上海版教材 矩阵与行列式习题(有问题详解)

合集下载

矩阵与行列式练习题及解析

矩阵与行列式练习题及解析

矩阵与行列式练习题及解析矩阵与行列式是线性代数的重要内容之一,对于理解和运用线性代数的基本概念和方法具有重要作用。

本文将为读者提供一些矩阵与行列式的练习题,并对其解析过程进行详细讲解,帮助读者掌握相关知识。

练习题一:已知矩阵A=⎡⎣⎢123456⎤⎦⎥,求A的转置矩阵AT。

解析:矩阵的转置是指将矩阵的行与列进行对调。

根据定义,矩阵AT的第i行第j列元素等于矩阵A的第j行第i列元素。

因此,可以得到矩阵A的转置矩阵AT=⎡⎣⎢143256⎤⎦⎥。

练习题二:已知矩阵B=⎡⎣⎢112233⎤⎦⎥,求B的逆矩阵B-1。

解析:矩阵的逆是指与之相乘得到单位矩阵的矩阵。

对于2×2的矩阵而言,可以通过下面的公式求得逆矩阵:B-1 = 1/(ad-bc) * ⎡⎣⎢dd-bb-cc-aa⎤⎦⎥,其中a、b、c、d分别代表B的对应元素。

根据此公式,可以得到矩阵B的逆矩阵B-1=⎡⎣⎢-1/3-2/30.5-1⎤⎦⎥。

练习题三:已知矩阵C=⎡⎣⎢100010001⎤⎦⎥,求C的行列式|C|。

解析:行列式是用来表征矩阵性质的量,对于3×3的矩阵而言,行列式的计算公式如下:|C| = a(ei-hf) - b(di-hg) + c(dg-ge),其中a、b、c、d、e、f、g、h、i分别代表矩阵C的对应元素。

带入矩阵C的值,可以得到|C|=0。

练习题四:已知矩阵D=⎡⎣⎢123456789⎤⎦⎥,求D的特征值和特征向量。

解析:特征值和特征向量是矩阵在线性变换过程中的重要指标,特征值是矩阵对应特征向量的线性变换因子。

首先,求解特征值需要解特征方程Det(D-λI)=0,其中λ为特征值,I为单位矩阵。

通过计算得到特征值λ1=0,λ2=15,λ3=-15。

然后,根据特征值求解对应的特征向量,即求解方程组(D-λI)X=0,其中X为特征向量。

求解过程中,可以得到特征向量X1=⎡⎢⎣-1-101⎤⎥⎦,X2=⎡⎢⎣111⎤⎥⎦,X3=⎡⎢⎣100-11⎤⎥⎦。

上海高三二模分类汇编-矩阵行列式(详解版)

上海高三二模分类汇编-矩阵行列式(详解版)

二模汇编——矩阵行列式专题一、知识梳理【知识点1】系数矩阵增广矩阵【例1】已知线性方程组的增广矩阵矩阵431572145238-⎛⎫ ⎪ ⎪ ⎪--⎝⎭,写出其对应的线性方程组____. 【答案】⎪⎩⎪⎨⎧=--=++=-+8325427534z y x z y x z y x .【例2】写出一个系数矩阵为单位矩阵、解为1行3列矩阵()531的线性方程组为__________.【答案】⎪⎩⎪⎨⎧===531z y x .【知识点2】矩阵的运算【例1】计算矩阵的乘积13-23-16201-3-201-43052-14⎛⎫ ⎪⎛⎫ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭=__________. 【答案】25635-7-2-7⎛⎫ ⎪⎝⎭. 【点评】设矩阵111211121112212221222122,,a a b b c c A B C a a b b c c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.如果它们元素间的关系可以用下列等式表示:1122(1,2;1,2)ij i j i j c a b a b i j =+==,则C 叫做矩阵A 和矩阵B 的积,记作C =AB注意:①只有当第一个矩阵的列数与第二个矩阵的行数相同时,这两个矩阵乘积才有意义,才可以相乘.②一般地,AB BA ≠.【知识点3】二阶三阶行列式【例1】若行列式112124=-x x ,则=x .【答案】0.【点评】掌握二阶行列式的对角线法则.【例2】将2333b ca ca bd e e d ++用三阶行列式表示,可得 . 【答案】1233a bc d e-. 【点评】掌握三阶行列式的展开方法.【知识点4】余子式,代数余子式【例1】设三阶行列式[]1213,1,2411c x x x∈-中元素c 的代数余子式为y ,则y 的值域为_________. 【答案】52,2⎡⎤⎢⎥⎣⎦. 【点评】掌握余子式代数余子式的定义.【知识点5】方程组的解【例1】m 取什么值时,关于x,y 的线性方程组⎪⎩⎪⎨⎧=+-+-=--1)1()1(1)5(22y m x m y m x (1)有唯一解?(2)无解?(3)有无穷解?【答案】221(5)(1)(2)(3)1(1)m D m m m m m --==++-+-+221(5)2(1)(2)1(1)x m D m m m ---==-+-+11211y D m m -==++(1)1,2,3m ≠--时,方程组有唯一解;(2)13m =-或 方程组无解;(3)2m =-方程组有无穷解.【点评】掌握方程组的基本解法:判断系数行列式的是是否为零→判断x y D D ,是否为零.【知识点6】新定义题型【例1】如下定义矩阵的方幂:设A 是一个n n ⨯矩阵,定义1*1,k k A A k N A A A+⎧=∈⎨=⋅⎩.若1001A ⎛⎫= ⎪-⎝⎭,则20A =__________.【答案】1001⎛⎫⎪⎝⎭.【点评】熟练掌握矩阵的乘法,理解题目意思.二、二模真题汇编一、填空题1.方程sec 01x =的解集为__________【答案】,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【解析】sec 0sec sin 01x x x =⇒+=,则tan ,3x x x k k Z ππ⎧⎫=⇒=-+∈⎨⎬⎩⎭ 2.计算行列式2cossin 33sin cos 2ππππ=【答案】0 【解析】2cossin33sin cos 2ππππ=0sin 32sin 2cos 3cos =⋅-⋅ππππ 3.若关于x 、y 的二元一次线性方程组的增广矩阵是11602a ⎛⎫ ⎪⎝⎭,该方程组的解为2c ⎛⎫ ⎪⎝⎭, 则a c +=【答案】5【解析】有题设则2,==y c x 是方程组⎩⎨⎧==+26ay y x 的解,故5,1,4=+∴==c a a c .4、行列式201949sin cos 5sin cos 23πθθππ-的元素π的代数余子式的值等于 。

上海版矩阵与行列式基础练习题

上海版矩阵与行列式基础练习题

上海版矩阵与行列式基础练习题换的方法求解:⑴32110250x y x y --=⎧⎨+-=⎩; ⑵111612102113x y z ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭.4、已知函数f(x)=x a x +1111111 ,其中a 是实数,求函数f(x)在区间[2,5]上的最小值。

5、计算D=a a aaa -----1101101的值6. 用行列式解下列方程组:(1)⎩⎨⎧=++=+-0162032y x y x ; (2)⎩⎨⎧=+=++5lg 4lg 301lg 5lg 2y x x y .7. 若关于x 、y 、z 的方程组:⎪⎩⎪⎨⎧=+=++=++m z x mz m y x z y x 212有唯一解,求m 所满足的条件,并求出唯一解.8. 解关于x 、y 、z 的三元一次方程组⎪⎩⎪⎨⎧=+-=++=++31z y x a z ay x az y x ,并讨论解的情况.1. (上海 3) 若行列式417 5 x x 38 9中,元素4的代数余子式大于0,则x 满足的条件是______ 2.(2010年高考上海市理科4)行列式的值是 。

3.(2010年上海市春季高考11) 方程的解集为 。

4.(2011·上海)行列式⎪⎪⎪⎪⎪⎪a b c d (a ,b ,c ,d ∈{-1,1,2})所有可能的值中,最大的是________.5.(2012年高考上海卷理科3)函数1sin cos 2)(-= x x x f 的值域是 .6.【上海市青浦区2013届高三上学期期末文】若=642531222c b a 222222C c B b A a ++,则2C 化简后的最后结果等于____ _______.7. 【上海市松江区2013届高三上学期期末文】若行列式,021421=-x 则=x .计数原理(20131220)作业[1]10个人走进只有6把不同椅子的屋子,若每把椅子必须且只能坐一人,共有多少种不同的坐法?[2]从-3,-2,-1,0,1,2,3,4八个数字中任取3个不同的数字作为二次函数c+=2axbxy+的系数a,b,c的取值,问共能组成多少个不同的二次函数?[3]以三棱柱的顶点为顶点共可组成多少个不同的三棱锥?[4]4名男生和3名女生并坐一排,分别回答下列问题:(1)男生必须排在一起的坐法有多少种?(2)女生互不相邻的坐法有多少种?(3)男生相邻、女生也相邻的坐法有多少种?(4)男女生相间的坐法有多少种?(5)女生顺序已定的坐法有多少种?[5]某运输公司有7个车队,每个车队的车均多于4辆,现从这个车队中抽调出10辆车,并且每个车队至少抽调一辆,那么共有多少种不同的抽调方法?[6]用0,1,2,…,9这十个数字组成无重复数字的四位数,若千位数字与个位数字之差的绝对值是2,则这样的四位数共有多少个?7.某一天的课程表要排入语文、数学、英语、物理、体育、音乐6节课,如果第一节不排体育,最后一节不排数学,一共有多少种不同的排法?8.在7名运动员中选出4人组成接力队,参加4×10 0米接力赛,那么甲、乙两人都不跑中间两棒的安排方法有多少种?9.有5双不同型号的皮鞋,从中任取4只有多少种不同的取法?所取的4只中没有2只是同型号的取法有多少种?所取的4只中有一双是同型号的取法有多少种?10.一个五棱柱的任意两个侧面都不平行,且底面内的任意一条对角线与另一底面的边也不平行,以它的顶点为顶点的四面体有多少个?11.4名男生5名女生,一共9名实习生分配到高一的四个班级担任见习班主任,每班至少有男、女实习生各1名的不同分配方案共有多少种?12.有6本不同的书,分给甲、乙、丙三人.(1)甲、乙、丙三人各得2本,有多少种分法?(2)一人得1本,一人得2本,一人得3本,有多少种分法?(3)甲得1本,乙得2本,丙得3本,有多少种分法?(4)平均分成三堆,每堆2本,有多少种分法?矩阵与行列式(20131220)课后作业答案本试卷共18题,时间60分钟,满分100分)班级:姓名:一、填空选择题:(每题3分,共36分)1、已知46xAy⎛⎫= ⎪⎝⎭,13uBv⎛⎫= ⎪⎝⎭,且A B=,那么A+AB=⎪⎪⎭⎫ ⎝⎛36302026 。

沪教版(上海) 高三年级 新高考辅导与训练 第七章 矩阵与行列式、算法初步、复数 一、矩阵与行列式

沪教版(上海) 高三年级 新高考辅导与训练 第七章 矩阵与行列式、算法初步、复数 一、矩阵与行列式

沪教版(上海) 高三年级新高考辅导与训练第七章矩阵与行列式、算法初步、复数一、矩阵与行列式一、解答题(★★) 1. 已知,,.求(1);(2);(3);(4).(★★★) 2. 关于,的二元线性方程的增广矩阵经过变换,最后得到的矩阵为,求,.(★★★) 3. 解关于的方程组:.(★★) 4. 求矩阵,满足.(★) 5. 判别关于,的二元一次方程组解的情况,并解方程组:.(★★) 6. 已知,不等式的解为,试求,的值.(★★) 7. 已知三角形三边的和,又,求各边之长.(★★★) 8. 化简:.(★★) 9. 解关于,,的方程组:.二、单选题(★) 10. 两个3×2的矩阵的乘积为().A.一个的矩阵B.一个的矩阵C.一个的矩阵D.以上都不对(★★)11. “三阶行列式的第二行和第三行的元素对应相等”是“该行列式的值为零”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件(★★) 12. 三阶行列式中,的代数余子式是().A.B.C.D.(★★) 13. 已知直线方程为,则下列各点不在这条直线上的是()A.B.C.D.(★) 14. 已知,,则△ 的面积为().A.B.C.D.(★★) 15. 以下向量中,能成为以行列式形式表示的直线方程的一个法向量的是().A.B.C.D.三、填空题(★★) 16. 行列式的值是________.(★) 17. 若行列式,则.(★) 18. 不等式的解为________.(★) 19. 当实数________时,方程组有唯一解.(★) 20. 计算:________.(★★) 21. 已知,,则与两个矩阵的积为________.(★★) 22. 关于,的二元一次方程组,有无穷多组解,则________.(★★) 23. 已知三阶行列式的元素,,,,,,,,按顺序成等差数列,则________.(★★★) 24. 行列式中,第3行第2列的元素的代数余子式记作.则函数的零点是 ________ .(★) 25. 各项都为正数的无穷等比数列,满足,且是增广矩阵为的线性方程组的解,则无穷等比数列各项和的数值是________.。

上海市华东师范大学第二附属中学实验班用高三数学习题详解 第十章 矩阵与行列式初步 含解析

上海市华东师范大学第二附属中学实验班用高三数学习题详解 第十章 矩阵与行列式初步 含解析

第十章 矩阵与行列式初步10.1 矩阵的定义及其运算1.设矩阵121052312432563241⎧⎫⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪===⎨⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭⎩⎭,,,A B C 求(1)+A B ,(2)()++A B C ,(3)2-+A B C ,(4)32-B A .解:(1)225588⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭,(2)7487129⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭,(3)10671106⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭,(4)1401016-⎧⎫⎪⎪⎨⎬⎪⎪--⎩⎭.2.设矩阵24241236-⎧⎫⎧⎫==⎨⎬⎨⎬---⎩⎭⎩⎭,A B ,求AB 和BA .解:242416322424001236816361200----⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫=⋅==⋅=⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬------⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭,AB BA . 3.求下列矩阵的乘积:(1)()317156425⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭.(2)212103032141⎧⎫⎧⎫⎪⎪⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭.(3)301601054234215321⎧⎫⎧⎫⎪⎪⎪⎪⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭. 解:(1){}3736.(2)72164⎧⎫⎨⎬⎩⎭.(3)2124222324291311⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭. 4.设矩阵215031400306760213221215624--⎧⎫⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪===-⎨⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪---⎩⎭⎩⎭⎩⎭,,A B C . 求(1)()2-A B C .(2)3+A BC . 解:(1)30335422557383618-⎧⎫⎪⎪--⎨⎬⎪⎪-⎩⎭.(2)188104913634314-⎧⎫⎪⎪⎨⎬⎪⎪--⎩⎭. 5.在一次校运会中,高二年级的三个夺冠热门班级获得前六名的项目数如表1所示,而每一种名次可获得如表2所示相应的积分.表1 名次第一名 第二名 第三名 第四名 第五名 第六名 A 班 5 2 3 4 5 3 B 班187212如果现在要求按前6名的得分统计各个班的团体总分,进而决定各班在年级中的名次,那么,哪个班级最终获胜了呢?(要求用矩阵运算)解:()10645224535012121210399321⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪==+++++=⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭A S ;()106418721210482862292321⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪==+++++=⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭B S ;()10646124366068126698321⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪==+++++=⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭C S ;所以A 班最终获胜了. 6.设矩阵1001⎧⎫=⎨⎬-⎩⎭A ,⎧⎫=⎨⎬⎩⎭x B y ,求AB ;并说出矩阵A 对矩阵B 产生了怎样的变换? 解:⎧⎫=⎨⎬-⎩⎭x AB y ,产生了一个镜像变换,类似于直角坐标系中关于X 轴对称.10.2 矩阵变换求解线性方程组1.写出方程123123121232152232353-+=⎧⎪--=⎪⎨+=⎪⎪-+=⎩x x x x x x x x x x x 的系数矩阵和增广矩阵.解:系数矩阵112151203315-⎧⎫⎪⎪--⎪⎪⎨⎬⎪⎪⎪⎪-⎩⎭,增广矩阵1121151220323153-⎧⎫⎪⎪--⎪⎪⎨⎬⎪⎪⎪⎪-⎩⎭. 2.对下列方阵施以初等变换,使之成为单位方阵: (1)113327133-⎧⎫⎪⎪-⎨⎬⎪⎪-⎩⎭,(2)321111111⎧⎫⎪⎪-⎨⎬⎪⎪--⎩⎭解:(1)()122113113113327101101133133110----⎧⎫⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪-−−−−−−−−→−−−−−−→−−−−−−→⎨⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪--⎩⎭⎩⎭⎩⎭第一行加到第三行第三行乘以第一行乘以加到第二行第三行加到第一行第三行不变第二行不变第二行不变 ()()()211203001001101101100110110110---⎧⎫⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪−−−−−−−−→−−−−−−−−→−−−−−−−−→⎨⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭⎩⎭三一第二行乘以加到第一行第一行乘以加到第二行第一行乘以加到第行第三行不变第三行不变第行不变001100100010010001⎧⎫⎧⎫⎪⎪⎪⎪−−−−−−−→⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭交换第一行和第二行交换第二行和第三行(2)()()()21115112321321321111111110111001001---⎛⎫- ⎪⎝⎭⎧⎫⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪-−−−−−−−−→-−−−−−−−−→-−−−−−−−→⎨⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪--⎩⎭⎩⎭⎩⎭三第二行乘以加到第一行第一行乘以第二行乘以加到第三行第行乘以加到第一行第三行乘以加到第二行第三行不变第三行乘以 ()()11100100110010001001--⎧⎫⎧⎫⎪⎪-⎪⎪⎪⎪−−−−−−−−→⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎪⎪⎩⎭第二行乘以加到第二行第二行乘以第三行不变3.把矩形23822122121314A -⎧⎫⎪⎪=-⎨⎬⎪⎪⎩⎭化为行最简形矩阵.解:10322201330000⎧⎫⎪⎪⎪⎪-⎨⎬⎪⎪⎪⎪⎩⎭.4.用矩形的初等变换解下列线性方程组:(1)1212323312234115x x x x x x x +=-⎧⎪+-=⎨⎪-=⎩.(2)12312312321352752x x x x x x x x x ++=⎧⎪-++=-⎨⎪-++=⎩.(3)1212123232328233x x x x x x x +=⎧⎪-=-⎨⎪++=⎩.(4)12312312322313250x x x x x x x x x --=⎧⎪--=⎨⎪--+=⎩.解:(1)8757x y ⎧=⎪⎪⎨⎪=-⎪⎩.(2)无解.(3)212x y z =-⎧⎪=⎨⎪=⎩.(4)503x y z =⎧⎪=⎨⎪=⎩.5.线性方程组21202x z x y y z -=-⎧⎪+=⎨⎪+=⎩的增广矩阵是__________.解:201112000112--⎧⎪⎨⎪⎩. 6.设A 是一个n n ⨯的矩阵()11*k k A AA A A k +⎧=⎪⎨=⋅∈⎪⎩N .若1101A ⎧⎫=⎨⎬⎩⎭,求: (1)2A ,3A .(2)猜测()*n A n ∈N ,并用数学归纳法证明.解:(1)223111213010101A A ⎧⎫⎧⎫⎧⎫===⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,.(2)()*101n n A n N ⎧⎫=∈⎨⎬⎩⎭.10.3 二阶行列式与二元线性方程组1.计算下列二阶行列式的值: (1)35571--.(2)sin cos cos sin αααα--.解:(1)()3553535071-=---=-. (2)22sin cos sin cos cos 2cos sin ααααααα-=-+=-.2.用二阶行列式求解方程组12123234x x x x +=⎧⎨-=-⎩.解:1131135510234324x y D D D ==-==-==-----,,; 1212y xD D x x D D ====,,所以方程组的解为1212x x =⎧⎨=⎩. 3.设a ∈R ,若方程组()()120320a x y x a y ⎧-+=⎪⎨+-=⎪⎩除00x y ==,外,还有其他解,求a 的值.解:120432a a-=⇒-或1-.4.已知方程组()()()11232a x ay a a x a y ⎧-+=⎪∈⎨+++=⎪⎩R ,恰有一解,求x y +的最小值,并求此时a 的范围. 解:()()()1132323a aD a a a a a a -==-+-+=-++, 1113,42322x y a a D a D a a a -==-==-++. 3433a a x y --==--,. ()()()()7203341341343332743aa a a x y a a a a a -⎧<⎪⎪--⎪+=+=-+-=⎨⎪-⎪>⎪⎩≤≤.x y +的最小值为13,此时a 的范围是34a ≤≤.10.4 三阶行列式1.用对角线法计算下列行列式: (1)623251469----.(2)a cb ba c cba. 解:(1)182.(2)3333a b c abc ++-. 2.利用行列式解下列方程组:(1)()()415332x y y y z z⎧+=-⎪⎨+=-⎪⎩.(2)25314510x y x z y z +=⎧⎪-=-⎨⎪-=⎩.(3)123123123323154329547x x x x x x x x x ++=⎧⎪-+=⎨⎪-+=⎩.解:(1)1524513x k y k z k ⎧=-+⎪⎪⎪=-⎨⎪⎪=⎪⎩.(2)000x y z =⎧⎪=⎨⎪=⎩.(3)435215325x y z ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩.3.利用行列式性质,化简并计算下列行列式: (1)682152056341---.(2)111a b cbc a c a b+++.(3)215326121236132623--解:(1)()()6821520566083026060480341--=-⋅-⋅-+⋅+=-.(2)()()()()2211110111ab cbc a c a bb c a a b c ab b ac c a b c b c c b ca b a b cca b++++=-++=+---+++-=+++.(3)2153261212411115311272363942336649108132623-⎛⎫⎛⎫⎛⎫=-⋅---⋅--+⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-.4.展开行列式,证明下列行列式的值为零: (1)000ma nab c nb c m ---.(2)254123131352323143--+. 解:(1)000000ma nabcnb c cnb ma nab mnabc mnabc cc mc m ---=+=+=---. (2)()()2541231313522756411727370323143--+=⋅-⋅-+⋅---⋅+⋅=.5.用行列式性质证明:(1)111111*********2222b c c a a b a b c b c c a a b a b c b c c a a b a b c ++++++=+++(2)()()()222111a a bb a b bc c a cc =---. 证明:(1)11111111111111111222222222222222222222b c c a a b b c a b a b b ca ab bc c a a b b c a b a b b c a a b b c c a a b b c a b a b b c a a b ++++-++++++=+-+=++++++-+++111111111111111122222222222222222232a b c a b a b c b a b b c a b ca b c a b a b c b a b b c a b c a b c a b a b c b a b b c a b c ++++=-++=-+=+=++++.(2)()()()()()()()222222222111a ab b bc b c a c b a c b b c bc ab ac a a b b c c a c c =---+-=--++-=---.6.[]0πθ∈,,且1cos sin 0cos sin 01sin cos θθθθθθ-=,,则θ=__________. 解:1cos sin π00cos sin 12sin cos 1sin 241sin cos θθθθθθθθθθ=-=-=-⇒=,.7.设行列式111222333a b c D a b c a b c =,则111111222222333333223223223c b c a b c c b c a b c c b c a b c ++++++=+++( ). A .D -B .DC .2D D .2D - 解:111111111111111112222222222222222233333333333333333223232232322323c b c a b c c b a b c c b a a b c c b c a b c c b a b c c b a a b c D c b c a b c c b a b c c b a a b c ++++++++=++==--=-+++++,选A.8.如行列式111213212223313233a a a a a a D a a a =,则313233212223111213333222a a a a a a a a a =---( ).A .6D -B .6DC .4D D .4D -解:313233313233111213212223212223212223111213111213313233333222666a a a a a a a a a a a a a a a a a a D a a a a a a a a a =-==---,选B . 9.一位同学对三元一次方程组111122223333a x b y c z d a x b y c z d a x b y c z d++=⎧⎪++=⎨⎪++=⎩(其中()123i i i a b c i =,,,,不全为零)的解的情况进行研究后得到下列结论:结论1:当0D =,且0x y z D D D ===时,方程组有无穷个解; 结论2:当0D =,且x y z D D D ,,都不为零时,方程组有无穷个解; 结论3:当0D =,且0x y z D D D ===时,方程组无解.但是上述结论均不正确.下面给出的方程组可以作为结论1、2和3的反例依次为( ). (1)230231232x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩;(2)2020240x y x y z x y +=⎧⎪++=⎨⎪+=⎩;(3)212032x y x y z x y z +=⎧⎪-++=⎨⎪++=⎩.A .(1)(2)(3)B .(1)(3)(2)C .(2)(1)(3)D .(3)(2)(1)解:带入逐一检验即可,选B .10.在ABC △中,A 、B 、C 所对的边分别为a 、b 、c ,已知2a c ==,且sin sin 0020cos 01C B b c A -=,求ABC △的面积. 解:sin sin 0002sin sin 2cos cos 01C B b c b C B c A A =-=-, ()1π2sin sin 2sin sin cos 0cos 23R C B C B A A A -=⇒==,,2221cos 422b c a A b bc +-==⇒=,1sin 2ABC S bc A ==△10.5 三阶行列的展开与三元齐次线性方程组1.利用代数余子式展开下列三阶行列式并求值,并用对角线法验算:(1)122451314-.(2)584345463---. 解:(1)()12245112121321921263843314=⋅-⋅+⋅-=--=--.(2)()()()584345512308920418162102328450463--=⋅---⋅+-⋅-=---=--. 2.利用行列式按行或按列展开式计算三阶行列式:104014131D =.解:1041201014145493113131=⋅+⋅=--=-. 3.计算下列行列式:(1)837504922---.(2)152552515552515---.(3)64227828362035135-.解:(1)()837504883467104922-=⋅-⋅-⋅-=---.(2)()()()1525525155152251252537525562575200052515--=⋅++⋅--+⋅-=--.(3)6422782836226802035135-=-.4.解下列齐次线性方程组:(1)023204540x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩.(2)202020x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩.(3)670510504370x y z x y z x y z --=⎧⎪++=⎨⎪--=⎩.解:(1)0x k y z k =-⎧⎪=⎨⎪=⎩.(2)000x y z =⎧⎪=⎨⎪=⎩.(3)x k y k z k =⎧⎪=-⎨⎪=⎩.5.已知1023142x x 的代数余子式120A =,则代数余子式21A =__________.解:12211023124022442x A x x A x x =--=⇒==-=-,.6.1010411a a 大于零的充要条件为__________.解:()()210101011411a a a a =->∈-∞-+∞,,,∪. 7.问λμ,取何值时,齐次线性方程组1231231220020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解?解:111101121λμλμ=⇒=或0μ=.9.()2*4n n n ∈N ,≥个正数排成一个n 行n 列的矩阵111212122212.....................n n n n nn a a a a a a A a a a ⎧⎫⎪⎪⎪⎪=⎨⎬⎪⎪⎪⎪⎩⎭,其中()11ik a i n k n ,≤≤≤≤表示该数阵中位于第i 行第k 列的数,已知该数阵每一行的数成等差数列,每一列的数成公比为2的等比数列,且2134820a a ==,. (1)求11a 和ik a . (2)计算行列式11122122a a a a 和im ik jm jka a a a .(3)设()()112132...n n n n n A a a a a --=++++,证明:当n 是3的倍数时,n A n +能被21整除.解:(1)()211122212i i ik k a a a k --===+.(2)1112212223046a a a a ==. ()()()()1111121212120im iki j i j jm jk a a m k k m a a ----=++-++=;(3)()()()()2123......12122221221222n n n n A n n n A n n n -=++⋅+-⋅++⋅=+⋅+⋅+-⋅++⋅,. 两式相减,得()()323321n n n n A n A n =⋅-++=-,.当*3n m m =∈N ,时,()381m n A n +=-. ①1m =时,()38121n -=显然能被21整除; ②假设m k =时,()381k -能被21整除,结论也成立. 由①、②可知,当n 是3的倍数时,n A n +能被21整除.。

沪教版(上海)高二第一学期新高考辅导与训练第9章矩阵和行列式初步9.4(1)三阶行列式

沪教版(上海)高二第一学期新高考辅导与训练第9章矩阵和行列式初步9.4(1)三阶行列式

沪教版(上海)高二第一学期新高考辅导与训练第9章矩阵和行列式初步9.4(1)三阶行列式学校:___________姓名:___________班级:___________考号:___________一、解答题1.用对角线法则计算行列式:00xy zyxzx--. 2.把41032241D -=--按第一行展开. 3.解方程:111130002x x --=.4.计算:cos cos 0cos 0cos 0cos cos αβγβγα---. 5.计算下列行列式的值:(1)102941320-;(2)102101320-;(3)102840320. 根据计算结果,并观察行列式,你可以得到怎样更一般的结论?二、双空题6.行列式302647219--中,7的余子式为_______,代数余子式为__________.三、填空题7.把51024132---按第二列展开为____________________. 8.用对角线法则计算行列式:10231245-=-____________.9.把22111133332232x y x y x y x y x y x y +-表示成一个三阶行列式为____________. 10.已知(1,1),(1,2),(2,4)A B C -,则ABC 的面积为___________.参考答案1.322x xz xy ++ 【分析】直接利用三阶行列式运算法则计算得到答案. 【详解】()()322200()0()00x y zy x x y z z y xz xy x zx-=+⋅⋅-+⋅⋅------⋅-322x xz xy =++. 【点睛】本题考查了三阶行列式的计算,属于简单题. 2.3202034(1)0412124⎛⎫⨯+-⨯-+⨯ ⎪----⎝⎭【分析】直接根据行列式运算法则计算得到答案. 【详解】4103202030324(1)0412124241-⎛⎫=⨯+-⨯-+⨯ ⎪----⎝⎭--. 【点睛】本题考查了行列式的展开式,属于简单题. 3.1x =或4x = 【分析】根据三阶行列式的计算方法,先得到21111305402x x x x--=-+-,再解一元二次方程,即可得出结果. 【详解】因为111301013130022002x x x x x x ------=-+22(3)2(3)54x x x x x =-+--=-+-,所以方程111130002x x--=可化为2540x x -+-=,即2540x x -+=, 解得:1x =或4x =. 【点睛】本题主要考查解三阶行列式对应的方程,熟记三阶行列式的计算方法即可,属于基础题型. 4.0 【分析】直接根据三阶行列式运算法则计算得到答案. 【详解】()()()cos cos 0cos 0cos cos 0cos cos 0cos cos 0cos 0cos cos αβγβααγγββγα-=⋅⋅-+⋅⋅-+⋅⋅--- ()()()0cos cos cos cos cos cos 0βγααγβ--⋅⋅--⋅-⋅-=.【点睛】本题考查了三阶行列式的计算,属于简单题. 5.(1)14 (2)6 (3)8;结论见详解; 【分析】根据三阶行列式的计算方法,分别计算这三个行列式,再根据计算结果进行合情推理,即可得出结论. 【详解】(1)()102419194941102202181214203032320---=⨯-⨯+⨯=-+-=; (2)1020111101011022022620303232---=⨯-⨯+⨯=-+⨯=;(3)()10240808484010200216128203032320=⨯-⨯+⨯=-+⨯-=;由计算结果可得:102102102102941101018403203203201803204+++-=-+=-; 由此可得一般结论如下:设行列式的某一行(或列)的元素都可以写成两项的和那么这个行列式等于把这些两项和各取一项作为相应的行(或列),其余行(或列)不变的两个行列式的和,即111213111213111213212122222323212223212223313233313233313233a a a a a a a a abc b c b c b b b c c c a a a a a a a a a +++=+.【点睛】本题主要考查计算三阶行列式,以及数与式的合情推理,属于常考题型. 6.3021- 3021--【分析】根据余子式与代数余子式的概念,直接可得出结果. 【详解】由题意,7的余子式为3021-,因为7处在第2行第3列,所以其代数余子式为:()23303012121+-=---.故答案为:3021-;3021--.【点睛】本题主要考查求行列式的余子式与代数余子式,熟记概念即可,属于基础题型.7.510215050241(1)4032322132-⎛⎫⎛⎫=-⨯-+⨯+⨯- ⎪ ⎪----⎝⎭⎝⎭--【分析】根据行列式的计算方法,直接展开,即可得出结果. 【详解】把51024132---按第二列展开为: 510215050241(1)4032322132-⎛⎫⎛⎫=-⨯-+⨯+⨯- ⎪ ⎪----⎝⎭⎝⎭--.故答案为:510215050241(1)4032322132-⎛⎫⎛⎫=-⨯-+⨯+⨯- ⎪ ⎪----⎝⎭⎝⎭--.【点睛】本题主要考查三阶行列式的展开,熟记行列式的计算方法即可,属于基础题型. 8.23 【分析】利用行列式的对角线法则直接求解. 【详解】()()()()10203113501220423241150023245-=⨯-⨯-+⨯⨯+⨯⨯-⨯-⨯-⨯⨯--⨯⨯=-故答案为:23 【点睛】本题主要考查三阶行列式展开式的求法以及行列式的对角线法则,还考查了运算求解的能力,属于基础题.9.112233312x y x y x y --【分析】直接利用三阶行列式的运算法则计算得到答案. 【详解】11221111223333223333212x y x y x y x y x y x y x y x y x y +-=--.故答案为:112233312x y x y x y --. 【点睛】本题考查了三阶行列式的计算,属于简单题. 10.72【分析】直接利用行列式计算面积公式计算得到答案. 【详解】111117121242414222241ABCS =-=-+-+-=△. 故答案为:72. 【点睛】本题考查了根据行列式计算三角形面积,属于简单题.。

行列式习题及答案

行列式习题及答案

行列式习题及答案【篇一:上海版教材矩阵与行列式习题(有答案)】lass=txt>姓名成绩一、填空题cos1.行列式?3sincos?6sinac?3bd?6的值是 .2.行列式(a,b,c,d?{?1,1,2})的所有可能值中,最大的是 .?2x?0?3.将方程组?3y?z?2写成系数矩阵形式为 .?5x?y?3?4.若由命题a:“2x31-x20”能推出命题b:“x?a”,则a的取值范围是.?a1x?b1y?c15.若方程组?的解为x?1,y?2,则方程组ax?by?c?222?2b1x?5a1y?3c1?0的解为x? ,y? . ?2bx?5ay?3c?022?26.方程2x4x2?0的解集为.?39?2x1 y1x3 y3?4x1 y1x2 y27.把x2 y2x3 y3表示成一个三阶行列式为. 8.若?abc的三个顶点坐标为a(1,?2),b(?2,3),c(?4,?5),其面积为 .2x9.在函数f?x???x1?x2?1x中x3的系数是 x110.若执行如图1所示的框图,输入x1?1,x2?2,x3?4,x4?8,则输出的数等于111.矩阵的一种运算???ab??x??ax?by??ab??????????,该运算的几何意义为平面上的点在矩阵的作用下(x,y)????????cd??y??cx?dy??cd??1a???的作用下变换成曲线x?y?1?0,则a?b的b1??变换成点(ax?by,cx?dy),若曲线x?y?1?0在矩阵??值为 .12.在集合?1,2,3,4,5?中任取一个偶数a和奇数b构成以原点为起点的向量???a,b?.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n,其中面积不超过...4的平行四边形的个数为m,则m?n二.选择题13.系数行列式d?0是三元一次方程组无解的() a. 充分非必要条件 b. 必要非充分条件c. 充分必要条件d. 既非充分也非必要条件 14.下列选项中错误的是(). a.abccacbdd??caddbb.abcd?dcbac.a?3cb?3d?acbdd.???a?c?b?d15.若a,b,c表示?abc的三边长,aa2且满足ba?b?ca?b?c?0, a?b?cb2c2c则?abc是().a. 等腰三角形b. 直角三角形c. 等腰直角三角形d. 等边三角形 16. 右边(图2)的程序框图输出结果s?() a.20 b. 35 c. 40 d .45 2图2三、解答题:1?|x|?5?1??mx?217. 已知p:矩阵?|x|?1的某个列向量的模不小于,行列式q:2?01?余子式的值不小于2.若p是q成立的充分条件,求实数m的取值范围. ....18.已知等比数列{an}的首项a1?1,公比为q,(1)求二阶行列式?10?24?3中元素?1的代数1a1a2a3a4的值;(2)试就q的不同取值情况,讨论二元一次方程组??a1x?a3y?3何时无解,何时有无穷多解??a2x?a4y??2119.已知函数f(x)?0sinxsinx0xsinx0的定义域为?0,2m???,最大值为4.试求函数g(x)?msinx?2cosx?2??(x?r)的最小正周期和最值.320. 将等差数列an?2n?1(n?n)中n2个项依次排列成下列n行n列的方阵,在方阵中任取一个元素,记为x1,划去x1所在的行与列,将剩下元素按原来得位置关系组成(n-1)行(n-1)列方阵,任取其中一元素x2,划去x2所在的行与列?,将最后剩下元素记为xn,记sn?x1?x2??xn,求lim*n??sn的值。

专题14 矩阵与行列式(习题)-2021届沪教版高考数学一轮复习(上海专用)

专题14 矩阵与行列式(习题)-2021届沪教版高考数学一轮复习(上海专用)

2021届高考数学一轮复习 专题14 矩阵与行列式一、填空题1.(2020·上海普陀·三模)满足sin 0cos xx =的实数x 的取值范围是______. 【答案】,3x k k Z ππ=+∈【解析】试题分析:sin 0x x =,即,∴,3x k k Z ππ=+∈.2.(2020·宝山·上海交大附中高三其他)已知方程102x b x -=-的一个根是2a i +(其中a R ∈,i 是虚数单位),则实数b =______. 【答案】5 【解析】 解:()212202x x x b x x b b x -=-+=-+=-,因为2a i +是方程的一个根,所以()()22220a i a i b +-++=,即()224440a a b a i -+-+-=, 所以,解得, 故答案为:5.3.(2020·上海杨浦·复旦附中高三期末)在行列式21406532020x--中,第三行第二列的元素3的代数余子式的值为4,则实数x 的值为______. 【答案】2 【解析】在行列式21406532020x--中,第三行第二列的元素3的代数余子式的值为4, 则2124446xx --=-=-,解得2x =.故答案为:2.4.(2020·上海高三专题练习)当实数m ________时,方程组有唯一解. 【答案】1m ≠- 【解析】 因为有唯一解,所以,即22(1)(1)(1)0101m m m m m m --+++≠⇒+≠⇒≠-. 故答案为:1m ≠-5.(2020·上海高三专题练习)若行列式,则 .【答案】2或3- 【解析】 由题意得, 所以260x x +-=, 解得2或3-.6.(2020·上海高三专题练习)关于x ,y 的方程组无实数解,则m =________. 【答案】 【解析】解:列出行列式系数:114a =,12a m =,21b m =, 21a m =,221a =,22b =,则()()244221mD m m m m ==-=+-, ()222212x m m D m m m m ==-=-,()()232482422y m D m m m m m ==-=-++,当0D =,0x D ≠时,原方程组无解,即当2m =-时,成立, 则当2m =-时,方程组无实数解. 故答案为:.7.(2018·上海交通大学附属中学嘉定分校高三其他)设函数()312xxf x ==,则x =_______.【答案】94【解析】()231x f x x ==-=,即230x =,即,0x ≥,32=,解得94x =. 故答案为:94. 8.(2020·上海高三一模)已知4251λλ-=-,则λ=________ 【答案】3 【解析】 解:4251λλ-=-,解得3λ=, 故答案为:3.9.(2020·上海闵行·高三一模)设函数 11-,则方程()1f x =的解为____________【答案】2x = 【解析】由题意得,即22x x -=,解得2x =或1x =-,由函数定义域可知2x =. 故答案为:2x =.10.(2016·上海徐汇·高三一模(文))若三条直线30ax y ++=,20x y ++=和210x y -+=相交于一点,则行列式111a 的值为________________.【答案】1 【解析】先由三条直线30ax y ++=,20x y ++=和210x y -+=相交于一点,求出a ,再由二阶行列式的计算法则可计算出行列式111a 的值.联立,解得,由于三条直线30ax y ++=,20x y ++=和210x y -+=相交于一点, 所以,直线30ax y ++=过点,则130a --+=,解得2a =,因此,212111111=⨯-⨯=. 故答案为:1.11.(2020·上海杨浦·高三二模)行列式120235580=_______.【答案】10 【解析】 .故答案为:10.12.(2020·上海虹口·高三二模)设复数cos sin i z iαα=(i 为虚数单位),若,则tan 2α=________.【答案】1 【解析】 因为, 又, 所以,所以22cos 1sin 20αα--=, 即cos 2sin 20αα-=, 所以. 故答案为:113.(2018·上海徐汇·高二期末)行列式63125142k --中元素3-的代数余子式的值为5,则k =________. 【答案】1 【解析】行列式63125142k --中元素3-的代数余子式为()()12214512kk +-=---=-,解得1k =.故答案为:1.14.(2019·上海市建平中学高三月考)已知数列满足()1*12452n n nn a a n N a a ++--=∈-,则使20192019a >成立的正整数1a 的最小值为__________. 【答案】2019 【解析】由题可知,()()21245n n n a a a +---=,变形可得, 即数列{}2n a -是一个首项为,公差是1的等差数列,故有 故答案为:2019二、单选题15.(2020·上海高三专题练习)已知,(3,1)AC =-,则△ABC 的面积为( ). A .5631-B .3516- C . D .【答案】C 【解析】设的夹角为α,先求出sin α=232ABCS =,又,即得解. 设的夹角为α,所以5cos ||||AB AC AB ACα⨯===所以, 所以12322ABCS==.又.所以△ABC 的面积为. 故选:C.16.(2020·上海高三专题练习)三阶行列式中,1b 的代数余子式是( ). A .1122a c a c B . C . D .1122c a c a【答案】C 【解析】行列式1b 的代数余子式是()222222333313321a c a c c a a c a c c a +=-=-.故选:C.17.(2020·上海高三专题练习)已知()11,AB x y =,,则三个不同点A ,B ,C 共线是11220x y x y =的( ).A .充要条件B .充分非必要条件C .必要非充分条件D .既非充分又非必要条件【答案】A 【解析】解:∵()11,AB x y =,, 由A ,B ,C 共线得,, ∴12210x y x y -=, 又由11220x y x y =得,12210x y x y -=,∴三个不同点A ,B ,C 共线是11220x y x y =的充要条件,故选:A .18.(2020·上海高二课时练习)已知ABC 的三边长为,,a b c ,且,则ABC 的形状为( ). A .等腰三角形 B .等边三角形C .直角三角形D .等腰直角三角形【答案】B 【解析】2221101a cb a a bc ac ab bc c b =++---=,所以222()()()0a b b c c a -+-+-=, 所以a b c ==,所以ABC 是等边三角形. 故选:B .三、解答题19.(2020·上海高三专题练习)已知三角形三边的和6a b c ++=,又0a b cca b b c a=,求各边之长. 【答案】2a b c === 【解析】因为0a b cca b b ca=,所以3333a b c abc ++=, 又因为3333a b c abc +≥+, 当且仅当a b c ==时,取等号, 又因为6a b c ++=, 所以2a b c ===,20.(2020·上海高三专题练习)判别关于x ,y 的二元一次方程组解的情况,并解方程组:.【答案】当0m =时,0x =,y R ∈,有无穷多解;当1m =时,无解;当0m ≠且1m ≠时,有唯一解22(2)(1)m m x m -=-,【解析】 因为,所以22221(1)(1)(1)1m m m D m m m m m m m--==---=-233322(1)(2)x m m m D m m m m m m m -==--=-,32221(1)1y m m D m m m m m m m -==--=--,当0m ≠且1m ≠时,0D ≠,方程组有唯一解22(2)(1)m m x m -=-,;.当0m =时,0,0x y D D D ===,方程组有无穷多解0x =,y R ∈; 当1m =时,0,0x D D =≠,方程组无解;综合得:当0m =时,0x =,y R ∈,有无穷多解;当1m =时,无解;当0m ≠且1m ≠时,有唯一解22(2)(1)m m x m -=-,. 21.(2020·上海高三专题练习)化简:. 【答案】0 【解析】由三阶行列式的计算方法,可得: 原式sin()sin cos sin sin cos()cos 2cos sin cos βϕβββααϕϕϕϕϕ-=-+cos sin()cos sin cos 2ββϕαϕϕ-+cos [cos cos 2sin()sin ]αβϕβϕϕ+--.22.(2020·上海高三专题练习)直线y x =与双曲线221x y -=交于点B ,C ,点A 的坐标为,求ABC 的面积.【答案】2【解析】由题意联立方程组可得(B ,(2,C -,进而可得(1,1)AB =-,(3,1)AC =--,再利用111231ABCS -=--△即可得解.由,得2114x =,解得2x =±,不妨设(B,(2,C -, 则(1,1)AB =-,(3,1)AC =---, ∴.23.(2018·cos 0.5sin 0(0)1cos A x A A xA x>按第一列展开得1121312M M -+,记函数1121()f x M M =+,且()f x 的最大值是4. (1)求A ;(2)将函数的图像向左平移12π个单位,再将所得图像上各点的横坐标扩大为原来的2倍,纵坐标不变,得到函数()y g x =的图像,求()g x 在上的值域. 【答案】(1)A =2) 【解析】(1)先根据行列式,求出函数()f x ,再利用二倍角公式,辅助角公式化简,结合()f x 的最大值是4,即可求A ;(2)向左移12π得4sin 212y x π⎛⎫=- ⎪⎝⎭,横坐标变为原来2倍得()4sin 12g x x π⎛⎫=-⎪⎝⎭因为,所以,所以. 解(1)11sin 0sin cos 1cos A x M A x x x==,221cos cos 221cos AA x A M A x x=-=-+,max 4f ==,所以A =(2)向左移12π得4sin 212y x π⎛⎫=- ⎪⎝⎭,横坐标变为原来2倍得()4sin 12g x x π⎛⎫=- ⎪⎝⎭因为,所以,所以24.(2018·上海静安·高三二模)设函数(a 为实数). (1)若1a =-,解不等式()0f x ≥; (2)若当01xx>-时,关于x 的不等式()1f x ≥成立,求a 的取值范围;(3)设,若存在x 使不等式成立,求a 的取值范围. 【答案】(1)8{|3x x ≤或6}x ≥;(2)[5,)-+∞;(3)[4,)-+∞ 【解析】(1)代入1a =-直接解不等式即可; (2)由01xx>-解得01x <<,故可将()1f x ≥化为,从而求出a 的范围; (3)化简()g x ,故可将题设条件变为:存在x 使成立,因此求出2722x x ---的最小值即可得出结论. (1)若1a =-,则 由()0f x ≥得, 即或,解得6x ≥或83x ≤, 故不等式的解集为8{|3x x ≤或6}x ≥; (2)由01xx>-解得01x <<, 由()1f x ≥得,当01x <<时,该不等式即为, 设()(2)7F x a x =-+,则有 解得5a ≥-,因此实数a 的取值范围为[5,)-+∞; (3),若存在x 使不等式()()f x g x ≤成立, 即存在x 使271x ax -++成立, 即存在x 使成立, 又, 所以,所以15a -≥-,即4a ≥-, 所以a 的取值范围为:[4,)-+∞。

上海高二数学矩阵及其运算(有详细答案)精品-推荐下载

上海高二数学矩阵及其运算(有详细答案)精品-推荐下载

叫做方程组的系数矩阵;而矩阵
(三)、应用举例:

4z

2
中未知数
2 3 m 1

3 4
2 1
x,
4 n
y,
z
2 4
的系数按原来的次序排列所得的矩阵

叫做方程组的增广矩阵。
例 1、下表是我国第一位奥运会射箭比赛金牌得主张娟娟与对手韩国选手朴成贤在决赛中的各阶段成绩表:
(1)将两人的成绩各阶段成绩用矩阵表示;
0 1

2 1 0 2

0 3
3 0
为单位矩阵,且
2 2
13
,

(四)、课堂练习:
1、请根据游戏“剪刀、石头、布”的游戏规则,作出一个 3 阶方阵(胜用 1 表示,输用 1 表示,相同则为 0)。
2、奥运会足球比赛中国队所在 C 组小组赛单循环比赛结果如下:

2
,

比利时胜新西兰 0∶1
,求
sin




的值。
(1)试用一个 4 阶方阵表示这 4 个队之间的净胜球数;(以中国、巴西、比利时、新西兰为顺序排列) (2)若胜一场可得 3 分,平一场得 1 分,负一场得 0 分,试写出一个 4 阶方阵表示各队的得分情况;(排列顺
一.初识矩阵
(一)引入:
引例
1:已知向量
OP

1,
3,如果把
引例 2:2008 年北京奥运会奖牌榜前三位成绩如下表:
引例
我们可将上表奖牌数简记为:
3:将方程组
2x 3y mz 1
3x 4x
将常数项增加进去,则可简记为:
(二)矩阵的概念

上海矩阵与行列式基础练习题

上海矩阵与行列式基础练习题

上海版矩阵与行列式基础练习题————————————————————————————————作者:————————————————————————————————日期:矩阵与行列式习题本试卷共18题,时间60分钟,满分100分)班级: 姓名: 一、填空选择题:(每题3分,共36分)1、已知46x A y ⎛⎫= ⎪⎝⎭,13u B v ⎛⎫= ⎪⎝⎭,且A B =,那么A+AB= 。

2、设231001252437A B -⎛⎫⎛⎫⎪⎪==- ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭,则3A –4B 为 。

3、设A 为二阶矩阵,其元素满足,0a a ji ij =+,i=1,2,j=1,2,且2a a 2112=-,那么矩阵 A= .4、设2442,1221A B -⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭則32A B - = ,=AB ,=BA5、若点A 在矩阵1222-⎡⎤⎢⎥-⎣⎦对应的变换作用下得到的点为(3,- 4),那么点A 的坐标为 .6、若202137x y -⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,则x y +=___________. 7、1212a a b b =1,则12122233b b a a =-- _____ 。

8、(1)行列式z kc c y kb b xka a = ;(2)211121__________112-= 9、已知124221342D -=---,则21a 的代数余子式21A = 。

10、已知2413201x x 的代数余子式012=A ,则代数余子式=21A11、设A 为3阶方阵,且3A =,则2A -=______________12、如果方程组⎩⎨⎧=++=++0101dy cx by ax 的系数行列式1=d c b a ,那么它的解为二、简答题(每题8分,共64分)1、已知⎪⎪⎭⎫⎝⎛-=533201A ⎪⎪⎪⎭⎫⎝⎛-=013164245B 求()AB .2.已知1011A ⎛⎫= ⎪⎝⎭,分别计算23A A 、,猜测*(2)n A n n ≥∈N ,;3. 将下列线性方程组写成矩阵形式,并用矩阵变换的方法求解:⑴ 32110250x y x y --=⎧⎨+-=⎩;⑵111612102113x y z ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭.4、已知函数f(x)=xa x+1111111 ,其中a 是实数,求函数f(x)在区间[2,5]上的最小值。

沪教版(上海) 高二第一学期 新高考辅导与训练 第9章 矩阵和行列式初步 9.4(2)三阶行列式

沪教版(上海) 高二第一学期 新高考辅导与训练 第9章 矩阵和行列式初步 9.4(2)三阶行列式

沪教版(上海) 高二第一学期新高考辅导与训练第9章矩阵和行
列式初步 9.4(2)三阶行列式
一、解答题
(★★) 1. 利用行列式解方程组:
(★★★) 2. 求关于的方程组,有唯一解的条件,并求在此条件下
该方程组的解.
(★★★) 3. 利用行列式解下列方程组:
(1)(2)
(★) 4. 已知二次函数的图像经过三点,求二次函数的解析式.(★★) 5. 求关于的方程组:有唯一解的条件,并求在此条件下该方程组
的解.
(★★★) 6. 甲、乙、丙三人一起做一批零件,甲、乙两人合作,甲做8天乙做5天能够完成;甲、丙两人合作,甲做6天丙做9天能够完成;乙、丙两人合作,乙做10天丙做6天能够完成,那么甲、乙、丙单独做,各需多少天能够完成?
二、填空题
(★★) 7. 方程组,它的系数行列式_________.
(★★) 8. 方程组,有无穷多解,则_________.。

上海高中二年级数学矩阵和运算(有详细答案)精品

上海高中二年级数学矩阵和运算(有详细答案)精品

版高二上数学矩阵与其运算一.初识矩阵 〔一〕引入:引例1:向量()1,3OP =,如果把的坐标排成一列,可简记为13⎛⎫ ⎪⎝⎭; 引例2:2008记为:512128363836232128⎛⎫ ⎪ ⎪ ⎪⎝⎭;我们可将上表奖牌数简231324244x y mz x y z x y nz ++=⎧⎪-+=⎨⎪+-=⎩中未知数引例3:将方程组z y x ,,的系数按原来的次序排列,可简记为2332441m n ⎛⎫ ⎪- ⎪ ⎪-⎝⎭;假如将常数项增加进去,如此可简记为:2313242414m n ⎛⎫⎪- ⎪ ⎪-⎝⎭。

〔二〕矩阵的概念1、上述形如13⎛⎫ ⎪⎝⎭、512128363836232128⎛⎫ ⎪ ⎪ ⎪⎝⎭、2332441m n ⎛⎫ ⎪- ⎪ ⎪-⎝⎭、2313242414m n ⎛⎫⎪- ⎪ ⎪-⎝⎭这样的矩形数表叫做矩阵。

2、在矩阵中,水平方向排列的数组成的向量()12,,n a a a ⋅⋅⋅称为行向量;垂直方向排列的数组成的向量12n b b b ⎛⎫⎪ ⎪ ⎪⋅⋅⋅ ⎪⎝⎭称为列向量;由m 个行向量与n 个列向量组成的矩阵称为m n ⨯阶矩阵,m n ⨯阶矩阵可记做m n A ⨯,如矩阵13⎛⎫ ⎪⎝⎭为21⨯阶矩阵,可记做21A ⨯;矩阵512128363836232128⎛⎫ ⎪ ⎪ ⎪⎝⎭为33⨯阶矩阵,可记做33A ⨯。

有时矩阵也可用A 、B 等字母表示。

3、矩阵中的每一个数叫做矩阵的元素,在一个m n ⨯阶矩阵m n A ⨯中的第i 〔i m ≤〕行第j 〔j n ≤〕列数可用字母ij a 表示,如矩阵512128363836232128⎛⎫ ⎪⎪ ⎪⎝⎭第3行第2个数为3221a =。

4、当一个矩阵中所有元素均为0时,我们称这个矩阵为零矩阵。

如000000⎛⎫⎪⎝⎭为一个23⨯阶零矩阵。

5、当一个矩阵的行数与列数相等时,这个矩阵称为方矩阵,简称方阵,一个方阵有n 行〔列〕,可称此方阵为n阶方阵,如矩阵512128363836232128⎛⎫ ⎪ ⎪ ⎪⎝⎭、2332441m n ⎛⎫⎪- ⎪ ⎪-⎝⎭均为三阶方阵。

上海版教学材料矩阵和行列式习题[有答案解析]

上海版教学材料矩阵和行列式习题[有答案解析]

矩阵、行列式和算法(20131224)姓名 成绩一、填空题1.行列式cossin 36sincos36ππππ的值是 .2.行列式a bc d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 . 3.将方程组203253x y z x y =⎧⎪+=⎨⎪+=⎩写成系数矩阵形式为 .4.若由命题A :“22031xx >-”能推出命题B :“x a >”,则a 的取值范围是 .5.若方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解为2,1==y x ,则方程组⎩⎨⎧=++=++03520352222111c y a x b c y a x b 的解为x = ,y = . 6.方程212410139xx ≤-的解集为 . 7.把22111133332224x y x y x y x y x y x y +-表示成一个三阶行列式为 . 8.若ABC ∆的三个顶点坐标为(1,2),(2,3),(4,5)A B C ----,其面积为 .9.在函数()21112xf x xx x x-=--中3x 的系数是 . 10.若执行如图1所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 .图211.矩阵的一种运算,⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫⎝⎛dy cx by ax y x d c b a 该运算的几何意义为平面上的点),(y x 在矩阵⎪⎪⎭⎫⎝⎛d c b a 的作用下变换成点(,)ax by cx dy ++,若曲线10x y +-=在矩阵⎪⎪⎭⎫⎝⎛11b a 的作用下变换成曲线10x y --=,则a b +的值为 .12.在集合{}1,2,3,4,5中任取一个偶数a 和奇数b 构成以原点为起点的向量(),a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则mn= 二.选择题13.系数行列式0D =是三元一次方程组无解的( )A. 充分非必要条件B. 必要非充分条件C. 充分必要条件D. 既非充分也非必要条件 14.下列选项中错误的是( ).A.bda c dbc a -= B. a bc d d b c a =C.dcd b c a 33++ dc b a =D.dc ba dbc a -----= 15.若,,a b c 表示ABC ∆的三边长,且满足0222=++++++cb ac c c b a bb cb a a a , 则ABC ∆是( ).A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等边三角形 16. 右边(图2)的程序框图输出结果S =( ) A .20 B. 35 C. 40 D .45三、解答题:17. 已知P :矩阵||51||10x x +⎛⎫⎪+ ⎝的某个列向量的模不小于2,Q : 行列式114203121mx ----中元素1-的代数余子式的值不小于2.若P 是Q 成立的充分条件....,求实数m 的取值范围.18.已知等比数列{}n a 的首项11a =,公比为q , (1)求二阶行列式4231a a a a 的值;(2)试就q 的不同取值情况,讨论二元一次方程组⎩⎨⎧-=+=+234231y a x a y a x a 何时无解,何时有无穷多解?19.已知函数1sin ()0sin sin 20x x f x x xm =的定义域为0,2π⎡⎤⎢⎥⎣⎦,最大值为4.试求函数()sin 2cos g x m x x =+(x R ∈)的最小正周期和最值.22213521212325414143456122122321n n n n n n n n n n n n n n -⎛⎫⎪+++- ⎪ ⎪+++- ⎪⎪ ⎪-+-+-⎝⎭20. 将等差数列21n a n =-*()n N ∈中2n 个项依次排列成下列n 行n 列的方阵,在方阵中任取一个元素,记为1x ,划去1x 所在的行与列,将剩下元素 按原来得位置关系组成(n-1)行(n-1)列方阵,任取其中一元素2x ,划去2x 所在的行与列,将最后剩下元素记为n x ,记12n n S x x x =++,求limn →∞322nS n n +的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵、行列式和算法(20131224)成绩一、填空题1.行列式cossin 36sincos36ππππ的值是 .2.行列式a b c d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 .3.将方程组203253x y z x y =⎧⎪+=⎨⎪+=⎩写成系数矩阵形式为 .4.若由命题A :“22031xx ”能推出命题B :“x a >”,则a 的取值围是 .5.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为2,1==y x ,则方程组⎩⎨⎧=++=++03520352222111c y a x b c y a x b 的解为x = ,y = . 6.方程212410139xx ≤-的解集为 . 7.把22111133332224x y x y x y x y x y x y +-表示成一个三阶行列式为 . 8.若ABC ∆的三个顶点坐标为(1,2),(2,3),(4,5)A B C ----, 其面积为 .9.在函数()21112x f x xx x x-=--中3x 的系数是 . 10.若执行如图1所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 .11.矩阵的一种运算,⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛dy cx by ax y x d c b a 该运算的几何意义为平面上的点),(y x 在矩阵⎪⎪⎭⎫⎝⎛d c b a 的作用下变换成点(,)ax by cx dy ++,若曲线10x y +-=在矩阵⎪⎪⎭⎫⎝⎛11b a 的作用下变换成曲线10x y --=,则a b +的值为 .12.在集合{}1,2,3,4,5中任取一个偶数a 和奇数b 构成以原点为起点的向量(),a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则mn= 二.选择题13.系数行列式0D =是三元一次方程组无解的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件 D. 既非充分也非必要条件14.下列选项中错误的是( ). A.bda c db ca -= B.ab cd d b ca =C.d c d b c a 33++ dc b a =D.dc bad b ca -----=15.若,,a b c 表示ABC ∆的三边长,且满足0222=++++++cb ac cc b a b bc b a a a , 则ABC ∆是( ).A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等边三角形16. 右边(图2)的程序框图输出结果S =( ) A .20B. 35C. 40 D .45三、解答题:17. 已知P :矩阵||51||10x x +⎛⎫⎪+ ⎝的某个列向量的模不小于2,Q : 行列式114203121mx ----中元素1-的代数余子式的值不小于2.若P 是Q 成立的充分条件....,数m 的取值围.18.已知等比数列{}n a 的首项11a =,公比为q , (1)求二阶行列式4231a a a a 的值;(2)试就q 的不同取值情况,讨论二元一次方程组⎩⎨⎧-=+=+234231y a x a y a x a 何时无解,何时有无穷多解?19.已知函数1sin ()0sin sin 20xxf x xx m =的定义域为0,2π⎡⎤⎢⎥⎣⎦,最大值为4.试求函数()sin 2cos g x m x x=+(x R ∈)的最小正周期和最值.22213521212325414143456122122321n n n n n n n n n n n n n n -⎛⎫⎪+++- ⎪ ⎪+++- ⎪⎪ ⎪-+-+-⎝⎭20. 将等差数列21n a n =-*()n N ∈中2n 个项依次排列成下列n 行n 列的方阵,在方阵中任取一个元素,记为1x ,划去1x 所在的行与列,将剩下元素 按原来得位置关系组成(n-1)行(n-1)列方阵,任取其中一元素2x ,划去2x 所在的行与列,将最后剩下元素记为n x ,记12n n S x x x =++,求limn →∞322nS n n+的值。

21.按程序框图3,可以打印出一个数列,设这个数列为{}n x(1)写出这个数列{}n x 的前4项,并建立数列{}n x (2)设1n n n a x x +=-,证明:{}n a 是等比数列; (3)求数列{}n x 的通项公式.图3矩阵、行列式和算法(20131224)答案成绩 一、行列式概念及运算 1.用记号2211b a b a 表示算式1221b a b a -,即2211b a b a =1221b a b a -,2.二元一次方程组的解二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a (其中2121,,,b b a a 不全为零);记2211b a b a 叫做方程组的系数行列式;记=x D 2211b c b c ,2211c a c a D y =即用常数项分别替换行列式D 中x 的系数或y 的系数后得到的.(1) 若D ,0≠则方程组有唯一一组解,DD y D D x y x==, ; (2) 若0=D ,且y x D D ,中至少有一个不为零,则方程组无解; (3) 若0===y x D D D ,则方程组有无穷多解. 3。

三阶行列式及对角线法则用333222111c b a c b a c b a 表示算式;其结果是231312123213132321c b a c b a c b a c b a c b a c b a ---++.我们把333222111c b a c b a c b a 叫做三阶行列式; 231312123213132321c b a c b a c b a c b a c b a c b a ---++叫做三阶行列式的展开式.其计算结果叫做行列式的值;i i i c b a ,,(3,2,1=i )都叫做三阶行列式的元素. 4. 三阶行列式按一行(或一列)展开把行列式中某一元素所在的行和列去后,剩下的元素保持原来的位置关系组成的二阶行列式叫做该元素的余子式;余子式前添上相应的正负号叫做该元素的代数余子式;其中第i 行与第j 列的代数余子式的符号为ji +-)1(.三阶行列式可以按其一行或一列)展开成该行(或该列)元素与其对应的代数余子式的乘积之和.三阶行列式有有两种展开方式:(1)按对角线法则展开,(2)按一行(或一列)展开. 5.三元一次方程组的解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333322221111dz c y b x a d z c y b x a d z c y b x a );)3,2,1(,,((不全为零其中=i c b a i i i记333222111c b a c b a c b a D =为方程组的系数行列式;记333222111c b d c b d c b d D x =,333222111c d a c d a c d a D y =333222111d b a d b a d b a D z =,即用常数项分别替换行列式D 中z y x 或或的系数后得到的.(1) 当0≠D 时,方程组有惟一解⎪⎪⎪⎩⎪⎪⎪⎨⎧===DD z D D y D D x z y x(2) 当0=D 时,方程组有无穷多组解或无解. 二、顺序结构:1.依次进行多个处理的结构称为顺序结构。

2、选择结构: 先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构。

3、循环结构:在算法中,像这种需要重复执行同一操作的结构称为循环结构。

矩阵、行列式和算法(20131224)作业答案成绩二、填空题1.行列式cossin 36sincos36ππππ的值是 0 .2.行列式a b c d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 6 .3.将方程组203253x y z x y =⎧⎪+=⎨⎪+=⎩写成系数矩阵形式为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡320015130002z y x . 4.若由命题A :“22031xx ”能推出命题B :“x a >”,则a 的取值围是 (-∞,-2] .5.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为2,1==y x ,则方程组⎩⎨⎧=++=++03520352222111c y a x b c y a x b 的解为x = -3 ,y = -5/3 . 6.方程212410139xx ≤-的解集为 [-3,2] . 7.把22111133332224x y x y x y x y x y x y +-表示成一个三阶行列式为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--421332211y x y x y x . 8.若ABC ∆的三个顶点坐标为(1,2),(2,3),(4,5)A B C ----, 其面积为 17 .9.在函数()21112x f x xx x x-=--中3x 的系数是 -2 . 10.若执行如图1所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 . 11.矩阵的一种运算,⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫⎝⎛dy cx by ax y x d c b a 该运算的几何意义为平面上的点),(y x 在矩阵⎪⎪⎭⎫⎝⎛d c b a 的作用下变换成点(,)ax by cx dy ++,若曲线10x y +-=在矩阵⎪⎪⎭⎫⎝⎛11b a 的作用下变换成曲线10x y --=,则a b +的值为 2 .解析:若P(x,y)是变换后得到的曲线上任一点。

与P 对应的点为Q(x 0,y 0)且Q 点在直线x+y-1=0上,则⎩⎨⎧=+=+y y bx x ay x 0000⎩⎨⎧--=--=)1/()()1/()(00ab bx y y ab ay x x 代入直线x+y-1=00111=---+--abbxy ab ay x011111=---+--y abax ab b ,此曲线与变换后得到的曲线x-y-1=0是同一条曲线。

故有:开始输入1234,,,x x x x1,0i x ==ix x x =+4?i <否 是结束 输出x4x x =1i i =+图18i ≥开始0i ← 0S ←21S S i =+-输出S是 2i i =+否⎩⎨⎧-=-=-1111a b ⎩⎨⎧==02b a a+b=2.12.在集合{}1,2,3,4,5中任取一个偶数a 和奇数b 构成以原点为起点的向量(),a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则mn= 1/3 . 解析:在集合{}1,2,3,4,5中任取一个偶数a 和奇数b 构成以原点为起点的向量(),a b α=,这些向量为: (2,1),(2,3),(2,5),(4,1),(4,3),(4,5)共六个向量。

相关文档
最新文档