矩阵理论知识点整理

合集下载

矩阵的知识点总结

矩阵的知识点总结

矩阵的知识点总结一、基本概念1.1 矩阵的定义矩阵是一个由数字排成的矩形阵列。

它由m行n列的数域(通常是实数域或复数域)中的元素所组成,用A=(aij)m×n表示。

1.2 矩阵的分类按行、列的数量可以将矩阵分为行矩阵、列矩阵和方阵;按元素的类型可以分为实矩阵和复矩阵。

1.3 矩阵的转置矩阵A的转置记作A^T,其中A^T的行数等于A的列数,A^T的列数等于A的行数。

1.4 矩阵的秩矩阵的秩是指矩阵中非零行的最大数目。

二、性质2.1 矩阵的加法性质设A、B是同一维数的矩阵,则它们的和A+B也是同一维数的矩阵,它的元素是A和B 对应元素的和。

2.2 矩阵的数乘性质设A是m×n的矩阵,k是数,则kA是m×n的矩阵,它的元素是k与A中对应元素的乘积。

2.3 矩阵的乘法性质设A是m×n的矩阵,B是n×p的矩阵,那么它们的乘积AB是m×p的矩阵。

2.4 矩阵的逆若存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵,则称B是A的逆矩阵,记作A^-1。

2.5 矩阵的行列式对于n阶方阵A,其行列式是一个标量,通常用det(A)或|A|表示,代表了矩阵A的某种代数性质。

三、运算3.1 矩阵的加法设A=(aij)m×n,B=(bij)m×n,那么A+B=(aij+bij)m×n。

3.2 矩阵的数乘设A=(aij)m×n,k是数,则kA=(kaij)m×n。

3.3 矩阵的乘法设A=(aij)m×n,B=(bij)n×p,那么AB=(cij)m×p,其中cij=∑(k=1→n)aij*bkj。

3.4 矩阵的转置对于n×m的矩阵A,它的转置矩阵是m×n的矩阵,且满足(a^T)ij=aji。

四、特殊矩阵4.1 方阵每个元素是一个标量的矩阵,其中行数和列数相等。

4.2 零矩阵所有元素都是零的矩阵。

数学矩阵的基本知识点总结

数学矩阵的基本知识点总结

数学矩阵的基本知识点总结一、矩阵的定义矩阵可以看作是一个二维数组,其中的每个元素都可以用一个变量表示。

一般来说,矩阵用大写字母表示,比如A、B、C等,而矩阵中的元素用小写字母表示,比如a、b、c等。

一个矩阵可以表示为一个m×n的矩阵,其中m表示矩阵的行数,n表示矩阵的列数,矩阵记作A=(aij)m×n。

例如,一个3×2的矩阵可以表示为:A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}其中a_{11}、a_{12}、a_{21}、a_{22}、a_{31}、a_{32}分别表示矩阵A的元素。

二、矩阵的基本运算1. 矩阵的加法矩阵的加法定义为:若A=(aij)m×n和B=(bij)m×n是两个m×n的矩阵,则它们的和记作A+B,其元素为:(A+B)_{ij}=a_{ij}+b_{ij}即两个矩阵的对应元素相加得到的矩阵。

例如:A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}B = \begin{bmatrix} 2 & 1 \\ 4 & 3 \\ 6 & 5 \end{bmatrix}则A+B=\begin{bmatrix} 3 & 3 \\ 7 & 7 \\ 11 & 11 \end{bmatrix}2. 矩阵的数乘矩阵的数乘定义为:若A=(aij)m×n是一个m×n的矩阵,k是一个数,则kA记作数k与矩阵A的乘积,其元素为:(kA)_{ij} = k⋅a_{ij}即数k乘以矩阵A的每一个元素得到的矩阵。

例如:A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}k=2则kA=\begin{bmatrix} 2 & 4 \\ 6 & 8 \\ 10 & 12 \end{bmatrix}3. 矩阵的乘法矩阵的乘法定义为:若A=(aij)m×n和B=(bij)n×p是一个m×n的矩阵和一个n×p的矩阵,则它们的乘积记作AB,其元素为:(AB)_{ij}=\sum_{k=1}^{n}a_{ik}b_{kj}即第i行的每个元素与第j列的对应元素相乘再相加得到的矩阵。

矩阵知识点完整归纳

矩阵知识点完整归纳

矩阵知识点完整归纳矩阵是大学数学中比较重要和基础的概念之一,具有广泛的应用领域,例如线性代数、微积分、计算机科学等。

本文将全面归纳和总结矩阵的基本概念、性质以及相关应用,旨在帮助读者更好地理解和掌握矩阵知识。

一、基本概念1.矩阵的定义矩阵是由一个$m\times n$ 的矩形阵列(数组)表示的数表,其中$m$ 表示矩阵的行数,$n$ 表示矩阵的列数。

如下所示:$$A = \begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\\a_{21} & a_{22} & \cdots & a_{2n} \\\\vdots & \vdots & \ddots & \vdots \\\a_{m1} & a_{m2} & \cdots & a_{mn}\end{bmatrix}$$其中,$a_{ij}$ 表示矩阵的第$i$ 行、第$j$ 列元素。

2.矩阵的分类矩阵根据其元素的性质可以分为不同类型,主要有以下几种:(1)行矩阵(行向量):只有一行的矩阵,例如$[a_1,a_2,\cdots,a_n]$。

(2)列矩阵(列向量):只有一列的矩阵,例如$\begin{bmatrix}a_1\\\ a_2\\\ \vdots\\\ a_m\end{bmatrix}$。

(3)方阵:行数等于列数的矩阵,例如$A=\begin{bmatrix}1 & 2 & 3\\\ 4 & 5 & 6\\\ 7 & 8 & 9\end{bmatrix}$。

(4)零矩阵:所有元素都为$0$ 的矩阵,例如$\begin{bmatrix}0 & 0 & 0\\\ 0 & 0 & 0\\\ 0 & 0 & 0\end{bmatrix}$。

矩阵知识点总结大学

矩阵知识点总结大学

矩阵知识点总结大学一、基本概念1.1 矩阵的定义矩阵是指一个按照矩形排列的数字元素集合。

一般地,矩阵用符号“A”、“B”、“C”等来表示,其中每个元素用小写字母加标记来表示其位置,如a_ij表示矩阵A的第i行第j列的元素。

矩阵A的元素一般用a_ij来表示,其中i表示元素所在的行数,j表示元素所在的列数。

如下所示:A = [a_11, a_12, ..., a_1n][a_21, a_22, ..., a_2n][..., ..., ..., ...][a_m1, a_m2, ..., a_mn]矩阵的大小一般用m×n来表示,其中m表示矩阵的行数,n表示矩阵的列数。

矩阵的元素一般用小写字母a、b、c、d等来表示。

1.2 特殊矩阵⑴方阵:行数和列数相等的矩阵称为方阵。

n阶方阵指的是行数和列数均为n的方阵。

⑵零矩阵:所有元素都为0的矩阵称为零矩阵,通常用0表示。

⑶单位矩阵:对角线上的元素全为1,其他元素均为0的方阵称为单位矩阵,通常用I表示。

⑷对角矩阵:除了对角线上的元素外,其他元素均为0的矩阵称为对角矩阵。

1.3 矩阵的运算规则矩阵的运算包括加法、乘法和数乘三种,具体规则如下:⑴矩阵的加法:若A、B是同型矩阵,则它们的和记为A+B,定义为A+B=[a_ij+b_ij],其中a_ij和b_ij分别是A和B对应位置的元素。

⑵矩阵的数乘:若A是一个矩阵,k是一个数,则它们的数乘记为kA,定义为kA=[ka_ij],其中a_ij是A的元素。

⑶矩阵的乘法:若A是一个m×n的矩阵,B是一个n×p的矩阵,则它们的乘积记为A·B,定义为A·B=C,其中C是一个m×p的矩阵,其中C的第i行第j列的元素c_ij等于A的第i行和B的第j列对应元素的乘积的和。

1.4 矩阵的转置若A是一个m×n的矩阵,其转置记作A^T,定义为A^T=[a_ji],其中a_ji表示A的第i 行第j列的元素。

矩阵知识点总结简单

矩阵知识点总结简单

矩阵知识点总结简单一、矩阵的定义和基本概念1.1 矩阵的定义矩阵是一个按行列排列的数字或符号构成的矩形阵列。

通常用大写字母表示,如A、B、C 等。

1.2 矩阵的元素矩阵中的每一个数字都称为元素。

第i行第j列的元素称为a_ij,表示第i行第j列位置上的数字。

1.3 矩阵的维数矩阵的维数是指矩阵的行数和列数,通常用m×n表示,其中m表示行数,n表示列数。

如果一个矩阵的行数和列数相等,称为方阵。

方阵的阶数就是它的行数或列数。

1.4 矩阵的转置矩阵A的转置记作A^T,就是将矩阵A的行列互换得到的新矩阵。

即如果A=(a_ij)是一个m×n的矩阵,那么A^T=(b_ij)是一个n×m的矩阵,其中b_ij=a_ji。

1.5 矩阵的零矩阵和单位矩阵全是零的矩阵称为零矩阵,记作0。

对角线上都是1,其余都是0的矩阵称为单位矩阵,记作I。

1.6 矩阵的相等如果两个矩阵A和B的对应元素都相等,那么它们是相等的,记作A=B。

换句话说,只要两个矩阵A和B的维数相同,而且对应元素相等,那么它们就是相等的矩阵。

二、矩阵的运算2.1 矩阵的加法和减法设A=(a_ij)和B=(b_ij)是两个相同维数的矩阵,那么它们的和A+B=(c_ij)和差A-B=(d_ij)分别定义为:c_ij=a_ij+b_ij, d_ij=a_ij-b_ij2.2 矩阵的数乘设A=(a_ij)是一个m×n的矩阵,k是一个数,那么kA=(b_ij)定义为:b_ij=k*a_ij2.3 矩阵的乘法设A是一个m×n的矩阵,B是一个n×p的矩阵,那么它们的乘积AB=C是一个m×p的矩阵,C的第i行第j列元素c_ij如下求得:c_ij=a_i1b_1j+a_i2b_2j+…+a_i nb_nj2.4 矩阵的逆若m阶方阵A的逆矩阵存在,即存在一个m阶矩阵B,使得AB=BA=I,则称A可逆,B称为A的逆矩阵,记作A^(-1)。

矩阵知识点归纳及例题

矩阵知识点归纳及例题

矩阵知识点归纳及例题一、矩阵知识点归纳。

(一)矩阵的定义。

1. 矩阵的概念。

- 由m× n个数a_ij(i = 1,2,·s,m;j = 1,2,·s,n)排成的m行n列的数表(a_11a_12·sa_1n a_21a_22·sa_2n ⋮⋮⋱⋮ a_m1a_m2·sa_mn)称为m× n矩阵,简称矩阵,其中a_ij称为矩阵的第i行第j列的元素。

2. 特殊矩阵。

- 零矩阵:所有元素都为0的矩阵,记为O。

- 方阵:行数与列数相等的矩阵,即m = n时的矩阵A称为n阶方阵。

- 对角矩阵:除主对角线元素外,其余元素都为0的方阵,即a_ij=0(i≠ j)的n 阶方阵(a_110·s0 0a_22·s0 ⋮⋮⋱⋮ 00·sa_nn)。

- 单位矩阵:主对角线元素都为1,其余元素都为0的n阶方阵,记为I或E,即(10·s0 01·s0 ⋮⋮⋱⋮ 00·s1)。

(二)矩阵的运算。

1. 矩阵的加法。

- 设A=(a_ij)和B=(b_ij)是两个m× n矩阵,则A + B=(a_ij+b_ij),即对应元素相加。

- 矩阵加法满足交换律A + B=B + A和结合律(A + B)+C = A+(B + C)。

2. 矩阵的数乘。

- 设A=(a_ij)是m× n矩阵,k是一个数,则kA=(ka_ij),即矩阵的每个元素都乘以k。

- 数乘满足分配律k(A + B)=kA + kB和(k + l)A=kA + lA(k、l为常数)。

3. 矩阵的乘法。

- 设A=(a_ij)是m× s矩阵,B=(b_ij)是s× n矩阵,则AB是m× n矩阵,其中(AB)_ij=∑_k = 1^sa_ikb_kj。

- 矩阵乘法一般不满足交换律,即AB≠ BA(在A、B可乘的情况下),但满足结合律(AB)C = A(BC)和分配律A(B + C)=AB + AC,(A + B)C = AC+BC。

矩阵知识点总结图解

矩阵知识点总结图解

矩阵知识点总结图解一、矩阵的定义1.1 矩阵的概念矩阵是一个由m行n列的数域中的数字组成的矩形数组。

例如,一个3行2列的矩阵可以表示为:\[ \begin{bmatrix}a_{11} & a_{12} \\a_{21} & a_{22} \\a_{31} & a_{32} \\\end{bmatrix}\]1.2 矩阵的基本术语- 行数:矩阵中的行数为m。

- 列数:矩阵中的列数为n。

- 元素:矩阵中的每个数字称为元素,如矩阵中的a11、a12等。

- 维数:一个m行n列的矩阵的维数为m×n。

1.3 矩阵的表示矩阵可以用方括号表示,矩阵中的元素用逗号隔开,例如:\[ A = \begin{bmatrix}1 &2 &3 \\4 &5 &6 \\\end{bmatrix}\]二、矩阵的基本运算2.1 矩阵的加法对于两个相同维数的矩阵A和B,它们的加法定义为矩阵中相应位置元素的和。

即:\[ A + B = \begin{bmatrix}a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23} \\\end{bmatrix}\]2.2 矩阵的数乘对于一个m行n列的矩阵A和一个数k,它们的数乘定义为矩阵中每个元素与k的乘积。

即:\[ kA = \begin{bmatrix}ka_{11} & ka_{12} & ka_{13} \\ka_{21} & ka_{22} & ka_{23} \\\end{bmatrix}\]2.3 矩阵的乘法对于一个m行n列的矩阵A和一个p行q列的矩阵B,若n=p,则它们的乘法定义为:\[ AB = C \]其中C是一个m行q列的矩阵,其中元素cij的计算方式为:\[ c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj} \]2.4 矩阵的转置一个m行n列的矩阵A的转置是一个n行m列的矩阵,其中元素aij转置为aji。

矩阵知识点

矩阵知识点

矩阵知识点(总10页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--矩阵定义 由m n ⨯个数()1,2,,;1,2,,ij a i m j n ==排成的m 行n 列的数表111212122212n n m m mna a a a a a a a a 称为m 行n 列矩阵。

简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,简记为()()m n ij ij m nA A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元。

几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A 。

记作:A n 。

行(列)矩阵:只有一行(列)的矩阵。

也称行(列)向量。

同型矩阵:两矩阵的行数相等,列数也相等。

相等矩阵:AB 同型,且对应元素相等。

记作:A =B 零矩阵:元素都是零的矩阵(不同型的零矩阵不同) 对角阵:不在主对角线上的元素都是零。

单位阵:主对角线上元素都是1,其它元素都是0,记作:E n (不引起混淆时,也可表示为E ) 3.正交矩阵定义6:A 是一个n 阶实矩阵,若,则称为正交矩阵。

定理:设A 、B 都是n 阶正交矩阵,则(1)或(2)(3) 也是正交矩阵 (4)也是正交矩阵。

定理:n 阶实矩阵A 是正交矩阵A 的列(行)向量组为单位正交向量组。

注:n 个n 维向量,若长度为1,且两两正交,责备以它们为列(行) 向量构成的矩阵一定是正交矩阵。

注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同。

E A A T=A 1=A 1-=A TA A =-1)(1TA A 即-AB ⇔1、上述形如13⎛⎫ ⎪⎝⎭、512128363836232128⎛⎫ ⎪ ⎪ ⎪⎝⎭、2332441m n ⎛⎫ ⎪- ⎪ ⎪-⎝⎭、2313242414m n ⎛⎫⎪- ⎪ ⎪-⎝⎭这样的矩形数表叫做矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理10
设 -矩阵 等价于对角型 -矩阵 ,若将 的次数大于1的对角线元素分解为不同的一次因式的方幂的乘积,则所有这些一次因式的方幂(相同的按照重复的次数计算)就是 的全部初等因子。
初等因子被不变因子唯一确定但,只要 -矩阵 化为对角阵,再将次数大于等于1的对角线元素分解为不同的一次方幂的乘积,则所有这些一次因式的方幂(相同的必须重复计算)就为 的全部初等因子,即不必事先知道不变因子,可以直接求得初等因子。
求解若当标准型及可逆矩阵P:根据数字矩阵写出特征矩阵,化为对角阵后,得出初等因子,根据初等因子,写出若当标准型J,设P(X1X2X3),然后根据 得到P(X1X2X3)方阵
矩阵的最小多项式
定理1
矩阵A的最小多项式整除A的任何零化多项式,且最小多项式唯一。
N阶数字矩阵可以相似对角化,当且仅当最小多项式无重根。
矩阵的若当标准型
定理1
两个 阶数字矩阵A和B相似,当且仅当它们的特征矩阵 等价
N阶数字矩阵的特征矩阵 的秩一定是n 因此它的不变因子有n个,且乘积是A的特征多项式
推论3
两个同阶矩阵相似,当且仅当它们有相同的行列式因子,或相同的不变因子,或相同的初等因子。
定理4
每个n阶复矩阵A都与一个若当标准型矩阵相似,这个若当标准型矩阵除去其中若当块的排列次序外是被矩阵A唯一确定的。
定理:若A是n阶方阵
(1)若A是复矩阵,则A是正规阵,当且仅当A酉相似于对角阵。即
(2)若A是实矩阵,且A的特征值全是实数,则A是正规阵,当且仅当A正交相似于对角阵,即
证明:1.必要性:设存在酉矩阵P使得 则
, 即为正规阵2.充分性:若A是正规阵,则满足 则。。。。。。。。。。。
推论:任一Hermite 矩阵A酉相似于对角阵,
满秩分解
设 则存在列满秩矩阵 和行满秩矩阵 使得A=CD
求A的满秩分解:根据数字矩阵A写出分块矩阵(A E)进行初等行变换得(B P)其中B= ,根据求得的P求出 然后对 进行列分块,得到C= 。则A=CD
第2章
实积空间(欧氏空间)
A为过渡矩阵(对称且正定)
N维欧氏空间V中两组不同基的度量矩阵是合同的。
任一实对称矩阵A酉相似于对角阵,
推论:设A是n阶正规阵
(1)A是Hermite矩阵,当且仅当A的特征值全是实数
(2)A是反Hermite矩阵,当且仅当A的特征值全是0或者纯虚数
(3)A是酉矩阵,当且仅当A的每个特征值的模长是1 。
证明:
定理:设A是n阶Hermite 矩阵(实对称矩阵)则
证明:
一线性空间与线性变换
正交基及正交补
由欧氏空间V的任意一组基 都可以构造出V的一组标准正交基。
设V1V2是欧氏空间V的两个正交基子空间,则V1+V2是直和,两个子空间互为正交补
正交变换
正交变换的等价条件
证明:
对称变换
复积空间(酉空间)
酉空间两组标准正交基的过渡矩阵一定是酉矩阵
酉空间V的线性变换T满足
酉空间变换的等价条件
酉对称变换(Hermite变换):
奇异值分解
设A是 阶复矩阵, 是A的所有的非零奇异值,则存在m阶酉矩阵P、n阶酉矩阵Q,使得 其中, 是对角阵,等式 是A的奇异值分解
对于一个 阶复矩阵A来说,n阶方阵 是半正定的,及特征值是全部大于或者等于0,这些特征值的平方根便是A的奇异值。
求A的奇异值分解:根据数字矩阵A得到 ,根据特征矩阵得到特征值, 并计算出每个特征值对应的特征向量, 则
推论5
-矩阵的施密斯标准型是唯一的由施密斯标准可以得到行列式因子推论6
两个 -矩阵等价,当且仅当它们有相同的行列式因子,或者相同的不变因子
推论7
-矩阵 可逆,当且仅当它可以表示为初等矩阵的乘积
推论8
两个 等价当且仅当存在一个m阶的可逆 -矩阵 和一个n阶的 -矩阵 使得
推论9
两个 -矩阵等价,当且仅当它们有相同的初等因子和相同的秩
定理2
矩阵A的最小多项式的根一定是A的特征值,反之,矩阵A的特征值一定是最小多项式的根。
求最小多项式:根据数字矩阵写出特征多项式 ,根据特征多项式得到最小多项式的形式,然后根据 确定最小多项式。
矩阵的若干分解
设A为n阶复矩阵,则存在酉矩阵Q和上三角阵R使得A=QR
方法:根据数字矩阵 列出 ,正交化单位化后,得到 ,即 根据 得R。
数域及多项式
数域:关于加减乘除全部封闭,如有理数集Q,实数集R,复数集C
线性空间
零元唯一,负元唯一
基变换与坐标变换
由基 的过渡矩阵A是可逆的。
线性子空间(关于加法和数乘封闭)
平凡子空间:零子空间和线性空间本身
维数公式:
线性空间的等价条件
3、
-矩阵及其标准型
定理1
-矩阵 可逆的充分必要条件是行列式 是非零常数
引理2
-矩阵 = 的左上角元素 不为0,并且 中至少有一个元素不能被它整除,那么一定可以找到一个与 等价的 使得 且 的次数小于 的次数。
引理3
任何非零的 -矩阵 = 等价于对角阵 是首项系数为1的多项式,且
引理4
等价的 -矩阵有相同的秩和相同的各阶行列式因子
相关文档
最新文档