矩阵行列式的概念与运算(标准答案)

合集下载

线性代数疑难问题解答

线性代数疑难问题解答

线性代数疑难问题解答第一章 行列式1. 排列21)1( -n n 的逆序数是2)1(-n n ,那么如何来确定它的奇偶性?解答:我们可以看一下这个排列的奇偶性随着n 的变化情况,然后找出规律。

,1=n 2)1(-n n =0,偶排列; ,2=n 12)1(=-n n ,奇排列; ,3=n 32)1(=-n n ,奇排列; ,4=n 62)1(=-n n ,偶排列; ,5=n 102)1(=-n n ,偶排列; ,6=n 152)1(=-n n ,奇排列 可以看出,奇偶性的变化以4为周期,因此我们可以总结如下:当k n 4=或14+=k n 时, 2)1(-n n 是偶数,所以排列是偶排列,当24+=k n 或34+=k n 时, 2)1(-n n 是奇数,所以排列是奇排列.2.行列式定义最基本的有哪些?答:行列式定义最基本的有以下两种: 第一种方式:用递推的方式给出,即 当11)(⨯=a A 时,规定a =A ;当n n ij a ⨯=)(A 时,规定∑∑==+=-=nj ij ij ij ij nj ji A a M a 11)1(A其中ij M 为A 中去掉元素ij a 所在的行和列后得到的1-n 阶行列式,称为A 中元素ij a 的余子式,ij j i ij M A +-=)1(称为ij a 的代数余子式。

第二种方法:对n 阶行列式A 用所有!n 项的代数和给出,即∑-==n np p p t nnn n nna a a a a a a a a a a a A2121212222111211)1(其中n p p p ,,,21 为自然数n ,,2,1 的一个排列,t 为这个排列的逆序数 第一种方式的思想是递推,其实质也是“降阶” ,在实际计算行列式中有着重要的应用。

第二种方式的思想是对二阶、三阶行列式形式的推广,更利于理解行列式的性质。

3.行列式的主要问题是什么?答:行列式的主要问题就是计算行列式的值,其基本方法是运用行列式性质,化简所给行列式而计算之。

行列式标准型

行列式标准型

行列式标准型行列式是线性代数中的一个重要概念,它在矩阵运算和方程组求解中有着重要的应用。

在研究行列式的性质和计算方法时,行列式的标准型是一个非常重要的概念。

本文将介绍行列式标准型的概念、性质和计算方法,帮助读者更好地理解和运用行列式标准型。

一、行列式标准型的概念。

行列式标准型是指一个行列式经过一系列基本行变换(或列变换)后化为对角行列式的形式。

对角行列式是指只在主对角线上有非零元素,其它位置都是零的行列式。

行列式标准型的存在性和唯一性是行列式理论中一个重要的结论,它使得行列式的性质和计算更加简洁和方便。

二、行列式标准型的性质。

1. 行列式标准型的存在性,任意一个n阶行列式都可以经过一系列基本行变换化为对角行列式的形式,即存在行列式标准型。

2. 行列式标准型的唯一性,行列式标准型是唯一的,即一个行列式经过一系列基本行变换只能化为一个确定的对角行列式,这个对角行列式称为该行列式的标准型。

3. 行列式标准型的计算,通过一系列基本行变换,可以将一个行列式化为对角行列式的形式。

基本行变换包括交换行、某行乘以非零常数、某行加上另一行的若干倍。

这些基本行变换可以保持行列式的值不变,因此经过这些变换得到的对角行列式与原行列式的值相等。

三、行列式标准型的计算方法。

1. 利用初等变换求行列式标准型,对于一个n阶行列式,可以通过一系列基本行变换将它化为对角行列式的形式。

这个过程可以利用矩阵的初等变换来实现,具体步骤是先将行列式化为上三角行列式,再通过逐步消元将上三角行列式化为对角行列式。

2. 利用性质求行列式标准型,行列式的性质包括行列式对换行(列)变号、行列式某行(列)乘以k,行列式某行(列)加上另一行(列)的k倍等。

利用这些性质可以将一个行列式化为对角行列式的形式。

四、行列式标准型的应用。

行列式标准型在线性代数、矩阵运算和方程组求解中有着重要的应用。

通过将一个行列式化为标准型,可以更方便地计算行列式的值,进而应用到矩阵的求逆、线性方程组的求解等问题中。

行列式的定义化零降阶法行列式的性质范德蒙行列式克莱姆法则

行列式的定义化零降阶法行列式的性质范德蒙行列式克莱姆法则

行列式的定义化零降阶法行列式的性
质范德蒙行列式克莱姆法则
行列式的概念和基本性质行列式按行(列)展开定理
矩阵的运算矩阵的转置可逆矩阵分块矩阵初等变换伴随矩阵矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算
线性表示向量组的线性相关性向量组的极大无关组和秩矩阵秩的计算及性质施密特正交法向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念n维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质
线性方程组解的情况的判别(非)齐次线性方程组的通解线性方程组的克莱姆法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解
相似的定义及性质
对角化特征值的性质特征向量的性质特征值和特征向量的求法实对称矩阵的相似对角化矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵
二次型的形式合同化二次型为标准形的方法判别二次型的正定性二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性。

矩阵和行列式基础

矩阵和行列式基础

Copyrigah11t
2a0102 4=-2a01a1
Aspose -a a
Pty
Ltd.
a21 a22
11 22 21 12
求解二元一次方程组--- 用二阶行列式建立的克莱姆法则:
a11
当 a21
a12 a22
0 时,方程组有唯一的解:
b1 a12 Evaluation only. a11 b1
n 系C数o行py列rig式htD20≠040-,20则11方A程sp组ose(1P)t有y 唯Ltd一. 解。
n D=0,且Dj不全为零,则方程组(1)无解
n D=0且Dj=0,则方程组(1)有无穷多组解
aa2111xx11

a12 x2 a22 x2

a13 x3 a23 x3

表示这个元素所在的行数,称为行标,第二个下标 j 表示
这个元素所在的列数,称为列标。
二阶行列式D的计算可用对角线法帮助记忆:
主对角线上元素的E乘va积lua-ti次on对o角nl线y.上元素的乘积。
eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0
D ai1 Ai1 ai2EAvia2luation oaninlAy.in (i 1,2,, n)
eated DwithaA1 jsAp1oj se.aS2lij dAe2sj for .NEaTnj 3A.n5j Cl(iejnt 1P,2ro,file, n5).2.0 Copyright 2004-2011 Aspose Pty Ltd.
的转置行列式。Evaluation only. eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0

第一章 矩阵与行列式

第一章   矩阵与行列式

第一章 矩阵与行列式第一节 矩阵及其运算一、矩阵的概念人们在从事经济活动、科学研究、社会调查时, 会获得许多重要的数据资料, 将这些数据排成一个矩形的数表111212122212n nm m mn a a a a a a a a a L L M M M L以便于进行储存、运算和分析, 这种矩形的数表就是矩阵.定义1 由m n ⨯个数()1,2,,;1,2,,ij a i m j n ==L L 排成m 行n 列的矩形 数表111212122212n n m m mn a a a a a a a a a ⎛⎫⎪ ⎪⎪⎪⎝⎭L L M M M L称为m 行n 列矩阵, 简称为m n ⨯矩阵, 其中ij a 称为矩阵的位于第i 行、第j 列的元素. 通常, 我们用大写字母,,A B L 表示矩阵. 例如, 记111212122212.n n m m mn a a a a a a A a a a ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭L L M M M L其中小括号“()” 也可用方括号“[]”代替. 有时, 矩阵也简记为()ij m nA a ⨯=或()ij A a =. 特别地, 当m n =时, 称A 为n 阶矩阵或n 阶方阵, 其中一阶方阵()a 是一个数, 括号可略去.元素全为实数的矩阵称为实矩阵, 元素全为复数的矩阵称为复矩阵. 本书主要在实数范围内讨论问题.对于由n 个未知量、m 个方程组成的线性方程组:11112211211222221122,,.n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L (1.1.1) 称矩阵A 11121121222212n n m m mn m a a a b a a a b a a a b ⎛⎫⎪⎪= ⎪⎪⎝⎭LL M M M M L(1.1.2)为线性方程组(1.1.1)的增广矩阵;称矩阵A =111212122212n n m m mn a a a a a a a a a ⎛⎫⎪⎪⎪⎪⎝⎭L L M M M L(1.1.3) 为线性方程组(1.1.1)的系数矩阵;矩阵12m b bB b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M (1.1.4)称为线性方程组(1.1.1)的常数项矩阵.显然, 线性方程组(1.1.1)由矩阵(1.1.2)完全地确定.下面介绍一些特殊的矩阵.(1) 零矩阵 元素都是零的矩阵称为零矩阵, 记为O . (2) 列矩阵、行矩阵 在矩阵A 中, 如果1n =, 则11211m a a A a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M , 称这种只有一列的矩阵为列矩阵;同样, 如果1m =, 则()11121n A a a a =L ,称这种只有一行的矩阵为行矩阵.我们也将列矩阵和行矩阵分别称为列向量和行向量. 列向量和行向量统称为向量. 向量的元素称为分量, 有n 个分量的向量称为n 维向量. 矩阵与 向量有密切的联系, 矩阵()ij m nA a ⨯=可以看成由n 个m 维列向量12,1,2,,j j mj a a j n a ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭L M 组成, 也可以看成由m 个n 维行向量()12,1,2,,i i in a a a i m =LL 组成.(3) 负矩阵 如果矩阵()ij m nA a ⨯=, 则()ij m nA a ⨯-=-称为矩阵A 的负矩阵.(4) 行阶梯形矩阵 如果矩阵每一行的第一个非零元素所在的列中, 其下方元素全为零, 则称此矩阵为行阶梯形矩阵. 例如矩阵10234023450056700018A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 12102032210003100000B --⎛⎫ ⎪- ⎪= ⎪- ⎪⎝⎭均为行阶梯形矩阵, 而矩阵10232023450056700418C ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ 则不是行阶梯形矩阵.(5) 行最简形矩阵 如果行阶梯形矩阵中, 非零行的第一个非零元素均为1, 且其所在列的其余元素均为0, 则称此矩阵为行最简形矩阵. 例如, 矩阵1060301205000110000⎛⎫⎪⎪⎪- ⎪⎝⎭是行最简形矩阵.(6) 上(下)三角矩阵 n 阶方阵的左上角到右下角元素的连线称为主对角线, 左下角到右上角元素的连线称为次(副)对角线. 如果方阵的主对角线下(上)方元素全为0, 则称此矩阵为上(下)三角矩阵. 矩阵11121222000n n nn a a a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L L M M M L 为上三角矩阵, 矩阵11212212000n n nn a a a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭LL M M M L 为下三角矩阵.(7) 对角矩阵 如果方阵中除主对角线上的元素外, 其余元素全为0, 则称此矩阵为对角矩阵. 例如, 矩阵12000000n λλλ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L L M M M L 为对角矩阵.(8) 单位矩阵 在对角矩阵中, 如果()11,2,,i i n λ≡=L , 即为 100010001⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L L M M M L, 则称此矩阵为单位矩阵. 单位矩阵一般用E 或I 表示.定义2 如果两个矩阵()ij A a =, ()ij B b =的行数相同、列数也相同, 则称矩阵A 与B 为同型矩阵.定义3 如果两个同型矩阵m n A ⨯, m n B ⨯的对应元素均相等, 即 ()1,2,,;1,2,,ij ij a b i m j n ===L L , 则称矩阵A 与B 相等, 记作A B =.二、矩阵的运算 1. 矩阵的加法定义4 由两个同型矩阵()m n ij m nA a ⨯⨯=, ()m n ij m nB b ⨯⨯=对应元素的和,即ij ij a b +()1,2,,;1,2,,i m j n ==L L 组成的m n ⨯矩阵称为矩阵A 与B 的和,记作A B +, 即111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫ ⎪+++ ⎪+= ⎪ ⎪+++⎝⎭L L M M M L . 由此定义及负矩阵的概念, 我们定义矩阵A 与B 的差为()A B A B -=+-.注 只有同型矩阵才能相加(减). 2. 数与矩阵相乘(简称数乘)定义5 数k 乘矩阵A 的每一个元素所得到的矩阵称为数k 与矩阵A 的积, 记作kA , 即111212122212.n n m m mn ka ka ka ka ka ka kA ka ka ka ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭L L M M M L 矩阵的加法和数乘统称为矩阵的线性运算, 其满足如下性质:(1) A B B A +=+; (2) ()()A B C A B C ++=++; (3) ()()A A λμλμ=;(4) ()A A A λμλμ+=+; (5) ()A B A B λλλ+=+; (6) A O A +=; (7) 1A A =;(8) ()A A O +-=.上面的λ, μ都是任意常数.例1 设112034A -⎛⎫= ⎪⎝⎭, 403123B -⎛⎫= ⎪--⎝⎭, 求A B +和23A B -.解14102(3)5110(1)3(2)43117A B +-++---⎛⎫⎛⎫+== ⎪ ⎪+-+-+-⎝⎭⎝⎭;224120923068369A B --⎛⎫⎛⎫-=- ⎪ ⎪--⎝⎭⎝⎭102133121--⎛⎫= ⎪-⎝⎭.3. 矩阵与矩阵相乘(矩阵的乘法)n 个变量12,,,n x x x L 与m 个变量12,,,m y y y L 之间的关系式11111221221122221122,,.n n n nm m m mn n y a x a x a x y a x a x a x y a x a x a x =+++⎧⎪=+++⎪⎨⎪⎪=+++⎩L L L L L L L L L L L L (1.1.5) 表示一个从变量12,,,n x x x L 到变量12,,,m y y y L 的线性变换.设有两个线性变换11111221332211222233,.z a y a y a y z a y a y a y =++⎧⎨=++⎩ (1.1.6)和111112222112223311322,,.y b x b x y b x b x y b x b x =+⎧⎪=+⎨⎪=+⎩ (1.1.7) 若要求出从12,x x 到12,z z 的线性变换, 可将(1.1.7)代入(1.1.6), 得 111111221133111112122213322221112221233112112222223322()(),()().z a b a b a b x a b a b a b x z a b a b a b x a b a b a b x =+++++⎧⎨=+++++⎩ (1.1.8) 线性变换(1.1.8)可看作是先作线性变换(1.1.7)、再作线性变换(1.1.6)的结果, 我们称线性变换(1.1.8)为线性变换(1.1.6)与(1.1.7)的乘积, 相应地, 我们将线性变换(1.1.8)所对应的矩阵定义为(1.1.6)与(1.1.7)所对应的矩阵的乘积,即 111211121321222122233132bb a a a b b a a a b b ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭111112211331111212221332211122212331211222222332.a b a b a b a b a b a b a b a b a b a b a b a b ++++⎛⎫= ⎪++++⎝⎭一般地, 我们有:定义6 设有矩阵()ij m sA a ⨯=和()ij s nB b ⨯=, 规定矩阵A 与B 的乘积是一个m n ⨯矩阵()ij m nC c ⨯=, 记为C AB =. 其中11221,1,2,,;1,2,,.ij i j i j is sjsik kj k C a b a b a b a b i m j n ==+++===∑L L L注 只有当前一个矩阵的列数等于后一个矩阵的行数时, 两个矩阵才能相乘, 且乘积矩阵C 中的元素ij C 就是A 的第i 行与B 的第j 列的对应元素乘积的和.例2 设201131012A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 100221B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求AB .解AB 201101310201221-⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭2100(1)22002(1)11130121032110110(2)20012(2)1⨯+⨯+-⨯⨯+⨯+-⨯⎛⎫ ⎪=-⨯+⨯+⨯-⨯+⨯+⨯ ⎪ ⎪⨯+⨯+-⨯⨯+⨯+-⨯⎝⎭ 0117.40-⎛⎫ ⎪= ⎪ ⎪-⎝⎭例3 求矩阵1111A -⎛⎫= ⎪-⎝⎭与1111B --⎛⎫= ⎪⎝⎭的乘积AB 及BA .解111122;111122AB ---⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭111100.111100BA ---⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭由以上例题可以看出矩阵乘法与数的乘法有两点显著不同:(1) 矩阵乘法不满足交换律:AB 与BA 未必同时有意义(如例2, BA 没有意义);即使都有意义也未必相等(如例3). 因此为明确起见, 称AB 为A 左乘B , 或B 右乘A . 只有在一些特殊情况下才有AB BA =, 这时称A 与B 是乘法可交换的. 容易验证数量矩阵aE 与任何同阶方阵A 乘法可交换, 即()().aE A A aE aA ==(2) 矩阵乘法不满足消去律:由AB O =不能得出A O =或B O =(如例3), 即,A O B O ≠≠但AB 有可能为O .有了矩阵相等和乘法的定义, 我们可以把线性方程组(1.1.1)写成矩阵形式:AX B =, 其中A =111212122212n n m m mn a a a a a a a a a ⎛⎫⎪⎪ ⎪⎪⎝⎭L L M M M L, 1122,.n m x b x b X B x b ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭M M若B O =, 则称(1.1.1)为齐次线性方程组;若B O ≠, 则称(1.1.1)为非齐次线性方程组. 也可以把线性变换(1.1.5)写成矩阵形式:Y AX =, 其中12,m y y Y y ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭MA 与X 同上所设.可以证明矩阵的乘法有下列性质: (1) ()()AB C A BC =;(2) ()A B C AB AC +=+;()B C A BA CA +=+; (3) ()()()AB A B A B λλλ==, λ为任意常数; (4) ()().m m n m n m n n aE A aA A aE ⨯⨯⨯==定义7 设A 为n 阶方阵, k 为正整数, 称k 个A 的连乘积为方阵A 的k次幂, 记作k A , 即.k kA AA A =L 14243当,k l 都为正整数时, 由矩阵乘法的性质, 得(1) k l k l A A A +=;(2) ()lk kl A A =.注 由于矩阵乘法不满足交换律, 所以, 一般地()kk k AB A B ≠. 例4 设1101A ⎛⎫= ⎪⎝⎭, 求nA (n 为正整数).解1101A ⎛⎫= ⎪⎝⎭;2111112010101A ⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 3121113010101A ⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 一般地, 有101n n A ⎛⎫= ⎪⎝⎭.其正确性可由数学归纳法证得, 证明略.4. 矩阵的转置定义8 把m n ⨯矩阵A 的行与列互换得到的一个n m ⨯矩阵, 称为A 的转置矩阵, 记作T A . 例如, 矩阵120311A ⎛⎫= ⎪-⎝⎭的转置矩阵为1321.01T A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭矩阵的转置也是一种运算, 满足下述运算规律:(1) ()TT A A = ;(2) ()TT T A B A B +=+ ;(3) ()TT A A λλ=, λ为一个数;(4) ()TT T AB B A = .例5 已知201132A -⎛⎫= ⎪⎝⎭, 171423201B -⎛⎫⎪= ⎪ ⎪⎝⎭,求().T AB解法1 因为1712010143423132171310201AB -⎛⎫--⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭,所以()0171413310TAB ⎛⎫ ⎪= ⎪ ⎪-⎝⎭. 解法214221017()72003141313112310T T T AB B A ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=== ⎪⎪ ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭.定义9 设A 为n 阶方阵, 如果满足T A A =, 即 ,,1,2,,.ij ji a a i j n ==L则称A 为对称矩阵. 对称矩阵的特点是:关于主对角线对称的对应元素相等.定义10 设A 为n 阶方阵, 如果满足T A A =-, 即ij ji a a =-, ,1,2,,.i j n =L则称A 为反对称矩阵. 反对称矩阵的特点是:主对角线上的元素全为0, 其余关于主对角线对称的对应元素则互为相反数.习题1-11. 设111210111A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 120124051B -⎛⎫ ⎪=-- ⎪ ⎪⎝⎭, 求23AB A -及T A B .2. 已知两个线性变换113212331232,232,45.x y y x y y y x y y y =+⎧⎪=-++⎨⎪=++⎩ 和 1122133233,2,.y z z y z z y z z =-+⎧⎪=+⎨⎪=-+⎩ 求从1z , 2z , 3z 到1x , 2x , 3x 的线性变换. 3. 计算下列乘积:(1) 401123520-⎛⎫ ⎪- ⎪ ⎪⎝⎭421⎛⎫⎪⎪ ⎪-⎝⎭;(2) ()123321⎛⎫ ⎪ ⎪ ⎪⎝⎭; (3) 321⎛⎫ ⎪⎪ ⎪⎝⎭()123;(4) 121232101110324-⎛⎫⎛⎫⎪⎪-- ⎪⎪ ⎪⎪⎝⎭⎝⎭.4. 设A =1203-⎛⎫ ⎪⎝⎭, B =2032⎛⎫⎪-⎝⎭, 问(1) AB BA =吗?(2) ()2A B +=2A +2AB +2B 吗? (3) ()A B +()A B -=2A 2B -吗? 5. 举反例说明下列命题是错误的: (1) 若2A O =, 则A O =; (2) 若2A A =, 则A O =或A E =; (3) 若AX AY =, 且A O ≠, 则X Y =.6. 设A =1111⎛⎫ ⎪-⎝⎭, 1111B ⎛⎫= ⎪⎝⎭, 求2()AB , 22A B .第二节 矩阵的初等变换与初等矩阵一、初等变换的概念中学里, 已经学过用加减消元法解二、三元线性方程组.例1 解三元线性方程组1231231232344,23,226 2.x x x x x x x x x --+=⎧⎪+-=-⎨⎪+-=-⎩ (1.2.1) 解 为叙述方便, 方程组的第i 个方程记为(1,2,3)i r i =. i j r r ↔表示对调第i 、第j 个方程, (0)i kr k ≠表示用k 乘第i 个方程的两边, i j r kr +表示第j 个方程的两边乘以k 然后加到第i 个方程上.方程组(1.2.1)12312r r r ↔⨯−−−→12312312323,2344,3 1.x x x x x x x x x +-=-⎧⎪--+=⎨⎪+-=-⎩ (1.2.2)21311232232323,22,2 2.r r r r x x x x x x x +-+-=-⎧⎪−−−→+=-⎨⎪--=⎩ (1.2.3)321232323,22,00.r r x x x x x ++-=-⎧⎪−−−→+=-⎨⎪=⎩(1.2.4)方程组(1.2.4)呈阶梯状(其增广矩阵为行阶梯形矩阵), 称为阶梯形方程组. 方程组(1.2.4)有3个未知量但有效方程只有2个, 因此有1个未知量可以任意取值, 称为自由未知量. 我们不妨取3x 为自由未知量. 先由方程组(1.2.4)中的2r 得:2322x x =--, 再代入(1.2.4)中的1r 得:1351x x =+.方程组(1.2.4)与方程组(1.2.1)是同解的, 由于3x 取值的任意性, 因此方程组(1.2.1)有无穷多组解, 其一般形式(通解)是13233351,22,.x x x x x x =+⎧⎪=--⎨⎪=⎩ 若令3x c =, 即得123x X x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭=5122c c c +⎛⎫ ⎪-- ⎪ ⎪⎝⎭=521c ⎛⎫ ⎪- ⎪ ⎪⎝⎭+120⎛⎫⎪- ⎪ ⎪⎝⎭,其中c 为任意常数.解方程组(1.2.1)的过程中施行了3种变换:(1) 换位变换 即互换两个方程的位置;(2) 倍乘变换 即用一个非零常数乘某一方程;(3) 倍加变换 即把一个方程乘以常数后加到另一个方程上去. 这三种变换统称为线性方程组的初等变换.首先, 我们用换位、倍乘和倍加变换得到的新方程组可以用同类型变换变回原方程组(例如方程组(1.2.2)1232r r r ↔⨯−−−→方程组(1.2.1)), 因此线性方程组 的初等变换是同解变换;其次, 可以证明:任何线性方程组都可以用初等变换化为阶梯形方程组, 而阶梯形方程组很容易判定是否有解, 且有解时容易通过自下而上的“回代”得到解.由于线性方程组AX B =和其增广矩阵A 相互唯一地确定, A 的每一行 对应AX B =中的一个方程, 因此线性方程组的初等变换就对应着其增广矩阵的相应行变换.定义1 对矩阵施行的下列3种变换统称为矩阵的初等行变换: (1) 换位变换 对调矩阵的第i 行和第j 行, 记为i j r r ↔; (2) 倍乘变换 用常数0k ≠乘第i 行, 记为i kr ;(3) 倍加变换 把第j 行的k 倍加到第i 行上去, 记为i j r kr +.把上述定义中的“行”换成“列”(所有记号只要把""r 换成""c )即为矩阵的初等列变换. 矩阵的初等行变换和初等列变换统称为矩阵的初等变换.回顾例1, 方程组(1.2.1)的初等变换(消元)过程可以用增广矩阵的初等行变换表示如下:234412132262A --⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭12312r r r ↔⨯−−−→121323441131--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭=A 121312r r r r +-−−−→121301220122--⎛⎫ ⎪- ⎪ ⎪--⎝⎭=A 232r r +−−−→121301220000--⎛⎫⎪- ⎪ ⎪⎝⎭=A 3 122r r -−−−→105101220000-⎛⎫⎪- ⎪ ⎪⎝⎭=A 4,A 3是行阶梯形矩阵, A 4是行最简形矩阵, A 4对应的方程组为132351,22,00.x x x x -=⎧⎪+=-⎨⎪=⎩取3x 为自由未知量, 并令3x c =, 即得1235122x c X x c x c +⎛⎫⎛⎫ ⎪ ⎪==--=⎪ ⎪ ⎪⎪⎝⎭⎝⎭521c ⎛⎫ ⎪- ⎪ ⎪⎝⎭+120⎛⎫⎪- ⎪ ⎪⎝⎭, 其中c 为任意常数.利用初等行变换, 把一个矩阵化为行阶梯形矩阵和行最简形矩阵, 是一种很重要的运算. 行阶梯形矩阵不是唯一的, 但其非零行的行数是唯一确定 的(第五节将给出证明). 在解线性方程组AX B =时, 将增广矩阵A 化为行阶梯形矩阵, 就可以看出原方程组中是否有矛盾方程, 从而判断AX B =是否有解;在有解时, 进一步地将A 化为行最简形矩阵, 即可写出方程组AX B =的解.例2 将矩阵A =212341352012⎛⎫ ⎪ ⎪ ⎪⎝⎭化为行阶梯形矩阵和行最简形矩阵.解A =212341352012⎛⎫ ⎪⎪ ⎪⎝⎭21312212301110111r r r r --⎛⎫⎪−−−→--- ⎪ ⎪---⎝⎭32212301110000r r -⎛⎫ ⎪−−−→--- ⎪ ⎪⎝⎭(行阶梯形矩阵)1212(1)r r ⨯⨯-−−−→13112201110000⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎝⎭12121101201110000r r -⎛⎫ ⎪ ⎪−−−→ ⎪ ⎪ ⎪⎝⎭. (行最简形矩阵)例3 求解方程组123423412341234231,41,234,23 6.x x x x x x x x x x x x x x x +++=⎧⎪+-=⎪⎨++-=⎪⎪+--=-⎩解11231011411231423116A ⎛⎫ ⎪-⎪= ⎪- ⎪---⎝⎭31412111231011410114301578r r r r A --⎛⎫ ⎪-⎪−−−→= ⎪- ⎪---⎝⎭3242211231011410000200639r r r r A --⎛⎫ ⎪-⎪−−−→= ⎪ ⎪---⎝⎭34311231011410063900002r r A ↔⎛⎫ ⎪-⎪−−−→= ⎪--- ⎪⎝⎭,矩阵3A 是行阶梯形矩阵, 其对应的方程组为123423434231,41,639,0 2.x x x x x x x x x +++=⎧⎪+-=⎪⎨--=-⎪⎪=⎩ 第四个方程为02=, 这是不可能的, 故原方程组无解.例4 求解方程组1234123412341234231,234,324,23 6.x x x x x x x x x x x x x x x x +++=⎧⎪++-=-⎪⎨---=-⎪⎪+--=-⎩ 解11231123143112423116A ⎛⎫ ⎪-- ⎪= ⎪---- ⎪---⎝⎭ 213141321112310114504711701578r r r r r r A ---⎛⎫ ⎪--⎪−−−→= ⎪---- ⎪---⎝⎭ 3242421123101145003272700633r r r r A +-⎛⎫⎪--⎪−−−→= ⎪---⎪---⎝⎭4323112310114500327270005151r r A -⎛⎫ ⎪-- ⎪−−−→= ⎪--- ⎪⎝⎭1331451()411231011450019900011r r A ⨯-⨯⎛⎫⎪--⎪−−−→= ⎪⎪⎝⎭34241494351120201101001000011r r r r r r A -+--⎛⎫⎪-⎪−−−→= ⎪⎪⎝⎭231312261000101001001000011r r r r r r A ----⎛⎫⎪-⎪−−−→= ⎪⎪⎝⎭,3A 是行阶梯形矩阵, 6A 是行最简形矩阵, 6A 对应的方程组为12341,1,0,1.x x x x =-⎧⎪=-⎪⎨=⎪⎪=⎩故原方程组有唯一解, 即12341101x x x x -⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 二、初等矩阵定义2 将单位矩阵作一次初等变换所得的矩阵称为初等矩阵. 对应于三类初等行、列变换, 有下列三种类型的初等矩阵:(1) 初等换位矩阵 对调单位矩阵的第i , j 两行或第i , j 两列而得到的矩阵, 即为11011(,)11011E i j ⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪= ⎪⎪ ⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭O L M O M L O i j ←←第行第行 (2) 初等倍乘矩阵 用常数0k ≠乘单位矩阵的第i 行或第i 列而得到的矩阵, 即为11(())11E i k k i ⎛⎫ ⎪⎪ ⎪ ⎪=← ⎪ ⎪ ⎪⎪⎪⎝⎭O O 第行(3) 初等倍加矩阵 把单位矩阵的第j 行的k 倍加到第i 行上而得到的矩阵, 即为11(,())11k i E i j k j ⎛⎫ ⎪ ⎪ ⎪← ⎪= ⎪⎪← ⎪⎪⎪⎝⎭O L O M O 第行第行 (,())E i j k 也可看作是把单位矩阵的第i 列的k 倍加到第j 列上而得到的矩阵.下面我们用一个初等矩阵左乘或右乘一个矩阵. 例如111211112121222313233132321222100001010n n n n n n a a a a a a a a a a a a a a a a a a ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L L L L L ; 111213111312212223212322123132100001010m m m m m m a a a a a a a a a a a a a a a aa a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭M M M M M M .由此可见, 用三阶初等换位矩阵(2,3)E 左乘矩阵3n A ⨯, 相当于对矩阵3n A ⨯作一次相应的初等换位行变换(即对调矩阵3n A ⨯的第2,3两行);用三阶初等换位矩阵(2,3)E 右乘矩阵3m A ⨯, 相当于对矩阵3m A ⨯作一次相应的初等换位列变换(即对调矩阵3m A ⨯的第2,3两列).用初等倍乘矩阵或初等倍加矩阵左乘或右乘一个矩阵, 可得类似的结论.一般地, 有如下定理.定理 设A 是一个m n ⨯矩阵, 对A 施行一次初等行变换, 相当于在A 的左边乘一个相应的m 阶初等矩阵;对A 施行一次初等列变换, 相当于在A 的右边乘一个相应的n 阶初等矩阵.由定理可知, 对于同阶初等矩阵, 有(1) (,)(,);E i j E i j E ⋅= (1.2.5) (2) 1(());E i E i k E k ⎛⎫⎛⎫⋅= ⎪ ⎪⎝⎭⎝⎭(1.2.6)(3) (,())(,()).E i j k E i j k E -⋅= (1.2.7)习题1-21. 把下列矩阵化为行阶梯形矩阵及行最简形矩阵:(1) 121131114302-⎛⎫ ⎪---- ⎪ ⎪⎝⎭;(2) 1111532114012211543314⎛⎫⎪⎪⎪⎪⎝⎭.2. 求解下面的方程组(1) 12341234123412343520,2350,7430,415790.x x x x x x x x x x x x x x x x -+-=⎧⎪+-+=⎪⎨-+-+=⎪⎪+-+=⎩(2) 123423412341234231,41,234,236,x x x x x x x x x x x x x x x +++=⎧⎪+-=⎪⎨++-=⎪⎪+--=-⎩(3) 123451234512345321,335432,2244 3.x x x x x x x x x x x x x x x +++-=⎧⎪+++-=⎨⎪+++-=⎩第三节 行 列 式一、n 阶行列式的定义 对于二元线性方程组11112212112222,.a x a x b a x a x b +=⎧⎨+=⎩ (1.3.1) 用消元法可得:当112212210a a a a -≠ 时, 存在唯一的解122212*********,b a b a x a a a a -=-211121*********b a b ax a a a a -=-.如果我们将方程组(1.3.1)的系数矩阵11122122a a A a a ⎛⎫= ⎪⎝⎭所对应的二阶行列式定义为1112112212211222a a D A a a a a a a ===-, (1.3.2) 并记1D =112222b a b a , 2D =111212ab a b , 则方程组(1.3.2)的解可写成如下形式11D x D =, 22Dx D=. (1.3.3)同样, 可以用行列式表示三元线性方程组111122133121122223323113223333,,.a x a x a xb a x a x a x b a x a x a x b ++=⎧⎪++=⎨⎪++=⎩ (1.3.4) 的解. 为此定义111213212223112233122331132132313233132231122133112332a a a D a a a a a a a a a a a a a a a a a a a a a a a a ==++--- (1.3.5)为系数矩阵所对应的三阶行列式, 用()1,2,3j D j =分别记用方程组(1.3.4)右端的常数列替换D 中的第j 列所得的三阶行列式, 则当0D ≠时, 方程组(1.3.4)的解可写为11D x D =, 22Dx D =, 33D x D=. (1.3.6)式(1.3.3)和式(1.3.6)分别用二、三阶行列式来表示方程组(1.3.1)、(1.3.4)的解. 这些公式形式简单, 便于记忆, 明显地表示出线性方程组的解与方程组的系数和常数项的关系. 这就启发我们考虑:如果含有n 个未知量、n 个方程的线性方程组有唯一解, 能否给出类似的求解公式?回答是肯定的 . 为此, 必须推广二、三阶行列式.二阶及三阶行列式的定义, 即公式(1.3.2)及(1.3.5), 可以用“对角线法则”来记忆(见下图):11122122a a a a 111213111221222321223132333132a a a a a a a a a a a a a a a (-) (+) (-) (-) (-) (+) (+) (+)二阶行列式等于主对角线元素的乘积减去副对角线元素的乘积.三阶行列式等于主对角线及与其平行的两条线上各 3 个元素的乘积之和, 减去副对角线及与其平行的两条线上各3 个元素乘积之和.例1 求行列式的值:12(1)34-, 102(2)211313---. 解 (1)1214(2)31034-=⨯--⨯=; (2) 1022113(4)0(6)012313--=-+-+----=--.例2 求解方程211123049x x =. 解 方程左端的三阶行列式2223418129256,D x x x x x x =++---=-+由2560x x -+=, 解得2x =或3x =.分析三阶行列式的定义, 我们发现第一, 式(1.3.5)的右端有3!项, 除去带有的正、负号外, 每项都是这个行列式中的每一行和每一列中任取1个且仅取1个元素的积. 如果把元素的第1个下标, 即行标(表示元素所在的行)按照123顺序排列, 则它的任意 一项可写成123123j j j a a a , 这里123,,j j j 是1, 2, 3 的一个排列(由1, 2, 3这三个数按某种次序所排成的一个有序数组), 元素的第2个下标, 即列标k j 表示 该元素所在的列.第二, 这6项中带有正号的那些项, 列标123,,j j j 形成3个排列: 123, 231, 312;带有负号的那些项的列标也形成3个排列:321, 213, 132.我们感兴趣的是, 这2组排列的区别是什么?为了回答这个问题, 我们给出下面几个定义.定义1 由1,2,,n L 这n 个数按某种次序所排成的一个有序数组12n j j j L 称为一个n 元全排列.显然, n 元全排列的个数为n !定义2 对于n 个不同元素, 若事先规定各元素之间有一个标准次序(例如n 个不同的自然数, 可规定由小到大为标准次序), 于是在这n 个元素的任一排列中, 当某两个元素的先后次序与标准次序不同时, 就说有1个逆序.定义3 一个排列中所有逆序的总数称为这个排列的逆序数, 用τ表示. 定义4 逆序数为奇数的排列称为奇排列, 递序数为偶数的排列称为偶排列.标准排列12n L 的逆序数(12)0n τ=L , 为偶排列. 可以证明:当2n ≥时,n 元全排列中奇 、偶排列各占一半, 即各有!2n 个.例3 求排列32514的逆序数, 并指明奇偶性. 解 在排列32514中, 3排在首位, 没有逆序;2的前面比2大的数有一个(3), 故有1个逆序; 5是最大数, 没有逆序;1的前面比1 大的数有三个(3, 2, 5), 故有3个逆序;4的前面比4大的数有一个(5), 故有1个逆序, 于是这个排列的逆序数为(32514)1315τ=++=. 从而排列32514是奇排列.现在回过来考察三阶行列式展开式中各项正负号的取法, 因为(123)0τ=, (231)2τ=, (312)2τ=, (321)3τ=, (213)1τ=, (132)1τ=,由此可见:任一项带正号或负号完全由它的行标为标准次序时, 列标形成的 排列123j j j 的奇偶性来决定, 即当列标形成的排列为偶排列时, 该项取正 号;列标形成的排列为奇排列时, 该项取负号. 因此, 我们有1231231112133!()212223123313233(1)j j j j j j a a a a a a a a a a a a τ=-∑, (1.3.7) 其中3!∑表示对1,2,3的所有排列求和, 共有3!6=项.二阶行列式也可以表示成和式12122!1112()122122(1)j j j j a a a a a a τ=-∑.定义5 设()ij n n A a ⨯=是一个n 阶方阵(2)n ≥, 称121211121!21222()1212(1)n n nn nj j j j j nj n n nna a a a a a a a a a a a τ=-∑L L L L M M M L (1.3.8)为n 阶行列式, 也可称为方阵A 的行列式, 记为A 或det A . 规定一阶行列式a a =(注意不要与绝对值混淆).下面是n 阶行列式的等价定义:121211121!21222()1212(1)n n nn ni i i i i i n n n nna a a a a a a a a a a a τ=-∑L L L L M M M L , (1.3.9)上式右端各项的n 个因子是按列标组成标准次序的.由行列式的定义知, 若行列式的某行(列)的元素都是零, 则此行列式为零.例4 证明对角行列式(对角线以外的元素均为0)(1)1212n nλλλλλλ=L O; (2)1(1)2212(1)n n n nλλλλλλ-=-L N.证明 (1) 由行列式的定义即得.(2) 若记,1i i n i a λ+-=则由行列式的定义可得1122,11nn nn a a a λλλ-=NN12,1112(1)(1)n n n n a a a ττλλλ-=-=-L L , 其中τ为排列(1)21n n -L 的逆序数, 故(1)12(1)2n n n τ-=+++-=L . 例5 证明行列式112122112212000nn n n nna a a D a a a a a a ==L L L M M M L. 证明 由于当j i >时, 0ij a =, 故D 中可能不为0的元素i i p a , 其下标应有i p i ≤, 即121,2,,n p p p n ≤≤≤L .在所有排列12n p p p L 中, 能满足上述关系的排列只有一个排列12n L , 其逆序数0τ=, 所以D 中可能不为0的项只有一项1122(1)nn a a a τ-L , 即1122nn D a a a =L . 对角线以下(上)的元素都为零的行列式称为上(下)三角行列式, 它们的值与对角行列式一样, 都等于主对角线上元素的乘积.二、行列式的性质 记111212122212n n n n nn a a a a a a A a a a =L L M M M L, 112111222212n n T n n nna a a a a a A a a a =L LM M M L, 行列式T A 称为行列式A 的转置行列式.性质1 行列式与它的转置行列式相等. 例如3421=--3241-=-5.由性质1可知, 行列式对行成立的性质, 对列也成立, 反之亦然. 以下叙述行列式性质时, 只对行叙述.性质2 互换行列式的两行, 行列式变号. 例如3421=--5, 2134--=5-.推论 若行列式有两行元素完全相同, 则此行列式为零.性质3 行列式中某一行的所有元素乘同一数k 等于用k 乘原行列式(第i 行乘以k , 记作:i r k ⨯).推论1 行列式中某一行的所有元素的公因子可提到行列式记号外. 由此推论及矩阵的运算, 设A 为n 阶方阵, λ为数, 则n A A λλ=. 例如, 若A 是三阶方阵且2A =, 则322216A =⋅=.推论2 行列式中如果有两行的元素对应成比例, 则此行列式为零. 性质4 若行列式的某一行元素都是两数之和, 例如11121112212n i i i i in inn n nna a a D a a a a a a a a a '''=+++L M M ML MM M L,则行列式D 等于下面的两个行列式之和:111211212n i i in n n nn a a a D a a a a a a =L M M M L M M M L 111211212ni i in n n nna a a a a a a a a '''+L M M M LM M M L. 注 行列式的加法与矩阵的加法不同.性质5 把行列式的某一行的各元素乘以同一个数, 然后加到另一行对应的元素上去, 行列式不变.以上性质不难由行列式的定义证得, 以性质4为例, 证明如下. 性质4的证明 由(1.3.8)式, 得 1212!()12(1)()n i i n n j j j j j ij ij nj D a a a a a τ'=-+∑L L L 1212!()12(1)n i n n j j j j j ij nj a a a a τ=-∑LL L1212!()12(1)n i n n j j j j j ijnj a a a a τ'+-∑L L L 111211212n i i in n n nn a a a a a a a a a =LM MM LM M M L111211212ni i in n n nna a a a a a a a a '''+L M M M L M M M L. 例6 计算行列式121024*********3D -=---. 解D21314123r r r r r r -++ 1210003202110213-- 23r r ↔ 1210021100320213--- 42r r - 1210021100320022---4323r r + 12100211003210003--10123203=-⨯⨯⨯=-.例7 计算行列式3111131111311111D =. 解 这个行列式的特点是各列4个数之和都是6. 将第2, 3, 4行同时加到第一行, 提出公因子6, 然后各行减去第一行, 得D121314r r r r r r +++ 6666131111311111 116r ⨯ 11111311611311111213141r r r rr r --- 1111020064800200002=. 例8 设2113A -⎛⎫= ⎪⎝⎭, 3452B -⎛⎫= ⎪⎝⎭, 求,A ,B AB .解 217,13A -== 342652B -==. 因为21341101352182AB ---⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以110182182AB -==.我们注意到:AB A B =. 一般地, 有下列结论:定理1 若A , B 为同阶方阵, 则AB A B =, 从而.AB BA =三、行列式按行(列)展开在三阶行列式的定义式(1.3.5)中, 如果把含111213,,a a a 的项分别合并, 并提出公因子, 则有1112132223212223113233313233a a a aa a a a a a a a a a = 2123123133aa a a a - 2122133132aa a a a +. (1.3.10) 据此, 一个三阶行列式的计算可转化为三个二阶行列式的计算. 自然有一个问题:一个n 阶行列式的计算能否转化为n 个1n -阶行列式的计算, 从而达到降阶的目的?下面讨论这个问题.定义6 在n 阶行列式A 中划去第i 行和第j 列后所剩下的2(1)n -个元素按原来的相对位置所构成的1n -阶行列式称为ij a 在A 中的余子式, 记为ij M , 而称(1)i j ij ij A M +=-为ij a 在A 中的代数余子式, 这里1,i j n ≤≤.例9 在行列式123456789A =中, 求23M , 33M , 23A , 33A . 解 2312678M ==-, 232323(1)6A M +=-=, 3312345M ==-, 333333(1)3A M +=-=-. 利用代数余子式, 式(1.3.10)可以写成111112121313A a A a A a A =++,将上式推广到一般情况, 有下面的结论:定理2 n 阶行列式(2n ≥)等于它的任一行(列)各元素与其代数余子式乘积之和, 即1122i i i i in in A a A a A a A =+++L 1nij ij j a A ==∑, 1,2,,i n =L . (1.3.11)或1122j j j j nj nj A a A a A a A =+++L 1nij ij i a A ==∑, 1,2,,j n =L . (1.3.12)推论 行列式的任一行(列)的元素与另一行(列)的元素的代数余子式乘积之和等于零. 即11220i j i j in jn a A a A a A +++=L , (1.3.13) 11220i j i j ni nj a A a A a A +++=L , (1.3.14)其中i j ≠.定理1按行(列)展开计算行列式的方法称为降阶法. 计算行列式时, 将行列式按行(列)展开与行列式的性质结合起来用, 常常能够达到事半功倍的效果.例10 计算行列式 (即本节例6)1210241210213423D -=---.解 利用行列式的性质, 将行列式的某行(列)除某个元素外的其余元素化为0, 再按该行(列)展开.D21312c cc c-+1000203212113213---1r 按展开110321(1)211213+⨯--32r r -032211022-1c 按展开21322(1)22+⨯--21020=-⨯=-.例11 证明123213132222123111()()()x x x x x x x x x x x x =---. 证明123222123111x x x x x x 2131c c c c --121312222212131100x x x x x x x x x x ---- 213111212131311(1)()()()()x x x x x x x x x x x x +--=⨯--+-+2131213111()()x x x x x x x x =--++213132()()()x x x x x x =---.上例中的行列式称为三阶范得蒙德行列式. 类似可证n 阶范得蒙德行列式1222212111112111()n n n i j j i nn n n n x x x x x x D x x x x x ≤<≤---==-∏L L L M M M L . 四、克拉默法则下面介绍利用行列式求含有n 个未知量、n 个方程的线性方程组解的公式. 设方程组为11112211211222221122,,.n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L (1.3.15) 由各方程中的未知量的系数构成的行列式111212122212n nn n nna a a a a a D a a a =L L M M M L(1.3.16) 称为方程组(1.3.15)的系数行列式, 用常数项12,,,n b b b L 替换D 中第j 列的相应元素得行列式记为j D , 即111,111,11212,122,121,1,1j j n j j nj n n j n n j nna ab a a a a b a a D a a b a a -+-+-+=L L L L M M M M M LL. 定理3 (克拉默法则)如果n 元线性方程组(1.3.15)的系数行列式0D ≠, 则方程组有唯一解,1,2,,j j D x j n D ==L .。

行列式标准型

行列式标准型

行列式标准型行列式是线性代数中的一个重要概念,它在矩阵运算和方程组求解中起着至关重要的作用。

在研究行列式的过程中,我们经常会遇到将一个行列式转化为标准型的问题。

本文将介绍行列式标准型的概念、计算方法和相关性质,希望能够帮助读者更好地理解和运用行列式的相关知识。

首先,我们来了解一下行列式标准型的概念。

所谓行列式标准型,是指将一个行列式通过一系列基本行变换或基本列变换,转化为一个特定形式的行列式。

这个特定形式的行列式通常是一个对角行列式,即除了对角线上的元素外,其他元素均为零。

将行列式转化为对角行列式可以方便我们进行行列式的计算和分析,因此行列式标准型具有重要的意义。

接下来,我们将介绍如何将一个行列式转化为标准型。

首先,我们可以通过基本行变换或基本列变换,将行列式中的元素逐步化简为对角行列式。

基本行变换包括交换两行、某行乘以一个非零常数、某行加上另一行的若干倍;基本列变换同理。

通过这些基本变换,我们可以逐步将行列式化简为对角行列式。

在进行行列式标准型的转化过程中,我们需要注意一些性质和技巧。

首先,我们可以利用行列式的性质来简化计算,例如行列式中某行(列)的元素都是另一行(列)对应元素的倍数时,行列式的值为零。

其次,我们可以通过适当的变换顺序,使得化简的过程更加高效。

此外,我们还可以利用行列式的性质来验证最终得到的标准型是否正确,从而提高计算的准确性。

除了将行列式转化为标准型外,我们还可以利用行列式标准型来求解一些与行列式相关的问题。

例如,我们可以通过行列式标准型来求解线性方程组的解,或者计算矩阵的特征值和特征向量。

行列式标准型在这些问题的求解中发挥着重要的作用,因此掌握行列式标准型的计算方法对于解决这些问题具有重要意义。

总之,行列式标准型是行列式理论中的重要内容,它不仅可以帮助我们更好地理解行列式的性质和计算方法,还可以应用于线性代数、矩阵运算和方程组求解等领域。

通过学习行列式标准型的相关知识,我们可以提高对行列式的理解和运用能力,为解决实际问题提供有力的数学工具。

线性代数重要知识点和典型例题答案

线性代数重要知识点和典型例题答案

线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。

(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。

推论:若行列式中某两行(列)对应元素相等,则行列式等于零。

③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。

推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。

④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。

克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。

化为三角形行列式 ⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n (零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A TT =)( TTTB A B A +=+)( TTkA kA =)( TTTA B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 初等变换不改变矩阵的可逆性 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。

线性代数下的行列式和矩阵

线性代数下的行列式和矩阵

线性代数下的行列式和矩阵线性方程组一般有 m 个常数项,n 个未知数,m * n 个系数。

若常数项全为 0 ,则为齐次线性方程组;若未知数全为0 ,则称为零解。

于是我们考虑的问题是:齐次方程组:1.是否存在非零解,以及存在的条件2.通解的结构与性质3.解法非齐次方程组:1.是否有解,以及有解的条件是什么2.有多少解以及对应解数量的条件是什么3.多解的结构与性质4.解法行列式二,三阶行列式行列式的初始作用是解线性方程组!例如:最简单的二元线性方程组\left\{ \begin{aligned} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{aligned} \right.\Rightarrow 消元 \Rightarrow \left\{ \begin{aligned}x_1 = \frac{b_1a_{22} - b_2a_{12}}{a_{11}a_{22} -a_{12}a_{21}} \\ x_1 = \frac{b_2a_{21} -b_1a_{21}}{a_{11}a_{22} - a_{12}a_{21}} \end{aligned} \right.可以得出结论,答案是由方程的四个系数和常数决定的。

所以记住四个系数作为行列式,指定行列式的值是上式的分母:\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22}\end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}于是有了这么一个行列式之后,我们就可以得到:D = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \ D_1 = \begin{bmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{bmatrix} \ D_2 = \begin{bmatrix}a_{21} & b_1 \\ a_{21} & b_2 \end{bmatrix} \\Rightarrow \\ x_1 = \frac{D_1}D, x_2 = \frac{D_2}D同理可以推广到三元线性方程组,定义三阶行列式。

线性代数重要知识点及典型例题答案

线性代数重要知识点及典型例题答案

线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和nnn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ〔奇偶〕排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。

〔转置行列式〕TD D =②行列式中*两行〔列〕互换,行列式变号。

推论:假设行列式中*两行〔列〕对应元素相等,则行列式等于零。

③常数k 乘以行列式的*一行〔列〕,等于k 乘以此行列式。

推论:假设行列式中两行〔列〕成比例,则行列式值为零;推论:行列式中*一行〔列〕元素全为零,行列式为零。

④行列式具有分行〔列〕可加性⑤将行列式*一行〔列〕的k 倍加到另一行〔列〕上,值不变行列式依行〔列〕展开:余子式、代数余子式ij M ijji ij M A +-=)1( 定理:行列式中*一行的元素与另一行元素对应余子式乘积之和为零。

克莱姆法则:非齐次线性方程组 :当系数行列式时,有唯一解:0≠D )21(n j DD x j j ⋯⋯==、 齐次线性方程组 :当系数行列式时,则只有零解01≠=D 逆否:假设方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:jiij a a =③反对称行列式:奇数阶的反对称行列式值为零ji ij a a -=④三线性行列式: 方法:用把化为零,。

化为三角形行列式333122211312110a a a a a a a 221a k 21a ⑤上〔下〕三角形行列式:行列式运算常用方法〔主要〕行列式定义法〔二三阶或零元素多的〕化零法〔比例〕化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:〔零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵)n m A * 矩阵的运算:加法〔同型矩阵〕---------交换、结合律数乘---------分配、结合律n m ij ka kA *)(= 乘法注意什么时候有意义nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑== 一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0转置A A TT =)(TTTBA B A +=+)((反序定理)T T kA kA =)(T T T A B AB =)(方幂:2121k k k kA AA += 几种特殊的矩阵:对角矩阵:假设AB 都是N 阶对角阵,k 是数,则kA 、A+B 、AB 都是n 阶对角阵数量矩阵:相当于一个数〔假设……〕 单位矩阵、上〔下〕三角形矩阵〔假设……〕对称矩阵反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,假设存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,(非奇异矩阵、奇异矩阵|A|=0、伴随矩阵)B A =-1 初等变换1、交换两行〔列〕2.、非零k 乘*一行〔列〕3、将*行〔列〕的K 倍加到另一行〔列〕初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的〔对换阵 倍乘阵 倍加阵〕等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 假设A 可逆,则满秩假设A 是非奇异矩阵,则r 〔AB 〕=r 〔B 〕初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵,行列式n ij n ij a k ka )()(=nijn nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④假设A 可逆,则其逆矩阵是唯一的。

线性代数习题参考答案

线性代数习题参考答案

第一章行列式§1 行列式的概念1.填空(1) 排列6427531的逆序数为,该排列为排列。

(2) i= ,j= 时,排列1274i56j9为偶排列。

(3) n阶行列式由项的代数和组成,其中每一项为行列式中位于不同行不同列的n个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n元排列。

若该排列为奇排列,则该项的符号为号;若为偶排列,该项的符号为号。

(4) 在6阶行列式中,含152332445166a a a a a a的项的符号为,含324314516625a a a a a a的项的符号为。

2.用行列式的定义计算下列行列式的值(1)112223323300 0aa aa a解:该行列式的3!项展开式中,有项不为零,它们分别为,所以行列式的值为。

(2)12,121,21,11, 12,100000nn nn n n n n n n n n nnaa aa a aa a a a------解:该行列式展开式中唯一不可能为0的项是,而它的逆序数是,故行列式值为。

3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。

证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。

对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么?5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少?(提示:利用3题的结果)6. 利用对角线法则计算下列三阶行列式(1)201141183---(2)222111ab c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。

(1) 2141 3121 1232 5062-(2)100 110 011 001abcd ---(3)ab ac ae bd cd de bf cf ef ---2. 证明下列恒等式(1) ()33ax by ay bzaz bx x y z D ay bzaz bx ax by a b yz x az bx ax by ay bzzxy+++=+++=++++ (提示:将行列式按第一列分解为两个行列式之和,再利用性质证明)(2)()()()()()()()()()()()()22222222222222221231230123123a a a a b b b b cc c cd d d d ++++++=++++++(3)1111221100001000001n n n n n n n x x x a x a x a x a a a a x a ------=++++-+ (提示:从最后一列起,后列的x 倍加到前一列)3. 已知四阶行列式D 的第三行元素分别为:1,0,2,4-;第四行元素的对应的余子式依次是2,10,a ,4,求a 的值。

矩阵行列式 秒懂

矩阵行列式 秒懂

矩阵行列式秒懂
矩阵行列式,听起来可能很复杂,但其实是一个非常有趣且有用的概念。

在这里,我会尽量用简单明了的语言来解释它,让你在瞬间理解。

首先,我们来看看什么是矩阵。

你可以把矩阵想象成一个二维的数字表格,由行和列组成。

比如,一个2x2的矩阵就像这样:
a b
c d
其中a、b、c和d是数字。

现在,我们来说说行列式。

行列式是矩阵的一个属性,它告诉我们关于矩阵的某些信息。

对于2x2矩阵,行列式定义为:
|a b| = a*d - b*c
|c d|
也就是说,你取矩阵的左上角和右下角的元素相乘,然后减去左下角和右上角元素的乘积。

对于更大的矩阵,比如3x3矩阵,行列式的计算会稍微复杂一些,但还是有规律可循的。

你可以使用拉普拉斯展开或者萨拉斯公式来计算。

那么,行列式有什么用呢?其实,行列式在很多领域都有应用。

比如,在解线性方程组时,行列式可以帮助我们判断方程组是否有唯一解、无解或者无穷多解。

此外,行列式还在几何、物理、计算机科学等领域发挥着重要作用。

总之,矩阵行列式是一个简单而强大的工具,它可以帮助我们理解和处理各种与矩阵相关的问题。

现在,你应该已经对矩阵行列式有了一个初步的了解。

如果你想进一步深入学习,建议查阅相关教材或参考资料。

行列式习题及答案

行列式习题及答案

行列式习题及答案【篇一:上海版教材矩阵与行列式习题(有答案)】lass=txt>姓名成绩一、填空题cos1.行列式?3sincos?6sinac?3bd?6的值是 .2.行列式(a,b,c,d?{?1,1,2})的所有可能值中,最大的是 .?2x?0?3.将方程组?3y?z?2写成系数矩阵形式为 .?5x?y?3?4.若由命题a:“2x31-x20”能推出命题b:“x?a”,则a的取值范围是.?a1x?b1y?c15.若方程组?的解为x?1,y?2,则方程组ax?by?c?222?2b1x?5a1y?3c1?0的解为x? ,y? . ?2bx?5ay?3c?022?26.方程2x4x2?0的解集为.?39?2x1 y1x3 y3?4x1 y1x2 y27.把x2 y2x3 y3表示成一个三阶行列式为. 8.若?abc的三个顶点坐标为a(1,?2),b(?2,3),c(?4,?5),其面积为 .2x9.在函数f?x???x1?x2?1x中x3的系数是 x110.若执行如图1所示的框图,输入x1?1,x2?2,x3?4,x4?8,则输出的数等于111.矩阵的一种运算???ab??x??ax?by??ab??????????,该运算的几何意义为平面上的点在矩阵的作用下(x,y)????????cd??y??cx?dy??cd??1a???的作用下变换成曲线x?y?1?0,则a?b的b1??变换成点(ax?by,cx?dy),若曲线x?y?1?0在矩阵??值为 .12.在集合?1,2,3,4,5?中任取一个偶数a和奇数b构成以原点为起点的向量???a,b?.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n,其中面积不超过...4的平行四边形的个数为m,则m?n二.选择题13.系数行列式d?0是三元一次方程组无解的() a. 充分非必要条件 b. 必要非充分条件c. 充分必要条件d. 既非充分也非必要条件 14.下列选项中错误的是(). a.abccacbdd??caddbb.abcd?dcbac.a?3cb?3d?acbdd.???a?c?b?d15.若a,b,c表示?abc的三边长,aa2且满足ba?b?ca?b?c?0, a?b?cb2c2c则?abc是().a. 等腰三角形b. 直角三角形c. 等腰直角三角形d. 等边三角形 16. 右边(图2)的程序框图输出结果s?() a.20 b. 35 c. 40 d .45 2图2三、解答题:1?|x|?5?1??mx?217. 已知p:矩阵?|x|?1的某个列向量的模不小于,行列式q:2?01?余子式的值不小于2.若p是q成立的充分条件,求实数m的取值范围. ....18.已知等比数列{an}的首项a1?1,公比为q,(1)求二阶行列式?10?24?3中元素?1的代数1a1a2a3a4的值;(2)试就q的不同取值情况,讨论二元一次方程组??a1x?a3y?3何时无解,何时有无穷多解??a2x?a4y??2119.已知函数f(x)?0sinxsinx0xsinx0的定义域为?0,2m???,最大值为4.试求函数g(x)?msinx?2cosx?2??(x?r)的最小正周期和最值.320. 将等差数列an?2n?1(n?n)中n2个项依次排列成下列n行n列的方阵,在方阵中任取一个元素,记为x1,划去x1所在的行与列,将剩下元素按原来得位置关系组成(n-1)行(n-1)列方阵,任取其中一元素x2,划去x2所在的行与列?,将最后剩下元素记为xn,记sn?x1?x2??xn,求lim*n??sn的值。

线性代数

线性代数

第一章 行列式一、排列理论:1、定义:2、反序数,奇、偶排列,对换二、n 阶行列式的定义及性质:1、行列式是数或代数式。

2、性质对简化计算的作用:性质1:行列式转置后,其值不变,即T D D =。

性质2:互换行列式中的任意两行(列),行列式仅改变符号。

性质3:如果行列式中有两行(列)的对应元素相同,则此行列式为零。

性质4:如果行列式中有一行元素全为零,则这个行列式等于零。

性质5:把行列式的某一行(列)的每个元素同乘以数k ,等于以数k 乘行列式。

推论1:如果行列式某行(列)的所有元素有公因子,则公因子可以提到行列式外面。

推论2:如果行列式有两行(列)的对应元素成比例,则行列式等于零。

性质6:如果行列式中的某一行(列)所有元素都是两个数的和,则此行列式等于两个行列式的和,而且这两个行列式除了这一行(列)以外,其余的元素与原来行列式的对应元素相同。

性质7:以数k 乘行列式的某行(列)的所有元素,然后加到另一行(列)的对应元素上,则行列式的值不变。

3、按行按列展开计算行列式: 1)余子式,代数余子式(化三角形) 2)范德蒙德行列式第二章 矩阵一、定义与运算:1、定义:数表2、矩阵相等:同型矩阵3、矩阵的线性运算:1)加法; 2)数乘; 3)运算性质。

4、矩阵的乘法:F 上n m ⨯矩阵)(ij a A =与p n ⨯矩阵)(ij b B =的乘积指的是一个p n ⨯矩阵)(ij c C =,其中∑==nk kj ikij b ac 1。

1)可乘的条件:仅当前一个矩阵A 的列数和后一个矩阵B 的行数相同,才能作乘积AB ;2)不适合的算律:矩阵的乘法不适合交换律;两个非零矩阵的乘积可能是零矩阵;矩阵的乘法不适合消去律;3)适合的算律: 4)方阵的幂:kkkB A AB ≠)( 5、转置: 1)定义: 2)性质:二、几类特殊的矩阵:1、零矩阵;2、单位矩阵;3、数量矩阵;4、对角矩阵;5、三角矩阵;特别,主对角线上元素全为0的三角矩阵6、对称(反对称)矩阵;7、非奇异矩阵、满秩矩阵、可逆矩阵:AB BA E == 8、矩阵的伴随矩阵:||AA A E *=1)1||||n A A *-=; 2)⎪⎩⎪⎨⎧-<-===*1)(,01)(,1)(,)(n A R n A R n A R n A R ;3)*-*=A aaA n 1)(; 4)2()||n A A A **-=5)***=A B AB )(; 6)11()||A A A *-=9、初等矩阵:单位矩阵施行一次初等变换所得到的矩阵。

线性代数行列式的概念和性质

线性代数行列式的概念和性质
det A a11 a12
a11 a21
a21 a22

a12 a22
+
a11 1 11 det S11 a12 1 12 det S12
a11a22 a12a21
当前您浏览的位置是第六页,共三十二页。
1 3


A
2
4
3 7
a11 解 det A
an1
7 3 , 计算 det A 的值. 2
注 行列式的每个元素都分别对应一个余子式和一个代数余子
式.
根据该定义,可重新表达行列式的值
a11
det A
a1n def
n
1 k
a1k 1 det S1k
an1 ann
k 1
n
a1k A1k
k 1
其中 A1k 是元 a1k 对A 或 det A 的代数余子式.
相当于把行列式按第一行展开
cnk bn1
bnn
a1k
b11
, D2 det(bij )
akk
bn1
b1n ,
bnn
当前您浏览的位置是第二十三页,共三十二页。
内容总结
线性代数课件行列式的概念和性质。对 n = 2, 3,。项,每一项都是位于不同行,不同列的 三个元素的乘积, 其中三项为正, 三项为负.。个不同项的代数和,其中的每一项都是处于行 列式不同行又不同列的n 个元之乘积.。说明 行列式中行与列具有同等的地位,因此行列式的 性质凡是对行成立的对列也同样成立.。性质5 把行列式的某一列(行)元素的k倍加到另一列 (行)对应的元素上去,行列式的值不变.
AC
det U
det A det B
OB

线性代数性质公式整理

线性代数性质公式整理

线性代数第一章 行列式一、相关概念 1.行列式——n 阶行列式|a 11a 12···a 1n a 21a 22···a 2n ············a n1a n2···a nn |是所有取自不同行不同列的n 个元素的乘积 a 1j 1a 2j 2···a nj n的代数和,这里j 1j 2···j n 是1,2,···n 的一个排列。

当j 1j 2···j n 是偶排列时,该项的前面带正号;当j 1j 2···j n 是奇排列时,该项的前面带负号,即 |a 11a 12···a 1n a 21a 22···a 2n ············a n1a n2···a nn|=∑(−1)τj 1j 2···j n j 1j 2···j n a 1j 1a 2j 2···a nj n (1.1) 这里∑ j 1j 2···j n 表示对所有n 阶排列求和。

式(1.1)称为n 阶行列式的完全展开式。

2.逆序与逆序数——一个排列中,如果一个大的数排列在小的数之前,就称这两个数构成一个逆序。

一个排列的逆序总是称为这个排列的逆序数。

线性代数各章要点整理

线性代数各章要点整理

第一章行列式主要知识点一、行列式的定义和性质1.余子式和代数余子式的定义2.行列式按一行或一列展开的公式1)2)3.行列式的性质1)2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍. 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等.二、行列式的计算1.二阶行列式和三角形行列式的计算.2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算.3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.4.行列式中各行元素之和为一个常数的类型.5.范德蒙行列式的计算公式第二章矩阵主要知识点一、矩阵的概念1.要分清矩阵与行列式的区别2.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1.矩阵A , B的加、减、乘有意义的充分必要条件2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点).3.转置对称阵和反对称阵1)转置的性质2)若A T=A (A T= - A),则称A为对称(反对称)阵4.逆矩阵1)方阵A可逆(也称非异,非奇异,满秩)的充分必要条件是.当A可逆时,.2)方阵A的伴随阵的定义。

重要公式;与A -1的关系(当方阵A可逆时,)3)重要结论:若n阶方阵A,B满足AB=E,则A,B都可逆,且A-1=B ,B-1=A.4)逆矩阵的性质:; ; .5)消去律:设方阵A可逆,且AB=AC(BA=CA),则必有B=C。

(若不知A可逆,仅知A≠0结论不一定成立。

高等代数中的行列式与矩阵 关系与计算方法

高等代数中的行列式与矩阵 关系与计算方法

高等代数中的行列式与矩阵关系与计算方法高等代数中的行列式与矩阵:关系与计算方法高等代数是现代数学的一门重要学科,其中行列式与矩阵是其核心内容之一。

本文将介绍行列式与矩阵的关系以及计算方法,帮助读者更好地理解和应用这一领域的知识。

1. 行列式的概念与性质行列式是一个方阵所具有的一个标量值。

对于一个n阶方阵A,其行列式记作det(A)或|A|,其定义如下:det(A) = a₁₁·a₂₂·...·aₙₙ - a₁₂·a₂₁·...·aₙₙ₋₁ +a₁₃·a₂₃·...·aₙₙ₋₂ - ... + (-1)^(n+1)·a₁ₙ·a₂ₙ₋₁·...·aₙ₁其中,aᵢₙ代表矩阵A的第i行第j列的元素。

行列式具有以下性质:- 若矩阵A的两行或两列互换,则行列式的值变号。

- 若矩阵的某一行(列)元素全为0,则其行列式的值为0。

- 若矩阵的某行(列)有两个元素相同,则其行列式的值为0。

- 若矩阵的某行(列)是另一行(列)的倍数,则其行列式的值为0。

- 两个矩阵进行加减运算时,其行列式的值也分别相加减。

2. 矩阵的概念与性质矩阵是由数字按照矩形排列而成的数表,常用来表示线性方程组和线性变换。

一个矩阵由m行n列的元素构成,记作A =[aᵢₙ]ᵢ₌₁₋₁,...,m ₋ j₌₁,...,n。

矩阵具有以下性质:- 矩阵的行数与列数分别称为其阶数。

- 若两个矩阵的对应元素相等,则这两个矩阵相等。

- 矩阵的加法与减法满足交换律和结合律。

- 矩阵的乘法满足结合律,但不满足交换律。

- 矩阵的转置是指将矩阵的行与列互换,记作Aᵀ。

3. 行列式与矩阵的关系行列式与矩阵之间有着紧密的联系。

一个方阵A的行列式可以用它的元素构成的矩阵来表示,即:|A| = det(A) = [a₁₁, a₁₂, ..., a₁ₙ][a₂₁, a₂₂, ..., a₂ₙ][..., ..., ..., ...][aₙ₁, aₙ₂, ..., aₙₙ]其中,aᵢₙ代表矩阵A的第i行第j列的元素。

几何与线性代数(第三章 行列式与矩阵)

几何与线性代数(第三章  行列式与矩阵)
n
n 2时 ,D a11 A11 a12 A12 a1n A1n a1 j A1 j j1
其中A1 j (1)1 j M1 j
a21 a2, j1
M1 j
a31
a3, j1
an1 an, j1
a2, j1 a2n a3, j1 a3n
an, j1 ann
( j 1,2,..,n)
ai1 j1 ai2 j1
aik j1
ai1 j2 ai2 j2
aik j2
ai1 jk ai2 jk
aik jk
非零子式
定义(秩):非零矩阵A的非零子式的最高阶数称为A的秩, 记为r(A)或R(A)。规定:零矩阵的秩为0
注:最高阶数,即指A存在r阶非零子式,但所有r+1阶子式 (如果存在)都等于0,则最高阶数为r。 注:r(A)=r(AT)
例:
1 4 2
A 3 5 1
2 1 6
性质2:
a11
a12 a1n
a11 a12 a1n
kai1 kai2 kain k ai1 ai2 ann
推论:
** * * 0 0 0 0 ** * *
性质3:
***
*** ***
k (5) A1 1
A
规定:当A可逆时,A0 E, Ak ( A1 )k k N,则当r, s Z时,有
Ar As Ars , ( Ar )s Ars
伴随矩阵
a11
A
a21
an1
a12 a22
an2
a1n
A11
a2n ann
A*
A12
A1n
A21 A22
| A|
| A|

线性代数知识点及总结

线性代数知识点及总结

线性代数知识点总结第一章 行列式1. n 阶行列式()()121212111212122212121==-∑n nnn t p p p n p p np p p p n n nna a a a a a D a a a a a a 2.特殊行列式1212n nλλλλλλ=,()()1122121n n n nλλλλλλ-=-3.行列式的性质定义记111212122212nn n n nna a a a a a D a a a =,112111222212n n T nnnna a a a a a D a a a =,行列式TD 称为行列式D 的转置行列式。

性质1行列式与它的转置行列式相等。

性质2 互换行列式的两行()↔i j r r 或列()↔i j c c ,行列式变号。

推论如果行列式有两行〔列〕完全一样〔成比例〕,则此行列式为零。

性质3 行列式*一行〔列〕中所有的元素都乘以同一数()⨯j k r k ,等于用数k 乘此行列式; 推论1 D 的*一行〔列〕中所有元素的公因子可以提到D 的外面; 推论2 D 中*一行〔列〕所有元素为零,则=0D 。

性质4 假设行列式的*一列〔行〕的元素都是两数之和,则1112111212222212()()()i i n i i n n n ni ninna a a a a a a a a a D a a a a a '+'+='+11121111121121222*********12i n i n i n i n n n ninnn n ninna aa a a a a a a a a a a a a a a a a a a a a a ''=+' 性质6 把行列式的*一列〔行〕的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式的值不变。

而算得行列式的值。

4. 行列式按行〔列〕展开余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的1n -阶行列式叫做元素ij a 的余子式,记作ij M 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵、行列式的概念与运算知识点总结: 一、矩阵的概念与运算1、 矩阵111213212223a a a a a a ⎛⎫⎪⎝⎭中的行向量是()111213a a a a =r ,()212223b a a a =r;2、 如:1112131112111221222321222122,,c c c a a b b A B C c c c a a b b ⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++⎛⎫⎛⎫+== ⎪ ⎪++⎝⎭⎝⎭,111112211112122211131223211122212112222221132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++⎛⎫=⎪+++⎝⎭矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有:,()()A B B A A B C A B C +=+++=++。

同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。

实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。

矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB ==()()AB C A BC =3、 矩阵乘法不满足交换率,如1111111122222222.a b c d c d a b a b c d c d a b ⎛⎫⎛⎫⎛⎫⎛⎫≠⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。

二、行列式概念及运算 1.用记号2211b a b a 表示算式1221b a b a -,即2211b a b a =1221b a b a -,其中2211b a b a 叫做二阶行列式;算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线2211b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式展开的对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a (其中2121,,,b b a a 不全为零);记2211b a b a 叫做方程组的系数行列式;记=x D 2211b c b c ,2211c a c a D y =即用常数项分别替换行列式D 中x 的系数或y 的系数后得到的.(1) 若D ,0≠则方程组有唯一一组解,DD y D D x y x==, ; (2) 若0=D ,且y x D D ,中至少有一个不为零,则方程组无解;(3) 若0===y x D D D ,则方程组有无穷多解. 3。

三阶行列式及对角线法则用333222111c b a c b a c b a 表示算式;其结果是231312123213132321c b a c b a c b a c b a c b a c b a ---++. 我们把333222111c b a c b a c b a 叫做三阶行列式; 231312123213132321c b a c b a c b a c b a c b a c b a ---++叫做三阶行列式的展开式.其计算结果叫做行列式的值;i i i c b a ,,(3,2,1=i )都叫做三阶行列式的元素.4. 三阶行列式按一行(或一列)展开把行列式中某一元素所在的行和列去后,剩下的元素保持原来的位置关系组成的二阶行列式叫做该元素的余子式;余子式前添上相应的正负号叫做该元素的代数余子式;其中第i 行与第j 列的代数余子式的符号为ji +-)1(.三阶行列式可以按其一行或一列)展开成该行(或该列)元素与其对应的代数余子式的乘积之和.三阶行列式有有两种展开方式:(1)按对角线法则展开,(2)按一行(或一列)展开. 5.三元一次方程组的解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333322221111dz c y b x a d z c y b x a d z c y b x a );)3,2,1(,,((不全为零其中=i c b a i i i记333222111c b a c b a c b a D =为方程组的系数行列式;记333222111c b d c b d c b d D x =,333222111c d a c d a c d a D y =333222111d b a d b a d b a D z =,即用常数项分别替换行列式D 中z y x 或或的系数后得到的. (1) 当0≠D 时,方程组有惟一解⎪⎪⎪⎩⎪⎪⎪⎨⎧===DD z D D y D D x z y x(2) 当0=D 时,方程组有无穷多组解或无解.举例应用: 一、填空题:1、已知314012212.341241211A B ⎛⎫⎛⎫ ⎪ ⎪=--=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,则3A B -= ;解:3A B -=92103758112⎛⎫ ⎪-- ⎪ ⎪⎝⎭;2、已知1223,2131A B -⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,则AB = ;BA = 解:122381213175AB --⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭;4157BA -⎛⎫= ⎪⎝⎭3、已知1558534,,10672246A B C ⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,则()AB C = ;()A BC = 解:155********()()10;6722412926AB C ⎛⎫⎛⎫⎛⎫⎛⎫⎪== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭155********()(10)6722412926A BC ⎛⎫⎛⎫⎛⎫⎛⎫⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭4。

矩阵的一种运算,⎪⎪⎭⎫⎝⎛++=⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫⎝⎛dy cx by ax y x d c b a 该运算的几何意义为平面上的点),(y x 在矩阵⎪⎪⎭⎫ ⎝⎛d c b a 的作用下变换成点124),,(22=++++y xy x dy cx by ax 若曲线在矩阵⎪⎪⎭⎫ ⎝⎛11b a 的作用下变换成曲线b a y x +=-则,1222的值为 .解:由题意11a x x ay b y bx y +⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭g ,代入2221x y -=,整理可得令''x ay x bx y y +=⎧⎨+=⎩,22()2()1x ay bx y ∴+-+=, 2222(12)2(2)(2)1b x a b xy a y ∴-+-+-=,用待定系数法2212122(2)42022b a a b a b b a ⎧-==⎧⎪-=⇒⇒+=⎨⎨=⎩⎪-=⎩二、选择题5、给出下列三个式子: (1)11121112111211122122212221222122a a b b b b a a a a b b b b a a ⎛⎫⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)()111112132111111221133131b a a a b a b a b a b b ⎛⎫⎪=++ ⎪ ⎪⎝⎭(3)()()111111121321111213213131.b b a a a b a a a b b b λλλ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭其中正确的式子的个数是( ) 个 个 个 个解:由于上面各命题都不对,所以选择(A ) 6.下面给出矩阵的一些性质中正确的是( )=BA B.若AB=(0),则A=(0)或B=(0) C.若AB=AC,则B=C D.(AB)C=A(BC) 解:根据矩阵的性质,知道(A ),(B ),(C )都不对,所以选取(D )7、已知34,,211x y A B y x +-⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭若A=2B,则x,y 的值分别为( ).,2 B.32,2,1 D.不存在 解:由23438222321121222x x y x y A B y x y x y =⎧+-+=-⎛⎫⎛⎫⎧⎪=⇒=⇒∴⎨⎨ ⎪ ⎪---=-=⎝⎭⎝⎭⎩⎪⎩ 8、下列说法正确的是( ). A.任意两个矩阵都可以相加 B.任意两个矩阵都可以相乘C.一个m k ⨯阶矩阵与一个k n ⨯阶矩阵相乘得到一个m n ⨯阶矩阵D.一个k m ⨯阶矩阵与一个n k ⨯阶矩阵相乘得到一个m n ⨯阶矩阵 解:根据矩阵的乘法性质,得到(C )成立。

三、解答题 9、已知矩阵305211,214221A B -⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭,求矩阵X ,使23A X B -=解:设111213212223a a a X a a a ⎛⎫=⎪⎝⎭,则11121321222363310323432383a a a A X a a a ---⎛⎫-= ⎪----⎝⎭由23A X B -=,得111112121313212122222323836321318133103133343272203232083173a a a a a a X a a a a a a ⎧=⎪-=-⎧⎪-⎪⎪-==⎛⎫⎪⎪- ⎪⎪-=⎪⎪=⇒∴=⎪⎨⎨--= ⎪⎪⎪=--⎪⎪⎪⎝⎭-==⎪⎪-=⎪⎪⎩⎪=⎩。

10.给出方程组232610ax y x y -=-⎧⎨++=⎩有唯一解的充要条件解:由23261ax y x y -=-⎧⎨+=-⎩即对应823230232326123082308a a a a a a ⎛⎫-------⎛⎫⎛⎫⎪⇒⇒+ ⎪ ⎪ ⎪-+ ⎪⎝⎭⎝⎭+⎝⎭ 即82323(23)8a y a a x ⎧-=--⎪+⎨⎪+=⎩,所以当且仅当22303a a +≠∴≠-时有唯一解。

11.(1)求231111,0101⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭的值;(2)求11(2,)01nn n N *⎛⎫≥∈ ⎪⎝⎭解:(1)2311121113;;01010101⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)由此猜想:1110101nn ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,下面用数学归纳法加以证明证明:(1)当2n =时,等式成立:(2)当(2,)n k k k N *=≥∈时,等式成立,即1110101kk ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,那么111111111111010101010101k kk k ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭则当1n k =+时,等式成立。

相关文档
最新文档