高二数学基本概念——第9章 矩阵和行列式初步

合集下载

高二数学基本概念——第9章-矩阵和行列式初步

高二数学基本概念——第9章-矩阵和行列式初步

第9章 矩阵和行列式初步一、 矩阵9.1 矩阵的概念矩阵及其相关的概念1、矩形数表叫做矩阵矩阵中的每个数叫做矩阵的元素由个数排成的行列的数表n m ⨯m n ()n j m i a ij ,,2,1;,,2,1 ==mnm m nn a a a a a a a a a212222111211称为矩阵.n m ⨯记作⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A212222111211n m ij a ⨯=)(2、矩阵叫做方程组的系数矩阵。

⎪⎪⎭⎫⎝⎛-1321它是2行2列的矩阵,记为22⨯A ,矩阵可简记为An m A ⨯注意: 矩阵的符号,是“()”,不能是“| |”.列元素。

行第称为矩阵的第其中j i a ij 一般的记为大写字母A 、B 、C 、…等。

等,或者必要时可记为n m ij n m n m a B A ⨯⨯⨯)(,说明:通过对线性方程组的增广矩阵的变换可以得到线性方程组的解,这里所用的矩阵变换有下列三种:(1)互换矩阵的两行(2)把某一行同乘以(除以)一个非零常数(3)某行乘以一个数加到另一行通过上述三种矩阵变换,使线性方程组系数矩阵变成单位矩阵时,其增广矩阵的最后一个列向量给出了方程组的解。

9.2 矩阵的运算矩阵列的矩形表,称为一个行排列成一个个数由n m n m n j m i a n m ij ⨯==⨯),,2,1;,2,1( 111212122212.....................n n m m mn a a a a a a a a a ⎛⎫⎪⎪ ⎪⎪⎪⎝⎭记为列元素。

行第称为矩阵的第其中j i a ij 一般的记为大写字母A 、B 、C 、…等。

,()m n m n ij A B a ⨯⨯必要时可记为等,或者A=。

0m nO O ⨯所有元素均为的矩阵,称为零矩阵,记作或定义1一、复习定义2若两个矩阵A ,B 有相同的行数与相同的列数,并且对应的位置上的元素相等,则称矩阵A 与矩阵B 相等。

矩阵与行列式解析矩阵与行列式的性质与运算规律

矩阵与行列式解析矩阵与行列式的性质与运算规律

矩阵与行列式解析矩阵与行列式的性质与运算规律矩阵和行列式是线性代数中重要的概念和工具。

它们在数学、物理、工程等领域都有广泛的应用。

本文将详细解析矩阵与行列式的性质和运算规律。

一、矩阵的性质与运算规律1. 矩阵的定义矩阵是一个按照长方阵列排列的数。

它由m行n列元素组成,记作A=(a_ij),其中1≤i≤m,1≤j≤n。

矩阵的行数和列数分别称为矩阵的阶数或维数。

2. 矩阵的运算规律2.1 矩阵的加法和减法设A=(a_ij)和B=(b_ij)是两个同阶矩阵,则它们的和C=A+B的定义为C=(c_ij),其中c_ij=a_ij+b_ij。

矩阵的减法定义类似。

2.2 矩阵的数乘设A=(a_ij)是一个矩阵,k是一个数,则kA的定义为kA=(ka_ij),其中ka_ij=ka_ij。

2.3 矩阵的乘法设A=(a_ij)是一个m行n列的矩阵,B=(b_ij)是一个n行p列的矩阵,则它们的乘积C=AB的定义为C=(c_ij),其中c_ij=a_i1b_1j+...+a_inb_nj。

3. 矩阵的性质3.1 矩阵的转置设A=(a_ij)是一个m行n列的矩阵,A的转置记作A^T,定义为A^T=(a_ji)是一个n行m列的矩阵。

3.2 矩阵的逆设A是一个n阶方阵,若存在一个n阶方阵B,使得AB=BA=I,其中I为单位矩阵,则称矩阵A可逆,B为A的逆矩阵。

若A不可逆,则称为奇异矩阵。

3.3 矩阵的行列式矩阵A的行列式记作|A|,行列式是一个标量,它由矩阵元素按一定规则计算而得。

行列式的性质包括行列式的加法性、数乘性、转置性等。

二、行列式的性质与运算规律1. 行列式的定义行列式是一个方阵的特征值之一。

设A=(a_ij)是一个n阶方阵,行列式的定义为|A|=a_11a_22...a_nn-a_11a_23...a_n(n-1)-...-a_1n-1a_2n...a_n。

2. 行列式的运算规律2.1 行列式的数乘若k是数,A是n阶方阵,则kA的行列式等于k的n次方乘以A 的行列式,即|kA|=k^n|A|。

202110715710矩阵和行列式初步(格致中学讲义)

202110715710矩阵和行列式初步(格致中学讲义)

第 九 章 矩阵和行列式初步格致中学第一课时 9.1 矩阵的概念(1)[教学目标]1、了解矩阵的产生背景,并会用矩阵形式表示一些实际问题;2、了解矩阵、行向量、列向量、方矩阵、零矩阵、单位矩阵等概念;3、理解同阶矩阵、相等的矩阵等概念;4、理解线性方程组与系数矩阵及其增广矩阵之间的转化。

[教学重点]1、与矩阵有关的概念;2、线性方程组的系数矩阵及增广矩阵的概念。

[教学难点]学习矩阵的目的。

[教学过程]一、情境设置、引入:引例1:已知向量()1,3OP =,如果把的坐标排成一列,可简记为13⎛⎫⎪⎝⎭;引例2:2008我们可将上表奖牌数简记为:512128363836232128⎛⎫ ⎪⎪ ⎪⎝⎭;引例3:将方程组231324244x y mz x y z x y nz ++=⎧⎪-+=⎨⎪+-=⎩中未知数z y x ,,的系数按原来的次序排列,可简记为2332441m n ⎛⎫ ⎪- ⎪ ⎪-⎝⎭;若将常数项增加进去,则可简记为:2313242414m n ⎛⎫ ⎪- ⎪ ⎪-⎝⎭。

二、概念讲解:1、上述形如13⎛⎫ ⎪⎝⎭、512128363836232128⎛⎫ ⎪ ⎪ ⎪⎝⎭、2332441m n ⎛⎫ ⎪- ⎪ ⎪-⎝⎭、2313242414m n ⎛⎫⎪- ⎪ ⎪-⎝⎭这样的矩形数表叫做矩阵。

2、在矩阵中,水平方向排列的数组成的向量()12,,n a a a ⋅⋅⋅称为行向量;垂直方向排列的数组成的向量12n b b b ⎛⎫ ⎪ ⎪ ⎪⋅⋅⋅ ⎪⎝⎭称为列向量;由m 个行向量与n 个列向量组成的矩阵称为m n ⨯阶矩阵,m n ⨯阶矩阵可记做m n A ⨯,如矩阵13⎛⎫ ⎪⎝⎭为21⨯阶矩阵,可记做21A ⨯;矩阵512128363836232128⎛⎫⎪⎪⎪⎝⎭为33⨯阶矩阵,可记做33A ⨯。

有时矩阵也可用A 、B 等字母表示。

3、矩阵中的每一个数叫做矩阵的元素,在一个m n ⨯阶矩阵m n A ⨯中的第i (i m ≤)行第j(j n ≤)列数可用字母ij a 表示,如矩阵512128363836232128⎛⎫⎪⎪ ⎪⎝⎭第3行第2个数为3221a =。

矩阵的行列式定义

矩阵的行列式定义

矩阵的行列式定义矩阵是线性代数中的一个重要概念,与之紧密相关的是矩阵的行列式。

行列式是一个数学工具,用于描述矩阵的性质和特征。

在本文中,我们将探讨矩阵的行列式定义及其相关概念。

一、矩阵的概念矩阵是一个由数字组成的矩形阵列,由m行和n列组成,通常记作A=[a_{ij}],其中i表示行数,j表示列数。

每个元素a_{ij}都是一个实数或复数。

矩阵的大小由行数和列数决定,常用的矩阵有方阵、行向量和列向量。

二、行列式的定义行列式是一个与方阵相关的数值。

对于一个n阶方阵A=[a_{ij}],其行列式记作det(A),其中n表示方阵的阶数。

行列式的计算方法是通过对矩阵元素进行特定运算得到的。

三、行列式的计算方法1. 二阶行列式的计算方法对于一个2阶方阵A=[a_{ij}],其行列式的计算方法为:det(A) = a_{11} * a_{22} - a_{12} * a_{21}。

2. 三阶行列式的计算方法对于一个3阶方阵A=[a_{ij}],其行列式的计算方法为:det(A) = a_{11} * a_{22} * a_{33} + a_{12} * a_{23} * a_{31} + a_{13} * a_{21} * a_{32} - a_{13} * a_{22} * a_{31} - a_{12} * a_{21} * a_{33} - a_{11} * a_{23} * a_{32}。

对于更高阶的行列式,其计算方法可以通过递推的方式得到。

行列式的计算方法较为繁琐,但是对于线性代数的研究和应用起着重要的作用。

四、行列式的性质1. 行列式的值与矩阵的行列有关,与矩阵的元素排列顺序有关。

行列式的值随着矩阵元素的变化而变化。

2. 行列式的值可以为0,也可以为正数或负数。

当行列式的值为0时,表示矩阵的行或列之间存在一定的相关性,线性无关性受到限制。

3. 行列式的值可以用于判断矩阵的可逆性。

当行列式的值不为0时,矩阵是可逆的;当行列式的值为0时,矩阵是不可逆的。

沪教版(上海)高二数学上册第9章矩阵和行列式初步复习课件

沪教版(上海)高二数学上册第9章矩阵和行列式初步复习课件

5 t
,且AB
O,则
3 5 3
t
.
3) 已知
A
2 3
31, f ( x) x2 5 x 3,
则 f (A)
.
4) 若n阶矩阵A满足方程A2 2 A 3E 0,则
A1
.
3 0 0
5) 设A 0 1 0,则An
.
0 0 4
0 0 2
6) 矩阵A 0 5 0的逆矩阵A1 8 0 0
1 0 1
注:对一般的 n 阶方阵 A,我们常常用归纳的方
法求 An 。
例2 解:
0 1 0

A
1
0
0 ,求 A2004 2 A2 .
0 0 1
0 1 0 0 1 0
因为
A2
1
0
0 1 0
0
0 0 1 0 0 1

1 0
0 1
00 ,
0 0 1
故 A4 E,从而 A2004 ( A4 )501 E 501 E .
6 分块矩阵
矩阵的分块,主要目的在于简化运算及便于论证。 分块矩阵的运算规则与普通矩阵的运算规则类似。
典型例题
一、矩阵的运算 二、有关逆矩阵的运算及证明 三、矩阵方程及其求解方法
一、矩阵的运算
矩阵运算有其特殊性,若能灵活地运用矩阵的运算 性质及运算规律,可极大地提高运算效率。
例1
设α (1,0, 1)T,A ααT,求 An .
故 A(C B)T B. 从而
1 1 0 1 0 0
A B[(C B)T ]1 0 1 1 2 1 0
0 0 1 1 2 1
3 1 0 3 3 1
1 2 1

矩阵和行列式的基本概念

矩阵和行列式的基本概念

矩阵和行列式的基本概念矩阵和行列式是线性代数中的基本概念,它们在各个领域有着广泛的应用。

本文将介绍矩阵和行列式的基本定义、性质和应用。

1. 矩阵的基本定义矩阵是一个按照行和列排列的矩形数表。

具体而言,一个m行n列的矩阵A可以表示为:A = [a₁₁ a₁₂ a₁₃ …… a₁ₙ][a₂₁ a₂₂ a₂₃ …… a₂ₙ][…… …… …… …… ][aₙ₁ aₙ₂ aₙ₃ …… aₙₙ]其中,aᵢₙ表示矩阵A的第i行第j列的元素。

2. 矩阵的运算2.1 矩阵的加法和减法若A和B是两个相同大小的矩阵,即有相同的行数和列数,则它们的和与差定义为:A +B = [a₁₁ + b₁₁ a₁₂ + b₁₂ a₁₃ + b₁₃ …… a₁ₙ + b₁ₙ][a₂₁ + b₂₁ a₂₂ + b₂₂ a₂₃ + b₂₃ …… a₂ₙ + b₂ₙ] […… …… …… …… ][aₙ₁ + bₙ₁ aₙ₂ + bₙ₂ aₙ₃ + bₙ₃ …… aₙₙ + bₙₙ]A -B = [a₁₁ - b₁₁ a₁₂ - b₁₂ a₁₃ - b₁₃ …… a₁ₙ - b₁ₙ][a₂₁ - b₂₁ a₂₂ - b₂₂ a₂₃ - b₂₃ …… a₂ₙ - b₂ₙ] […… …… …… …… ][aₙ₁ - bₙ₁ aₙ₂ - bₙ₂ aₙ₃ - bₙ₃ …… aₙₙ - bₙₙ]2.2 矩阵的数乘若A是一个矩阵,k是一个数,则kA定义为:kA = [ka₁₁ ka₁₂ ka₁₃ …… ka₁ₙ][ka₂₁ ka₂₂ ka₂₃ …… ka₂ₙ][…… …… …… ][kaₙ₁ kaₙ₂ kaₙ₃ …… kaₙₙ]2.3 矩阵的乘法若A是一个m行n列的矩阵,B是一个n行p列的矩阵,则它们的乘积AB定义为:AB = [c₁₁ c₁₂ c₁₃ …… c₁ₙ][c₂₁ c₂₂ c₂₃ …… c₂ₙ][…… …… …… ][cₙ₁ cₙ₂ cₙ₃ …… cₙₙ]其中,cᵢₙ表示AB的第i行第j列的元素,其计算方式为cᵢₙ =aᵢ₁b₁ₙ + aᵢ₂b₂ₙ + … + aᵢₙbₙₙ。

高中数学教案认识矩阵的行列式

高中数学教案认识矩阵的行列式

高中数学教案认识矩阵的行列式高中数学教案:认识矩阵的行列式在高中数学中,矩阵及其行列式是一个重要的概念和工具。

矩阵是由数按照矩形排列而成的一种数学结构,而行列式则是矩阵所具有的一种特殊性质。

了解矩阵的行列式对于深入理解线性代数和高等数学具有重要意义。

本教案将带领学生深入认识矩阵的行列式,通过理论和实践相结合的方式,帮助学生掌握相关的概念和计算方法。

一、矩阵的概念及表示方法1.1 矩阵的定义:矩阵是一个由m行n列数排列成的数表,可以用大写字母表示,例如A。

1.2 矩阵的元素:矩阵中的每个数称为元素,用小写字母加下标表示,例如a_ij表示第i行第j列的元素。

1.3 矩阵的表示方法:可以用方括号或圆括号将矩阵元素括起来,元素之间用逗号或空格隔开。

例如,A=[a_ij]表示一个矩阵A,其中a_ij为矩阵A的元素。

二、行列式的定义及性质2.1 行列式的定义:行列式是一个与方阵相关的数值,它可以从矩阵的元素中按照一定规律计算出来。

一个n阶方阵A的行列式可以用det(A)或|A|表示。

2.2 行列式的计算方法:2.2.1 二阶行列式的计算方法:对于二阶方阵A=[a_ij],行列式的计算方法为:det(A) = a_11 * a_22 - a_12 * a_212.2.2 三阶及以上行列式的计算方法:对于n阶方阵A=[a_ij],行列式的计算方法为:det(A) = a_11 * A_11 + a_12 * A_12 + ... + a_1n * A_1n其中A_ij为元素a_ij的代数余子式。

2.3 行列式的性质:2.3.1 行列式与转置:对于任意方阵A,有det(A) = det(A^T),即行列式与其转置矩阵的行列式相等。

2.3.2 行列式与初等行变换:对于方阵A,若将其某一行(列)与另一行(列)互换位置,行列式的值变号。

2.3.3 行列式的性质:- 若矩阵A的某一行(列)全为0,则det(A) = 0。

矩阵与行列式的计算与性质

矩阵与行列式的计算与性质

矩阵与行列式的计算与性质矩阵与行列式是线性代数中重要的数学概念,对于许多数学和工程问题的建模与求解都非常关键。

本文将介绍矩阵与行列式的基本概念,以及它们的计算方法和一些常见的性质。

一、矩阵的定义与基本概念1.1 矩阵的定义矩阵是一种按照行和列排列的数表。

一个m行n列的矩阵常记作A=[a_ij],其中a_ij表示矩阵A中第i行第j列的元素。

1.2 矩阵的分类根据矩阵的特点,可以将其分为以下几种类型:1)零矩阵:所有元素都为0的矩阵。

2)对角矩阵:只有主对角线上的元素不为零,其余元素都为零的矩阵。

3)上三角矩阵:主对角线以下的元素都为零的矩阵。

4)下三角矩阵:主对角线以上的元素都为零的矩阵。

5)方阵:行数等于列数的矩阵。

6)转置矩阵:将矩阵的行与列对换得到的新矩阵。

二、矩阵的运算2.1 矩阵的加法和减法给定两个相同大小的矩阵A和B,它们的和(差)矩阵记作C=A±B,即C=[c_ij],其中c_ij=a_ij±b_ij。

2.2 矩阵的数乘给定一个矩阵A和一个标量k,它们的数乘记作B=kA,即矩阵B 的每个元素等于k乘以矩阵A对应元素。

2.3 矩阵的乘法给定一个m行n列的矩阵A和一个n行p列的矩阵B,它们的乘积矩阵C=A*B是一个m行p列的矩阵。

矩阵C的第i行第j列的元素c_ij等于矩阵A的第i行元素与矩阵B的第j列元素对应乘积的和。

三、行列式的定义与性质3.1 行列式的定义对于一个n阶方阵A=[a_ij],其中a_ij是方阵A中第i行第j列的元素,方阵A的行列式记作det(A)或|A|,计算方法如下:1)当n=1时,det(A)=a_11;2)当n>1时,det(A)=a_11*A_11+a_12*A_12+...+a_1n*A_1n,其中A_11、A_12、...、A_1n是n-1阶子矩阵的行列式。

3.2 行列式的性质行列式具有以下几个重要的性质:1)行列式与转置:det(A)=det(A^T),其中A^T表示矩阵A的转置矩阵。

高中数学备课教案矩阵与行列式

高中数学备课教案矩阵与行列式

高中数学备课教案矩阵与行列式高中数学备课教案矩阵与行列式一、引言数学作为一门重要的学科,对于高中生而言尤为重要。

矩阵与行列式作为数学中的重要概念,是高中数学教学中必须掌握的内容之一。

本备课教案旨在帮助教师们系统地准备矩阵与行列式的教学内容,以便让学生更好地掌握相关知识。

二、教学目标1. 了解矩阵与行列式的定义及基本运算规则;2. 掌握矩阵与行列式的应用方法,如线性方程组的解法等;3. 培养学生的逻辑思维能力和解决实际问题的能力。

三、教学内容1. 矩阵的定义与运算1.1 矩阵的基本概念1.1.1 矩阵的定义1.1.2 矩阵的元素、行、列1.1.3 矩阵的阶数1.2 矩阵的基本运算1.2.1 矩阵的加法与减法1.2.2 矩阵的数乘1.2.3 矩阵的乘法1.2 矩阵的转置与逆矩阵1.3.1 矩阵的转置1.3.2 矩阵的逆2. 行列式的定义与性质2.1 行列式的基本概念2.1.1 行列式的定义2.1.2 行列式的元素及排列2.1.3 行列式的阶数2.2 行列式的基本性质2.2.1 行列式的性质和运算规则2.2.2 行列式的展开与化简3. 线性方程组与矩阵3.1 线性方程组的基本概念3.1.1 线性方程组的定义3.1.2 线性方程组的解的分类3.2 矩阵的应用3.2.1 用矩阵表示线性方程组3.2.2 利用矩阵求解线性方程组四、教学方法1. 讲解法:通过讲解矩阵与行列式的定义、性质和运算规则,帮助学生理解相关概念;2. 练习法:通过大量的练习题,培养学生的矩阵与行列式的运算能力和解题技巧;3. 实践法:通过实际问题的解决,巩固学生对矩阵与行列式的应用知识的掌握。

五、教学资源1. 教材:根据学生的教材内容编写讲义,提供给学生作为参考;2. 教具:黑板、彩色粉笔、投影仪等;3. 练习题:准备丰富的练习题,供学生巩固知识。

六、教学评价1. 课堂表现评价:根据学生的课堂参与情况、讨论质量、问题解答等方面进行评价;2. 练习评价:布置适量的作业和练习题,对学生的完成情况进行评价;3. 测试评价:定期进行小测或者单元测试,检测学生对矩阵与行列式知识的掌握情况。

矩阵与行列式的基本概念与运算

矩阵与行列式的基本概念与运算
特征值与特征向量的应用
线性变换:特征值和特征向量在描述线性变换中的应用,如旋转、缩放等。
图像处理:在图像处理中,特征值和特征向量可用于图像的压缩和识别。
机器学习:在机器学习中,特征值和特征向量可用于数据的降维和分类。
信号处理:在信号处理中,特征值和特征向量可用于信号的滤波和频谱分析。
矩阵的应用
在线性方程组中的应用
线性方程组:矩阵可以用来表示线性方程组,通过矩阵运算可以求解线性方程组
特征值与特征向量:矩阵的特征值和特征向量在解决实际问题中有着广泛的应用,如振动分析、控制系统等
矩阵分解:矩阵分解是将一个复杂的矩阵分解成几个简单的矩阵,从而简化计算过程,如LU分解、QR分解等
最优化问题:矩阵在解决最优化问题中也有着重要的应用,如线性规划、二次规划等
特征多项式:|λE-A|=0,用于求解特征值。
特征向量:矩阵A中满足Ax=λx的向量x,λ为相应的特征值。
特征值与特征向量的计算方法
性质:特征值和特征向量的性质
定义:特征值和特征向量的定义及关系
计算方法:如何求解矩阵的特征值和特征向量
应用:特征值和特征向量在数学和工程领域的应用
特征值与特征向量的性质
定义:行列式是由n阶方阵A的元素按照一定顺序排列构成的n阶方阵的行列式值,记作|A|。
性质:行列式具有一些重要的性质,如交换律、结合律、分配律等。
计算方法:行列式的计算可以通过展开法、递推法、归纳法等方法进行。
应用:行列式在数学、物理、工程等领域有着广泛的应用,如求解线性方程组、判断矩阵是否可逆等。
LU分解的性质:L矩阵的每一列都是单位向量,U矩阵的每一行都是单位向量。
LU分解的应用:用于求解线性方程组、计算行列式值、计算矩阵的逆等。

矩阵和行列式基础PPT课件

矩阵和行列式基础PPT课件

(1 )
若线性方程组(1)的常数项全为0时,称(1)为齐次线 性方程组,这时Dj=0;
若系数行列式D≠0,则方程组(1)有唯一的零解。
若D=0,方程组(1) 可能有非零解
19
例:求方2x程 x11- 2组 xx223xx3357的解 3x1x2x3 6
例:求方程 2xx1- 组 1- 3xx23
3 -8
零矩阵——元素均为零的矩阵,记为 O.
注意:不同型的零阵是不相等的。
26
行矩阵: [ 2 6 4 ]
20
列矩阵:
8
5
1 0 0
单位矩阵
E=
0
1
0
0 0 1
0 0 0
零矩阵
O
0
0
0
0 0 0
27
二、矩阵运算
即对应元 素相加
• 1.加法
定义 2 设有两个 mn 矩阵 A (aij ), B (bij ) ,矩阵
4
行列式概念
• 问题:求解二元一次方程组
aa1211xx11 aa1222xx22bb12,,
(1) (2)
用消元法得 a1a122 a1a 221 0
x1
b1a22a12b2 a11a22a12a21
x2
b2a11a21b1 a11a22a12a21
5
用一个简单符号表示运算 a11a22 a12 a21 ,
a11
当 a21
a12 a22
0 时,方程组有唯一的解:
b1 a12
x1
b2 a11
a22 = D1 ,
a12
D
a21 a22
a11 b1
x2
a21 a11

矩阵与行列式的应用知识点总结

矩阵与行列式的应用知识点总结

矩阵与行列式的应用知识点总结矩阵与行列式作为线性代数中的两个重要概念,在数学以及实际应用中有着广泛的应用。

本文将对矩阵与行列式的相关知识点进行总结,以帮助读者更好地理解和应用这些概念。

一、矩阵的基本概念和运算法则1.1 矩阵的定义与表示方法矩阵是由 m 行 n 列的数按一定顺序排列成的矩形阵列。

在数学中,常用大写字母表示矩阵,例如A、B、C,其中A 是一个m×n 的矩阵,即包含 m 行 n 列。

矩阵可以用方括号表示,如 A = [a_ij],其中 a_ij 表示矩阵 A 中第 i行第 j 列的元素。

1.2 矩阵的运算法则矩阵的加法:矩阵 A 和矩阵 B 的和记作 A + B,要求 A 和 B 的行数与列数相等,即同型矩阵,其和的计算是按照对应元素相加的规则进行的。

矩阵的减法:矩阵 A 和矩阵 B 的差记作 A - B,要求 A 和 B 的行数与列数相等,即同型矩阵,其差的计算是按照对应元素相减的规则进行的。

矩阵的数乘:矩阵 A 与一个标量 k 的乘积记作 kA,其计算是将 A的每个元素乘以 k。

矩阵的乘法:矩阵 A 和矩阵 B 的乘积记作 AB,要求 A 的列数等于B 的行数,其计算是按照矩阵乘法的规则进行的。

即 A 的第 i 行与 B 的第 j 列对应元素分别相乘,并求和。

二、行列式的基本概念和性质2.1 行列式的定义与表示方法行列式是由 n×n 的矩阵所构成的特殊数,一般用竖线或两条竖线扩起来表示,如 |A| 或 det(A),其中 A 表示一个 n×n 的矩阵。

2.2 行列式的计算方法二阶行列式:对于二阶行列式 A = |a_ij|,其计算公式为 |A| =a_11a_22 - a_12a_21。

三阶行列式:对于三阶行列式 A = |a_ij|,其计算公式为|A| = a_11a_22a_33 + a_12a_23a_31 + a_13a_21a_32 - a_13a_22a_31 - a_11a_23a_32 - a_12a_21a_33。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9章 矩阵和行列式初步
一、 矩阵
9.1 矩阵的概念
矩阵及其相关的概念
1、矩形数表叫做矩阵
矩阵中的每个数叫做矩阵的元素
由个数排成的行列的数表
n m ⨯m n ()n j m i a ij ,,2,1;,,2,1 ==mn
m m n
n a a a a a a a a a
21
2222111211称为矩阵.
n m ⨯记作⎪⎪
⎪⎪



⎝⎛=mn m m n n a a a a a a a a a A
2122221
11211n m ij a ⨯=)(
2、矩阵叫做方程组的系数矩阵。


⎪⎭

⎝⎛-1321它是2行2列的矩阵,记为
2
2⨯A ,矩阵
可简记为A
n m A ⨯注意: 矩阵的符号,是“()”,不能是“| |”.
列元素。

行第称为矩阵的第其中j i a ij 一般的记为大写字母A 、B 、C 、…等。

等,或者必要时可记为n m ij n m n m a B A ⨯⨯⨯)(,
说明:
通过对线性方程组的增广矩阵的变换可以得到线性方程组的解,这里所用的矩阵变换有
下列三种:
(1)互换矩阵的两行
(2)把某一行同乘以(除以)一个非零常数
(3)某行乘以一个数加到另一行
通过上述三种矩阵变换,使线性方程组系数矩阵变成单位矩阵时,其增广矩阵的最后一个列向量给出了方程组的解。

9.2 矩阵的运算
矩阵
列的矩形表,称为一个行排列成一个个数由n m n m n j m i a n m ij ⨯==⨯)
,,2,1;,2,1( 11
12121
2221
2
.....................n n m m mn a a a a a a a a a ⎛⎫

⎪ ⎪

⎪⎝⎭
记为列元素。

行第称为矩阵的第其中j i a ij 一般的记为大写字母A 、B 、C 、…等。

,()m n m n ij A B a ⨯⨯必要时可记为等,或者A=。

0m n
O O ⨯所有元素均为的矩阵,称为零矩阵,记作或定义1一、复习
定义2若两个矩阵A ,B 有相同的行数与相同的列数,并且对
应的位置上的元素相等,则称矩阵A 与矩阵B 相等。

记为:A=B
n
m ij n m ij b B a A ⨯⨯==)(,)(即如果,(1,2,...,;1,2,...,)
ij ij a b i m j n ===且则A=B 。

...)3,2,1,...;3,2,1(===j i b a ij ij 二、矩阵的运算
(一)矩阵的加(减)法和数与矩阵的乘法
3(),()ij ij m n A a B b m n A B ==定义两个行列矩阵对应位置元素相加(或相减)得到的行列矩阵,称为矩阵与矩阵的和(差)。

A-B A B +记为或()。

A B ±即
()()ij m n ij m n a b ⨯⨯=±()ij ij m n
a b ⨯=±
定义4以实数乘矩阵A
中的每一个元素所得到的矩阵,称为实数与矩阵A 的乘积矩阵.记做A
A α即
()ij m n a α⨯=()ij m n
a α⨯=的负矩阵的元素变号,称为的乘积使与A A A 1-A -记作n
m ij a A ⨯-=-)(即
α)(ij a =αα1A 1A A 2A B A B
αααααα=+=+注意:()矩阵与实数相乘满足如下交换率和分配律:()()()
(2)设A 、B 、C 、O 都是m ×n 矩阵,l 、k 是实数,则
A
B B A +=+)1()()()2(
C B A C B A ++=++A O A =+)3(O A A =-+)()4(kB kA B A k +=+)()5(lA kA A l k +=+)()6()()()()7(kA l lA k A kl ==(8)1A A
=
存在唯一解的条件。

组例、给出二元一次方程2
221
11c y b x a c y b x a {=+=+解:原方程组的系数矩阵为)
(
2
2
11b a b a A =……①
⎪⎪⎭
⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2111,b b b a 是矩阵A 的两个列向量,原方程组可以表示为:⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛212121c c b b y a a x ……②由平面向量的分解定理可知:
使、对实数不平行时,存在唯一一
与当向量y x b b a a )1(2121⎪⎪⎭

⎝⎛⎪⎪⎭⎫ ⎝⎛②成立
1122111122221212a b (2)x y a b a b a b x y a b a b c c c c c c ααα⎛⎫⎛⎫
⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫
=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫
= ⎪⎝⎭⎛⎫
= ⎪⎝⎭
当向量与平行时,对任意实数、,
都与或平行,所以
若与平行,则原方程组有无穷多个解;
若与不平行,则原方程组无解。

唯一解的条件。

不平行是原方程组存在与⎪⎪⎭
⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∴2121b b a a
二、行列式
9.3.二阶行列式
二、定义概念
(1)定义:1
12
2
a
b a b 称之为行列式,
因为它有两行两列,所以称之为二阶行列式,且规定
11
22
a b a b =1221
a b a b -其中1221a b a b -叫做行列式的展开式;
1212,,,a a b b 叫做行列式的元素
的两行两列,
排列成如图
将未知数的系数2121b ,b ,a ,a (2)
(2)行列式算式的特点,并口述它的运算规则
12,a b 21,a b 我们把(主对角线)和(副对角线)分别用两条对角线连接
用主对角线上的两个数的乘积减去副对角线上的两个数的乘积即为行列式的值。

利用对角线把二阶行列式写成它的展开式,这种方法叫做二阶行列式展开的对角线法则。

由此我们得到:
(1)二阶行列式实质是表示四个数(或式)的特定算式的一种记号。

(2)由二阶行列式的计算法则,任何一个二阶行列式都可以表示成乘积差的形式,进而计算出它的值
(3)由二阶行列式的计算法则,任何两个乘积差的形式都可以表示成一个二阶行列式。

(ii)在D=0的情况下讨论转化的方
程组解的情况。

x
y D x D D y D •=⎧⎪⎨
•=⎪⎩
(1)如果中至少有一个不为
零,不妨设则无论x 取何值,方程都不成立,即x 无解从而方程组(A) 无解。

,x y D D 0x D ≠x D x D •=(2)如果显然在方程中,由于从而x 可取任意实数再由x 的值代入方程求出相应的y 值,所以方程组有无穷解。

0x y D D ==x D x D •=0x D D ==
9.4.三阶行列式
(二) 三阶行列式
1、定义
1112
223
3
3
933(1)
a b c a b c a b c 设有个数排成行列的数表

111
2223
3
3
......(2)a b c a b c a b c (2)式称为数表(1)所确定的三阶行列式.
4、三阶行列式展开方法:(1)按对角线展开
按对角线展开三阶行列式,共有6项,3项取正,3项取负。

正负号的取得可以按
奇偶排列决定,也可以按书上第95页图记忆。

这种展开方法叫三阶行列展开的对角线法则。

33
32
31
232221131211a a a a a a a a a 332211a a a =.
322311a a a -对角线法则
注意红线上三元素的乘积冠以正号,蓝线上三元素的乘积冠以负号.说明:
对角线法则只适用于二阶与三阶行列式.
322113a a a +312312a a a +312213a a a -332112a a a -
一个元素的代数余子式的正负号如何确定?
一个元素的代数余子式的正负号与这个元素所在行列式中的位置有关。

一般地,第i 行、第j 列的元素的代数余子式的正负号是由决定。

()j i +-1
三元一次方程组的行列式解法
二元一次和三元一次方程组的解的比较。

相关文档
最新文档