤⎢⎥⎣⎦,那么
⎥⎦⎤
⎢⎣⎡++++=+22222121
12121111B A B A B A B A B A ,
【矩阵乘法】,
[A 1A 2]×[A 1A 2]=11122122A B A B A B A B ⎡⎤⎢⎥⎣⎦
; ⎥⎦
⎤
⎢
⎣⎡++++=2222122121
2211212212121121
121111B A B A B A B A B A B A B A B A AB 【矩阵的数乘】().ij kA Ak ka ==
【矩阵变换】
相似变换的变换矩阵特点:k [10
01]等
轴对称变换的变换矩阵:[−1001]、[100−1]、[01
10]等
旋转变换的变换矩阵:[0−1
10
]等
9.3二阶行列式
【行列式】行列式是由解线性方程组产生的一种算式; 行列式是若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。
行列式行数、列数一定相等;矩阵行数、列数不一定相等。
二阶行列式的值a d D ac bd b
c
=
=-
展开式ac - bd
【二元线性方程组】 对于二元一次方程组111
222
a x
b y
c a x b y c +=⎧⎨
+=⎩,通过加减消元法转化为方程组
x
y D x D D y D ⋅=⎧⎪⎨
⋅=⎪⎩
其中1
11
11
1
2
22
222
,,x y a b c b a c D D D a b c b a c =
==
方程的解为{A =
A A A A =
A
A
A
用行列式来讨论二元一次方程组解的情况。
(I )0D ≠,方程组(*)有唯一解; (II )0D = ○1 ,x y D D 中至少有一个不为零,方程组(*)无解;
○2 0x y D D ==,方程组(*)有无穷多解。
系数行列式1122
a b D a b =也为二元一次方程组解的判别式。
9.4三阶行列式
三阶行列式展开式及化简123123123231312
1
2
3
a a a D
b b b a b
c a b c a b c c c c ==++321213132()
a b c a b c a b c -++(对角线法则)
三阶行列式的几何意义:直角坐标系中A 、B 、C 三点共线的充要条件(沪教P95)
|A1A11
A2A21A3A31
|=0
【余子式】把三阶行列式中某个元素所在的行和列划去,将剩下的元素按原来位置关系组成的二阶行列式叫做该元素的余子式;添上符号(-1)i+j 后为代数余子式。
|A1A1A1
A2A2A2A3A3A3|=a1A1+a2A2+a3A3 其中A1=|A2A2A3A3|, A2=-|A1A1A3A3|, A3=|A1A1
A2A2
|,分别为
a1,a2,a3的代数余子式。
三阶行列式可以按照其任意一行或列展开成该行或列元素与其对应的代数余子式的乘积之和。
【三元线性方程组】
设三元一次方程组 {A1A +A1A +A1A =A1
A2A +A2A +A2A =A2A3A +A3A +A3A =A3
,其中x 、y 、z
是未知数,通过加减消元化简为{A ∙A =A A
A ∙A =A A A ∙A =A A ,
D ≠0,方程组(*)有唯一解;{A =A A A
A =A A
A A =A A A
巩固习题
1. (2018上海数学)行列式
4125
的值为 .
2. (2017上海数学)关于x 、y 的二元一次方程组{A +5A =0
2A +3A =4
的系数行列式D 为 。
3. (2015上海数学)若线性方程组的增广矩阵为[
23A 1
01A 2]解
为{
A =3
A =5
,则c 1-c 2= 。
4. 函数1
sin cos 2)(-=
x x x f 的值域是 .
5. (2018江苏数学)已知矩阵A=[23
12
],若点P 在矩阵 对应的变换作用下得到点,求点P 的坐标.
x 2x y 7. 若行列式|1A 3789
|中,元素4的代数余子式大于0,则x 满
足的条件是________________ .
8. 行列式|A A A
A A A A A A
|(A ,A ,A ,A ,A ,A ,A ,A ,A ∈{−1,1,2})
所有可能的值中,最大的是_____ ____ 。
9. 在n 行n 列矩阵[
12⋯A −1A 23⋯A 13
4
⋯12⋯⋯
⋯⋯⋯A
1
⋯A −2
A −1]
中,记位于第i
行第j 列的数为。
当时,
(,1,2,)
ij a i j n =⋅⋅⋅9n =11223399a a a a +++⋅⋅⋅+=
_____ ____ 。
10. 在数列
{}
n a 中,
21
n n a =-,若一个7行12列的矩阵的第i 行第
j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j ==)则该矩阵元素能取到的不同数值的个数为_____ ____ 。
11. (2014上海数学)已知P 1(a 1,b 1)与P 2(a 2,b 2)是y=kx+1(k 为常数)
上的两个不同点,则关于x 和y 的方程组{
A 1A +A 1A =1A 2A +A 2A =1的解
的情况是()。
A .无论k,P 1,P 2如何,总是无解 B. 无论k,P 1,P 2如何,总有唯一解
C .存在k,P 1,P 2,使之恰有两解 D. 存在k,P 1,P 2,使之有无穷多解
12. 当a 为何值时,关于x,y,z 的三元一次方程组
{A +A +A =1
A +A +AA =1A +AA +A 2A =2
有唯一解,并写出该条件下方程组的解。
参考答案 1. 18 2. |15
23
| 3. 16
4. [−52
,−32
] 5.(3,-1) 6. 1 7. x >83
8. 27 9. 45 10. 18
11. B 解析:由已知条件b 1=ka 1+1, b 2=ka 2+1 D=|A 1A 1
A 2A 2
| =a 1b 2-a 2b 1=a 1(ka 2+1)- a 2(ka 1+1)= a 1 - a 2 ≠ 0 ,∴有唯一解。
12. 当a ≠1时方程组的解为{A =
A −2
A −1A =1A −1
A =0。